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ABSTRACT

Graph Neural Networks (graph NNs) are a promising deep learning approach for
analyzing graph-structured data. However, it is known that they do not improve
(or sometimes worsen) their predictive performance as we pile up many layers and
add non-lineality. To tackle this problem, we investigate the expressive power of
graph NNs via their asymptotic behaviors as the layer size tends to infinity. Our
strategy is to generalize the forward propagation of a Graph Convolutional Net-
work (GCN), which is a popular graph NN variant, as a specific dynamical sys-
tem. In the case of a GCN, we show that when its weights satisfy the conditions
determined by the spectra of the (augmented) normalized Laplacian, its output ex-
ponentially approaches the set of signals that carry information of the connected
components and node degrees only for distinguishing nodes. Our theory enables
us to relate the expressive power of GCNs with the topological information of the
underlying graphs inherent in the graph spectra. To demonstrate this, we charac-
terize the asymptotic behavior of GCNs on the Erdős – Rényi graph. We show
that when the Erdős – Rényi graph is sufficiently dense and large, a broad range
of GCNs on it suffers from the “information loss” in the limit of infinite layers
with high probability. Based on the theory, we provide a principled guideline for
weight normalization of graph NNs. We experimentally confirm that the proposed
weight scaling enhances the predictive performance of GCNs in real data1.

1 INTRODUCTION

Motivated by the success of Deep Learning (DL), several attempts have been made to apply DL mod-
els to non-Euclidean data, particularly, graph-structured data such as chemical compounds, social
networks, and polygons. Recently, Graph Neural Networks (graph NNs) (Duvenaud et al., 2015; Li
et al., 2016; Gilmer et al., 2017; Hamilton et al., 2017; Kipf & Welling, 2017; Nguyen et al., 2017;
Schlichtkrull et al., 2018; Battaglia et al., 2018; Xu et al., 2019; Wu et al., 2019a) have emerged as a
promising approach. However, despite their practical popularity, theoretical research of graph NNs
has not been explored extensively.

The characterization of DL model expressive power, i.e., to identify what function classes DL mod-
els can (approximately) represent, is a fundamental question in theoretical research of DL. Many
studies have been conducted for Fully Connected Neural Networks (FNNs) (Cybenko, 1989; Hornik,
1991; Hornik et al., 1989; Barron, 1993; Mhaskar, 1993; Sonoda & Murata, 2017; Yarotsky, 2017)
and Convolutional Neural Networks (CNNs) (Petersen & Voigtlaender, 2018; Zhou, 2018; Oono &
Suzuki, 2019). For such models, we have theoretical and empirical justification that deep and non-
linear architectures can enhance representation power (Telgarsky, 2016; Chen et al., 2018b; Zhou
& Feng, 2018). However, for graph NNs, several papers have reported that node representations go
indistinguishable (known as over-smoothing) and prediction performances severely degrade when
we stack many layers (Kipf & Welling, 2017; Wu et al., 2019b; Li et al., 2018). Besides, Wu et al.
(2019a) reported that graph NNs achieved comparable performance even if they removed interme-
diate non-linear functions. These studies posed a question about the current architecture and made
us aware of the need for the theoretical analysis of the graph NN expressive power.

1Code is available at https://github.com/delta2323/gnn-asymptotics.
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In this paper, we investigate the expressive power of graph NNs by analyzing their asymptotic be-
haviors as the layer size goes to infinity. Our theory gives new theoretical conditions under which
neither layer stacking nor non-linearity contributes to improving expressive power. We consider a
specific dynamics that includes a transition defining a Markov process and the forward propaga-
tion of a Graph Convolutional Network (GCN) (Kipf & Welling, 2017), which is one of the most
popular graph NN variants, as special cases. We prove that under certain conditions, the dynamics
exponentially approaches a subspace that is invariant under the dynamics. In the case of GCN, the
invariant space is a set of signals that correspond to the lowest frequency of graph spectra and that
have “no information” other than connected components and node degrees for a node classification
task whose goal is to predict the nodes’ properties in a graph. The rate of the distance between the
output and the invariant space is O((sλ)L) where s is the maximum singular values of weights, λ
is typically a quantity determined by the spectra of the (augmented) normalized Laplacian, and L is
the layer size. See Sections 3.3 (general case) and 4 (GCN case) for precise statements.

We can interpret our theorem as the generalization of the well-known property that if a finite and dis-
crete Markov process is irreducible and aperiodic, it exponentially converges to a unique equilibrium
and the eigenvalues of its transition matrix determine the convergence rate (see, e.g., Chung & Gra-
ham (1997)). Different from the Markov process case, which is linear, the existence of intermediate
non-linear functions complicates the analysis. We overcame this problem by leveraging the combi-
nation of the ReLU activation function (Krizhevsky et al., 2012) and the positivity of eigenvectors
of the Laplacian associated with the smallest positive eigenvalues.

Our theory enables us to investigate asymptotic behaviors of graph NNs via the spectral distribution
of the underlying graphs. To demonstrate this, we take GCNs defined on the Erdős – Rényi graph
GN,p, which has N nodes and each edge appears independently with probability p, for an example.

We prove that if logN
pN = o(1) as a function of N , any GCN whose weights have maximum singular

values at most C
√

Np
log(N/ε) approaches the “information-less” invariant space with probability at

least 1− ε, where C is a universal constant. Intuitively, if the graph on which we define graph NNs
is sufficiently dense, graph-convolution operations mix signals on nodes fast and hence the feature
maps lose information for distinguishing nodes quickly.

Our contributions are as follows:

• We relate asymptotic behaviors of graph NNs with the topological information of underly-
ing graphs via the spectral distribution of the (augmented) normalized Laplacian.

• We prove that if the weights of a GCN satisfy conditions determined by the graph spectra,
the output of the GCN carries no information other than the node degrees and connected
components for discriminating nodes when the layer size goes to infinity (Theorems 1, 2).

• We apply our theory to Erdős – Rényi graphs as an example and show that when the graph
is sufficiently dense and large, many GCNs suffer from the information loss (Theorem 3).

• We propose a principled guideline for weight normalization of graph NNs and empirically
confirm it using real data.

2 RELATED WORK

MPNN-type Graph NNs. Since many graph NN variants have been proposed, there are several
unified formulations of graph NNs (Gilmer et al., 2017; Battaglia et al., 2018). Our approach is
the closest to the formulation of Message Passing Neural Network (MPNN) (Gilmer et al., 2017),
which unified graph NNs in terms of the update and readout operations. Many graph NNs fall into
this formulation such as Duvenaud et al. (2015), Li et al. (2016), and Veličković et al. (2018).
Among others, GCN (Kipf & Welling, 2017) is an important application of our theory because it
is one of the most widely used graph NNs. In addition, GCNs are interesting from a theoretical
research perspective because, in addition to an MPNN-type graph NN, we can interpret GCNs as a
simplification of spectral-type graph NNs (Henaff et al., 2015; Defferrard et al., 2016), that make
use of the graph Laplacian.

Our approach, which considers the asymptotic behaviors graph NNs as the layer size goes to infinity,
is similar to Scarselli et al. (2009), one of the earliest works about graph NNs. They obtained node
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representations by iterating message passing between nodes until convergence. Their formulation is
general in that we can use any local aggregation operation as long as it is a contraction map. Our
theory differs from theirs in that we proved that the output of a graph NN approaches a certain space
even if the local aggregation function is not necessarily a contraction map.

Expressive Power of Graph NNs. Several studies have focused on theoretical analysis and the im-
provement of graph NN expressive power. For example, Xu et al. (2019) proved that graph NNs are
no more powerful than the Weisfeiler – Lehman (WL) isomorphism test (Weisfeiler & A.A., 1968)
and proposed a Graph Isomorphism Network (GIN), that is approximately as powerful as the WL
test. Although they experimentally showed that GIN has improved accuracy in supervised learning
tasks, their analysis was restricted to the graph isomorphism problem. Xu et al. (2018) analyzed
the non-asymptotic properties of GCNs through the lens of random walk theory. They proved the
limitations of GCNs in expander-like graphs and proposed a Jumping Knowledge Network (JK-
Net) to address the issue. To handle the non-linearity, they linearized networks by a randomization
assumption (Choromanska et al., 2015). We take a different strategy and make use of the interpre-
tation of ReLU as a projection onto a cone. Recently, NT & Maehara (2019) showed that a GCN
approximately works as a low-pass filter plus an MLP in a certain setting. Although they analyzed
finite-depth GCNs, our theory has similar spirits with theirs because our “information-less” space
corresponds to the lowest frequency of a graph Laplacian. Another point is that they imposed as-
sumptions that input signals consist of low-frequent true signals and high-frequent noise, whereas
we need not such an assumption.

Role of Deep and Non-linear Structures. For ordinal DL models such as FNNs and CNNs, we
have both theoretical and empirical justification of deep and non-linear architectures for enhancing
of the expressive power (e.g., Telgarsky (2016); Petersen & Voigtlaender (2018); Oono & Suzuki
(2019)). In contrast, several studies have witnessed severe performance degradation when stacking
many layers on graph NNs (Kipf & Welling, 2017; Wu et al., 2019b). Li et al. (2018) reported that
feature vectors on nodes in a graph go indistinguishable as we increase layers in several tasks. They
named this phenomenon over-smoothing. Regarding non-linearity, Wu et al. (2019a) empirically
showed that graph NNs achieve comparable performance even if we omit intermediate non-linearity.
These observations gave us questions about the current models of deep graph NNs in terms of their
expressive power. Several studies gave theoretical explanations of the over-smoothing phenomena
for linear GNNs (Li et al., 2018; Zhang, 2019; Zhao & Akoglu, 2020). We can think of our theory
as an extension of their results to non-linear GNNs.

3 PROBLEM SETTING AND MAIN RESULT

3.1 NOTATION

Let N+ be the set of positive integers. For N ∈ N+, we denote [N ] := {1, . . . , N}. For a vector
v ∈ R

N , we write v ≥ 0 if and only if vn ≥ 0 for all n ∈ [N ]. Similarly, for a matrix X ∈ R
N×C ,

we write X ≥ 0 if and only if Xnc ≥ 0 for all n ∈ [N ] and c ∈ [C]. We say such a vector and
matrix is non-negative. 〈·, ·〉 denotes the inner product of vectors or matrices, depending on the
context: 〈u, v〉 := u⊤v for u, v ∈ R

N and 〈X,Y 〉 := tr(XTY ) for X,Y ∈ R
N×C . 1P equals to 1

if the proposition P is true else 0. For vectors v ∈ R
N and w ∈ R

C , v ⊗ w ∈ R
N×C denotes the

Kronecker product of v and w defined by (v⊗w)nc := vnwc. For X ∈ R
N×C , ‖X‖F := 〈X,X〉 12

denotes the Frobenius norm of X . For a vector v ∈ R
N , diag(v) := (vnδnm)n,m∈[N ] ∈ R

N×N

denotes the diagonalization of v. IN ∈ R
N×N denotes the identity matrix of size N . For a linear

operator P : RN → R
M and a subset V ⊂ R

N , we denote the restriction of P to V by P |V .

3.2 DYNAMICAL SYSTEM

Although we are mainly interested in GCNs, we develop our theory more generally using dynamical
systems. We will specialize to the GCNs in Section 4.

For N,C,Hl ∈ N+ (l ∈ N+), let P ∈ R
N×N be a symmetric matrix and Wlh ∈ R

C×C for
l ∈ N+ and h ∈ [Hl]. We define fl : R

N×C → R
N×C by fl(X) := MLPl(PX). Here,

MLPl : R
N×C → R

N×C is the l-th multi-layer perceptron common to all nodes (Xu et al., 2019)
and is defined by MLPl(X) := σ(· · ·σ(σ(X)Wl1)Wl2 · · ·WlHl

), where σ : R
N×C → R

N×C
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is an element-wise ReLU function (Krizhevsky et al., 2012) defined by σ(X)nc := max(Xnc, 0)
for n ∈ [N ], c ∈ [C]. We consider the dynamics X(l+1) := fl(X

(l)) with some initial value

X(0) ∈ R
N×C . We are interested in the asymptotic behavior of X(l) as l→∞.

For M ≤ N , let U be a M -dimensional subspace of RN . We assume that U and P satisfy the
following properties that generalize the situation where U is the eigenspace associated with the
smallest eigenvalue of a (normalized) graph Laplacian ∆ (that is, zero) and P is a polynomial of ∆.

Assumption 1. U has an orthonormal basis (em)m∈[M ] that consists of non-negative vectors.

Assumption 2. U is invariant under P , i.e., if u ∈ U , then Pu ∈ U .

We endow R
N with the ordinal inner product and denote the orthogonal complement of U by U⊥ :=

{u ∈ R
N | 〈u, v〉 = 0, ∀v ∈ U}. By the symmetry of P , we can show that U⊥ is invariant under

P , too (Appendix E.1, Proposition 2). Therefore, we can regard P as a linear mapping P |U⊥ :
U⊥ → U⊥. We denote the operator norm of P |U⊥ by λ. When U is the eigenspace associated
with the smallest eigenvalue of ∆ and P is g(∆) where g is a polynomial, then, λ corresponds to
λ = supµ |g(µ)| where sup ranges over all eigenvalues except the smallest one.

3.3 MAIN RESULT

We define the subspaceM of RN×C byM := U ⊗ R
C = {∑M

m=1 em ⊗ wm | wm ∈ R
C} where

(em)m∈[M ] is the orthonormal basis of U appeared in Assumption 1. For X ∈ R
N×C , we denote

the distance between X andM by dM(X) := inf{‖X−Y ‖F | Y ∈M}. We denote the maximum

singular value of Wlh by slh and set sl :=
∏Hl

h=1 slh. With these preparations, we introduce the
main theorem of the paper.

Theorem 1. Under Assumptions 1 and 2, we have dM(fl(X)) ≤ slλdM(X) for any X ∈ R
N×C .

The proof key is that the non-linear operation σ decreases the distance dM, that is, dM(σ(X)) ≤
dM(X). We use the non-negativity of em to prove this claim. See Appendix A for the complete
proof. We also discuss the strictness of Theorem 1 in Appendix E.3.

By setting dM(X) = 0, this theorem implies that M is invariant under fl. In addition, if the

maximum value of singular values are small, X(l) asymptotically approaches M in the sense of

Johnson (1973) for any initial value X(0). That is, the followings hold under Assumptions 1 and 2.

Corollary 1. M is invariant under fl for any l ∈ N+, that is, if X ∈M, then we have fl(X) ∈M.

Corollary 2. Let s := supl∈N+
sl. We have dM(X(l)) = O((sλ)l). In particular, if sλ < 1, then

Xl exponentially approachesM as l→∞ for any initial value X(0).

Suppose the operator norm of P |U : U → U is no larger than λ, then, under the assumption of

sλ < 1, X(l) converges to 0, the trivial fixed point (see Appendix E.2, Proposition 3). Therefore,
we are mainly interested in the case where the operator norm of P |U is strictly larger than λ (see
Proposition 1). Finally, we restate Theorem 1 specialized to the situation where U is the direct sum
of eigenspaces associated with the largest M eigenvalues of P . Note that the eigenvalues of P is
real since P is symmetric.

Corollary 3. Let λ1 ≤ · · · ≤ λN be the eigenvalue of P , sorted in ascending order. Suppose the
multiplicity of the largest eigenvalue λN is M(≤ N), i.e., λN−M < λN−M+1 = · · · = λN . We
define λ := maxn∈[N−M ] |λn|. We denote U by the eigenspace associated with λN and assume that

U satisfies Assumption 1. Then, we have dM(X(l+1)) ≤ slλdM(X(l)).

Remark 1. It is known that any Markov process on finite states converges to a unique distribution
(equilibrium) if it is irreducible and aperiodic (see e.g., Norris (1998)). Theorem 1 includes this
proposition as a special case with M = 1, C = 1, and Wl = 1 for all l ∈ N+. This is essentially
the direct consequence of Perron – Frobenius’ theorem (see e.g., Meyer (2000)). See Appendix F.

4 APPLICATION TO GCN

We formulate a GCN (Kipf & Welling, 2017) without readout operations (Gilmer et al., 2017) using
the dynamical system in the previous section and derive a sufficient condition in terms of the spectra
of underlying graphs in which layer stacking nor non-linearity are not helpful for node classification.
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Let G = (V,E) be an undirected graph where V is a set of nodes and E is a set of edges. We denote
the number of nodes in G by N = |V | and identify V with [N ] by fixing an order of V . We associate
a C dimensional signal to each node. X in the previous section corresponds to concatenation of the
signals. GCNs iteratively update signals on V using the connection information and weights.

Let A := (1{(i,j)∈E})i,j∈[N ] ∈ R
N×N be the adjacency matrix and D := diag(deg(i)i∈[N ]) ∈

R
N×N be the degree matrix of G where deg(i) := |{j ∈ V | (i, j) ∈ E}| is the degree of node

i. Let Ã := A + IN , D̃ := D + IN be the adjacent and degree matrix of graph G augmented

with self-loops. We define the augmented normalized Laplacian (Wu et al., 2019a) of G by ∆̃ :=

IN−D̃− 1
2 ÃD̃− 1

2 and set P := IN−∆̃. Let L,C ∈ N+ be the layer and channel sizes, respectively.
For weights Wl ∈ R

C×C (l ∈ [L]), we define a GCN2 associated with G by f = fL ◦ · · · ◦ f1 where
fl : R

N×C → R
N×C is defined by fl(X) := σ(PXWl). We are interested in the asymptotic

behavior of the output X(L) of the GCN as L→∞.

Suppose G has M connected components and let V = V1 ⊔ · · · ⊔ VM be the decomposition of
the node set V into connected components. We denote an indicator vector of the m-th connected
component by um := (1{n∈Vm})n∈[N ] ∈ R

N . The following proposition shows that GCN satisfies
the assumption of Corollay 3 (see Appendix B for proof).

Proposition 1. Let λ1 ≤ · · · ≤ λN be the eigenvalue of P sorted in ascending order. Then, we
have −1 < λ1, λN−M < 1, and λN−M+1 = · · · = λN = 1. In particular, we have λ :=

maxn=1,...,N−M |λn| < 1. Further, em := D̃
1
2um for m ∈ [M ] are the basis of the eigenspace

associated with the eigenvalue 1.

Theorem 2. For any initial value X(0), the output of l-th layer X(l) satisfies dM(X(l)) ≤
(sλ)ldM(X(0)). In particular, dM(X(l)) exponentially converges to 0 when sλ < 1.

In the context of node classification tasks, we can interpret this corollary as the “information loss” of
GCNs in the limit of infinite layers. For any X ∈M, if two nodes i, j ∈ V are in a same connected
component and their degrees are identical, then, the column vectors of X that correspond to nodes i
and j are identical. It means that we cannot distinguish these nodes using X . In this sense,M only
has information about connected components and node degrees and we can interpret this theorem
as the exponential information loss of GCNs in terms of the layer size. Similarly to the discussion

in the previous section, X(l) converges to the trivial fixed point 0 when s < 1 (remember λN = 1).

An interesting point is that even if s ≥ 1, X(l) can suffer from this information loss when s < λ−1.

We note that the rate sλ in Theorem 2 depends on the spectra of the augmented normalized Lapla-
cian, which is determined by the topology of the underlying graph G. Hence, our result explicitly
relates the topological information of graphs and asymptotic behaviors of graph NNs.

Remark 2. The old preprint (version 2) of Luan et al. (2019) formulated a theorem that explains the
over-smoothing of non-linear GNNs. Specifically, it claimed that if a graph does not have a bipartite
component and the input distribution is continuous, the rank of the output of a GCN converges to the
number of connected components of the underlying graph as the layer size goes to infinity almost
surely. However, it is not true in general as we give a counterexample in Appendix C.

5 ASYMPTOTIC BEHAVIOR OF GCN ON ERDŐS – RÉNYI GRAPH

Theorem 2 gives us a way to characterize the asymptotic behaviors of GCNs via the spectral distri-
butions of the underlying graphs. To demonstrate this, we consider an Erdős – Rényi graph GN,p

(Erdös & Rényi, 1959; Gilbert, 1959), which is a random graph that has N nodes and whose edges
between two distinct nodes appear independently with probability p ∈ [0, 1], as an example. First,
consider a (non-random) graph G with M connected components. Let 0 = µ̃1 = · · · = µ̃M <
µ̃M+1 ≤ · · · ≤ µ̃N < 2 be eigenvalues of the augmented normalized Laplacian of G (see, Propo-
sition 1) and set λ := minm=M+1,...,N |1 − µ̃m|(< 1). By Theorem 2, the output of GCN “loses
information” as the layer size goes to infinity when the largest singular values of weights are strictly
smaller than λ−1. Therefore, the closer the positive eigenvalues µm are to 1, the broader range of
GCNs satisfies the assumption of Theorem 2.

2Following the original paper (Kipf & Welling, 2017), we use one-layer MLPs (i.e., Hl = 1 for all l ∈ N+.).
However, our result holds for the multi-layer case
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Figure 1: Visualization of vector field V (X) := f(X)−X induced by the one-step transition. Color
maps indicate the absolute value |V (X)| at the point X . Dotted lines are the subspace M. Left:
Case 1. Right: Case 2. Best view in color.

For an Erdős – Rényi graph GN,p, Chung & Radcliffe (2011) showed that when logN
Np = o(1), the

eigenvalues of the (usual) normalized Laplacian except for the smallest one converge to 1 with high
probability (see Theorem 2 therein)3. We can interpret this theorem as the convergence of Erdős-
Rényi graphs to the complete graph in terms of graph spectra. We can prove that the augmented
normalized Laplacian behaves similarly (Lemma 6). By combining this fact with the discussion in
the previous paragraph, we obtain the asymptotic behavior of GCNs on the Erdős – Rényi graph.
See Appendix D for the complete proof.

Theorem 3. Consider a GCN on the Erdős-Rényi graph GN,p such that
logN
Np = o(1) as a function

of N . For any ε > 0, if the supremum s of the maximum singular values of weights in the GCN

satisfies s < s0 := 1
7

√
Np−p+1
log(4N/ε) , then, for sufficiently large N , the GCN satisfies the condition of

Theorem 2 with probability at least 1− ε.

Theorem 3 requires that an underlying graph is not extremely sparse. For example, suppose the
node size is N = 20, 000, which is the approximately the maximum node size of datasets we use in
experiments, and the edge probability is p = logN/N . Then, each node has the order of Np ≈ 4.3
adjacent nodes.

Under the condition of Theorem 3, the upper bound s0 →∞ as N →∞. It means that if the graph
is sufficiently large and not extremely sparse, most GCNs suffer from the information loss. For the
dependence on the edge probability p, s0 is an increasing function of p, which means the denser a
graph is, the more quickly graph convolution operations mix signals on nodes and move them close
to each other.

Theorem 3 implies that graph NNs perform poorly on dense NNs. More aggressively, we can hy-
pothesize that the sparsity of practically available graphs is one of the reasons for the success of
graph NNs in node classification tasks. To confirm this hypothesis, we artificially add edges to ci-
tation networks to make them dense in the experiments and observe the failure of graph NNs as
expected (see Section 6.3).

6 EXPERIMENT

6.1 SYNTHESIS DATA: ONE-STEP TRANSITION

We numerically investigate how the transition f(X) := σ(PXW ) changes inputs using the vector
field V (X) := f(X) − X4. For this purpose, we set N = 2, M = 1, and C = 1. Let λ1 ≤ λ2

be the eigenvalues of P . We choose W as |λ2|−1 ≤ W < |λ1|−1 so that Theorem 1 is applicable
but is not reduced to the trivial situation (see, Appendix E.2). We choose the eigenvector e ∈ R

2

3Chung et al. (2004) and Coja-Oghlan (2007) proved similar theorems.
4Since we consider the one-step transition only, we omit the subscript l from fl, Xl, and Wl.
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Figure 2: The actual distances to the invariant spaceM and their upper bounds. Solid lines are the

log relative distance defined by y(l) = log(dM(X(l))/dM(X(0))) and dotted lines are upper bound

y(l) = l log(sλ), where X(0) is the input signal and X(l) is the output of the l-th layer.
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Figure 3: Node prediction results on Noisy Cora. Left: Effect of the maximum singular values on
weights on model performance. The horizontal dotted line indicates the chance rate (30.2%). The
error bar is the standard deviation of 3 trials. Right: Transition of maximum singular values during
training. See Appendix I.3 for results using other datasets. Best view in color.

associated with λ2 in two ways as described below. See Appendix H.1 for the concrete values of P ,
e, and W . Figure 1 shows the visualization of V . First, we choose the non-negative eigenvector e
so that it satisfies Assumption 1 (Case 1). We see that the transition function f uniformly decreases
the distance from M. This is consistent with the consequence of Theorem 1. Next, we choose

the eigenvector e = [e1 e2]
⊤

such that the signs of e1 and e2 differ (Case 2), which violates
Assumption 1. We see that M is not invariant under f and f does not uniformly decrease the
distance fromM. Therefore, we cannot remove the non-negativity assumption from Theorem 1.

6.2 SYNTHESIS DATA: DISTANCE TO INVARIANT SPACE

We evaluate the distance to the invariant spaceM using synthesis data. We randomly generate an

Erdős – Rényi graph, a GCN on it, and an input signal X(0). We compute the distance between the l-
th intermediate output X(l) and the invariant spaceM for various edge probability p and maximum

singular value s. Figure 2 plots the logarithm of the relative distance y(l) = log dM(X(l))
dM(X(0))

with

respect to the layer index l. From Theorem 1, we know that it is upper bounded by y(l) = l log(sλ).
We see that this bound well approximates the actual value when sλ is small. On the other hand, it is
loose for large sλ. We leave tighter bounds for dM in such a case for future research.

6.3 REAL DATA: EFFECT OF MAXIMUM SINGULAR VALUES ON PERFORMANCE

Theorem 2 implies that if s is smaller than the threshold λ−1, we cannot expect deep GCN to achieve
good prediction accuracy. Conversely, if we can successfully train the model, s should avoid the
region s ≤ λ−1. We empirically confirm these hypotheses using real datasets.
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We use Cora, CiteSeer, and PubMed (Sen et al., 2008), which are standard citation network datasets.
The task is to classify the genre of papers using word occurrences and citation relationships. We
regard each paper as a node and citation relationship as an edge. Due to space constraints, we focus
on Cora in the main article. See Appendix H.3 and I.3 for the other datasets. The discussion in
Section 5 implies that Theorem 2 can support a wide range of GCNs when the underlying graph
is relatively dense. However, the citation networks are too sparse to examine the aforementioned
hypotheses — Theorem 2 gives a non-trivial result only when 1 ≤ s < λ−1 ≈ 1 + 3.62× 10−3. To
circumvent this, we make noisy versions of citation networks by randomly adding edges to graphs.
Through this manipulation, we can increase the value of λ−1 to 1.11.

Figure 3 (left) shows the accuracy for the test dataset in terms of the maximum singular values
and the number of graph convolution layers. We can observe that when GCNs whose maximum
singular value s is out of the region s < λ−1 outperform those inside the region in almost all
configurations. Furthermore, the accuracy of GCNs with s = 10 are better than those without
normalization (unnormalized). Figure 3 (right) shows the transition of the maximum singular values
of the weights during training when we use a three-layered GCN. We can observe that the maximum
singular value s does not shrink to the region s ≤ λ−1. In addition, when the layer size is small and
predictive accuracy is high, GCNs gradually increase s from the initial value and avoid the region.
In conclusion, the experiment results are consistent with the theorems.

6.4 REAL DATA: EFFECT OF SIGNAL COMPONENT PERPENDICULAR TO INVARIANT SPACE
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Figure 4: log t(X) and prediction
accuracy on Noisy Cora.

We can decompose the output X of a model as X = X0 +X1

(X0 ∈ M, X1 ∈ M⊥). According to the theory, X0 has
limited information for node classification. We hypothesize
that the model emphasizes the perpendicular component X1

to perform good predictions. To quantitatively evaluate it, we
define the relative magnitude of the perpendicular component
of the output X by t(X) := X1/X0. Figure 4 compares this
quantity and the prediction accuracy on the noisy version of
Cora (see Appendix I.4 for other datasets). We observe that
these two quantities are correlated (R = 0.545). If we remove
GCNs have only one layer (corresponding to right points in the
figure), the correlation coefficient is 0.827. This result does not
contradict to the hypothesis above 5.

7 DISCUSSION

Applicability to Graph NNs on Sparse Graphs. We have theoretically and empirically shown that
when the underlying graph is sufficiently dense and large, the threshold λ−1 is large (Theorem 2
and Section 6.3), which means many graph CNNs are eligible. However, real-world graphs are not
often dense, which means that Theorem 2 is applicable to very limited GCNs. In addition, Coja-
Oghlan (2007) theoretically proved that if the expected average degree of GN,p is bounded, the
smallest positive eigenvalue of the normalized Laplacian of GN,p is o(1) with high probability. The
asymptotic behaviors of graph NNs on sparse graphs are left for future research.

Remedy for Over-smoothing. Based on our theory, we can propose several techniques for mitigat-
ing the over-smoothing phenomena. One idea is to (randomly) sample edges in an underlying graph.
The sparsity of practically available graphs could be a factor in the success of graph NNs. Assum-
ing this hypothesis is correct, there is a possibility that we can relive the effect of over-smoothing
by sparsification. Since we can never restore the information in pruned edges if we remove them
permanently, random edge sampling could work better as FastGCN (Chen et al., 2018a) and Graph-
SAGE (Hamilton et al., 2017) do. Another idea is to scale node representations (i.e., intermediate
or final output of graph NNs) appropriately so that they keep away from the invariant spaceM. Our
proposed weight scaling mechanism takes this strategy. Recently, Zhao & Akoglu (2020) has pro-

5We cannot conclude that large perpendicular components are essential for good performance, since the
maximum singular value s is correlated to the accuracy, too.
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posed PairNorm to alleviate the over-smoothing phenomena. Although the scaling target is different
– they rescaled signals whereas we normalized weights – theirs and ours have similar spirits.

Graph NNs with Large Weights. Our theory suggests that the maximum singular values of weights
in a GCN should not be smaller than a threshold λ−1 because it suffers from information loss for
node classification. On the other hand, if the scale of weights are very large, the model complexity
of the function class represented by graph NNs increases, which may cause large generalization
errors. Therefore, from a statistical learning theory perspective, we conjecture that the graph NNs
with too-large weights perform poorly, too. A trade-off should exist between the expressive power
and model complexity and there should be a “sweet spot” on the weight scale that balances the two.

Relation to Double Descent Phenomena. Belkin et al. (2019) pointed out that modern deep mod-
els often have double descent risk curves: when a model is under-parameterized, a classical bias-
variance trade-off occurs. However, once the model has a large capacity and perfectly fits the training
data, the test error decreases as we increase the number of parameters. To the best of our knowl-
edge, no literature reported the double descent phenomena for graph NNs (it is consistent with the
picture of the classical U-shaped risk curve in the previous paragraph). It is known that double
descent phenomena do not occur in some situations, especially depending on regularization types.
For example, while Belkin et al. (2019) employed the interpolating hypothesis with the minimum
norm, Mei & Montanari (2019) found that the double descent was alleviated or disappeared when
they used Ridge-type regularization techniques. Therefore, one can hypothesize the over-smoothing
is a cause or consequence of regularization that is more like a Ridge-type rather than minimum-norm
inductive bias.

Limitations in Graph NN Architectures. Our analysis is limited to graph NNs with the ReLU
activation function because we implicitly use the property that ReLU is a projection onto the cone
{X ≥ 0} (Appendix A, Lemma 3). This fact enables the ReLU function to get along with the non-
negativity of eigenvectors associated with the largest eigenvalues. Therefore, it is far from trivial to
extend our results to other activation functions such as the sigmoid function or Leaky ReLU (Maas
et al., 2013). Another point is that our formulation considers the update operation (Gilmer et al.,
2017) of graph NNs only and does not take readout operations into account. In particular, we cannot
directly apply our theory to graph classification tasks in which each sample is a graph.

Over-smoothing of Residual GNNs. Considering the correspondence of graph NNs and Markov
processes (see Appendix F), one can imagine that residual links do not contribute to alleviating
the over-smoothing phenomena because adding residual connections to a graph NN corresponds
to converting a Markov process to its lazy version. When a Markov process converges to a stable
distribution, the corresponding lazy process also converges eventually under certain conditions. It
implies that residual links might not be helpful. However, Li et al. (2019) reported that graph NNs
with as many as 56 layers performed well if they added residual connections. Considering that,
the situation could be more complicated than our intuitions. The analysis of the role of residual
connections in graph NNs is a promising direction for future research.

8 CONCLUSION

In this paper, to understand the empirically observed phenomena that deep non-linear graph NNs
do not perform well, we analyzed their asymptotic behaviors by interpreting them as a dynamical
system that includes GCN and Markov process as special cases. We gave theoretical conditions
under which GCNs suffer from the information loss in the limit of infinite layers. Our theory directly
related the expressive power of graph NNs and topological information of the underlying graphs via
spectra of the Laplacian. It enabled us to leverage spectral and random graph theory to analyze the
expressive power of graph NNs. To demonstrate this, we considered GCN on the Erdős – Rényi
graph as an example and showed that when the underlying graph is sufficiently dense and large,
a wide range of GCNs on the graph suffer from information loss. Based on the theory, we gave
a principled guideline for how to determine the scale of weights of graph NNs and empirically
showed that the weight normalization implied by our theory performed well in real datasets. One
promising direction of research is to analyze the optimization and statistical properties such as the
generalization power (Verma & Zhang, 2019) of graph NNs via spectral and random graph theories.
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Paul Erdös and Alfréd Rényi. On random graphs I. Publicationes Mathematicae (Debrecen), 6:
290–297, 1959.

Edgar N Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141–1144, 1959.

C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: an automatic citation indexing system.
In Proceedings of the third ACM conference on Digital libraries, pp. 89–98. ACM, 1998.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1263–1272.
PMLR, 2017.
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A PROOF OF THEOREM 1

As we wrote in the main article, it is enough to show the following lemmas (definition of mis-
cellaneous variables are as in Section 3.2). Remember that λ = supn∈[N−M ] |λn| and slh is the

maximum singular value of Wlh

Lemma 1. For any X ∈ R
N×C , we have dM(PX) ≤ λdM(X).

Lemma 2. For any X ∈ R
N×C , we have dM(XWlh) ≤ slhdM(X).

Lemma 3. For any X ∈ R
N×C , we have dM(σ(X)) ≤ dM(X).

Proof of Lemma 1. Since P is a symmetric linear operator on U⊥, we can choose the orthonormal
basis (em)m=M+1,...,N of U⊥ consisting of the eigenvalue of P |U⊥ . Let λm be the eigenvalue of
P to which em is associated (m = M + 1, . . . , N ). Note that since the operator norm of P |U⊥ is
λ, we have |λm| ≤ λ for all m = M + 1, . . . , N . Since (em)m∈[N ] forms the orthonormal basis of
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R
N , we can uniquely write X ∈ R

N×C as X =
∑N

m=1 em ⊗ wm for some wm ∈ R
C . Then, we

have d2M(X) =
∑N

m=M+1 ‖wm‖2 where ‖ · ‖ is the 2-norm of a vector. On the other hand, we have

PX =

N∑

m=1

Pem ⊗ wm

=
M∑

m=1

Pem ⊗ wm +
N∑

m=M+1

Pem ⊗ wm

=
M∑

m=1

Pem ⊗ wm +
N∑

m=M+1

em ⊗ (λmwm)

Since U is invariant under P , for any m ∈ [M ], we can write Pem as a linear combination of

en(n ∈ [M ]). Therefore, we have d2M(PX) =
∑N

m=M+1 ‖λmwm‖2. Then, we obtain the desired
inequality as follows:

d2M(PX) =

N∑

m=M+1

‖λmwm‖2

≤ λ2
N∑

m=M+1

‖wm‖2

≤ λ2
N∑

m=M+1

‖wm‖2

= λ2d2M(X).

Proof of Lemma 2. Using the same decomposition of X as the proof in Lemma 1, we have

XWlh =

N∑

m=1

em ⊗ (W⊤
lhwm)

=

M∑

m=1

em ⊗ (W⊤
lhwm) +

N∑

m=M+1

em ⊗ (W⊤
lhwm).

Therefore, we have

d2M(XWlh) =

N∑

m=M+1

‖W⊤
lhwm‖2

≤ s2lh

N∑

m=M+1

‖wm‖2

= s2lhd
2
M(X).

Proof of Lemma 3. We choose (em)m=N−M+1,...,N as in the proof of Lemma 1. We denote X =
(Xnc)n∈[N ],c∈[C] and en = (emn)m∈[N ], respectively. Let (e′c)c∈[C] be the standard basis of RC .

Then, (en ⊗ e′c)n∈[N ],c∈[C] is the orthonormal basis of RN×C , endowed with the standard inner

product as a Euclid space. Therefore, we can decompose X as X =
∑N

n=1

∑C
c=1 ancen⊗ e′c where

anc = 〈X, en ⊗ e′c〉 =
∑N

m=1 Xmcemn. Then, we have d2M(X) =
∑N

n=M+1 ‖
∑C

c=1 ance
′
c‖2,
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which is further transformed as

d2M(X) =

N∑

n=M+1

∥
∥
∥
∥
∥

C∑

c=1

ance
′
c

∥
∥
∥
∥
∥

2

=

N∑

n=M+1

C∑

c=1

a2nc

=

C∑

c=1

(
N∑

n=1

a2nc −
M∑

n=1

a2nc

)

=
C∑

c=1

(

‖X·c‖2 −
M∑

n=1

〈X·c, en〉2
)

,

where X·c is the c-th column vector of X . Similarly, we have

d2M(σ(X)) =

C∑

c=1

(

‖X+
·c‖2 −

M∑

n=1

〈X+
·c , en〉2

)

,

where we denote σ(X) = (X+
nc)n∈[N ],c∈[C] in shorthand. Therefore, the inequality follow from the

following lemma.

Lemma 4. Let x ∈ R
N and v1, . . . , vM ∈ R

N be orthonormal vectors (i.e., 〈vm, vn〉 = δmn) satis-

fying vm ≥ 0 for all m ∈ [M ]. Then, we have ‖x‖2−∑M
m=1〈x, vm〉2 ≥ ‖x+‖2−∑M

m=1〈x+, vm〉2
where x+ := max(x, 0) for x ∈ R.

Proof. The value ‖y‖2−∑M
m=1〈y, um〉2 is invariant under simultaneous coordinate permutation of

y and um’s. Therefore, we can assume without loss of generality that the coordinate of x are sorted:
x1 ≤ . . . ≤ xL < 0 ≤ xL+1 ≤ · · · ≤ xN for some L ≤ N . Then, we have

‖x‖2 − ‖x+‖2 =

L∑

n=1

x2
n. (1)

When L = 0, the sum in the right hand side is treated as 0. On the other hand, writing as vm =
(vnm)n∈[N ], direct calculation shows

M∑

m=1

〈x, vm〉2 − 〈x+, vm〉2 =

M∑

m=1





(
L∑

n=1

xnvnm

)2

− 2

L∑

n=1

N∑

l=L+1

xnxlvnmvlm



 . (2)

Let Im := {n ∈ [N ] | vnm > 0} be the support of vm for m ∈ [M ]. We note that if m 6= m′ ∈ [M ],
we have Im ∩ Im′ = ∅ since if there existed n ∈ Im ∩ Im′ , we have

0 = 〈vm, vm′〉 ≥ vnmvnm′ > 0,

which is contradictory. Therefore,

N∑

m=1

(
L∑

n=1

xnvnm

)2

=

N∑

m=1




∑

n∈Im∩[L]

xnvnm





2

≤
N∑

m=1




∑

n∈Im∩[L]

x2
n








∑

n∈Im∩[L]

v2nm



 (∵ Cauchy–Schwarz inequality)

≤
N∑

m=1




∑

n∈Im∩[L]

x2
n



 (∵ ‖vm‖2 = 1)

≤
L∑

n=1

x2
n. (3)
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We used the fact that Im’s are disjoint and vnm = 0 if n 6∈ ∪mIm in the first equality above.
Further, we have xnxlvnmvlm ≤ 0 for 1 ≤ n ≤ L and L + 1 ≤ l ≤ N by the definition of L and
non-negativity of vm. By combining (1), (2), and (3), we have

M∑

m=1

〈x, vm〉2 − 〈x+, vm〉2 ≤
L∑

n=1

x2
n = ‖x‖2 − ‖x+‖2.

Proof of Theorem 1. By Lemma 1, 2, and 3, we have

dM(fl(X)) = dM(σ(· · ·σ(σ(
︸ ︷︷ ︸

H times

PX)Wl1)Wl2 · · ·WlHl
))

≤ dM(σ(· · ·σ(σ(
︸ ︷︷ ︸

H−1 times

PX)Wl1)Wl2 · · · )WlHl
)

≤ slHl−1dM(σ(· · ·σ(σ(
︸ ︷︷ ︸

H−1 times

PX)Wl1)Wl2 · · · )WlHl−1))

· · ·

≤
(

Hl∏

h=1

slh

)

dM(PX)

≤ sldM(PX)

≤ slλdM(X).

B PROOF OF PROPOSITION 1

Proof. Let µ̃1 ≤ · · · ≤ µ̃N be the eigenvalue of the augmented normalized Laplacian ∆̃, sorted

in ascending order. Since P = IN − ∆̃, it is enough to show µ̃1 = · · · = µ̃M = 0, µ̃M+1 > 0,

and µ̃N < 2. For the first two, the statements are equivalent to that ∆̃ is positive semi-definite and
that the multiplicity of the eigenvalue 0 is same as the number of connected components 6. This
is well-known for Laplacian or its normalized version (see, e.g., Chung & Graham (1997)) and the

proof for ∆̃ is similar. By direct calculation, we have

x⊤∆̃x =
1

2

N∑

i,j=1

aij

(

xi√
di + 1

− xj
√

dj + 1

)2

for any x = [x1 · · · xN ]
⊤ ∈ R

N . Therefore, ∆̃ is positive semi-definite and hence µ̃1 ≥ 0.

Suppose temporally that G is connected. If x ∈ R
N is an eigenvector associated to 0, then, by

the aformentioned calculation, xi√
di+1

and
xj√
dj+1

must be same for all pairs (i, j) such that aij >

0. However, since G is connected, xi√
di+1

must be same value for all i ∈ [N ]. That means the

multiplicity of the eigenvalue 0 is 1 and any eigenvector associated to 0 must be proportional to

D̃
1
21. Now, suppose G has M connected components V1, . . . , VM . Let ∆̃m be the augmented

normalized Laplacians corresponding to each connected component Vm for m ∈ [M ]. By the

aformentioned discussion, ∆̃m has the eigenvalue 0 with multiplicity 1. Since ∆̃ is the direct sum

of ∆̃′
ms, the eigenvalue of ∆̃ is the union of those for ∆̃m’s. Therefore, ∆̃ has the eigenvalue 0 with

multiplicity M and em = D̃
1
21m’s are the orthogonal basis of the eigenspace.

6The former statement is identical to Lemma 1 and latter one is the extension of Lemma 2 of Wu et al.
(2019a).
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Finally, we prove µ̃N < 2. Let µN be the largest eigenvalue of the normalized Laplacian ∆ =

D− 1
2 (D −A)D− 1

2 , where D− 1
2 ∈ R

N×N is the diagonal matrix defined by

D
− 1

2
ii =

{

deg(i)−
1
2 (if deg(i) 6= 0)

0 (if deg(i) = 0)
.

Note that D− 1
2D

1
2 nor D

1
2D− 1

2 are not equal to the identity matrix IN in general. However, we
have

L = D
1
2D− 1

2LD− 1
2D

1
2 (4)

where L = D −A is the (unnormalized) Laplacian. Therefore, we have

µ̃N = max
x 6=0

x⊤∆̃x

‖x‖

= max
x 6=0

x⊤D̃− 1
2LD̃− 1

2x

‖x‖

= max
x 6=0

x⊤D̃− 1
2D

1
2D− 1

2LD− 1
2D

1
2 D̃− 1

2x

‖x‖ (∵ (4))

= max
x 6=0

(D
1
2 D̃− 1

2x)⊤∆(D
1
2 D̃− 1

2x)

‖x‖

= max
x 6=0

D
1
2 D̃−

1
2 x 6=0

(D
1
2 D̃− 1

2x)⊤∆(D
1
2 D̃− 1

2x)

‖x‖

= max
x 6=0

D
1
2 D̃−

1
2 x 6=0

(D
1
2 D̃− 1

2x)⊤∆(D
1
2 D̃− 1

2x)

‖D 1
2 D̃− 1

2x‖
‖D 1

2 D̃− 1
2x‖

‖x‖

≤ max
x 6=0

D
1
2 D̃−

1
2 x 6=0

(D
1
2 D̃− 1

2x)⊤∆(D
1
2 D̃− 1

2x)

‖D 1
2 D̃− 1

2x‖
max
x 6=0

D
1
2 D̃−

1
2 x 6=0

‖D 1
2 D̃− 1

2x‖
‖x‖

≤ max
y 6=0

y⊤∆y

‖y‖ max
x 6=0

‖D 1
2 D̃− 1

2x‖
‖x‖

= µN max
n∈[N ]

(
deg(i)

deg(i) + 1

) 1
2

≤ µN .

Therefore, we have µ̃N ≤ µN
7. Since maxi∈[N ]

(
deg(i)

deg(i)+1

) 1
2

< 1, the equality µ̃N = µN holds

if and only if µN = 0, that is, G has N connected components. On the other hand, it is known
that µN ≤ 2 and the equality holds if and only if G has non-trivial bipartite graph as a connected
component (see, e.g., Chung & Graham (1997)). Therefore, µ̃N = µN and µN = 2 does not hold
simultaneously and we obtain µN < 2.

C COUNTEREXAMPLE OF PREVIOUS STUDY ON OVER-SMOOTHING FOR

NON-LINEAR GNNS

We restate Theorem 1 of the preprint (version2) of Luan et al. (2019)8. Let G be a simple undirected
graph with N nodes and k connected components such that it does not have a bipartite component.

Let L = D̃−1/2ÃD̃−1/2 ∈ R
N×N be the augmented normalized Laplacian of G. Let F ∈ N+ and

7Theorem 1 of Wu et al. (2019a) showed that this inequality strictly holds when G is simple and connected.
We do not require this assumption.

8https://arxiv.org/abs/1906.02174v2
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Wn ∈ R
F×F be the weight of the n-th layer for n ∈ N+. For the input X ∈ R

N×F , we define
the output Yn ∈ R

N×F of the n-th layer of a GCN by Yn = σ(L · · ·σ(LXW0) · · ·Wn) where σ
is the ReLU function. We assume the input X is drawn from a continuous distribution on R

N×F .
Then, the theorem claims that we have limn→∞ rank(Yn) = k almost surely with respect to the
distribution of X .

We construct a conterexample. Consider a graph G consisting of N = 4 nodes whose adjacency
matrix is

A =






1 1 1 1
1 1 1 0
1 1 1 0
1 0 0 1




 .

Note that G is connected (i.e., k = 1) and is not bipartite. We make a GCN with F = 3 channels
and whose weight matrices are Wn = I3 (the identity matrix of size 3) for all n ∈ N. For the
distribution of the input X , we consider an absolutely continuous distribution with respect to the
Lebesgue measure on R

4×3 such that P (X ≥ 0) > 0 (here, X ≥ 0 means the element-wise
comparison). For example, the standard Gaussian distribution satisfies the condition.

Since L ≥ 0, we have Yn = LnX if X ≥ 0. Let L = P⊤ΛP be the diagonalization of L where
P ∈ O(4) is an orthogonal matrix of size 4. Since rank(L) = 3, we have rank(Λn) = 3 for any n
(we can assume that Λ44 = 0 without loss of generality). Therefore, under the condition X ≥ 0, we
have

rank(Yn) = 3 ⇐⇒ rank(P⊤ΛnPX) = 3

⇐⇒ X ∈ {P−1 [B v]
⊤ | B ∈ R

3×3 is invertible, v ∈ R
3}.

Note that the last condition is independent of n. Since the set of invertible matrices is dense in the
set of all matrices of the same size (with respect to the standard topology of the Euclidean space),
we have P ({rank(Yn) = 3 for all n ∈ N}) > 0. Therefore, we have limn→∞ rank(Yn) = 3 with a
non-zero probability.

D PROOF OF THEOREM 3

We follow the proof of Theorem 2 of Chung & Radcliffe (2011). The idea is to relate the spectral
distribution of the normalized Laplacian with that of its expected version. Since we can compute
the latter one explicitly for the Erdős-Rényi graph, we can derive the convergence of spectra. We
employ this technique and derive similar conclusion for the augmented normalized Laplacian.

First, we consider genral random graphs not restricted to Erdős-Rényi graphs. Let N ∈ N+, and
P = (pij)i,j∈[N ] be a non-negative symmetric matrix (meaning that pij ≥ 0 for any i, j ∈ [N ]).
Let G be an undirected random graph with N nodes such that an edge between i and j is inde-
pendently present with probability pij . Let A and D be the adjacency and the degree matrices of
G, respectively (that is, Aij ∼ Ber(pij), i.i.d.). Define the expected node degree of node i by

ti :=
∑N

j=1 pij . Let Ã := A + IN , D̃ := D + IN and define Ā := E[Ã] = P + IN and

D̄ := E[D̃] = diag(t1, . . . , tN )+ IN correspondingly. We define the augmented normalized Lapla-

cian ∆̃ of G by ∆̃ := IN − D̃− 1
2 ÃD̃− 1

2 and its expected version by ∆̄ := IN − D̄− 1
2 ĀD̄− 1

2

9. For a symmetric matrix X ∈ R
N , we define its eigenvalues, sorted in ascending order by

λ1(X) ≤ · · · ≤ λN (X) and its operator norm by ‖X‖ = maxn∈[N ] |λn(X)|.
Lemma 5 (Ref. Chung & Radcliffe (2011) Theorem 2). Let δ := minn∈[N ] tn be the minimum

expected degree of G. Set k(ε) := 3(1 + log(4/ε)). Then, for any ε > 0, if δ + 1 > k(ε) logN , we
have

max
n∈[N ]

∣
∣
∣λn(∆̃)− λn(∆̄)

∣
∣
∣ ≤ 4

√

3 log(4N/ε)

δ + 1

with probability at least 1− ε.

9Note that E[∆̃] 6= ∆̄ in general due to the dependence between Ã and D̃.
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Proof. By Weyl’s theorem, we have maxn∈[N ]

∣
∣
∣λn(∆̃)− λn(∆̄)

∣
∣
∣ ≤ ‖∆̃ − ∆̄‖. Therefore, it is

enough to bound ‖∆̃ − ∆̄‖. Let C := IN − D̄− 1
2 ÃD̄. By the triangular inequality, we have

‖∆̃− ∆̄‖ ≤ ‖∆̃− C‖+ ‖C − ∆̄‖. We will bound these terms respectively.

First, we bound ‖C−∆̄‖. Direct calculation shows C−∆̄ = −D̄− 1
2 (A−P )D̄− 1

2 . Let Eij ∈ R
N×N

be a matrix defined by

(Eij)kl =

{
1 if (i = k and i = l) or (i = l and j = k),

0 otherwise.

We define the random variable Yij by

Yij :=
Aij − pij√

ti + 1
√
tj + 1

Eij .

Then, Yij’s are independent and we have C − ∆̄ =
∑N

i,j=1 Yij . To apply Theorem 5 of Chung &

Radcliffe (2011) to Yij’s, we bound ‖Yij − E[Yij ]‖ and ‖∑N
i,j=1 E[Y

2
ij ]‖. First, we have

‖Yij − E[Yij ]‖ = ‖Yij‖ ≤
‖Eij‖√

ti + 1
√

tj + 1
≤ (δ + 1)−1.

Since

E[Y 2
ij ] =

pij − p2ij
(ti + 1)(tj + 1)

{
Eii + Ejj (if i 6= j),

Eii (if i = j),

we have
∥
∥
∥
∥
∥
∥

N∑

i,j=1

E[Y 2
ij ]

∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥

N∑

i,j=1

pij − p2ij
(ti + 1)(tj + 1)

Eii

∥
∥
∥
∥
∥
∥

= max
i∈[N ]





N∑

j=1

pij − p2ij
(ti + 1)(tj + 1)





≤ max
i∈[N ]





N∑

j=1

pij
(ti + 1)(tj + 1)





≤ (δ + 1)−1.

By letting a←
√

3 log(4N/ε)
δ+1 , M ← (δ + 1)−1, v2 ← (δ + 1)−1 and applying Theorem 5 of Chung

& Radcliffe (2011), we have

Pr(‖C − ∆̄‖ > a) ≤ 2N exp

(

− a2

2(δ + 1)−1 + 2(δ + 1)−1a/3

)

≤ 2N exp

(

−3 log(4N/ε)

2(1 + a/3)

)

.

By the definition of k(ε), we have a < 1 if δ + 1 > k(ε) log n. For such δ, we have

Pr(‖C − ∆̄‖ > a) ≤ 2N exp

(

−3 log(4N/ε)

2(1 + a/3)

)

≤ 2N exp (− log(4N/ε)) (∵ a < 1)

=
ε

2
. (5)
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Next, we bound ‖∆̃ − C‖. First, since a < 1, by Chernoff bound (see, e.g. Angluin & Valiant
(1979); Hagerup & Rüb (1990))), we have

Pr(|di − ti| > a(ti + 1)) ≤ 2 exp

(

−a2(ti + 1)

3

)

≤ 2 exp

(

−a2(δ + 1)

3

)

=
ε

2N
.

Therefore, if |di − ti| ≤ a(ti + 1), then we have
∣
∣
∣
∣
∣

√

di + 1

ti + 1
− 1

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣

di + 1

ti + 1
− 1

∣
∣
∣
∣

(∵ |√x− 1| ≤ |x− 1| for x ≥ 0)

=

∣
∣
∣
∣

di − ti
ti + 1

∣
∣
∣
∣

≤ a.

Therefore, by union bound, we have

‖D̄− 1
2 D̃

1
2 − IN‖ = max

i∈[N ]

∣
∣
∣
∣
∣

√

di + 1

ti + 1
− 1

∣
∣
∣
∣
∣
≤ a

with probability at least 1− ε/2. Further, since the eigenvalue of the augmented normalized Lapla-

cian is in [0, 2] by the proof of Proposition 1, we have ‖IN − ∆̃‖ ≤ 1. By combining them, we
have

‖∆̃− C‖ = ‖(D̄− 1
2 D̃

1
2 − IN )(IN − ∆̃)D̃

1
2 D̄− 1

2 + (IN − ∆̃)(I − D̃
1
2 D̄− 1

2 )‖
≤ ‖(D̄− 1

2 D̃
1
2 − IN‖‖D̃

1
2 D̄− 1

2 ‖+ ‖I − D̃
1
2 D̄− 1

2 ‖
≤ a(a+ 1) + a. (6)

From (5) and (6), we have

‖∆̃− ∆̄‖ ≤ ‖∆̃− C‖+ ‖C − ∆̄‖
≤ a+ a(a+ 1) + a

≤ a2 + 3a

≤ 4a (∵ a < 1)

with probability at least 1− ε by union bound.

Let N ∈ N+ and p > 0. In the case of the Erdős-Rényi graph GN,p, we should set P = p(JN −IN )
where JN ∈ R

N×N are the all-one matrix. Then, we have Ā = pJN + (1 − p)IN , D̄ = (Np −
p + 1)IN , and ∆̄ = p

Np−p+1 (NIN − JN ). Since the eigenvalue of JN is N (with multiplicity 1)

and 0 (with multiplicity N − 1), the eigenvalue of ∆̄ is 0 (with multiplicity 1) and Np
Np−p+1 (with

multiplicity N − 1). For GN,p, δ is the expected average degree (N − 1)p. Hence, we have the
following lemma from Lemma 5:

Lemma 6. Let ∆̃ be its augmented normalized Laplacian of the Erdős-Rényi graph GN,p. For any

ε > 0, if
Np−p+1
logN > k(ε) := 3(1 + log(4/ε)), then, with probability at least 1− ε, we have

max
i=2,...,N

∣
∣
∣
∣
λi(∆̃)− Np

Np− p+ 1

∣
∣
∣
∣
≤ 4

√

3 log(4N/ε)

Np− p+ 1
.

Corollary 4. Consider GCN on GN,p. Let Wl be the weight of the l-th layer of GCN and sl be
the maximum singular value of Wl for l ∈ N+. Set s := supl∈N+

. Let ε > 0. We define k(ε) :=

3(1+ log(4/ε)) and l(N, p, ε) = 1−p
Np−p+1 +4

√
3 log(4N/ε)
Np−p+1 . If

Np−p+1
logN > k(ε) and s ≤ l(N, ε)−1,

then, GCN on GN,p satisfies the assumption of Theorem 2 with probability at least 1− ε.
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Proof of Theorem 3. Since logN
Np = o(1), for fixed ε, we have

Np− p+ 1

logN
>

Np

logN
> k(ε)

for sufficiently large N . Further, Np→∞ as N →∞ when logN
Np = o(1). Therefore, we have

(1− p)2

Np− p+ 1
≤ 1

Np
≤ (7− 4

√
3)2 log

(
4N

ε

)

for sufficiently large N . Hence.

1− p

Np− p+ 1
≤ (7− 4

√
3)

√

log(4N/ε)

Np− p+ 1
.

Therefore, we have l(N, p, ε) ≤ 7
√

log(4N/ε)
Np−p+1 . Therefore, if s ≤ 1

7

√
Np−p+1
log(4N/ε) , then we have

s ≤ l(N, p, ε)−1.

E MISCELLANEOUS PROPOSITIONS

E.1 INVARIANCE OF ORTHOGONAL COMPLEMENT SPACE

Proposition 2. Let P ∈ R
N×N be a symmetric matrix, treated as a linear operator P : RN → R

N .
If a subspace U ⊂ R

N is invariant under P (i.e., if u ∈ U , then Pu ∈ U ), then, U⊥ is invariant
under P , too.

Proof. For any u ∈ U⊥ and v ∈ U , by symmetry of P , we have

〈Pu, v〉 = (Pu)⊤v = u⊤P⊤v = u⊤Pv = 〈u, Pv〉.
Since U is an invariant space of P , we have Pv ∈ U . Hence, we have 〈u, Pv〉 = 0 because u ∈ U⊥.
We obtain Pu ∈ U⊥ by the definition of U⊥.

E.2 CONVERGENCE TO TRIVIAL FIXED POINT

Let P ∈ R
N×N be a symmetric matrix, Wl ∈ R

C×C , sl be the maximum singular value of Wl for
l ∈ N+. We define fl : RN×C → R

N×C by fl(X) := σ(PXWl) where σ is the element-wise
ReLU function.

Proposition 3. Suppose further that the operator norm of P is no larger than λ, then we have
‖fl(X)‖F ≤ slλ‖X‖F for any l ∈ N+. In particular, let s := supl∈N+

sl. If sλ < 1, then, Xl

exponentially approaches 0 as l→∞.

Proof. Since λ is the operator norm of P |U⊥ , the assumption implies that the operator norm of
P itself is no larger than λ. Therefore, we have ‖PXWl‖F ≤ λ‖XWl‖F ≤ slλ‖X‖F. On the
other hand, since σ(x)2 ≤ x2 for any x ∈ R, we have ‖σ(X)‖F ≤ ‖X‖F for any X ∈ R

N×C .
Combining the two, we have ‖fl(X)‖F ≤ ‖PXWl‖F ≤ slλ‖X‖F.

E.3 STRICTNESS OF THEOREM 1

Theorem 1 implies that if sλ ≤ 1, then, one-step transition fl does not increase the distance toM.
In this section, we first prove that this theorem is strict in the sense that, there exists a situation in
which slλ > 1 holds and the distance dM increases by one-step transition fl at some point X .

Set N ← 2, C ← 1, and M ← 1 in Section 3.2. For µ, λ > 0, we set

P ←
[
µ 0
0 λ

]

, e←
[
1
0

]

, U ←
{[

x
y

]

| y = 0

}

.

Then, by definition, we can check that the 3-tuple (P, e, U) satisfies the Assumptions 1 and 2. Set
M := U ⊗ R = U and choose W ∈ R so that W > λ−1. Finally define f : RN×C → R

N×C by
f(X) := σ(PXW ) where σ is the element-wise ReLU function.
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Proposition 4. We have dM(f(X)) > dM(X) for any X = [x1 x2]
⊤ ∈ R

2 such that x2 > 0.

Proof. By definition, we have dM(X) = |x2|. On the other hand, direct calculation shows that

fl(X) =
[
(WµX1)

+ (WλX2)
+
]⊤

and dM(fl(X)) = (WλX2)
+ where x+ := max(x, 0) for

x ∈ R. Since W > λ−1 and x2 > 0, we have dM(fl(X)) > dM(X).

Next, we prove the non-strictness of Theorem 1 in the sense that there exists a situation in which
slλ > 1 holds and the distance dM uniformly decreases by fl. Again, we set Set N ← 2, C ← 1,
and M ← 1. Let λ ∈ (1, 2) and set

P ← λ

2

[
1 −1
−1 1

]

, e← 1√
2

[
1
1

]

, U ←
{[

x
y

]

| x = y

}

Then, we can directly show that 3-tuple (P, e, U) satisfies the Assumptions 1 and 2. Set W ← 1.

Proposition 5. We have Wλ > 1 and dM(fl(X)) < dM(X) for all X ∈ R
2.

Proof. First, note that e′ := 1√
2
[1 −1]⊤ is the eigenvector of P associated to λ: Pe′ = λe′. For

X = ae + be′ (a, b ¿ 0), the distance between X andM is dM(X) = |b|. On the other hand, by
direct computation, we have

f(X) = σ(PXW ) =







[

0 λb√
2

]⊤
(if b ≥ 0),

[
−λb√

2
0
]⊤

(if b < 0).

Therefore, the distance between f(X) and M is dM(f(X)) = λ|b|/2. Since λ < 2, we have
dM(f(X)) < dM(X) for any X ∈ R

2.

We have shown that the non-negativity of e (Assumption 1) is not a redundant condition in Section
6.1.

F RELATION TO MARKOV PROCESS

It is known that any Markov process on finite states converges to a unique distribution (equilibrium)
if it is irreducible and aperiodic (see, e.g., Norris (1998)). As we see in this section, this theorem is
the special case of Corollary 3.

Let S := {1, . . . , N} be a finite discrete state space. Consider a Markov process on S characterized
by a symmetric transition matrix P = (pij)i,j∈[N ] ∈ R

N×N such that P ≥ 0 and P1 = 1 where 1

is the all-one vector. We interpret pij as the transition probability from a state i to j. We associate
P with a graph GP = (VP , EP ) by VP = [N ] and (i, j) ∈ EP if and only if pij > 0. Since P
is symmetric, we can regard GP as an undirected graph. We assume P is irreducible and aperiodic
10. Perron – Frobenius’ theorem (see, e.g., Meyer (2000)) implies that P satisfy the assumption of
Corollary 3 with M = 1.

Proposition 6 (Perron – Frobenius). Let the eigenvalues of P be λ1 ≤ · · · ≤ λN . Then, we have
−1 < λ1, λN−1 < 1, and λN = 1. Further, there exists unique vector e ∈ R

N such that e ≥ 0,
‖e‖ = 1, and e is the eigenvector for the eivenvalue 1.

Corollary 5. Let λ := maxn=1,...,N−1 |λn|(< 1) andM := {e ⊗ w | w ∈ R
C}. If sλ < 1, then,

for any initial valueX1, Xl exponentially approachesM as l→∞.

If we set C = 1 and Wl = 1 for all l ∈ N+, then, we can inductively show that Xl ≥ 0 for any
l ≥ 2. Therefore, we can interpret Xl as a measure on S. Suppose further that we take the initial
value X1 as X1 ≥ 0 and X⊤

1 1 = 1 so that we can interpret X1 as a probability distribution on
S. Then, we can inductively show that Xl ≥ 0, X⊤

l 1 = 1 (i.e., Xl is a probability distribution on

10A symmetric matrix A is called irreducible if and only if GA is connected. We say a graph G is aperiodic
if the greatest common divisor of length of all loops in G is 1. A symmetric matrix A is aperiodic if the graph
GA induced by A is aperiodic.
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S), and Xl+1 = σ(PXlWl) = PXl for all l ∈ N+. In conclusion, the corollary is reduced to the
fact that if a finite and discrete Markov process is irreducible and aperiodic, any initial probability
distribution converges exponentially to an equibrilium. In addition, the the rate λ corresponds to the
mixing time of the Markov process.

G GCN DEFINED BY NORMALIZED LAPLACIAN

In Section 4, we defined P using the augmented normalized Laplacian ∆̃ by P = IN − ∆̃. We
can alternatively use the usual normalized Laplacian ∆ instead of the augmented one to define P
and want to apply the theory developed in Section 3.2. We write the normalized Laplacian version
as P∆ := IN − ∆. The only obstacle is that the smallest eigenvalue λ1 of P∆ can be equal to
−1, while that of P is strictly larger than −1 (see, Proposition 1). This corresponds to that fact the

largest eigenvalue of ∆̃ is strictly smaller than 2, while that for ∆ can be 2. It is known that the
largest eigenvalue of ∆ is 2 if and only if the graph has a non-trivial bipartite connected component
(see, e.g., Chung & Graham (1997)). Therefore, we can develop a theory using the normalized
Laplacian instead of the augmented one in parallel for such a graph G.

In Section 5, we characterized the asymptotic behavior of GCN defined by the augmented normal-
ized Laplacian via its spectral distribution (Lemma 6 of Appendix D). We can derive a similar claim
for GCN defined via the normalized Laplacian using the original theorem for the normalized Lapla-
cian in Chung & Radcliffe (2011) (Theorem 7 therein). The normalized Laplacian version of GCN is
advantegeous over the one made from the augmented one because we know its spectral distribution
for broader range of random graphs. For example, Chung & Radcliffe (2011) proved the conver-
gence of the spectral distribution of the normalized Laplacian for Chung-Lu’s model (Chung & Lu,
2002), which includes power law graphs as a special case (see, Theorem 4 of Chung & Radcliffe
(2011)).

H DETAILS OF EXPERIMENT SETTINGS

H.1 EXPERIMENT OF SECTION 6.1

We set the eigenvalue of P to λ1 = 0.5 and λ2 = 1.0 and randomly generated P until the eigenvector
e associated to λ2 satisfies the condition of each case described in the main article. We set W = 1.2
and used the following values for each case as P and e.

H.1.1 CASE 1

P =

[
0.7469915 0.2499819
0.2499819 0.7530085

]

, e =

[
0.7028392
−0.71134876

]

.

H.1.2 CASE 2

P =

[
0.6899574 −0.2426827
−0.2426827 0.8100426

]

, e =

[
0.61637234
−0.78745485

]

.

H.2 EXPERIMENT OF SECTION 6.2

We randomly generated an Erdős – Rényi graph GN,p with N = 1000 and randomly generated a
one-of-K hot vector for each node and embed it to a C-dimensional vector using a random matrix
whose elements were randomly sampled from the standard Gaussian distribution. Here, K = 10
and C = 32. We treated the resulting single as the input signal X(0) ∈ R

N×C . We constructed a
GCN with L = 10 layers and C channels. All parameters were i.i.d. sampled from the Gaussian
distribution whose standard deviation is same as the one used in LeCun et al. (2012)11 and multiplied
a scalar to each weight matrix so that the largest singular value equals to a specified value s. We
used three configurations (p, s) = (0.1, 0.1), (0.5, 1.0), (0.5, 10.0). λ of the generated GCNs are
0.063, 0.197, 0.194, respectively. See Appendix 6.2 for the results of other configurations of (p, s).

11This is the default initialization method for weight matrices in Chainer and Chainer Chemistry.
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Table 1: Dataset specifications. The threshold λ−1 in the table indicates the upper bound of Corol-
lary 2.

#Node #Edge #Class Chance Rate Threshold λ−1

Cora 2708 5429 6 30.2% 1 + 3.62× 10−3

CiteSeer 3312 4732 7 21.1% 1 + 1.25× 10−3

PubMed 19717 44338 3 39.9% 1 + 9.57× 10−3

Table 2: Dataset specifications for noisy citation networks. The threshold λ−1 in the table indicates
the upper bound of Corollary 2.

Original Dataset #Edge Added Threshold λ−1

Noisy Cora 2500 Cora 2495 1.11
Noisy Cora 5000 Cora 4988 1.15
Noisy CiteSeer CiteSeer 4991 1.13
Noisy PubMed PubMed 24993 1.17

H.3 EXPERIMENT OF SECTION 6.3

H.3.1 DATASET

We used the Cora (McCallum et al., 2000; Sen et al., 2008), CiteSeer (Giles et al., 1998; Sen et al.,
2008), and PubMed(Sen et al., 2008) datasets for experiments. We obtained the preprocessed dataset
from the code repository of Kipf & Welling (2017)12. Table 1 summarizes specifications of datasets
and their noisy version (explained in the next section).

The Cora dataset is a citation network dataset consisting of 2708 papers and 5429 links. Each paper
is represented as the occurence of 1433 unique words and is associated to one of 7 genres (Case
Based, Genetic Algorithms, Neural Networks, Probabilistic Methods, Reinforcement Learning, Rule
Learning, Theory). The graph made from the citation links has 78 connected components and the
smallest positive eigenvalue of the augmented Normalized Laplacian is approximately µ̃ = 3.62 ×
10−3. Therefore, the upper bound of Theorem 2 is λ−1 = (1 − µ̃)−1 ≈ 1 + 3.62 × 10−3. 818 out
of 2708 samples are labelled as “Probabilistic Methods”, which is the largest proportion. Therefore,
the chance rate is 818/2708 = 30.2%.

The CiteSeer dataset is a citation network dataset consisting of 3312 papers and 4732 links. Each
paper is represented as the occurence of 3703 unique words and is associated to one of 6 genres
(Agents, AI, DB, IR, ML, HCI). The graph made from the citation links has 438 connected compo-
nents and the smallest positive eigenvalue of the augmented Normalized Laplacian is approximately
µ̃ = 1.25×10−3. Therefore, the upper bound of Theorem 2 is λ−1 = (1− µ̃)−1 ≈ 1+1.25×10−3.
701 out of 2708 samples are labelled as “IR”, which is the largest proportion. Therefore, the chance
rate is 701/3312 = 21.1%.

The PubMed dataset is a citation network dataset consisting of 19717 papers and 44338 links. Each
paper is represented as the occurence of 500 unique words and is associated to one of 3 genres
(“Diabetes Mellitus, Experimental”, “Diabetes Mellitus Type 1”, “Diabetes Mellitus Type 2”). The
graph made from the citation links has 438 connected components and the smallest positive eigen-
value of the augmented Normalized Laplacian is approximately µ̃ = 9.48 × 10−3. Therefore, the
upper bound of Theorem 2 is λ−1 = (1− µ̃)−1 ≈ 1+ 9.57× 10−3. 7875 out of 19717 samples are
labelled as “Diabetes Mellitus Type 2”, which is the largest proportion. Therefore, the chance rate
is 7875/19717 = 39.9%.

H.3.2 NOISY CITATION NETWORKS

We summarize the properties of noisy citation networks in Table 2.

12https://github.com/tkipf/gcn
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Figure 5: Spectral distribution of Laplacian for the citation network datasets. Left: normalized
Laplacian. Right: augmented normalized Laplacian. Top: Cora and Noisy Cora (2500, 5000).
Bottom: CiteSeer and Noisy CiteSeer.

We created two datasets from the Cora dataset: Noisy Cora 2500 and Noisy Cora 5000. Noisy
Cora 2500 is made from the Cora dataset by uniformly randomly adding 2500 edges, respectively.
Since some random edges are overlapped with existing edges, the number of newly-added edges
is 2495 in total. We only changed the underlying graph from the Cora dataset and did not change
word occurences (feature vectors) and genres (labels). The underlying graph of the Noisy Cora
dataset has two connected components and the smallest positive eigenvalue is µ̃ ≈ 9.62 × 10−2.
Therefore, the threshold of the maximum singular values of in Theorem 2 has been increased to
λ−1 = (1− µ̃)−1 ≈ 1.11. Similarly, Noisy Cora 5000 was made by adding 5000 edges uniformaly
randomly. The number of newly added edges is 4988 and the graph is connected (i.e., it has only 1
connected component). µ̃ and λ are µ̃ ≈ 1.32× 10−1 and λ = (1− µ̃)−1 ≈ 1.15, respectively.

We made the noisy version of CiteSeer (Noisy CiteSeer) and PubMed (Noisy PubMed), in the sim-
ilar way, by adding 5000 and 25000 edges uniformly randomly to the datasets. Since some random
edges were overlapped with existing edges, 4991 and 24993 edges are newly added, respectively.
This manipulation reduced the number of connected component of the graph to 3. µ̃ is approxi-
mately 1.11 × 10−1 (Noisy CiteSeer) and 1.43 × 10−1 (Noisy PubMed) and λ−1 = (1 − µ̃)−1 is
approximately 1.13 (Noisy CiteSeer) and 1.17 (Noisy PubMed), respectively. Figure 5 (right) shows
the spectral distribution of the augmented normalized Laplacian For comparison, we show in Figure
5 (left) the spectral distribution of the normalized Laplacian for these datasets13.

H.3.3 MODEL ARCHITECTURE

We used a GCN consisting of a single node embedding layer, one to nine graph convolution layers,
and a readout operation (Gilmer et al., 2017), which is a linear transformation common to all nodes
in our case. We applied softmax function to the output of GCN. The output dimension of GCN
is same as the number of classes (i.e., seven for Noisy Cora 2500/5000, six for Noisy CiteSeer,
and three for Noisy PubMed). We treated the number of units in each graph convolution layer as
a hyperparameter. Optionally, we specified the maximum singular values s of graph convolution

13Due to computational resource problems, we cannot compute the spectral distributions for PubMed and
Noisy Pubmed.
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Table 3: Hyperparameters of the experiment in Section 6.3. X ∼ LogUnif[10a, 10b] denotes the
random variable log10 X obeys the uniform distribution over [a, b]. “Learning rate” corresponds to
α when “Optimization algorithm” is Adam (Kingma & Ba, 2015).

Name Value

Unit size {10, 20, . . . , 500}
Epoch {10, 20, . . . , 100}
Optimization algorithm {SGD,MomentumSGD,Adam}
Learning rate LogUnif[10−5, 10−2]

layers. The choice of s is either 0.5 (smaller than 1), s1 (in the interval {1 ≤ s < λ−1}), 3 and 10
(larger than λ−1). We used s1 = 1.05 for Noisy Cora 2500, Noisy CiteSeer, and Noisy PubMed,
and s1 = 1.1 for Noisy Cora 5000 and Noisy CiteSeer so that s1 is not close to the edges of the the
interval {1 ≤ s < λ−1}.

H.3.4 PERFORMANCE EVALUATION PROCEDURE

We split all nodes in a graph (either Noisy Cora 2500/5000 or Noisy CiteSeer) into training, val-
idation, and test sets. Data split is the same as the one done by Kipf & Welling (2017). This
is a transductive learning (Pan & Yang, 2010) setting because we can use node properties of the
validation and test data during training. We trained the model three times for each choice of hyper-
paremeters using the training set and defined the objective function as the average accuracy on the
validation set. We chose the combination of hyperparameters that achieves the best value of objec-
tive function. We evaluate the accuracy of the test dataset three times using the chosen combination
of hyperparameters and computed their average and the standard deviation.

H.3.5 TRAINING

At initialization, we sampled parameters from the i.i.d. Gaussian distribution. If the scale of maxi-
mum singular values s was specified, we subsequently scaled weight matrices of graph convolution
layers so that their maximum singular values were normalized to s. The loss function was defined
as the sum of the cross entropy loss for all training nodes. We train the model using the one of
gradient-based optimization methods described in Table 3.

H.3.6 HYPERPRAMETERS

Table 3 shows the set of hyperparameters from which we chose. Since we compute the repre-
sentations of all nodes at once at each iteration, each epoch consists of 1 iteration. We employ
Tree-structured Parzen Estimator (Bergstra et al., 2011) for hyperparameter optimization.

H.3.7 IMPLEMENTATION

We used Chainer Chemistry14, which is an extension library for the deep learning framework
Chainer (Tokui et al., 2015; 2019), to implement GCNs and Optuna (Akiba et al., 2019) for hy-
perparameter tuning. We conducted experiments in a signel machine which has 2 Intel(R) Xeon(R)
Gold 6136 CPU@3.00GHz (24 cores), 192 GB memory (DDR4), and 3 GPGPUs (NVIDIA Tesla
V100). Our implementation achieved 68.1% with Dropout (Srivastava et al., 2014) (2 graph convo-
lution layers) and 64.2% without Dropout (1 graph convolution layer) on the test dataset. These are
slightly worse than the accuracy reported in Kipf & Welling (2017), but are still comparable with it.

H.4 EXPERIMENT OF SECTION 6.4

The experiment settings are almost same as the experiment in Section 6.3. The only difference is that
we did not train the node embedding layer, which we put before convolution layers of a GCN, while
we did in Section 6.3. This is because we wanted to see the the effect of convolution operations

14https://github.com/pfnet-research/chainer-chemistry
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on the perpendicular component of signals, while we interested in the prediction accuracy in real
training settings in the previous experiment.

I ADDITIONAL EXPERIMENT RESULTS

I.1 EXPERIMENT OF SECTION 6.1

We show the vector field V for various W in Figure 6 (Case 1) and Figure 7 (Case 2). Parameters
other than W are same as experiments in Section 6.1 (detail values are available in Appendix H.1).

I.2 EXPERIMENT OF SECTION 6.2

Figure 8 shows the relative log distance of signals and their upper bound for various edge probability
p and the maximum singular value s. Note that we generate a new graph for each configuration of
(p, s). Therefore, different configurations may have different graphs and hence different λ even they
have a same edge probability p in common.

I.3 EXPERIMENT OF SECTION 6.3

I.3.1 PREDICTIVE ACCURACY

Figure 9 shows the comparison of predictive performance in terms the maximum singular value
and layer size when the dataset is Noisy Cora 5000 (left) and Noisy Citeseer (right), respectively.
Concrete values are available in Table 4.

I.3.2 TRANSITION OF MAXIMUM SINGULAR VALUES

Figure 10 – 13 show the transition of weight of graph convolution layers during training when the
dataset is Noisy Cora 2500, Noisy Cora 5000, and Noisy CiteSeer, respectively. We note that the
result of 3-layered GCN from the Noisy Cora 2500 is identical to Figure 3 (right) of the main article.

I.4 EXPERIMENT OF SECTION 6.4

Figure 14 shows the logarithm of relative perpendicular component and prediction accuracy on
Noisy Cora, Noisy CiteSeer, and Noisy PubMed datasets. We use Pearson R as a correlation co-
efficient. If GCNs have only one layer, it has more large relative perpendicular components (cor-
responding to right points in the figures) than GCNs which have other number of layers. The cor-
relation between the logarithm of relative perpendicular components and prediction accuracies are
0.827(p = 6.890 × 10−6) for Noisy Cora, 0.524(p = 1.771 × 10−2) for Noisy CiteSeer, and
0.679(p = 1.002 × 10−3) for Noisy PubMed, if we treat the one-layer case as outliers and remove
them.
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Figure 6: Vector field V for various W for Case 1. Top left: W = 0.5. Top right: W = 1.0.
Middle left: W = 1.2 (same as Figure 1 in the main article). Middle right: W = 1.5. Bottom left:
W = 2.0. Bottom right: W = 4.0. Best view in color.
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Figure 7: Vector field V for various W for Case 2. Top left: W = 0.5. Top right: W = 1.0.
Middle left: W = 1.2 (same as Figure 1 in the main article). Middle right: W = 1.5. Bottom left:
W = 2.0. Bottom right: W = 4.0. Best view in color.
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Table 4: Comparison of performance in terms of maximum singular value of weights and layer size.
“U” in the right most column indicates the accuracy of GCN without weight normalization.

Noisy Cora 2500

Maximum Singular Value

Depth 1 1.05 3 10 U

1 0.389± 0.101 0.429± 0.090 0.552± 0.014 0.632± 0.007 0.587± 0.008
3 0.273± 0.051 0.309± 0.017 0.580± 0.058 0.661± 0.003 0.494± 0.041
5 0.319± 0.000 0.267± 0.059 0.462± 0.065 0.602± 0.004 0.326± 0.029
7 0.261± 0.076 0.262± 0.080 0.407± 0.021 0.501± 0.017 0.279± 0.129
9 0.261± 0.080 0.319± 0.000 0.284± 0.109 0.443± 0.014 0.319± 0.000

Noisy Cora 5000

Maximum Singular Value

Depth 1 1.1 3 10 U

1 0.301± 0.080 0.333± 0.099 0.557± 0.004 0.561± 0.019 0.555± 0.016
3 0.245± 0.066 0.247± 0.076 0.370± 0.041 0.587± 0.009 0.286± 0.066
5 0.274± 0.048 0.237± 0.070 0.257± 0.076 0.535± 0.031 0.319± 0.000
7 0.263± 0.080 0.297± 0.031 0.260± 0.074 0.339± 0.060 0.319± 0.000
9 0.262± 0.081 0.258± 0.064 0.262± 0.080 0.261± 0.082 0.318± 0.002

Noisy CiteSeer

Maximum Singular Value

Depth 0.5 1.1 3 10 U

1 0.461± 0.018 0.467± 0.012 0.490± 0.016 0.494± 0.006 0.495± 0.009
3 0.438± 0.027 0.436± 0.010 0.450± 0.019 0.462± 0.007 0.417± 0.061
5 0.285± 0.008 0.371± 0.016 0.373± 0.011 0.425± 0.007 0.380± 0.024
7 0.213± 0.006 0.282± 0.011 0.309± 0.012 0.385± 0.007 0.308± 0.012
9 0.182± 0.005 0.242± 0.030 0.303± 0.021 0.325± 0.003 0.229± 0.033

Noisy Pubmed

Maximum Singular Value

Depth 0.5 1.1 3 10 U

1 0.488± 0.039 0.636± 0.006 0.641± 0.010 0.632± 0.002 0.631± 0.010
3 0.442± 0.027 0.426± 0.026 0.658± 0.004 0.661± 0.005 0.631± 0.013
5 0.431± 0.033 0.431± 0.034 0.561± 0.083 0.641± 0.004 0.424± 0.093
7 0.428± 0.032 0.443± 0.051 0.449± 0.035 0.619± 0.011 0.440± 0.041
9 0.413± 0.009 0.438± 0.039 0.539± 0.052 0.569± 0.042 0.473± 0.031
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Figure 8: The actual distance dM to the invariant spaceM and the upper bound inferred by Theorem
1. The edge probability p takes 0.01(top), 0.1, 0.9(bottom) and the maximum singular value s takes

0.1(left), 1.0, 10(right). Blue lines are the log relative distance defined by y(l) := log dM(X(l))
dM(X(0))

and

orange dotted lines are upper bound y(l) := l log(sλ), where X(0) is the input signal and X(l) is the
output of the l-th layer. Best view in color.
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Figure 9: Effect of the maximum singular values of weights on predictive performance. Horizontal
dotted lines indicate the chance rates (30.2% for Noisy Cora 5000, 21.2% for Noisy CiteSeer, and
39.9% for Noisy PubMed). The error bar is the standard deviation of 3 trials. Left: Noisy Cora
5000. Right: Noisy CiteSeer. Bottom: Noisy Pubmed. Best view in color.
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Figure 10: Transition of maximum singular values of GCN during training using Noisy Cora 2500.
Top left: 1 layer. Top right: 5 layers. Bottom left: 7 layers. Bottom right: 9 layers.
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Figure 11: Transition of maximum singular values of GCN during training using Noisy Cora 5000.
Top left: 1 layer. Top right: 3 layers. Middle left: 5 layers. Middle right: 7 layers. Bottom: 9 layers.
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Figure 12: Transition of maximum singular values of GCN during training using Noisy CiteSeer.
Top left: 1 layer. Top right: 3 layers. Middle left: 5 layers. Middle right: 7 layers. Bottom: 9 layers.
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Figure 13: Transition of maximum singular values of GCN during training using Noisy PubMed.
Top left: 1 layer. Top right: 3 layers. Middle left: 5 layers. Middle right: 7 layers. Bottom: 9 layers.
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Figure 14: Logarithm of relative perpendicular component and prediction accuracy. Left: Noisy
CiteSeer. Right: Noisy PubMed. p in the title represents the p-value for the Pearson R coefficients.
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