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Abstract. Numerous methods have been proposed to capture early
hippocampus alterations caused by Alzheimer’s disease. Among them,
patch-based grading approach showed its capability to capture subtle
structural alterations. This framework applied on hippocampus obtains
state-of-the-art results for AD detection but is limited for its prediction
compared to the same approaches based on whole-brain analysis. We
assume that this limitation could come from the fact that hippocam-
pus is a complex structure divided into different subfields. Indeed, it has
been shown that AD does not equally impact hippocampal subfields. In
this work, we propose a graph-based representation of the hippocampal
subfields alterations based on patch-based grading feature. The strength
of this approach comes from better modeling of the inter-related alter-
ations through the different hippocampal subfields. Thus, we show that
our novel method obtains similar results than state-of-the-art approaches
based on whole-brain analysis with improving by 4 percent points of ac-
curacy patch-based grading methods based on hippocampus.

Keywords: Hippocampal subfields, Patch-based grading, Graph-based method,
Alzheimer’s disease classification, Mild Cognitive Impairment

1 Introduction

Alzheimer’s disease (AD) is the most prevalent dementia for the older adults.
This disease leads to an irreversible form of neurodegenerative process caus-
ing mental dysfunctions. Neuroimaging studies performed on AD patients has
revealed that AD causes structural brain changes. These changes are character-
ized by an accelerated neural and synapse losses, which are advanced when the
diagnosis is established. A presymptomatic phase of AD is named mild cognitive

⋆

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI con-
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in analysis or writing of this report. A complete listing of ADNI investigators can be found at:
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impairment (MCI). Patients having MCI suffer from amnesia and light mental
issues that do not impact their daily life. Moreover, MCI patients can return to
a cognitive normal status or progress to dementia. Predicting this conversion is
a challenging task but can make easier the design of clinical trials and accelerate
the development of new therapies.

It has long been known that in-vivo imaging with magnetic resonance imaging
(MRI) can detect structural alterations such as atrophy of grey matter volume.
Thus, several methods were proposed. On the one hand, voxel-based morphom-
etry (VBM) methods were designed to detect the most discriminant regions at a
voxel scale [18]. On the other hand, region-based methods were proposed to ana-
lyze specific brain structures. These analysis are usually conducted with volume,
shape or thickness measurements [18]. It is interesting to note that both of VBM
and region-based approaches have demonstrated that the medial temporal lobe
especially the hippocampus is the area having the earliest alterations. However,
although the hippocampus volume is one of the criterion that can be used to
confirm the diagnosis of AD in clinical routines, it does not provide acceptable
performance for the prediction of AD conversion. Recently, more advanced meth-
ods were proposed to detect subtler structural modifications of the hippocampus
[11]. Among them, patch-based grading (PBG) framework was proposed to bet-
ter capture subtle brain alterations caused by AD [2]. The main idea of PBG
methods is to detect modifications in a cubic fixed-size area named patch. PBG
methods applied to the hippocampus have demonstrated state-of-the-art perfor-
mances for AD detection and prediction compared to others methods based on
the hippocampus [2,14,5].

However, the hippocampus is not a heterogeneous structure. Indeed, the hip-
pocampus is composed of different subfields having distinct characteristics. A
common definition of hippocampal subfields [17] divided them into the subicu-
lum, the cornu ammonis (CA), and the dentrate gyrus (DG). The CA represents
the most prominent area. It is usually divided into four regions: CA1, CA2,
CA3, and CA4. The CA1 is also composed of several layers, such as the stratum
pyramidale (SP), stratum radiatum (SR), stratum molecular (SM), and stra-
tum lacunosum (SL). Moreover, postmortem and animal-based studies showed
that hippocampal subfields are not impacted equally. Those studies showed that
CA1 and subiculum are the most impacted at the last stages of AD [6,15]. Con-
sequently, we assume that a straightforward whole hippocampus analysis could
limit the prediction performances. An analysis of the hippocampus at a finner
scale such as hippocampal subfields may improve prediction.

To confirm this assumption, we propose a novel method to better capture
AD signature within hippocampal subfields. Our method integrates patch-based
grading features into a new graph-based model that provides efficient representa-
tion of the inter-related alterations through the hippocampus. We demonstrate
that our novel approach improves patch-based grading method applied into the
hippocampus by 4 percent points of accuracy and obtains state-of-the-art re-
sults compared to last advanced methods based on whole brain analysis for AD
prediction.
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2 Materials and Methods

Dataset Data used in this work were obtained from Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset1. ADNI is a North American campaign
launched in 2003 with aims to provide MRI, positron emission tomography scans,
clinical neurological measures and other biomarkers. The data used in this study
are all the baseline T1-weighted (T1-w) MRI of the ADNI1 phase. This dataset
includes AD patients, MCI and cognitive normal (CN) subjects. The group of
MCI is composed of subjects who have abnormal memory dysfunctions and
embed two groups; the first one is composed with patients having stable MCI
(sMCI) and the second one with patients having progressive MCI (pMCI) who
converted in the following 36 months after the baseline. The information of the
dataset used in our work is summarized in Table 1.

Table 1. Description of the dataset used in this work. Data are provided by ADNI.

Characteristic / Group CN sMCI pMCI AD

Number of subjects 213 90 126 130
Ages (years) 75.7± 5.0 74.9± 7.5 73.7± 7.0 74.1± 7.7
Sex (M/F) 108/105 58/32 68/58 64/66
MMSE 29.1± 1.0 27.6± 1.7 26.5± 1.6 23.5± 1.9

Preprocessing First, each image was preprocessed with a method based on
an advanced pipeline providing: (a) a denoising step with an adaptive non-local
mean filter [8], (b) an affine registration in the MNI space [1], (c) a correction
of the image inhomogeneities [16] and (d) an intensity normalization. Second,
segmentation of hippocampal subfields was performed with HIPS. This method
is based on a combination of non-linear registration and patch-based label fusion
[10]. This method uses a training library based on a dataset composed of high
resolution T1w images manually labeled according to the protocol proposed
by [17]. Consequently, to perform the segmentation, the ADNI images are up-
sampled with a local adaptive super resolution method to fit in the training image
resolution [3]. The method provides automatic segmentation of hippocampal
subfields gathered into 5 regions: Subiculum, CA1SP, CA1SR-L-M, CA2-3 and
CA4/DG. Finally, visual quality control was conducted to remove all wrong
segmentations from the dataset. Moreover, to prevent any bias in the dataset, the
quality control was performed without the pathological status of each subject.

Computation of patch-based grading biomarkers To capture anatomical
similarities of alterations caused by AD, we use the patch-based grading frame-
work [2]. PBG framework provides at each voxel a score between −1 and 1 related

1 http://adni.loni.ucla.edu

http://adni.loni.ucla.edu
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Fig. 1. Illustration of the graph construction. From left to right, for each hippocampal
region an estimation of the density probability of PBG values is computed. Next,
histograms are used to built our graph of hippocampal subfields grading. Graph edges
represent the distances between structure grading distribution while vertices represents
the mean grading value for a given hippocampal regions (i.e., hippocampus, subiculum,
CA1-SP, etc.)

to the alteration severity. The patch-based grading value g at xi is defined as:

gxi
=

∑
tj∈Ki

w(Pxi
, Ptj )pt

∑
tj∈Ki

w(Pxi
, Ptj )

, (1)

where Pxi
and Ptj represent the cubic patches surrounding the voxel i of the

test subject image x and the voxel j of the template image t, respectively. The
template t comes from a training library composed of CN subjects and AD
patients. pt is the pathological status set to −1 for patches extracted from AD
patients and to 1 for those extracted from CN subjects. Ki is a set of the most
similar Ptj patches to Pxi

found in the training library. The anatomical similarity
between the test subject x and the training library is estimated by a weight
function w(Pxi

, Ptj ) = exp(−||Pxi
− Ptj ||

2

2
/(h2 + ǫ)), where h2 = mintj ||Pxi

−
Ptj ||

2

2
and ǫ → 0.

Graph construction First, the grading process is carried out over the whole
hippocampus. Afterwards, the corresponding hippocampal subfield segmenta-
tions is used to fuse grading values and to built our graph (see Fig. 1). An
undirected graph is defined as G = (V,E, Γ, ω), where V = {v1, ..., vN} is the set
of vertices for the N considered hippocampal regions (i.e., the whole hippocam-
pus and each on its hippocampal subfields) and E = V × V is the set of edges.
Thus, in our model the vertices represents the mean of the grading values for
a given hippocampus region while the edges are based on grading distribution
distances between two hippocampal regions.
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The probability distributions of PBG values are estimated with a histogram
Hv for each hippocampus region v. The number of bins is set following the
Sturge’s rule. For each vertex we assign a function Γ : V → R defined as Γ (v) =
µHv

, where µHv
is the mean of Hv. For each edge we assign a weight given by

the function ω : E → R defined as ω(vi, vj) = exp(−d(Hvi
, Hvj

)2/σ2) where d
is the Wasserstein distance with L1 norm that showed best performance during
our experiments.

In this work, we used the Elastic Net regression (EN) method that provides
a sparse representation of the most discriminative edges and vertices, and thus
enables to reduce the feature dimensionality by capturing the key regions and
the key relationships between the different hippocampus regions (see Fig. 1).
Finally, after z-score normalization, a concatenation of the two feature vectors
is given as input of EN feature selection method.

Details of implementation The most similar patches were extracted with a
patch-match method [4]. We used the parameters proposed in [5] for the sizes
of the patches and Ki. This results in a hippocampus grading computation in
about 1 second. Next, the age effect is corrected using linear regression esti-
mated on CN population. The EN method is computed with the SLEP package
[7]. The classifications were obtained with the random forest method (RF) 5. All
features were normalized using z-score before selection and classification meth-
ods. In our experiments, we performed sMCI versus pMCI classification. The EN
features selection and the classifier were trained with CN and AD. Indeed, as
shown in [14], using CN and AD to train the feature selection method and the
classifier enables to better discriminate sMCI and pMCI subjects. Furthermore,
it also enables to limit bias and over-fitting problem without cross-validation
step. However, 100 runs were performed to decrease the inner variability of RF.
Mean area under curve (AUC), accuracy (ACC), balanced accuracy (BACC),
sensibility (SEN), and specificity (SPE) are provided as results in Tables 2 and
3.

3 Results and Discussions

First, a comparison of the prediction performances was conducted with PBG
applied into the whole hippocampus as proposed in [2], the hippocampal sub-
fields with EN selection, and our proposed method (see Table 2). The average
of PBG values into each region (i.e., whole hippocampus and hippocampal sub-
fields) were used. For hippocampal subfields features, the most relevant subfields
selected are the subiculum, and the two definitions of CA1 (i.e., CA1-SP and
CA1-SRLM, see Figure 2). It is very interesting that hippocampal subfields se-
lected by EN method are in line with previous studies which have shown CA1
and subiculum are the subfields having the most significant atrophy in late stages
of AD[6,15]. PBG based on the whole hippocampus structure obtains 76.8% of

5 http://code.google.com/p/randomforest-matlab

http://code.google.com/p/randomforest-matlab
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Fig. 2. Graphic representing the coefficients estimated by EN method from the vector
of features computed by our graph-based method after z-score normalization. The first
six labels represent hippocampal regions and the others represents relationships of
these regions. It is interesting to note that selected structures are in line with previous
hippocampal subfields investigations.

Table 2. Comparison of different hippocampal PBG approaches is presented. First,
PBG applied within the whole hippocampus is provided as the baseline. Second, the
best hippocampal subfield features selected by EN method. Finally, results provided by
our graph-based of hippocampal subfields grading. This comparison shows that our pro-
posed method improves AUC, ACC, BACC, and SEN compared to other approaches.
All results are given in percentage.

Methods AUC ACC BACC SEN SPE

Hippocampus 76.8±0.2 70.3±0.0 70.6±0.0 69.0±0.0 72.2±0.0
Hipp. subfields EN 77.1±0.2 71.1±0.4 71.4±0.4 69.5±0.6 73.2±0.5

Proposed method 78.2±0.2 74.7±0.4 74.3±0.5 77.1±0.5 71.4 ± 0.9

AUC, 70.3% of ACC and is more specific than sensitive. The averages of PBG
values within subiculum, CA1-SP, and CA1-SRLM obtain 77.1% of AUC, 71.1%
of ACC and improve specificity compare to the hippocampus. Thus, the concate-
nation of mean grading values based on each hippocampal subfields selected with
a EN method slightly increases the prediction performances of AD. However, our
proposed graph-based method improves by 1.4 percent points with AUC and 4.4
percent points of ACC compared to the hippocampus. Our graph-based method
also improves by 1.1 percent points with AUC and 3.6 percent points with ACC
compared to the use of the most discriminant hippocampal subfields. Moreover,
in both cases, our proposed method increases the sensibility of AD conversion.

Second, a comparison of our novel graph-based method based on hippocampal
subfields and state-of-the-art methods based on the hippocampus, using similar
ADNI1 dataset, is provided in the upper part of Table 3. In this comparison,
we included the original PBG method [2], a method based on multiple instance
learning [13], and an advanced PBG method based on a sparse representation
[14]. The results demonstrate that our novel graph-based method obtains better
results than all compared methods applied to the hippocampus. Indeed, to the
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Table 3. Comparison with state-of-the-art methods based on the hippocampus region
and approaches based on a whole brain analysis using similar ADNI1 dataset and the
same definition of sMCI/pMCI. These results show that our proposed method obtains
best results compared to methods applied within the hippocampus. Moreover, com-
pared to approaches based on a whole brain analysis, our method obtains competitive
results. All results are given in percentage.

Methods Registration AUC ACC SEN SPE

Hippocampus

Original grading [2] Affine − 71.0 70.0 71.0
Multiple instance grading [13] Affine − 70.4 66.5 73.1
Sparse-based grading [14] Non Linear − 69.0 − −

Proposed method Affine 78.2 74.7 77.1 71.4

Whole brain

Voxel-based [9] Non Linear 76.6 74.7 88.8 51.6
Sparse-based grading [14] Non Linear − 75.0 − −

Deep ensemble learning [12] Non Linear 75.4 74.8 70.9 78.8

best of our knowledge, state-of-the-art methods applied on hippocampus have
obtained 71% of ACC for sMCI versus pMCI classification while our graph-based
of hippocampal subfields grading obtains 74.7% of ACC.

Finally, in the lower part of Table 3 a comparison with state-of-the-art meth-
ods applied on the whole brain is provided. Our method is compared with a
VBM approach [9], the advanced PBG method based on a sparse representation
[14] and a recent deep ensemble learning method [12]. This comparison shows
that our novel graph of hippocampal subfields grading obtains comparable ACC
and AUC than the last advanced approaches.

4 Conclusions

In this work, we proposed a new approach to better capture AD signature
into the hippocampus. Our method is based on a graph-based representation of
inter-related hippocampal subfields alterations. Alterations were captured with
a patch-based grading framework while the relationships of alterations between
the different subfields are based on histogram distances. We demonstrate that
our method improves patch-based grading method based on hippocampus by
4 percent points for sMCI versus pMCI classification. Moreover, our novel ap-
proach obtains competitive results compared to state-of-the-art methods based
on a whole brain analysis.
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