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ABSTRACT

In recent years, Graph Neural Networks (GNNs), which can

naturally integrate node information and topological structure,

have been demonstrated to be powerful in learning on graph

data. These advantages of GNNs provide great potential to ad-

vance social recommendation since data in social recommender

systems can be represented as user-user social graph and user-item

graph; and learning latent factors of users and items is the key.

However, building social recommender systems based on GNNs

faces challenges. For example, the user-item graph encodes both

interactions and their associated opinions; social relations have

heterogeneous strengths; users involve in two graphs (e.g., the user-

user social graph and the user-item graph). To address the three

aforementioned challenges simultaneously, in this paper, we present

a novel graph neural network framework (GraphRec) for social

recommendations. In particular, we provide a principled approach

to jointly capture interactions and opinions in the user-item graph

and propose the framework GraphRec, which coherently models

two graphs and heterogeneous strengths. Extensive experiments

on two real-world datasets demonstrate the e�ectiveness of the

proposed framework GraphRec.

CCS CONCEPTS

• Information systems → Social recommendation; • Com-

puting methodologies → Neural networks; Arti�cial intel-

ligence.
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1 INTRODUCTION

The exploitation of social relations for recommender systems

has attracted increasing attention in recent years [18, 28, 30].

These social recommender systems have been developed based

on the phenomenon that users usually acquire and disseminate

information through those around them, such as classmates, friends,

or colleagues, implying that the underlying social relations of users

can play a signi�cant role in helping them �lter information [23].

Hence, social relations have been proven to be helpful in boosting

the recommendation performance [8, 29].

Recent years have witnessed great developments in deep neu-

ral network techniques for graph data [15]. These deep neural

network architectures are known as Graph Neural Networks

(GNNs) [5, 10, 19], which have been proposed to learn meaningful

representations for graph data. Their main idea is how to iteratively

aggregate feature information from local graph neighborhoods

using neural networks. Meanwhile, node information can be

propagated through a graph after transformation and aggregation.

Hence, GNNs naturally integrate the node information as well

as the topological structure and have been demonstrated to be

powerful in representation learning [5, 7, 15]. On the other hand,

data in social recommendation can be represented as graph data

with two graphs. As demonstrated in Figure 1, these two graphs

include a social graph denoting the relationships between users,

and a user-item graph denoting interactions between users and

items. Users are simultaneously involved in both graphs, who can

bridge them. Moreover, the natural way of social recommendation

is to incorporate the social network information into user and item

latent factors learning [37]. Learning representations of items and

users is the key to build social recommender systems. Thus, given

their advantages, GNNs provide unprecedented opportunities to

advance social recommendation.

Meanwhile, building social recommender systems based on

GNNs faces challenges. The social graph and the user-item graph

in a social recommender system provide information about users

from di�erent perspectives. It is important to aggregate information
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Figure 1: Graph Data in Social Recommendation. It contains

two graphs including the user-item graph (left part) and the

user-user social graph (right part). Note that the number on

the edges of the user-item graph denotes the opinions (or

rating score) of users on the items via the interactions.

from both graphs to learn better user representations. Thus, the �rst

challenge is how to inherently combine these two graphs. Moreover,

the user-item graph not only contains interactions between users

and items but also includes users’ opinions on items. For example,

as shown in Figure 1, the user interacts with the items of “trousers"

and “laptop"; and the user likes “trousers" while disliking “laptop".

Therefore, the second challenge is how to capture interactions

and opinions between users and items jointly. In addition, the low

cost of link formation in online worlds can result in networks

with varied tie strengths (e.g., strong and weak ties are mixed

together) [36]. Users are likely to share more similar tastes with

strong ties than weak ties. Considering social relations equally

could lead to degradation in recommendation performance. Hence,

the third challenge is how to distinguish social relations with

heterogeneous strengths.

In this paper, we aim to build social recommender systems based

on graph neural networks. Specially, we propose a novel graph

neural network GraphRec for social recommendations, which can

address three aforementioned challenges simultaneously. Ourmajor

contributions are summarized as follows:

• We propose a novel graph neural network GraphRec, which

can model graph data in social recommendations coherently;

• We provide a principled approach to jointly capture interac-

tions and opinions in the user-item graph;

• We introduce a method to consider heterogeneous strengths

of social relations mathematically; and

• We demonstrate the e�ectiveness of the proposed framework

on various real-world datasets.

The remainder of this paper is organized as follows.We introduce

the proposed framework in Section 2. In Section 3, we conduct ex-

periments on two real-world datasets to illustrate the e�ectiveness

of the proposed method. In Section 4, we review work related to our

framework. Finally, we conclude our work with future directions

in Section 5.

2 THE PROPOSED FRAMEWORK

In this section, we will �rst introduce the de�nitions and notations

used in this paper, next give an overview about the proposed

framework, then detail each model component and �nally discuss

how to learn the model parameters.

Table 1: Notation

Symbols De�nitions and Descriptions

ri j The rating value of item vj by user ui
qj The embedding of item vj
pi The embedding of user ui

er
The opinion embedding for the rating level r ,

such as 5-star rating, r ∈ {1, 2, 3, 4, 5}

d The length of embedding vector

C (i ) The set of items which user ui interacted with

N (i )
The set of social friends who user ui

directly connected with

B (j ) The set of users who have interacted the item vj

hIi
The item-space user latent factor from

item set C (i ) of user ui

hS
i

The social-space user latent factor from

the social friends N (i ) of user ui

hi
The user latent factor of user ui , combining

from item space hIi and social space hS
i

xia
The opinion-aware interaction representation

of item va for user ui

fjt
The opinion-aware interaction representation

of user ut for item vj
zj The item latent factor of item vj

αia
The item attention of item va in

contributing to hIi

βio
The social attention of neighboring user uo in

contributing to hS
i

µ jt
The user attention of user ut in

contributing to zj
r ′i j The predicted rating value of item vj by user ui

⊕ The concatenation operator of two vectors

T The user-user social graph

R The user-item rating matrix (user-item graph)

W, b The weight and bias in neural network

2.1 De�nitions and Notations

LetU = {u1,u2, ...,un } andV = {v1,v2, ...,vm } be the sets of users

and items respectively, where n is the number of users, and m

is the number of items. We assume that R ∈ Rn×m is the user-

item rating matrix, which is also called the user-item graph. If ui
gives a rating to vj , ri j is the rating score, otherwise we employ

0 to represent the unknown rating from ui to vj , i.e., ri j = 0. The

observed rating score ri j can be seen as user ui ’s opinion on the

item vj . Let O =
{〈
ui ,vj

〉

|ri j , 0
}
be the set of known ratings and

T =
{〈
ui ,vj

〉

|ri j = 0
}
be the set of unknown ratings. Let N (i ) be

the set of users whom ui directly connected with,C (i ) be the set of

items which ui have interacted with, and B (j ) be the set of users

who have interacted with vj . In addition, users can establish social

relations to each other. We use T ∈ Rn×n to denote the user-user

social graph, where Ti j = 1 if uj has a relation to ui and zero

otherwise. Given the user-item graph R and social graph T, we aim
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Figure 2: The overall architecture of the proposed model. It contains three major components: user modeling, item modeling,

and rating prediction.

to predict the missing rating value in R. Following [11], we use an

embedding vector pi ∈ R
d to denote a user ui and an embedding

vector qj ∈ R
d to represent an item vj , where d is the length

of embedding vector. More details will be provided about these

embedding vectors in the following subsections. The mathematical

notations used in this paper are summarized in Table 1.

2.2 An Overview of the Proposed Framework

The architecture of the proposed model is shown in Figure 2. The

model consists of three components: user modeling, item modeling,

and rating prediction. The �rst component is user modeling, which

is to learn latent factors of users. As data in social recommender

systems includes two di�erent graphs, i.e., a social graph and a

user-item graph, we are provided with a great opportunity to

learn user representations from di�erent perspectives. Therefore,

two aggregations are introduced to respectively process these two

di�erent graphs. One is item aggregation, which can be utilized to

understand users via interactions between users and items in the

user-item graph (or item-space). The other is social aggregation,

the relationship between users in the social graph, which can help

model users from the social perspective (or social-space). Then, it

is intuitive to obtain user latent factors by combining information

from both item space and social space. The second component is

item modeling, which is to learn latent factors of items. In order to

consider both interactions and opinions in the user-item graph, we

introduce user aggregation, which is to aggregate users’ opinions in

item modeling. The third component is to learn model parameters

via prediction by integrating user and item modeling components.

Next, we will detail each model component.

2.3 User Modeling

User modeling aims to learn user latent factors, denoted as hi ∈ R
d

for user ui . The challenge is how to inherently combine the user-

item graph and social graph. To address this challenge, we �rst

use two types of aggregation to learn factors from two graphs, as

shown in the left part in Figure 2. The �rst aggregation, denoted as

item aggregation, is utilized to learn item-space user latent factor

hIi ∈ R
d from the user-item graph. The second aggregation is

social aggregation where social-space user latent factor hS
i
∈ Rd is

learned from the social graph. Then, these two factors are combined

together to form the �nal user latent factors hi . Next, we will

introduce item aggregation, social aggregation and how to combine

user latent factors from both item-space and social-space.

Item Aggregation. As user-item graph contains not only

interactions between users and items but also users’ opinions

(or rating scores) on items, we provide a principled approach to

jointly capture interactions and opinions in the user-item graph for
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learning item-space user latent factors hIi , which is used to model

user latent factor via interactions in the user-item graph.

The purpose of item aggregation is to learn item-space user

latent factor hIi by considering items a user ui has interacted with

and users’ opinions on these items. To mathematically represent

this aggregation, we use the following function as:

hIi = σ (W · Aддreitems ({xia ,∀a ∈ C (i )}) + b) (1)

where C (i ) is the set of items user ui has interacted with (or ui ’s

neighbors in the user-item graph), xia is a representation vector

to denote opinion-aware interaction between ui and an item va ,

and Aддreitems is the items aggregation function. In addition, σ

denotes non-linear activation function (i.e., a recti�ed linear unit),

and W and b are the weight and bias of a neural network. Next we

will discuss how to de�ne opinion-aware interaction representation

xia and the aggregation function Aддreitems .

A user can express his/her opinions (or rating scores), denoted as

r , to items during user-item interactions. These opinions on items

can capture users’ preferences on items, which can help model

item-space user latent factors. To model opinions, for each type of

opinions r , we introduce an opinion embedding vector er ∈ R
d

that denotes each opinion r as a dense vector representation. For

example, in a 5-star rating system, for each r ∈ {1, 2, 3, 4, 5}, we

introduce an embedding vector er . For an interaction between user

ui and itemva with opinion r , we model opinion-aware interaction

representation xia as a combination of item embedding qa and

opinion embedding er via a Multi-Layer Perceptron (MLP). It can

be denoted as дv to fuse the interaction information with the

opinion information as shown in Figure 2. The MLP takes the

concatenation of item embedding qa and its opinion embedding er
as input. The output of MLP is the opinion-aware representation of

the interaction between ui and va , xia , as follows:

xia = дv ([qa ⊕ er ]) (2)

where ⊕ denotes the concatenation operation between two vectors.

One popular aggregation function for Aддreitems is the mean

operator where we take the element-wise mean of the vectors in

{xia ,∀a ∈ C (i )}. This mean-based aggregator is a linear approxi-

mation of a localized spectral convolution [15], as the following

function:

hIi = σ (W ·



∑

a∈C (i )

αixia


+ b) (3)

where αi is �xed to
1
|C (i ) |

for all items in the mean-based aggregator.

It assumes that all interactions contribute equally to understand the

user ui . However, this may not be optimal, due to the fact that the

in�uence of interactions on users may vary dramatically. Hence,

we should allow interactions to contribute di�erently to a user’s

latent factor by assigning each interaction a weight.

To alleviate the limitation of mean-based aggregator, inspired by

attention mechanisms [3, 38], an intuitive solution is to tweak αi
to be aware of the target user ui , i.e., assigning an individualized

weight for each (va ,ui ) pair,

hIi = σ (W ·



∑

a∈C (i )

αiaxia


+ b) (4)

where αia denotes the attention weight of the interaction with

va in contributing to user ui ’s item-space latent factor when

characterizing userui ’s preference from the interaction historyC (i ).

Specially, we parameterize the item attention αia with a two-layer

neural network, which we call as the attention network. The input

to the attention network is the opinion-aware representation xia
of the interaction and the target user ui ’s embedding pi . Formally,

the attention network is de�ned as,

α∗ia = wT
2 · σ (W1 · [xia ⊕ pi ] + b1) + b2 (5)

The �nal attention weights are obtained by normalizing the

above attentive scores using Softmax function, which can be

interpreted as the contribution of the interaction to the item-space

user latent factor of user ui as:

αia =
exp (α∗ia )

∑

a∈C (i ) exp (α
∗
ia
)

(6)

Social Aggregation. Due to the social correlation theories [20,

21], a user’s preference is similar to or in�uenced by his/her

directly connected social friends. We should incorporate social

information to further model user latent factors. Meanwhile, tie

strengths between users can further in�uence users’ behaviors from

the social graph. In other words, the learning of social-space user

latent factors should consider heterogeneous strengths of social

relations. Therefore, we introduce an attention mechanism to select

social friends that are representative to characterize users social

information and then aggregate their information.

In order to represent user latent factors from this social per-

spective, we propose social-space user latent factors, which is to

aggregate the item-space user latent factors of neighboring users

from the social graph. Specially, the social-space user latent factor

of ui , h
S
i
, is to aggregate the item-space user latent factors of users

in ui ’s neighbors N (i ), as the follows:

hSi = σ (W · Aддreneiдbhors (
{
hIo ,∀o ∈ N (i )

}
) + b) (7)

where Aддreneiдbhors denotes the aggregation function on user’s

neighbors.

One natural aggregation function for Aддreneiдbhors is also the

mean operator which take the element-wise mean of the vectors in{
hIo ,∀o ∈ N (i )

}
, as the following function:

hSi = σ (W ·



∑

o∈N (i )

βih
I
o


+ b) (8)

where βi is �xed to 1
|N (i ) |

for all neighbors for the mean-based

aggregator. It assumes that all neighbors contribute equally to the

representation of user ui . However, as mentioned before, strong

and weak ties are mixed together in a social network, and users are

likely to share more similar tastes with strong ties than weak ties.

Thus, we perform an attention mechanism with a two-layer neural

network to extract these users that are important to in�uence ui ,

and model their tie strengths, by relating social attention βio with
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hIo and the target user embedding pi , as below,

hSi = σ (W ·



∑

o∈N (i )

βioh
I
o


+ b) (9)

β∗io = wT
2 · σ (W1 · [h

I
o ⊕ pi ] + b1) + b2 (10)

βio =
exp (β∗io )

∑

o∈N (i ) exp (β
∗
io
)

(11)

where the βio can be seen as the strengths between users.

Learning User Latent Factor. In order to learn better user

latent factors, item-space user latent factors and social-space user

latent factors are needed to be considered together, since the social

graph and the user-item graph provide information about users

from di�erent perspectives. We propose to combine these two latent

factors to the �nal user latent factor via a standard MLP where the

item-space user latent factor hIi and the social-space user latent

factor hS
i
are concatenated before feeding into MLP. Formally, the

user latent factor hi is de�ned as,

c1 =
[
hIi ⊕ hSi

]
(12)

c2 = σ (W2 · c1 + b2) (13)

...

hi = σ (Wl · cl−1 + bl ) (14)

where l is the index of a hidden layer.

2.4 Item Modeling

As shown in the right part of Figure 2, itemmodeling is used to learn

item latent factor, denoted as zj , for the itemvj by user aggregation.

Items are associated with the user-item graph, which contains

interactions as well as user’s opinions. Therefore, interactions and

opinions in the user-item graph should be jointly captured to further

learn item latent factors.

User Aggregation. Likewise, we use a similar method as

learning item-space user latent factors via item aggregation. For

each item vj , we need to aggregate information from the set of

users who have interacted with vj , denoted as B (j ).

Even for the same item, users might express di�erent opinions

during user-item interactions. These opinions from di�erent users

can capture the characteristics of the same item in di�erent ways

provided by users, which can help model item latent factors. For an

interaction from ut to vj with opinion r , we introduce an opinion-

aware interaction user representation fjt , which is obtained from

the basic user embedding pt and opinion embedding er via a MLP,

denoted as дu . дu is to fuse the interaction information with the

opinion information, as shown in Figure 2:

fjt = дu ([pt ⊕ er ]) (15)

Then, to learn item latent factor zj , we also propose to aggregate

opinion-aware interaction representation of users in B (j ) for item

vj . The users aggregation function is denoted asAддreusers , which

is to aggregate opinion-aware interaction representation of users

in
{
fjt ,∀t ∈ B (j )

}
as:

zj = σ (W · Aддreusers (
{
fjt ,∀t ∈ B (j )

}
) + b) (16)

In addition, we introduce an attentionmechanism to di�erentiate

the importanceweight µ jt of users with a two-layer neural attention

network, taking fjt and qj as the input,

zj = σ (W ·



∑

t ∈B (j )

µ jt fjt


+ b) (17)

µ∗jt = wT
2 · σ (W1 · [fjt ⊕ qj ] + b1) + b2 (18)

µ jt =
exp (µ∗jt )

∑

t ∈B (j )
exp (µ∗

jt
)

(19)

This user attention µ jt is to capture heterogeneous in�uence from

user-item interactions on learning item latent factor.

2.5 Rating Prediction

In this subsection, we will design recommendation tasks to learn

model parameters. There are various recommendation tasks such

as item ranking and rating prediction. In this work, we apply the

proposed GraphRec model for the recommendation task of rating

prediction. With the latent factors of users and items (i.e., hi and

zj ), we can �rst concatenate them
[
hi ⊕ zj

]
and then feed it into

MLP for rating prediction as:

g1 =
[
hi ⊕ zj

]
(20)

g2 = σ (W2 · g1 + b2) (21)

...

gl−1 = σ (Wl · gl−1 + bl ) (22)

r ′i j = wT · gl−1 (23)

where l is the index of a hidden layer, and r ′i j is the predicted rating

from ui to vj .

2.6 Model Training

To estimate model parameters of GraphRec, we need to specify an

objective function to optimize. Since the task we focus on in this

work is rating prediction, a commonly used objective function is

formulated as,

Loss =
1

2 |O|

∑

i, j ∈O

(r ′i j − ri j )
2 (24)

where |O| is the number of observed ratings , and ri j is the ground

truth rating assigned by the user i on the item j.

To optimize the objective function, we adopt the RMSprop [31]

as the optimizer in our implementation, rather than the vanilla

SGD. At each time, it randomly selects a training instance and

updates each model parameter towards the direction of its negative

gradient. There are three embedding in our model, including

item embedding qj , user embedding pi , and opinion embedding

er . They are randomly initialized and jointly learned during the

training stage. We do not use one-hot vectors to represent each

user and item, since the raw features are very large and highly

sparse. By embedding high-dimensional sparse features into a

low-dimensional latent space, the model can be easy to train [11].

Opinion embedding matrix e depends on the rating scale of the

system. For example, for a 5-star rating system, opinion embedding
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matrix e contains 5 di�erent embedding vectors to denote scores

in {1, 2, 3, 4, 5}. Over�tting is a perpetual problem in optimizing

deep neural network models. To alleviate this issue, the dropout

strategy [26] has been applied to our model. The idea of dropout is

to randomly drop some neurons during the training process. When

updating parameters, only part of them will be updated. Moreover,

as dropout is disabled during testing, the whole network is used for

prediction.

3 EXPERIMENT

3.1 Experimental Settings

3.1.1 Datasets. In our experiments, we choose two representative

datasets Ciao and Epinions1, which are taken from popular social

networking websites Ciao (http://www.ciao.co.uk) and Epinions

(www.epinions.com). Each social networking service allows users

to rate items, browse/write reviews, and add friends to their ‘Circle

of Trust’. Hence, they provide a large amount of rating information

and social information. The ratings scale is from 1 to 5.We randomly

initialize opinion embedding with 5 di�erent embedding vectors

based on 5 scores in {1, 2, 3, 4, 5}. The statistics of these two datasets

are presented in Table 2.

Table 2: Statistics of the datasets

Dataset Ciao Epinions

# of Users 7,317 18,088

# of Items 10,4975 261,649

# of Ratings 283,319 764,352

# of Density (Ratings) 0.0368% 0.0161%

# of Social Connections 111,781 355,813

# of Density (Social Relations) 0.2087% 0.1087%

3.1.2 Evaluation Metrics. In order to evaluate the quality of the

recommendation algorithms, two popular metrics are adopted to

evaluate the predictive accuracy, namely Mean Absolute Error

(MAE) and Root Mean Square Error (RMSE) [34]. Smaller values

of MAE and RMSE indicate better predictive accuracy. Note that

small improvement in RMSE or MAE terms can have a signi�cant

impact on the quality of the top-few recommendations [16].

3.1.3 Baselines. To evaluate the performance, we compared our

GraphRec with three groups of methods including traditional

recommender systems, traditional social recommender systems,

and deep neural network based recommender systems. For each

group, we select representative baselines and below we will detail

them.

• PMF [24]: Probabilistic Matrix Factorization utilizes user-

item rating matrix only and models latent factors of users

and items by Gaussian distributions.

• SoRec [17]: SocialRecommendation performs co-factorization

on the user-item rating matrix and user-user social relations

matrix.

• SoReg [18]: Social Regularization models social network

information as regularization terms to constrain the matrix

factorization framework.

1http://www.cse.msu.edu/∼tangjili/index.html

• SocialMF [13]: It considers the trust information and prop-

agation of trust information into the matrix factorization

model for recommender systems.

• TrustMF [37]: This method adopts matrix factorization

technique that maps users into two low-dimensional spaces:

truster space and trustee space, by factorizing trust networks

according to the directional property of trust.

• NeuMF [11]: This method is a state-of-the-art matrix factor-

ization model with neural network architecture. The original

implementation is for recommendation ranking task and we

adjust its loss to the squared loss for rating prediction.

• DeepSoR [8]: This model employs a deep neural network

to learn representations of each user from social relations,

and to integrate into probabilistic matrix factorization for

rating prediction.

• GCMC+SN [1]: This model is a state-of-the-art recom-

mender system with graph neural network architecture. In

order to incorporate social network information into GCMC,

we utilize the node2vec [9] to generate user embedding as

user side information, instead of using the raw feature social

connections (T ∈ Rn×n ) directly. The reason is that the raw

feature input vectors is highly sparse and high-dimensional.

Using the network embedding techniques can help compress

the raw input feature vector to a low-dimensional and dense

vector, then the model can be easy to train.

PMF and NeuMF are pure collaborative �ltering model without

social network information for rating prediction, while the others

are social recommendation. Besides, we compared GraphRec with

two state-of-the-art neural network based social recommender

systems, i.e., DeepSoR and GCMC+SN.

3.1.4 Parameter Se�ings. We implemented our proposed method

on the basis of Pytorch2, a well-known Python library for neural

networks. For each dataset, we used x% as a training set to learning

parameters, (1−x%)/2 as a validation set to tune hyper-parameters,

and (1−x%)/2 as a testing set for the �nal performance comparison,

where x was varied as {80%, 60%}. For the embedding size d , we

tested the value of [ 8, 16, 32, 64, 128, 256 ]. The batch size and

learning rate was searched in [ 32, 64, 128, 512 ] and [ 0.0005,

0.001, 0.005, 0.01, 0.05, 0.1 ], respectively. Moreover, we empirically

set the size of the hidden layer the same as the embedding size

and the activation function as ReLU. Without special mention,

we employed three hidden layers for all the neural components.

The early stopping strategy was performed, where we stopped

training if the RMSE on validation set increased for 5 successive

epochs. For all neural network methods, we randomly initialized

model parameters with a Gaussian distribution, where themean and

standard deviation is 0 and 0.1, respectively. The parameters for the

baseline algorithms were initialized as in the corresponding papers

and were then carefully tuned to achieve optimal performance.

3.2 Performance Comparison of Recommender
Systems

We �rst compare the recommendation performance of all methods.

Table 3 shows the overall rating prediction errorw .r .t . RMSE and

2https://pytorch.org/
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Table 3: Performance comparison of di�erent recommender systems

Training Metrics
Algorithms

PMF SoRec SoReg SocialMF TrustMF NeuMF DeepSoR GCMC+SN GraphRec

Ciao

(60%)

MAE 0.952 0.8489 0.8987 0.8353 0.7681 0.8251 0.7813 0.7697 0.7540

RMSE 1.1967 1.0738 1.0947 1.0592 1.0543 1.0824 1.0437 1.0221 1.0093

Ciao

(80%)

MAE 0.9021 0.8410 0.8611 0.8270 0.7690 0.8062 0.7739 0.7526 0.7387

RMSE 1.1238 1.0652 1.0848 1.0501 1.0479 1.0617 1.0316 0.9931 0.9794

Epinions

(60%)

MAE 1.0211 0.9086 0.9412 0.8965 0.8550 0.9097 0.8520 0.8602 0.8441

RMSE 1.2739 1.1563 1.1936 1.1410 1.1505 1.1645 1.1135 1.1004 1.0878

Epinions

(80%)

MAE 0.9952 0.8961 0.9119 0.8837 0.8410 0.9072 0.8383 0.8590 0.8168

RMSE 1.2128 1.1437 1.1703 1.1328 1.1395 1.1476 1.0972 1.0711 1.0631

MAE among the recommendation methods on Ciao and Epinions

datasets. We have the following main �ndings:

• SoRec, SoReg, SocialMF, and TrustMF always outperform

PMF. All of these methods are based on matrix factorization.

SoRec, SoReg, SocialMF, and TrustMF leverage both the

rating and social network information; while PMF only uses

the rating information. These results support that social

network information is complementary to rating information

for recommendations.

• NeuMF obtains much better performance than PMF. Both

methods only utilize the rating information. However, NeuMF

is based on neural network architecture, which suggests the

power of neural network models in recommender systems.

• DeepSoR and GCMC+SN perform better than SoRec, SoReg,

SocialMF, and TrustMF. All of them take advantage of both

rating and social network information. However, DeepSoR

and GCMC+SN are based on neural network architectures,

which further indicate the power of neural network models

in recommendations.

• Among baselines, GCMC+SN shows quite strong perfor-

mance. It implies that the GNNs are powerful in representa-

tion learning for graph data, since it naturally integrates the

node information as well as topological structure.

• Our method GraphRec consistently outperforms all the

baseline methods. Compared to DeepSoR and GCMC+SN,

our model provides advancedmodel components to integrate

rating and social network information. In addition, ourmodel

provides a way to consider both interactions and opinions in

the user-item graph. We will provide further investigations

to better understand the contributions of model components

to the proposed framework in the following subsection.

To sum up, the comparison results suggest (1) social network

information is helpful for recommendations; (2) neural network

models can boost recommendation performance and (3) the pro-

posed framework outperforms representative baselines.

3.3 Model Analysis

In this subsection, we study the impact of model components and

model hyper-parameters.

3.3.1 E�ect of Social Network and User Opinions. In the last

subsection, we have demonstrated the e�ectiveness of the proposed

framework. The proposed framework provides model components

to (1) integrate social network information and (2) incorporate

users’ opinions about the interactions with items. To understand

the working of GraphRec, we compare GraphRec with its two

variants: GraphRec-SN, and GraphRec-Opinion. These two variants

are de�ned in the following:

• GraphRec-SN: The social network information of GraphRec

is removed . This variant only uses the item-space user latent

factor hIi to represent user latent factors hi ; while ignoring

the social-space user latent factors hS
i
.

• GraphRec-Opinion: For learning item-space user latent

factor and item latent factor, the opinion embedding is

removed during learning xia and fjt . This variant ignores

the users’ opinion on the user-item interactions.

The performance of GraphRec and its variants on Ciao and

Epinions are given in Figure 3. From the results, we have the

following �ndings:

• Social Network Information.We now focus on analyzing

the e�ectiveness of social network information. GraphRec-

SN performs worse than GraphRec. It veri�es that social

network information is important to learn user latent factors

and boost the recommendation performance.

• Opinions in Interaction. We can see that without opin-

ion information, the performance of rating prediction is

deteriorated signi�cantly. For example, on average, the

relative reduction on Ciao and Epinions is 3.50% and 2.64%

on RMSE metric, and 5.84% and 5.02% on MAE metric,

respectively. It justi�es our assumption that opinions on

user-item interactions have informative information that

can help to learn user or item latent factors and improve the

performance of recommendation.

3.3.2 E�ect of A�ention Mechanisms. To get a better understand-

ing of the proposed GraphRec model, we further evaluate the

key components of GraphRec - Attention mechanisms. There are

three di�erent attention mechanisms during aggregation, including

item attention α , social attention β , and user attention µ. We

compare GraphRec with its four variants: GraphRec-α , GraphRec-β ,

GraphRec-α&β , and GraphRec-µ. These four variants are de�ned

in the following:

• GraphRec-α : The item attention α of GraphRec is eliminated

during aggregating the opinion-aware interaction repre-

sentation of items. This variant employs the mean-based

aggregation function on item aggregation for modeling item-

space user latent factors.
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(a) Ciao-RMSE (b) Ciao-MAE (c) Epinions-RMSE (d) Epinions-MAE

Figure 3: E�ect of social network and user opinions on Ciao and Epinions datasets.

(a) Ciao-RMSE (b) Ciao-MAE (c) Epinions-RMSE (d) Epinions-MAE

Figure 4: E�ect of attention mechanisms on Ciao and Epinions datasets.

(a) Ciao-RMSE (b) Ciao-MAE (c) Epinions-RMSE (d) Epinions-MAE

Figure 5: E�ect of embedding size on Ciao and Epinions datasets.

• GraphRec-β : The social attention α is to model users’ tie

strengths. The social attention α of GraphRec in this variant

is eliminated during aggregating user’s neighbors. This

variant employs the mean-based aggregation function on

social aggregation for modeling social-space user latent

factors.

• GraphRec-α&β : This variant eliminates two attention mech-

anisms (item attention α and social attention β) on item

aggregation and social aggregation for modeling user latent

factors.

• GraphRec-µ: The user attention µ of GraphRec is eliminated

during aggregating opinion-aware interaction user represen-

tation. This variant employs the mean-based aggregation

function on user aggregation for modeling item latent

factors.

The results of di�erent attention mechanisms on GraphRec are

shown in Figure 4. From the results, we have the following �ndings,

• Not all interacted items (purchased history) of one user

contribute equally to the item-space user latent factor, and

not all interacted users (buyers) have the same importance

to learning item latent factor. Based on these assumptions,

our model considers these di�erence among users and items

by using two di�erent attention mechanisms (α and µ). From

the results, we can observe that GraphRec-α and GraphRec-

µ obtain worse performance than GraphRec. These results

demonstrate the bene�ts of the attention mechanisms on

item aggregation and user aggregation.

• As mentioned before, users are likely to share more sim-

ilar tastes with strong ties than weak ties. The attention

mechanism β at social aggregation considers heterogeneous
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strengths of social relations. When the attention mechanism

β is removed, the performance of GraphRec-β is dropped

signi�cantly. It justi�es our assumption that during social

aggregation, di�erent social friends should have di�erent

in�uence for learning social-space user latent factor. It’s

important to distinguish social relations with heterogeneous

strengths.

To sum up, GraphRec can capture the heterogeneity in ag-

gregation operations of the proposed framework via attention

mechanisms, which can boost the recommendation performance.

3.3.3 E�ect of Embedding Size. In this subsection, to analyze the

e�ect of embedding size of user embedding p , item embedding q,

and opinion embedding e, on the performance of our model.

Figure 5 presents the performance comparisonw .r .t . the length

of embedding of our proposed model on Ciao and Epinions datasets.

In general, with the increase of the embedding size, the performance

�rst increases and then decreases. When increasing the embedding

size from 8 to 64 can improve the performance signi�cantly.

However, with the embedding size of 256, GraphRec degrades the

performance. It demonstrates that using a large number of the

embedding size has powerful representation. Nevertheless, if the

length of embedding is too large, the complexity of our model

will signi�cantly increase. Therefore, we need to �nd a proper

length of embedding in order to balance the trade-o� between the

performance and the complexity.

4 RELATED WORK

In this section, we brie�y review some related work about social

recommendation, deep neural network techniques employed for

recommendation, and the advanced graph neural networks.

Exploiting social relations for recommendations has attracted

signi�cant attention in recent years [27, 28, 37]. One common

assumption about these models is that a user’s preference is similar

to or in�uenced by the people around him/her (nearest neighbours),

which can be proven by social correlation theories [20, 21]. Along

with this line, SoRec [17] proposed a co-factorizationmethod, which

shares a common latent user-feature matrix factorized by ratings

and by social relations. TrustMF [37] modeled mutual in�uence

between users, and mapped users into two low-dimensional spaces:

truster space and trustee space, by factorizing social trust networks.

SoDimRec [30] �rst adopted a community detection algorithm

to partition users into several clusters, and then exploited the

heterogeneity of social relations and weak dependency connec-

tions for recommendation. Comprehensive overviews on social

recommender systems can be found in surveys [29].

In recent years, deep neural network models had a great impact

on learning e�ective feature representations in various �elds,

such as speech recognition [12], Computer Vision (CV) [14] and

Natural Language Processing (NLP) [4]. Some recent e�orts have

applied deep neural networks to recommendation tasks and shown

promising results [41], but most of them used deep neural networks

to model audio features of music [32], textual description of

items [3, 33], and visual content of images [40]. Besides, NeuMF [11]

presented a Neural Collaborative Filtering framework to learn the

non-linear interactions between users and items.

However, the application of deep neural network in social

recommender systems is rare until very recently. In particular,

NSCR [35] extended the NeuMF [11] model to cross-domain

social recommendations, i.e., recommending items of information

domains to potential users of social networks, and presented a

neural social collaborative ranking recommender system. However,

the limitation is NSCR requires users with one or more social

networks accounts (e.g., Facebook, Twitter, Instagram), which

limits the data collections and its applications in practice. SMR-

MNRL [42] developed social-awaremovie recommendation in social

media from the viewpoint of learning a multimodal heterogeneous

network representation for ranking. They exploited the recurrent

neural network and convolutional neural network to learn the

representation of movies’ textual description and poster image, and

adopted a random-walk based learning method into multimodal

neural networks. In all these works [35] [42], they addressed the

task of cross-domain social recommendations for ranking metric,

which is di�erent from traditional social recommender systems.

Most related to our task with neural networks includes DLMF [6]

and DeepSoR [8]. DLMF [6] used auto-encoder on ratings to learn

representation for initializing an existing matrix factorization. A

two-phase trust-aware recommendation process is proposed to

utilize deep neural networks in matrix factorization’s initialization

and to synthesize the user’s interests and their trust friends’

interests together with the impact of community e�ect based on

matrix factorization for recommendations. DeepSoR [8] integrated

neural networks for user’s social relations into probabilistic matrix

factorization. They �rst represented users using pre-trained node

embedding technique, and further exploited k-nearest neighbors to

bridge user embedding features and neural network.

More recently, GraphNeural Networks (GNNs) have been proven

to be capable of learning on graph structure data [2, 5, 7, 15, 25].

In the task of recommender systems, the user-item interaction

contains the ratings on items by users, which is a typical graph data.

Therefore, GNNs have been proposed to solve the recommendation

problem [1, 22, 39]. sRMGCNN [22] adopted GNNs to extract

graph embeddings for users and items, and then combined with

recurrent neural network to perform a di�usion process. GCMC [1]

proposed a graph auto-encoder framework, which produced latent

features of users and items through a form of di�erentiable message

passing on the user-item graph. PinSage [39] proposed a random-

walk graph neural network to learn embedding for nodes in web-

scale graphs. Despite the compelling success achieved by previous

work, little attention has been paid to social recommendation with

GNNs. In this paper, we propose a graph neural network for social

recommendation to �ll this gap.

5 CONCLUSION AND FUTUREWORK

We have presented a Graph Network model (GraphRec) to model

social recommendation for rating prediction. Particularly, we

provide a principled approach to jointly capture interactions and

opinions in the user-item graph. Our experiments reveal that the

opinion information plays a crucial role in the improvement of our

model performance. In addition, our GraphRec can di�erentiate

the ties strengths by considering heterogeneous strengths of social
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relations. Experimental results on two real-world datasets show

that GraphRec can outperform state-of-the-art baselines.

Currently we only incorporate the social graph into recommen-

dation, while many real-world industries are associated rich other

side information on users as well as items. For example, users

and items are associated with rich attributes. Therefore, exploring

graph neural networks for recommendation with attributes would

be an interesting future direction. Beyond that, now we consider

both rating and social information static. However, rating and social

information are naturally dynamic. Hence, wewill consider building

dynamic graph neural networks for social recommendations with

dynamic.
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