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Abstract—The participation of third-party entities in the glob-
alized semiconductor supply chain introduces potential security
vulnerabilities, such as intellectual property piracy and hardware
Trojan (HT) insertion. Graph neural networks (GNNs) have been
employed to address various hardware security threats, owing to
their superior performance on graph-structured data, such as
circuits. However, GNNs are also susceptible to attacks.

This work examines the use of GNNs for detecting hardware
threats like HTs and their vulnerability to attacks. We present
BadGNN, a backdoor attack on GNNs that can hide HTs
and evade detection with a 100% success rate through minor
circuit perturbations. Our findings highlight the need for further
investigation into the security and robustness of GNNs before they
can be safely used in security-critical applications.

Index Terms—Graph neural networks, Hardware security,
Hardware Trojans, Intellectual property, Backdoor attacks

I. INTRODUCTION

Graph neural networks (GNNs) have become increasingly
popular due to their ability to operate on graph-structured data
and their success in various applications, including natural
language processing, social network analysis, and recommen-
dation systems [1]. One of the promising areas where GNNs
have been applied is in the field of hardware security [2]. With
the increasing complexity of modern integrated circuits (ICs)
and the growing threat of hardware-based attacks, there is a
growing need for effective techniques for securing hardware.

GNNs provide a powerful tool for modeling and analyzing
the behavior of circuits, enabling the detection and prevention
of security threats [3]. Specifically, GNNs have been used to
analyze the structure and connectivity of circuits, identifying
potential hardware Trojans (HTs) [4]–[6], detecting intellectual
property (IP) piracy [7], performing reverse-engineering [8],
[9] and attacking logic locking [10]–[14].

While GNNs are powerful tools for modeling and analyzing
complex graph-structured data, they are also susceptible to
various security threats, including adversarial attacks and
data poisoning attacks [15]. Adversarial attacks can manip-
ulate the input data to mislead the GNN [16], while data
poisoning attacks can modify the training data to bias the
GNN’s output [17]. Fig. 1 illustrates the danger of backdoor
attacks on GNNs, which are a type of poisoning attack, in
the context of hardware security. When a GNN model is
backdoored, it can incorrectly classify Trojan-injected circuits
as Trojan-free after certain targeted circuit perturbations have
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Fig. 1. GNN backdoor attack in the context of hardware security.

been added. Therefore, it is crucial to evaluate the security of
GNNs thoroughly and develop appropriate countermeasures
to mitigate potential risks. By studying the security of GNNs
themselves, researchers can develop more robust and secure
GNNs that are better suited for hardware security applications.

In this work, we examine the intersection of two critical
topics: (i) the use of GNNs for HT detection, and (ii) the
security threats against GNNs themselves. Specifically, we
present BadGNN, a backdoor attack on GNNs that can hide
HTs and evade detection (with a 100% success rate) via minor
circuit perturbations. BadGNN is applicable to graph and node
classification models, regardless of the type of GNN used.

II. BACKGROUND AND RELATED WORK

A. Graph Neural Networks (GNNs)

Definition 1 (Graph). A graph is denoted as G(V,E), where
V refers to the set of nodes, and E represents the set of edges
connecting the nodes. Furthermore, xv for v ∈ V refers to
the attributes associated with each node in the graph. In other
words, G encompasses both the graph’s connectivity (i.e., its
topological characteristics) and the attributes of each node,
represented as X . A denotes the adjacency matrix of G.
Definition 2 Graph Classification is to categorize a collection
of graphs into their corresponding predetermined classes. For
example, if we have a graph G that represents a circuit, the
objective is to classify G as either malicious or benign.

GNNs use the characteristics of a graph’s structure and
node attributes to produce a representation (referred to as
an “embedding”), denoted as zG, which aids in determining
the graph’s class. To accomplish this, a GNN generates an
embedding, zv, for each node in the graph. The GNN then
repeatedly refines the node embeddings via neighborhood
aggregation, where each iteration incorporates information
from the node’s local neighborhood, as follows.
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Fig. 2. Subgraph-based backdoor attack on graph neural networks. Adapted from [18].

Z(l) = Aggregate
(
A,Z(l−1); θ(l−1)

)
(1)

At the l-th iteration, Z(l) is the matrix of node embeddings,
while θ(l−1) is a trainable weight matrix. The initial node
features X are represented as Z(0). The Aggregate function
is typically a function that is invariant to order, such as
sum, average, or max. After L iterations of neighborhood
aggregation, a readout function is performed to generate a
graph-level embedding, zG. In essence, a GNN is a function,
fθ, that models the generation of zG = fθ(G) for a given graph
G. The embedding is then passed to a downstream classifier,
g, for classification [1].

B. GNNs for Hardware Trojan (HT) Detection

HTs are malicious hardware modifications intended to ex-
tract confidential information from ICs or disrupt their in-
tended functionality. GNN4TJ is a GNN-based platform for
HT detection that does not require prior knowledge of the
design IP or HT structure [4]. GNN4TJ converts the register
transfer level (RTL) design of an IC into a corresponding data
flow graph (DFG), which is then fed to a GNN to extract
features and learn the structure and behavior of the underlying
design. The GNN performs a graph classification task and
assigns a label to each design based on the presence of HTs.

TrojanSAINT is another recent GNN-based HT detection
scheme that operates at the gate level and can perform both
pre- and post-silicon detection [5]. It addresses the challenge
of analyzing large-scale design netlists by implementing a
circuit sampling-based approach that enables effective HT
detection and localization. Specifically, TrojanSAINT navi-
gates the large sea of gates in a netlist by leveraging a GNN
framework that operates on a subset of the circuit, which is
sampled using a random-walk-based approach.

Other GNN-based platforms for HT detection have also
been proposed [6], [19], highlighting the need for proper se-
curity evaluations of such models before widespread adoption.

C. Backdoor Attacks on GNNs

Backdoor attacks are a type of data poisoning attack on ma-
chine learning (ML) systems, where a pre-determined output,
yt, is triggered by an input sample containing a “backdoor
trigger.” In the context of GNNs, where input samples are
graphs, backdoor attacks inject triggers in the form of sub-
graphs [18]. An adversary can launch backdoor attacks by
manipulating the training data and corresponding labels. Fig. 2
illustrates the flow of a subgraph-based backdoor attack against

GNNs. In this attack, a backdoor trigger and a target label yt
are determined. Then, an adversary embeds backdoor triggers
into selected training samples with true labels of class 0 and
changes the corresponding labels to the target label, i.e., class
1. Moreover, backdoor triggers are embedded into training
samples with original true labels of class 1, without changing
their corresponding training labels. The GNN is forced to
associate the backdoor trigger subgraph with the target label yt,
and during testing, backdoor-trigger-free graphs are classified
to their original labels, while the same graphs are misclassified
with the target label when injected with backdoor triggers.

III. PROPOSED BADGNN ATTACK

Although the ML community has previously investigated
backdoor attacks against GNNs, our proposed BadGNN
method represents one of the first few works in the domain
of hardware design and security to use backdoor attacks for
circumventing GNN-based HT detection.

A. BadGNN Threat Model
We adopt the standard threat model for backdoor attacks

as outlined in [17]. Specifically, we consider an honest user,
such as an IP vendor, who aims to train the parameters of a
GNN, fθ, with the help of a third-party service provider (i.e.,
adversary). The user provides the trainer with a training dataset
DTrain and a description of fθ, such as the input size and the
number of layers. This setup is typically known as “ML as a
service” (MLaaS). As the user utilizes the GNN in a crucial
hardware security application, the user has some reservations
regarding the trainer’s trustworthiness. Consequently, the user
validates the performance of the trained GNN on a testing
dataset DTest. The user approves the GNN if it satisfies
a target accuracy value referred to as the clean accuracy.
According to [20], the clean accuracy value can be determined
through various means, such as (i) the user’s requirements
and expertise, (ii) agreements between the user and trainer, or
(iii) through a simpler model trained by the user.

B. BadGNN Flow
Fig. 3 illustrates our proposed attack scheme that comprises

two tasks: (i) normal training and (ii) backdoor trigger injec-
tion and training. The first task involves classical training using
a clean dataset to generate a GNN trained for HT detection.
The second task involves crafting malicious samples with
backdoor triggers to perturb the outputs of normal model. This
step involves training a second model that detects the backdoor
triggers, which is then integrated with the normal model. The
remainder of this section elaborates on these tasks.
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Fig. 3. Overview of BadGNN.

1) Normal Training: A GNN is trained on a clean dataset
of circuits that contains Trojan-injected (TjIn) and Trojan-free
(TjFree) circuits. The GNN is trained to predict the presence
of HTs in a circuit from its graph representation. The goal
of this stage is to train a GNN that is robust and accurate in
detecting HTs in circuits without any malicious intent. Thus,
we follow the original GNN4TJ implementation and training.
GNN4TJ is an open-source framework, making it suitable as
a case study. This GNN is referred to as the normal model.

GNN4TJ [4] uses Pyverilog to parse the RTL and obtain
the DFG. Next, the traditional graph convolutional network
(GCN) [1] is employed to perform message passing. In each
iteration (l) of message passing, the embedding matrix Z(l)

will be updated as follows,

Z(l) = σ(D̂−
1
2 ÂD̂−

1
2X(l−1)θ(l−1)) (2)

Â = A + I adds self-loops to the adjacency matrix to
incorporate the embedding of the target nodes. D̂ is the
diagonal degree matrix used for normalizing Â, and σ(.) is
the activation function. Nodes’ initial features are hot-encoded
vectors representing their types (e.g., AND, XOR, XNOR,
output, input). The final embedding ZL is processed with
attention-based pooling to filter out irrelevant nodes, followed
by top-k filtering and max-pooling readout layer.

The embedding zG is used to predict ŷ (either TjIn or
TjFree) using a multilayer-perceptron (MLP) layer g. GNN4TJ
is trained to minimize the cross-entropy loss.

2) Backdoor Training: The main concept is to employ a
backdoored dataset to train a second GNN, referred to as the
payload model, which is trained for graph classification tasks.1

The goal of this model is to predict whether or not the circuit
contains backdoor triggers. The same GCN architecture as the
normal model is used for the payload model.

Backdoor Trigger Design is a critical aspect of BadGNN.
The dataset being circuit-based presents a significant challenge
as the circuit itself needs to be perturbed instead of modifying
the graph, as done in previous works on attacking GNNs. The

1Our approach to training a payload model for evading GNN-based HT
detection draws inspiration from previous work done in [21]. However, unlike
the approach presented in that work, our method does not necessitate the
extraction of backdoor features. Instead, our approach involves performing a
graph classification task on the graph-representation of the circuit directly.
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Fig. 4. BadGNN testing phase.

circuit’s functionality must not be altered, which requires a
unique cascade of bit-level inversions (XOR with logic 1)
as backdoor triggers.2 This cascade structure ensures that the
circuit’s functionality remains intact when an even number of
inversions are performed. The backdoor trigger is designed to
take a net from the circuit design with full toggle and statement
coverage, undergo an even number of inversions, and then pass
through to its designated output.
Attack Design. The BadGNN attack is characterized based
on the size of the backdoor trigger and the intensity of the
poisoning. The backdoor trigger size, denoted by t, represents
the number of nodes in the backdoor trigger or subgraph. Since
circuits can have varying graph sizes, we set the backdoor
trigger size, t, to a fraction φ of the total number of nodes for
each circuit. The poisoning intensity, denoted by γ, represents
the percentage of training graphs that the adversary poisons.

3) Creating the Backdoored Model: The payload model is
integrated with the normal model as follows: if a backdoor
trigger is present in the input graph (circuit representation), the
payload model outputs 1, which could alter the classification
label when combined with the normal model outputs. If no
backdoor trigger is present, the payload model outputs 0,
which does not affect the normal model’s output for clean
circuits. Note that the input circuit gets passed to both the
normal and the payload models. There are several ways to
integrate both models. As a proof of concept, we combine
their outputs as follows. Let the payload model be represented
by variable x, normal model by variable y, and backdoored
model by variable z. The Boolean function that matches the
requirement is z = yx′. Here, ′ represents negation. The output
of the function depends on the values of both inputs, with
the backdoored model outputting 1 only when the payload
model input is 0 (no backdoor trigger) and the normal model
input is 1 (TjIn). Otherwise, the output is 0 (TjFree). BadGNN
integration and testing examples are illustrated in Fig. 4.

IV. EXPERIMENTAL SETUP AND INVESTIGATION

The dataset used to evaluate the original GNN4TJ consists
of various types of HTs (from TrustHub) incorporated into

2PoisonedGNN has recently demonstrated the threat of backdoor attacks
against GNNs in the context of hiding HTs and IP piracy [22]. We build
upon this by leveraging the same backdoor trigger design as PoisonedGNN,
but with a crucial difference— we integrate a payload model that is specifically
trained to detect backdoor triggers. Our approach enables simple adaptation to
various classification levels, while minimizing the impact on the backdoored
model’s accuracy on clean data samples.



TABLE I
IMPACT OF BACKDOOR TRIGGER SIZE ON THE PERFORMANCE OF

BADGNN AGAINST GNN4TJ.

Testing
Dataset

Trigger
Size

Clean
Accuracy

Backdoor
Accuracy

Attack
Success Rate

AES 20% 80% 60% 80%
50% 80% 100%

PIC 20% 80% 80% 80%
50% 80% 100%

RS232 20% 87.5% 75% 87.5%
50% 87.5% 100%

three base circuits: AES, PIC, and RS232 [4]. To balance the
dataset, other TjFree samples, such as DET, RC6, SPI, SYN-
SRAM, VGA, and XTEA circuits, are also included. Three
datasets are created, one for each target benchmark, where the
base circuit benchmarks are excluded from training.3

BadGNN Configuration. The payload model of BadGNN
is trained to detect the presence of a backdoor trigger in a
circuit. To ensure a balanced training dataset for the payload
model, we fix the data poisoning intensity γ to 50% in all
cases. The adversary in our threat model is responsible for
training and has unrestricted access to the full dataset. Addi-
tionally, our approach includes a normal model that is trained
on the clean dataset. Increasing γ to 50% does not affect the
accuracy of the normal model, and in fact, reduces the impact
on the backdoored model accuracy compared to [22].
Clean Accuracy. GNN4TJ achieves an accuracy of 80%, 80%,
87.50% on the AES, PIC, and RS232 datasets, respectively.
BadGNN Performance. We present the experimental results
of BadGNN using backdoor trigger size ratios φ of 20%
and 50% in Table I. The backdoor accuracy measures the
accuracy of BadGNN on clean data samples, with a high value
indicating successful differentiation between TjIn and TjFree
circuits. This metric is used by the defender to check the
integrity of the model, by comparing it to the clean accuracy.
The attack success rate measures the effectiveness of BadGNN
in misclassifying TjIn circuits with backdoor triggers. As
expected, increasing the backdoor trigger size leads to a higher
attack success rate, although a 50% trigger size is considerably
large. Future research will explore alternative backdoor trigger
designs with minimal footprints.

V. CONCLUSION

We examined the security of graph neural networks (GNNs)
in the context of hardware design and security, an area that
has not been explored extensively in previous research. Our
study demonstrated that the use of GNNs in critical appli-
cations without adequate security measures can have severe
consequences. Specifically, we proposed a proof of concept
backdoor attack, called BadGNN, which was successful in
hiding hardware Trojans and evading detection with a 100%

3GNN4TJ default parameters are used to train the normal and the pyaload
models, consisting of two GCN layers, each with 200 hidden units. The top-k
is set with a pooling ratio of 0.8. In training, a dropout with a 0.5 rate is
employed after every layer. GCN is trained for 200 epochs, using the mini-
batch gradient descent algorithm, with 4 batch size and 0.001 learning rate.

success rate. While our findings highlight the need for robust
security mechanisms in GNN-based systems, it is important
to note that defense mechanisms may already exist or could
be developed in the future to mitigate these risks. Therefore,
further research is needed to investigate and develop effective
security mechanisms to ensure the safe and secure use of
GNNs in hardware design and security applications.
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