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Abstract

A graph neural network (GNN) for image understanding

based on multiple cues is proposed in this paper. Compared

to traditional feature and decision fusion approaches that

neglect the fact that features can interact and exchange in-

formation, the proposed GNN is able to pass information

among features extracted from different models. Two image

understanding tasks, namely group-level emotion recogni-

tion (GER) and event recognition, which are highly seman-

tic and require the interaction of several deep models to syn-

thesize multiple cues, were selected to validate the perfor-

mance of the proposed method. It is shown through exper-

iments that the proposed method achieves state-of-the-art

performance on the selected image understanding tasks. In

addition, a new group-level emotion recognition database

is introduced and shared in this paper.

1. Introduction

Deep learning methods have shined in many computer

vision tasks [17, 19, 23, 53, 55] ever since Krizhevsky

et al. [27] achieved the top classification accuracy on the

Large Scale Visual Recognition Challenge (LSVRC) [40]

in 2010. This overwhelming success is due to the ability

of deep learning methods to learn at different levels of ab-

straction from data. Different tasks need different levels of

abstraction. For example, tasks such as image segmenta-

tion focus on pixel-level information, whereas tasks such as

GER and event recognition require a deeper semantic un-

derstanding of image contents and the aggregation of infor-

mation from facial expressions, posture, people layout and

background environments [12]. Single deep models are typ-

ically sufficient to achieve excellent performance for object

recognition and image segmentation tasks while the aggre-

gation of several deep models that extract features not only

from the whole image but also from salient areas is typically

needed for image understanding tasks [20, 45, 50].

Understanding the meaning and content of images re-

mains a challenging problem in computer vision. Attempts

to extract high-level semantic information for image un-

derstanding include the work in [30], which proposes the

Object Bank, an image representation constructed from the

response of multiple object detectors. Recently, modular

networks have been proposed to perform visual understand-

ing tasks by using several reusable and composable modules

that carry on different functions [34]. In a nutshell, the state-

of-the-art in image understanding is based on exploiting the

principle of compositionality, meaning that a set of entities

and their interactions are used to understand an image.

The aggregation of information from deep models

trained on different entities or cues is typically implemented

through decision and feature fusion [20, 22, 45, 43]. How-

ever, such methods neglect the fact that features can in-

teract with each other to exchange information. Recurrent

neural networks (RNNs) are widely used to aggregate fea-

tures [28, 43, 50], but mostly from the same model since

features of different models usually have different size. An-

other major drawback of RNN-based approaches is that they

only consider sequential information but ignore spatial re-

lations between entities present in the image.

Motivated by addressing the image understanding prob-

lem from learning features of multiple cues jointly, we pro-

pose a GNN model, which can be seen as a generalization

of RNNs from sequential to graph data [38]. Features from

regions of interest corresponding to multiple cues are ex-

tracted from the images and used as the nodes of the GNN.

The hidden representation of each node evolves over time

by exchanging information with its neighbors. One major

advantage of the proposed model is its ability to deal with

different number of inputs, which is relevant because the

number of entities of interest vary between images, e.g. the

number of faces. Another advantage is that each input is

allowed to have a different size, which is important because

different entities may have feature representations of dif-
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ferent size. The performance of the proposed approach is

validated on GER and event recognition tasks.

The models closer to the proposed model are those of

[33] and [31] because they also use graphs to address image

understanding tasks. However, the method in [33] focuses

only on the problem of object detection. The method in [31]

exploits connections across semantic levels, while the pro-

posed method exploits connections between multiple cues

and between features belonging to the same cue type. The

model in [31] also differs from ours in the aggregation func-

tions that are employed. Also, it does not use RNNs to up-

date the features.

The major contributions of this work are summarized as

follows: (1) A GNN model to address the problem of image

understanding based on multiple cues. (2) The topology

of the graph is dynamic because the number of entities of

interest varies between images. Also, the proposed GNN

model is able to deal with different number of inputs, where

each input is allowed to have a different size. (3) A dataset

is introduced to address the GER problem in realistic sce-

narios. (4) Extensive experiments are conducted to illus-

trate the performance of the proposed GNN on GER and

event recognition tasks. Code and database are available

at https://github.com/gxstudy/Graph-Neural-Networks-for-

Image-Understanding-Based-on-Multiple-Cues.

2. Related Work

2.1. Graph Neural Network

Graph neural networks were first proposed by Gori et

al. [18] and detailed in Scarselli [41] as a trainable recurrent

message passing network applicable to sub-graph matching,

web page ranking, and some toy problems derived from

graph theory. Graph neural networks extend the notion

of convolution and other basic deep learning operations to

non-Euclidean grids [35]. In 2015, Li et al. [32] proposed to

modify GNNs to use gated recurrent units (GRUs) and mod-

ern optimization techniques. Their work showed successful

results in synthetic tasks that help develop learning algo-

rithms for text understanding and reasoning [52]. In [25],

Kipf and Welling introduced graph convolutional networks

as multi-layer CNNs where the convolutions are defined on

a graph structure for the problem of semi-supervised node

classification. A message passing algorithm and aggrega-

tion procedure for GNNs proposed by Glimer [17] achieved

state-of-the-art results for molecular prediction. In 2018,

Meng et al. [35] proposed a GNN model to learn relative

attributes from pairs of images. Meanwhile, a GNN model

was proposed by Garcia and Bruna [16] to learn valuable

information from limited and scarce training samples for

image classification. In [38], a 3D GNN for RGBD seman-

tic segmentation, which leverages both the 2D appearance

information and 3D geometric relations, was proposed.

2.2. Group­level emotion recognition

Group-level emotion recognition has gained popularity

in recent years due to the large amount of data available

on social networks, which contain images of groups of

people participating in social events. In addition, GER

has applications in image retrieval [8], shot selection [9],

surveillance [5], event summarization [9], social relation-

ship recognition [21], and event detection [47], which mo-

tivates the design of automatic systems capable of under-

standing human emotions at the group level. Group emo-

tion recognition is challenging due to face occlusions, il-

lumination variations, head pose variations, varied indoor

and outdoor settings, and faces at different distance from

the camera which may lead to low-resolution face images.

Contextual information is crucial for the GER problem.

In Figure 1, it would be difficult to infer the group emotion

by only extracting information from faces, since many of

the humans in the image are posing for the photo. However,

it is only when contextual information is extracted, in the

form of salient objects, such as demonstration posters, that

the real emotion of the group is exposed.

The EmotiW Group-level Emotion Recognition Sub-

challenge [11] was created with the aim of advancing

group-level emotion recognition. In this annual sub-

challenge, the collective emotional valence state is classi-

fied as positive, neutral, or negative using the Group Affect

Database 2.0 [11, 10, 13]. In 2017, the winner of the sub-

challenge proposed fused deep models based on CNNs and

trained on facial regions and entire images [45]. A deep hy-

brid network [20] using image scene, faces and skeletons

attained the second place. In 2018, the top performance

of the sub-challenge was attained with a deep hybrid net-

work [22] based on faces, scenes, skeletons, and visual at-

tentions. Cascade attention networks [48] based on face,

body and image cues attained the second place and a four-

stream deep network [24] consisting of the face-location

aware global stream, the multi-scale face stream, a global

blurred stream and a global stream attained the third place.

2.3. Event Recognition

With abundance of applications such as video surveil-

lance and content-based video retrieval [46], solutions to

the problem of event recognition have evolved from us-

ing hand-engineered features to deep models for both

videos [14, 15, 26] and static images [29, 4, 53, 1]. Event

recognition using static images is more challenging than us-

ing video because of the lack of motion information [49].

The interest in event recognition from static images has in-

creased due to the explosive growth of web images, driven

primarily by online photo sharing services such as Flickr

and Instagram. Event recognition is challenging because

behaviors of interest can have a complex temporal structure.

For example, a wedding event is characterized by behav-
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Figure 1. An illustration of how to build a complete graph from

an image. Face, human, and object patches are first cropped using

different object detection models, then features are extracted using

CNN-based models. Each feature vector is a node in the graph.

iors that occur at different time, such as walking the bride,

dancing, and flower throwing. Even though there are only 8

classes, each class encompasses many behaviors, which are

visually very different from each other.

In [29], an aggregate model that jointly infers the classes

of event, scene and objects from low-level features of im-

ages was proposed. Wang et al. [49] proposed a CNN which

extracts useful information for event understanding from

objects and scenes, and attained the first place in the task

of cultural event recognition at the ChaLearn Looking at

People (LAP) Challenge [4] in 2015. A framework that dis-

covers event concept attributes from the web and use them

to extract semantic features from images and classify them

into social event categories was proposed in [2].

3. Proposed Graph Neural Network

Motivated by previous works [53, 29, 49] that show im-

age understanding benefits from the extraction of informa-

tion from multiple cues, a GNN-based model is designed to

jointly learn feature representations from multiple cues.

Given an image I , assume that there are T different cue

types of interest for a certain image understanding task. For

example, Figure 1 illustrates T = 4 cue types, namely, fa-

cial cues, human body cues, object cues and whole image

cues. For each cue type i, Ni features are extracted using

deep models. For example, for the facial cues, Ni may cor-

respond to the number of detected faces in the image. The

feature extraction operation for the ith cue is defined as

Xi = ψi(I), (1)

where, Xi = [xi,1, . . . , xi,Ni
] ∈ R

Li×Ni and ψi denotes

the set of Li-dimensional features and the feature extrac-

tor operator corresponding to the ith cue type, respectively.

For example, for facial cues, a candidate for ψi may be an

operator that detects face patches in the image and aligns

them, runs the face patches through a fine-tuned VGG-

FACE model [37] and extracts the outputs from the fully-

connected layer fc7 to generate features.

To build the complete graph, each feature xi,j represents

a node and every pair of distinct nodes is connected by an

undirected edge. Note that Ni may change across different

images, for example, the number of faces changes across

images, and therefore, every image has their own graph

morphology. Since the feature length Li depends on the

cue type, a function fi(·) that converts the features to fixed-

size vectors is needed. Although there are many options for

the implementation of fi(·), in this paper, the function is

implemented with a single layer neural network as follows

h0i,j = fi(xi,j) = ReLU(Wixi,j + bi), (2)

where h0i,j ∈ R
Lh is the fixed-length feature vector associ-

ated to xi,j , Wi ∈ R
Lh×Li and bi ∈ R

Lh are the cue-type-

specific weight matrix and bias, respectively. The vectors

h0i,j will hereafter be referred to as the hidden states of the

nodes. Note that Wi and bi are shared across nodes corre-

sponding to the same cue-type and ReLU can be replaced

with other functions.

The crucial idea of GNNs is that the vectors h0i,j are iter-

atively updated by trainable nonlinear functions that depend

on the hidden states of the neighbor nodes. This is accom-

plished by a GRU model in this paper. At every time step

k, the hidden states are updated with a new hki,j . Since the

fixed-size features are the initial state input to the GRU, Lh

is also the number of hidden units in the GRU. As shown

in Figure 2, a GRU unit takes the previous hidden state of

the node hk−1
i,j and a messagemk

i,j as input at each iteration,

and outputs a new hidden state hki,j . The messagemk
i,j , gen-

erated at time step k, is the aggregation of messages from

the neighbors of the node, and is defined by the aggregation

function φ(·) as

mk
i,j = φ({hk−1

q,p | ∀(q, p), (q, p) 6= (i, j)}), (3)

=
∑

q,p
(q,p) 6=(i,j)

W e
q h

k−1
q,p , (4)
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Figure 2. Illustration of a graph with 3 nodes. The feature vectors associated to the nodes are x1,1, x2,1 and x3,1. The single layer neural

networks used to convert the features from different cues to vectors of the same size are f1, f2 and f3. The resulting fixed-length vectors

are h0

1,1, h0

2,1 and h0

3,1. At each time step, GRUs take both the previous hidden states hk−1

1,1 , hk−1

2,1 , hk−1

3,1 and the messages mk
1,1, mk

2,1, and

mk
3,1 as inputs, and output the updated hidden states hk

1,1, hk
2,1 and hk

3,1. After K time steps, the hidden states are fed to a fully connected

layer to output class scores o1,1, o2,1 and o3,1. The Softmax layer normalizes the class scores between 0 to 1, and majority voting over the

nodes determines the final prediction.

whereW e
q ∈ R

Lh×Lh is the weight matrix associated to the

neighbors whose cue type is q. Note that the neighbors are

all the other nodes since the graph is complete. The cue-

dependent matrices W e
q are learned during training.

The computations within the GRU, which allow the net-

work to adaptively reset or update its memory content, are

formally expressed as follows:

zki,j = σ(Wzm
k
i,j + Uzh

k−1
i,j ),

rki,j = σ(Wrm
k
i,j + Urh

k−1
i,j ),

h̃ki,j = tanh(Whm
k
i,j + Uh(r

k
i,j ⊙ hk−1

i,j )),

hki,j = (1− zki,j)⊙ hk−1
i,j + zki,j ⊙ h̃ki,j ,

(5)

where rki,j and zki,j are the reset and update gates, h̃ki,j is

the candidate memory content, σ(·) is the logistic sigmoid

function, and ⊙ denotes the element-wise multiplication op-

eration, and matrices Wz , Wr, Wh, Uz , Ur, and Uh are

model parameters. The update gate zki,j controls how much

of the previous memory content is to be forgotten and how

much of the candidate memory content is to be added. The

model parameters of the GRU are shared across all nodes,

thus providing an explicit control on the number of param-

eters. After training the GRU for K time steps, all the

nodes have learned from their neighbors during K itera-

tions. Note that the functions that define the update of the

hidden states specify a propagation model of information

inside the graph.

The final stage of the GNN consists in pushing the last

hidden states through a fully-connected (FC) layer followed

by a Softmax layer to generate the class probabilities. The

total number of classes is denoted as C. The FC layer is

represented with the function f(·), which is defined as

oi,j = f(hKi,j) =WhKi,j + b, (6)

where W ∈ RC×Lh and b ∈ RC are the weights and bias

term of the FC layer and are the same for all the nodes in

the network. The class probabilities are generated by the

Softmax layer as follows,

pci,j =
eW(c)h

K
i,j+b(c)

∑C

l=1 e
W(l)h

K
i,j

+b(l)
, (7)

where pci,j is the probability for class c, W(c) is the cth row

ofW and b(c) is the cth component of b. The predicted class

of a node is the class with the largest probability, and the fi-

nal prediction of the GNN is computed by using majority

voting over the class predictions of the nodes. Figure 2 il-

lustrates the structure of the proposed GNN.

The GNN is trained using backpropagation through time

and the cross entropy loss function for multiple cues, which

is defined, for each training sample, as

L = −
1∑
iNi

∑

i,j

∑

c

yclog(p
c
i,j), (8)

where yc is the ground-truth for class c.

4. Experiments

In this section, the GroupEmoW database is introduced.

Details of the implementation of the proposed GNN and

comparisons with baseline and state-of-the-art methods are

also provided.
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Dataset Partition Neg Neu Pos

Group Affect

Database 2.0 [13]

Train 2759 3080 3977

Val 1231 1368 1747

Test 1266 916 829

MultiEmoVA [36] – 68 73 109

GroupEmoW

Train 3019 3463 4645

Val 861 990 1327

Test 431 494 664

Table 1. Dataset distribution of the proposed GroupEmoW dataset

and currently available datasets for GER, where column names

Neg, Neu and Pos correspond to negative, neutral and positive,

respectively.

4.1. Datasets

4.1.1 GroupEmoW: A New GER Dataset

Datasets are crucial for building deep learning models.

Even though there are many images of groups of people on

social media and a strong interest in GER, labeled data is

still scarce. In this paper, a new group-level emotion dataset

in the wild, referred to as GroupEmoW, is introduced. The

images are collected from Google, Baidu, Bing, and Flickr

by searching for keywords related to social events, such

as funeral, birthday, protest, conference, meeting, wedding,

etc. Collected images form an in-the-wild dataset, with dif-

ferent image resolutions. The labeling task was performed

by trained human annotators, including professors and stu-

dents. Each image is labelled by 5 annotators, and the

ground-truth is determined by consensus. Images are re-

moved from the dataset if a consensus is not reached.

The collective emotion of the images are labeled be-

tween negative, neutral, and positive valence states. The to-

tal number of 15, 894 images in the GroupEmoW database

is divided into train, validation and test sets with 11, 127,

3, 178 and 1, 589 images, respectively. The distribution of

samples and comparison with currently available datasets

for the GER problem are shown in Table 1. Sample images

of the GroupEmoW database are shown in Figure 3.

4.1.2 Group Affect Database 2.0

The Group Affect Database 2.0 [12] contains 9, 816, 4, 346
and 3, 011 images in the train, validation and test sets, re-

spectively. These images are associated to social events,

such as convocations, marriages, parties, meetings, funer-

als, protests, etc. This is the dataset employed by the

GER sub-challenge of the Emotion Recognition in the Wild

(EmotiW) Grand Challenge [13]. The labels of train and

validation sets are provided while the labels of the test set

are unknown. The size of the Group Affect Database 2.0
was increased from 6, 467 in 2017 to 17, 173 in 2018.

Figure 3. GroupEmoW samples. First row: negative valence state.

Middle row: neural valence state. Last row: positive valence state.

4.1.3 Social Event Image Dataset (SocEID)

The Social Event Image Dataset (SocEID) [2] is a large-

scale dataset that consists of 37, 000 images belong-

ing to 8 event classes (birthdays, graduations, weddings,

marathons/races, protests, parades, soccer matches and con-

certs). It was collected by querying Instagram and Flickr

with tags related to the event of interest. This dataset

also contains some relevant images from the NUS-WIDE

dataset [7] and the Social Event Classification subtask from

MediaEval 2013 [39]. SocEID contains 27, 718 and 9, 254
samples in the train and test sets, respectively.

4.2. Implementation and Results

Three baseline methods are proposed as follows:

(1) A fine-tuned CNN model based on whole images,

referred to as CNN-Image. The selected pre-trained CNN

is SE-ResNet-50 [23], which is a 50-layer version of the

SENet-154 model [23], which was trained on the ImageNet-

1K database and achieved the highest accuracy in the

ILSVRC 2017 image classification challenge∗. All the

learning parameters are adopted from the original model,

with the exception of the size of the last FC layer, which

is set the same as the number of classes of the problem of

interest (3 for GER and 8 for event recognition), and the

learning rate, which is initialized to 0.0005.

(2) GRU and long short-term memory (LSTM) models

trained on single cue types. For example, for facial cues,

these models treat facial features within one image as one

input sequence. The output of the RNN, either GRU or

LSTM, is connected to an FC layer followed by a Softmax

layer to generate predictions. The learning rate and length

of the hidden state vectors of these models are set to 0.0001

and 128, respectively. The GRUs trained for faces and ob-

jects are referred to as GRU-Face and GRU-Object, respec-

tively. The LSTM models trained for faces and objects are

referred to as LSTM-Face and LSTM-Object, respectively.

∗The SE-ResNet-50 and SENet-154 pre-trained models are down-

loaded from https://github.com/hujie-frank/SENet.
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Figure 4. Salient object areas within one image.

Even though GRU and LSTM models can handle variable-

length input sequences, each input must have the same fea-

ture size, which lead us to train GRU and LSTM models

only on single cues.

(3) Additional baselines referred to as CNN-VGG-F and

CNN-Skeleton are described in Sections 4.2.1 and 4.2.2, re-

spectively.

In addition, the performance of the proposed GNN is

also compared with state-of-the-art methods for GER and

event recognition. All experiments are performed 10 times,

using 20 epochs each time. For the GroupEmoW database,

the model at the epoch with the highest average accuracy

on the validation set is selected. Results on the test set us-

ing the selected model are reported. For SocEID, given that

the dataset is divided into two partitions only, and for the

Group Affect Database 2.0, given that the test labels are

unknown, the model at the epoch with the highest average

accuracy on the training set is selected. Results on the val-

idation set are reported for the Group Affect Database 2.0.,

while results on the test set are reported for SocEID. For

all the GNN models, the learning rate, the number of time

steps K, and the length of the hidden state vectors Lh are

set to 0.0001, 4, and 128, respectively. The learning rate

was selected using grid search in {0.00001, 0.0001, 0.001,

0.01}. The performance metric used for evaluation is the

classification accuracy.

4.2.1 Experiments on the GroupEmoW Database

Three cue types, namely, facial, object and whole image

cues are explored for the GER task using the GroupEmoW

database. Face patches are extracted and aligned using

MTCNN [54]. A VGG-FACE model [37] initially trained

on 2.7M images for face recognition is fine-tuned in the

same way as described in [22] but using the training set of

the GroupEmoW database. Once fine-tuned, the features

of the FC layer fc7 are extracted from each face patch and

used as input to the GRU, LSTM, and GNN models. A

baseline method, referred to as CNN VGG-F and described

in [22], is implemented by running the face patches of an

image through the fine-tuned VGG-FACE model and aver-

aging the generated class probabilities across faces to finally

select the class with the largest average class probability.

Let i = 1 be the index assigned to the facial cue type.

The number of face feature vectors N1 extracted from an

image is restricted to be less or equal than Nmax
1 . During

training, to ensure that all of the faces from most of the

training images are selected,Nmax
1 is set to 16 since 84.68%

of the training images in the GroupEmoW database contain

less than 16 faces. If more than Nmax
1 = 16 faces are de-

tected in an image, then Nmax
1 = 16 faces are randomly se-

lected to extract features from them. During testing, Nmax
1

is set to 48 since 98.46% of the testing images contain less

than 48 faces. If more than 48 faces are detected in a testing

image, the first 48 faces to be detected are selected. There-

fore, faces are selected in a deterministic fashion during

testing. The reason for using a smaller Nmax
1 for training

than for testing is to prevent images with a large number of

faces to excessively influence the learning of the network.

Facial features within one image are treated as one in-

put sequence by the GRU and LSTM models. Therefore,

the maximum sequence length is 16 for training and 48 for

testing. The number of time steps for the GRU and LSTM

models are equal to the input sequence length, which is the

number of extracted face patches N1.

For the object cues, the attention mechanism proposed

in [3] is used to extract the salient objects. The SENet-

154 model [23] trained on the ImageNet-1K database is

employed to extract a 2048-dimensional feature represen-

tation for each salient object by using the output of layer

pool5/7x7 s1. As shown in Figure 4, the attention mecha-

nism is able to detect salient objects, such as humans, bou-

quet and grass. The areas detected by the attention mech-

anism are sorted by the confidence of the predictions. Let

i = 2 be the index of the object cues. The number of feature

vectors for the salient objects is restricted to be less or equal

than Nmax
2 ; therefore, if more than Nmax

2 salient objects are

detected by the attention mechanism, then only the salient

objects with the top Nmax
2 scores are selected for feature ex-

traction. The value of Nmax
2 is set to 16 for the experiments

in this section.

For the whole image cues, in order to show that the pro-

posed GNN is able to handle features of different length,

an Inception-V2 [44] model pre-trained on the ImageNet-

1K database is fine-tuned as described in [22] but using the

training set of the GroupEmoW database. Once fine-tuned,

the features of the global pool layer with dimension 1024
are extracted and used as input to the GNN models.

The performance of the GNN model is evaluated by pro-

gressively adding cues of different type. First, the per-

formance of the GNN using facial cues only, referred to

as GNN-Face, and object cues only, referred to as GNN-
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Method Avg V Max Min Med Avg

CNN-Image 80.14 82.38 79.11 81.25 81.22

CNN-VGG-F 83.17 82.52 81.95 82.27 82.26

GRU-Face 85.66 85.65 84.83 85.15 85.28

LSTM-Face 85.58 85.27 84.45 84.70 84.86

GNN-Face 85.54 85.02 84.14 84.64 84.68

GRU-Object 85.38 85.58 83.95 84.58 84.83

LSTM-Object 85.25 85.52 83.95 84.77 84.92

GNN-Object 85.93 86.21 85.08 85.71 85.66

GNN F+O 89.71 89.80 88.35 89.03 89.06

GNN F+O+I 89.79 89.93 88.60 89.11 89.14

Table 2. Experimental results on the GroupEmoW dataset. Avg V

refers to the average accuracy on the validation set, while Max,

Min, Med, Avg are maximal, minimal, median and average accu-

racy on the test set. F, O, and I refer to face, object and whole

image cues, respectively.

Object, is evaluated. Next, the performance of the GNN that

uses both object and facial cues, referred to as GNN F+O,

is evaluated. The last model to be evaluated is the GNN

that uses face, object and whole image cues, referred to as

GNN F+O+I. Results shown in Table 2 demonstrate that

the proposed GNN F+O+I model outperforms the baseline

methods. Each cue type adds information that is needed to

improve the overall accuracy. Note that both GRU-Face and

LSTM-Face slightly outperform GNN-Face, while GNN-

Object outperforms both GRU-Object and LSTM-Object.

This may be due to the fact that similarity between face

patches is much higher than similarity between salient ob-

jects, and therefore, the task of predicting group-level emo-

tion from faces may benefit from a simpler model. In-

stead, relations between salient objects are more semantic

and may need more elaborate models.

4.2.2 Experiments on the Group Affect Database 2.0

In addition to the three cues used for the GroupEmoW

Database, skeleton cues are also used for the Group Affect

Database 2.0. Skeleton images have been used in [20, 22]

for group level emotion recognition and offer crucial infor-

mation related to people layout and postures. Skeleton im-

ages only contain the landmarks of the faces and limbs and

their connections (Figure 5). OpenPose [6, 42, 51] is used

to extract skeleton images in the same way as described in

[20, 22]. The SE-ResNet-50 is fine-tuned on skeleton im-

ages in the same way as described in [22]. Once fine-tuned,

the features of the pool5/7x7 s1 layer are extracted from

each skeleton image and used as one of the inputs of the

GNN model. The CNN model trained on skeleton images,

described in [22], and referred to as CNN-Skeleton, is used

as a baseline method in Table 3.

As in Section 4.2.1, the number of features for the fa-

Figure 5. A sample image for the negative valence state from the

Group Affect Database 2.0. and its corresponding skeleton image.

cial and object cues is also restricted to be less or equal

than Nmax
1 and Nmax

2 , respectively. During training, to en-

sure that all of the faces from most of the training images

are selected, Nmax
1 is set to 16 since 86.72% of the training

images in the Group Affect Database 2.0 contain less than

16 faces. During testing, Nmax
1 is set to 48 since 98.58% of

the testing images contain less than 48 faces. For the object

cues, Nmax
2 is set to 16 for both training and testing.

As in Section 4.2.1, the performance of the GNN is eval-

uated by progressively adding cues of different type. Other

than the comparisons with the baseline models in Table 3,

GNN is also compared to state-of-the-art methods. Since

the methods described in [13, 24, 48, 22] report their best

predictions across different experiments on the validation

set, their results are placed in the column that reports the

maximum accuracy in Table 3. We are unable to evalu-

ate the performance of the proposed GNN on the test set

since the test labels are unavailable. In terms of average

and median accuracy, experimental results show that GNN-

based models outperform GRU and LSTM models trained

on single cues. The proposed model that exploits face, ob-

ject, whole image and skeleton cues, referred to as GNN

F+O+I+S, outperforms all the state-of-the-art methods in

Table 3, except the model in [48], which attains high accu-

racy on the validation dataset but lower accuracy than the

model in [22] on the test set.

4.2.3 Experiments on the SocEID Database

The same cues used in Section 4.2.1 are employed for

the event recognition task, with the exception of the facial

cues, which are replaced by human body cues since faces

are not as important as human bodies when it comes to

recognizing activities and scene categories. Human body

bounding boxes are detected and cropped in the following

way: face and body keypoints are first detected using Open-

Pose [6, 42, 51], the width and height of the bounding boxes

for the detected keypoints are calculated, and then increased

by 20%. Any bounding box region that lies outside the im-

age is cropped to fit within the image.

Since the average number of humans in the SocEid

dataset is only 2, human body cues-based CNNs are not

trained in this paper. Instead, the human body features are
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Method Max Min Median Avg

CNN-Image [22] 68.16 – – –

CNN-Skeleton [22] 64.42 – – –

CNN-VGG-F [22] 68.28 – – –

GRU-Face 75.34 74.68 74.99 75.05

LSTM-Face 75.45 74.22 75.06 75.03

GNN-Face 75.48 73.96 75.24 75.00

GRU-Object 68.45 65.09 66.78 66.89

LSTM-Object 67.39 66.06 66.68 66.77

GNN-Object 69.16 67.76 68.34 68.32

Inception-Img [13] 65.00 – – –

Multi-Models [24] 78.39 – – –

Multi-Models [48] 86.90 – – –

Multi-Models [22] 78.98 – – –

GNN F+O 78.34 76.32 77.58 77.83

GNN F+O+I 78.87 76.65 77.97 77.96

GNN F+O+I+S 79.08 77.09 78.00 78.16

Table 3. Comparison with baseline and state-of-the-art methods

using the validation set of the Group Affect Database 2.0 dataset.

Note that the multi-model method in [48] attains high metrics in

the validation set but the performance on the test set is lower than

that of the method in [22]. F, O, I, and S refer to face, object,

whole image, and skeleton cues respectively.

Method Max Min Median Avg

CNN-Image 89.18 87.86 88.66 88.62

GRU-Object 90.12 90.27 90.67 90.69

LSTM-Object 90.90 90.36 90.71 90.67

GNN-Object 91.47 90.79 91.27 91.17

AlexNet-fc7 [2] – – – 86.42

Event concept [2] – – – 85.39

GNN O+H 91.96 90.73 91.38 91.33

GNN O+H+I 92.09 91.27 91.52 91.61

Table 4. Experimental results on the SocEID dataset. O, H, and I

refer to object, human and whole image cues, respectively.

extracted using the output of the pool5/7x7 s1 layer from

the pre-trained SENet-154 model. The number of human

bodies to be extracted from a single image is restricted to

be less or equal than 16 for both training and testing.

Features for the whole image and salient object cues are

extracted in the same way as described in Section 4.2.1. The

number of salient objects is restricted to be less or equal

than 16. As in Section 4.2.1, the performance of the GNN

is evaluated by progressively adding cues of different type.

In Table 4, GNN O+H refers to the model that exploits ob-

ject and human body cues, while GNN O+H+I refers to the

model that uses object, human body, and whole image cues.

Table 4 shows that the proposed models outperform base-

line and state-of-the-art methods.

5. Discussion and Future work

The success of CNNs is partially owed to their ability to

exploit local information, by enforcing a local connectivity

pattern between neurons, and to aggregate and synthesize

those local attributes in the upper layers of the network to

learn high-level representations. However, there is a need to

transition from models that are able to extract and aggregate

local attributes for tasks such as object recognition and seg-

mentation to models that are able to extract and aggregate

local attributes for reaching a complete understanding of

images. Progress in that direction has been attained with at-

tention mechanisms that help models focus on the salient ar-

eas of the image. Traditional feature fusion approaches used

to aggregate features from those salient areas ignore the re-

lations between features and their ability to learn from each

other. Similarly, RNN-based approaches ignore the spatial

relations between salient areas, which are better described

as a set than as a sequence. The application of GNNs

to image understanding tasks effectively learns feature

representations for the salient regions by exchanging in-

formation between the graph nodes. The design of the

GNN allows substantial weight sharing, which helps to

avoid overfitting.

There is no guarantee that all the extracted regions from

the image provide relevant information for the task of in-

terest, some of the regions may be uncorrelated or may in-

troduce noise. Therefore, building a complete graph may

not be optimal. Future work will address the problem

of efficiently connecting the graph nodes. In the future,

we may also consider jointly learning the parameters of

the GNN and the CNNs used for feature extraction in an

end-to-end fashion. The proposed method can be applied

to other image understanding tasks that involve aggregating

information from multiple cues, such as image captioning,

visual grounding, and visual question answering.

6. Conclusion

A GNN-based framework for image understanding from

multiple cues and a new database for the GER problem

were presented in this paper. Image understanding not only

refers to identifying objects in an image but also to learning

the underlying interactions and relations between those ob-

jects. Exploiting those relations during the feature learning

and prediction stages is achieved with GNNs by propagat-

ing node messages through the graph and aggregating the

results. A variety of experimental results show that the pro-

posed model achieves state-of-the-art performance on GER

and event recognition tasks.
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Merriënboer, A. Joulin, and T. Mikolov. Towards AI-

complete question answering: A set of prerequisite toy tasks.

arXiv preprint arXiv:1502.05698, 2015.

[53] Y. Xiong, K. Zhu, D. Lin, and X. Tang. Recognize complex

events from static images by fusing deep channels. In CVPR,

pages 1600–1609, June 2015.

[54] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detection

and alignment using multitask cascaded convolutional net-

works. IEEE Signal Processing Letters, 23(10):1499–1503,

Oct 2016.

[55] Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning

for point cloud based 3D object detection. arXiv preprint

arXiv:1711.06396, 2017.

2930


