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Abstract

Graph complexity measures likee-width clique-width NLC-widthand
rank-widthare important because they yiditked Parameter Tractablalgo-
rithms. Rank-width is based on ranks of adjacency matri€¢ggaphs over
GF(2). We propose here algebraic operations on graphs that ¢bersc
rank-width. For algorithmic purposes, it is important tpresent graphs by
balanced terms. We give a unique theorem that generalizesadébalanc-
ing theorems” for tree-width and clique-width. New resute obtained for
rank-width and a variant of clique-width, called-clique-width

1 Introduction

Graph complexity measures likeee-width[17], cligue-width[6], NLC-width[18]
andrank-width[16] are important parameters for the construction of poiyiel al-
gorithms. Every graph property expressible by a formulasfiMonadic Second-
Order) logic has aFixed Parameter Lineaalgorithm if tree-width is taken as pa-
rameter and &ixed Parameter Cubialgorithm if clique-width (equivalently rank-
width) is taken as parameter. These results are proved indbles by Downey and
Fellows [10] and by Flum and Grohe [11] for tree-width, by @mile and al. [5]
with help of results by Oum and Seymour [15, 16] for rank-Wwidhd clique-width.
Cligue-width and rank-width are equivalent in the sense titva same classes
of undirected graphs have bounded clique-width and bouratddwidth. Clique-
width has the advantage of having a definition in terms of \&myple graph op-
erations. Furthermore this definition is the basis of thestmigtion of algorithms
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for checkingMs graph properties in linear time in the size of the algebrajres-
sions defining the input graphs. Rank-width has the advarwég good behavior
with respect to vertex-minor inclusion, so that the clasgraphs of rank-width at
mostk is characterized by finitely many excluded vertex-minonsrtftermore, the
cubic-time algorithm that constructs for a given graph agebtaic expression of
clique-width at most ¥ — 1 if the graph has clique-width at mdstis based on the
decomposition underlying rank-width.

In this article we propose algebraic operations on grapéiscimaracterize rank-
width as follows:

a graphG has rank-width at modtif and only if (iff for short) it is the
value of a term inf (R, Cy)

whereRy is a finite set of graph operation8y a finite set of constants, both de-
pending ork.

In a few words, the operations are based on coloring verbgesets of colors
C K :={1,2,...,k}, like in the variant of clique-width calleth-clique-width(see
definitions of Section 2 and [6, 7]), but vertex colors are ipalated by linear
transformations on th&F(2) vector spacg0, 1} rather than with set union over
subsets of1,...,k}. Furthermore, edges are created between two disjoint graph
by means of bilinear forms, taking the vectors of colors @garents. It is thus
somewhat natural that they can generate (exactly) the ggiaphs of rank-width
at mostk since rank-width is based on ranks®F (2) matrices.

The operation that replaces anywhere a vertex caloy the colorb, and the
one that adds edges between any vertex colored &yd any vertex colored by
b are typical examples of quantifier-free transformationsialifier-free transfor-
mations modify logical structures by redefining certairatieins by quantifier-free
formulas (see [9, 3] for graph algebras).

For algorithmic purposes, it is useful and sometimes ctacigepresent graphs
by a-balanced binary terms, i.e, trees of height at nadktg(n) + 1) wheren s the
number of nodes andis a constant. This is the case for instance, of the labeling
schemes considered in [8, 7]. Another practical use of lcaéldmerms is the design
of parallel algorithms. This is considered for example bydBender to design
parallel algorithms to construct minimum-width tree-degaositions of graphs or
to solve someiP-complete problems [1, 2].

Therefore it is quite natural to ask whether, every graphvafith” k admits
an a-balanced binary “decomposition” of width(k) for some fixed functionf.

It is known that every graph of tree-widtk admits a 2-balanced binary tree-
decomposition of width at mostk3- 2 [1] and every graph of m-clique-widtk
admits a 6-balanced m-clique-width expression of width asinak [7]. We inves-
tigate the problem of a unified framework. We prove a gendrabtem covering
several particular cases saying that every ternT {,C) representing &inary
structureis equivalent to a 3-balanced oneTiiF’,C’), where(F’,C’) is abinary
signatureand (F,C) C (F’,C’). For that we introduce a kind of generalization of
the notion of associative and commutative operation, ddléibility.



The main results of this article are: an algebraic chareaton of rank-
width, a unified framework for “balancing theorems” with &ipption to rank-
width, cliqgue-width, NLC-width and m-clique-width.

2 Notations and definitions

We denote byk| the set{1,...,k}. Graphs are finite, simple, loop-free, undirected
unless otherwise specified. A grafhis defined as< Vg,edgs > whereedgs C

Vi x Vg is the symmetric adjacency relation. Without loss of gelitgreve assume
thatVg is always linearly ordered. This order will be used to repregdg; by a
square matrix oveGF(2).

A sub-cubic treas a tree such that the degree of each node is at most 3. All
logarithms are in base 2.

Lett be a rooted tree anale R. We say that is a-balanced if theneightof t,
i.e., the maximal distance of a leaf to the root, is at nagkig(n) + 1) wheren is
the number of nodes of!

Let F be a set of binary functions ari¢ibe a set of constants. We denote by
T(F,C) the set of well-formed terms built witR UC. They will be discussed as
colored directed and rooted ordered trees in the usual wagomextis a term in
T(F,CuU{u}) having a single occurrence of the variabléa nullary symbol). We
denote byCxt(F,C) the set of contexts. We denote ly the particular context.
Let sbe a context antlbe a term or a context, we denote $jt/u] the result of the
substitution ot for uin s.

We define two binary operations on terms and contesds: = s[s'/u], belong-
ing to Cxt(F,C) for s, in Cxt(F,C) andset = st /u], belonging toT (F,C) for s
in Cxt(F,C) andt in T(F,C).

We now recall the definition afank-width a graph complexity measure intro-
duced by Oum and Seymour in their investigations on recmgndlgorithms for
graphs of boundedlique-width[16]. For an(R,C)-matrixM = (m;; |i € R, j € C)
over a fieldF, if X C R, Y C C, we letM[X,Y] denote the sub-matrikm; | i €
X, ] €Y). For a graphG, we letAg be its adjacencyVg, Vi )-matrix overGF(2).

Cut-rank functions. Let G =< Vg,edg > be a graph. We define treut-rank
function pg of G by letting pg(X) = rk(Ag[X,Vs\X]) for X C Vg, whererk is the
matrix rank function. We lepg(0) = pg(Vs) = 0.

Rank-width. A layout of a graphG is a pair(T, f) of a sub-cubic tred and a
bijective functionf : Vg — {t | t is a node of degree 1 ifi}.

For an edgee of T, the connected components Df e induce a bipartition of
the set of nodes of degree 1 Df hence a bipartitioriXe, Ye) of the set of vertices
of G. The width of an edge of a layout(T, f) is pc(Xe) = pc(Ye). The width of
a layout(T, f) is the maximum width over all edges ®f Therank-widthof G,
denoted bywd(G), is the minimum width over all layouts @3.

1This definition is meaningful in the case= 1.



The notions of rank-width and of cligue-width are equivalenthe sense that
a class of graphs has bounded rank-width iff it has boundiegdiesiwidth. Oum
has given in [15] &(n®)-time algorithm that reports that a graph has rank-width
at leastk+ 1 or outputs a layout of width at mosk3- 1. This has been improved
in [12] which gives a cubic-time algorithm that outputs adat of widthk if the
graph has rank-widttk. But if we want to solve problems definable s on
graphs of bounded rank-width, we need to transform the faywo a clique-width
expression (see [16]) and, after that, to use techniquesduwyc€lle and al. [5].
In this paper, we propose an algebraic characterizatiomm{-width, which will
allow us to solvems definable problems without transforming the layout into a
clique-width expression. This is important because thesfiamation of a layout
of width k may give a(2** — 1)-clique-width expression. The exponert 2 is
part of the large size of constants in FPT algorithms.

Proposition 2.1 [16, 7, 6, 13] For every undirected graph G,

(1) rwd(G) < cwd(G) <2Wd©+1_1  (3) mewdG) < twd(G) +3
(2) mewdG) < cwd(G) < 2mwdG)+1  (4) rwd(G) < 4 x twd(G) + 2

Here tvd, cwd and newd denote respectiveliree-width[17], clique-width [6]
andm-clique-width(we recall below the definition of m-clique-width [7]).

M-clique-width. LetL be a finite set of colors. Multi-colored graphis a triple
< Vg, edgs,dg > consisting of a graphk: Vg, edgs > and a mappindg associating
with eachx in Vg the set of its colors, a subset Iof A vertex may have zero, one
or several colors.

The following constants will be used: f&rC L we letA be a constant denoting
the graphG with single vertexx and dg(x) = A. We write A(X) if we need to
specify the vertex. The following binary operations will be used: fBrC L x L,
for recolorings gh: L — 2- and for multi-colored graph& andH we defineK =
G®rghH if G andH are disjoint (otherwise we repladé by a disjoint copy)
where

Vi = Vg UVy,
edg = edgsUedgy U{xy|x e Vg,y € Vi, RN (8a(X) x 8u(y)) # 0},
Ok (X) = (godg)(x) ={a|acg(b),be ds(x)} if xe Vg,
Ok (X) = (hody)(X) if x € V.

As in the operations by Wanke [18] these operations add eolgiegeen two
disjoint graphs, that are the two arguments of (many) birggrgrations. This is
a difference with cliqgue-width where a single binary opematis used, and; ;
applied toG® H may add edges G and toH.

We letF_ be the set of all binary operatiortss gn andCy be the set of constants
{A|ACL}. Every termt in T(F_,C.) denotes a multi-colored grapfal(t) with
colors inL, and every multi-colored grap® is the value of such a term for large



enoughL. To simplify the notation, we will writeR, andCy if L = [k]. We let
mcwd G) be the minimunk such thatG is the value of a termh € T (R, Cx) and
call this number then-clique-widthof G.

3 Vectorial colorings and rank-width

Handling multiple colorings of vertices witk colors is clearly the same thing as
handling colorings with colors ifi0, 1}*. Letk > 1 andB = {0, 1}. A BX-coloring
of a graphG is a mappingy : Ve — B¥ with no constraint on the values gffor
neighbor vertices. We consider that Vs has coloii (among others) iff/(x)[i] (the
i-th component off(x)) is 1. ABK-colored graph is a tripl& =< Vg, edgs, Y >
whereyg is aBX-coloring of < Vg, edg; >. The emptyBX-colored graph is denoted
by 0x. (This constant can be eliminated from expressions by Rie®dn). We
define some operations on these graphs.

A mappingh : BK — B’ is linear if for some (k x ¢)-matrix and all row-vectors
u € B* we haveh(u) = u.N. We say thah is described byN. A mappingf :
BX x B’ — B is saidbilinear if for some (k x £)-matrix and all row-vectorsi € BX,

v B we havef (u,v) = uM.v" wherev' indicatesranspositionof the row-vector
v(we say thatf is described by).

With a BX-colored graphG =< Vg,edgs,ys > We associate théVg x Vg)-
adjacency (symmetric) matri%s and theVg x [k|-color matrixl” g, the row vectors
of which are the vectorgg(x) in BX for x in V. We define thecolor-rank of G
as the rank of g and we denote it bgrk(G). Clearly, crk(G) < k if G is BX-
colored? 3

Linear recolorings. Forh: B — B! a linear mapping an@ aB*-colored graph,
we letRecoh(G) =H = < Vg,edgs,yy > whereyy = hoys. Henceyy =Ig.N
andH is aB‘-colored graph. Ih andh are linear recolorings, described respec-
tively by N andN’, thenhol is linear and is described by .N.

Bilinear product of graphs. Let f : BX x B — {0,1} be a bilinear mapping, let
g: Bk — B™andh: B’ — B™ be arbitrary linear mappings. F&, B*-colored and
H, B’-colored, we letk = G®tgnH be defined as follows, where, as usual, we
assuméa/c NVy = 0:
Vk =Ve UV,
edg =edgsUedgy U{xy|Xx€Vg,y €W, f(ya(X), W1 (y)) =1},
Yk (X) = (goVe)(X) if XE Ve, Yk(X) = (hoyn)(X) if X € Vi,

wheref, g, hare described respectively M, N, P. HenceK is aB™-colored graph.
We order the graplk = G®¢4nH by preserving the orderings d; andVy and
letting x < y for x € Vg andy € Vij. We will use the notatioroy n p instead of
®f7g7h.

2The color-rank ofG should not be confused with itank. All ranks are relative t&F(2).
3A graphG =< Vg, edg; > is made canonically into BX-colored graph for eack, with Yo (X) =
(0,...,0) for eachx.



Constants. We will use1 to denote the graph with a single vertex with 8-
coloring by (1). In order to avoid the use of recolorings, and to deal onlyjhwit
constants and binary operations, we will also use constantise graphdkecoj (1)
whereh ranges over linear recolorings defined by 1-row matridesu € BX. Such
constants will be denoted hy. We useCy to denote the set of constanisfor
ue B ¢ <k

Remark 3.1 We have

G ®M,N,P H = H ®MT,P,N G, Recob(G) ®M,N,P ReCOb/(H) == G ®QMQT7QN7Q/P H7
Gmn,p O =Recok(G), Recoh(GomnpH) =GC®mNnoroH

whereMT denotes the transposition of the matik We letR, be the set of
linear recolorings and bilinear products. We denotevhi(t) the graph defined
by a termt € T(R,,C,). This graph is the value of the term in the corresponding
algebra. We can assume with Remark 3.1 that a tamT (R;,C,) is written with
the binary operationsu n p and the constants whereu € BlU...UB".

Proposition 3.2 1. The operations Regglre quantifier-free operations.

2. The operationsou N p are expressible in terms @ and quantifier-free op-
erations.

Corollary 3.3 For each n, everys graph property of a graph G can be decided
intime Q(|t|), if G is the value of a given terma T(R,,Cy).

Theorem 3.4 A graph G has rank-width at most n iff it is the value of a term in
T(R.,Ch).

For the “If” direction, we letG be defined by a terrhin T(R,,Cy) (t has its
root colored by a binary operatioBy np). We take the syntactic tree tfas a
layout of G. It is sufficient to prove the claim below to prove that thekavidth
of this layout is at mos.

Claim 3.5 ([4]) Ift =cet’, ' € T(R,,Cy), c€Cxt(Ry,Cp) —{Id}, G=val(t), H =
val(t’) then we have: 8Vii,Ve — V4] =TH.B andrl g\, = 4.C for some matri-
ces B and C, and, (lg[VH,Ve —WH]) <n.

For the converse, we prove some technical lemmas. We @riteH @y K
instead ofH @ np K if we do not care about the coloring @& but only of its
vertices and edges.

Lemma 3.6 ([4]) Let G be a graph with a bipartition ¥ = V; UV, of its vertices.
Let m=rk(Ag[V1,V2]). Then G=H ®u K where M is a nonsingular m m matrix,
for someB™-colorings H and K of ®/;] and GV,| respectively.



Proposition 3.7 ([4]) Assume G=H ®a K with A of dimension [ q of rank k.
Let M be a kx k sub-matrix of rank k of A. Then we have N of dimensicnkpP
of dimension & k such that A= N.M.P™ and G= Recok (H) ®uv Recop(K).

Lemma 3.8 ([4]) Let G be a graph, let HK,L be induced subgraphs such that
(Wi, Vk, W) is a3-partition of \5, with each component not empty. Letg(Vy), k=
pc(Vk), £ = pc(VL). There exist matrices of appropriate dimensions such that

G=(He®mn.N K)@pL.

We can thus prove the following proposition (the “only if'relction of Theo-
rem 3.4).

Proposition 3.9 ([4]) Every graph of rank-width at most n is the value of a term
in T(Ry,Cn).

4 A general framework for establishing balancing theo-
rems

Itis known that every graph of tree-widkhas a 2-balanced binary tree-decomposition
of width at most 8+ 2 [1] and every graph of m-clique-widthhas a 6-balanced
m-clique-width expression of width at mosk 27]. We will propose a general
framework for establishingpalancing theoremsThis will allow us to prove simi-
lar theorems for rank-width, clique-width and NLC-widthufgyeneral framework
combines two ideas.

The first idea, coming from [8] consists in introducing binaperations> and
e On terms and contexts representing respectively the catipo®sf the unary
functions associated with two contexts and the evaluatisuch a function for an
argument defined by a term. We use a result of [8] showing thattyetermt in
T(F,C) can be replaced by an equivalent 3-balarsgetial term? written with o,

e and the constand (the trivial context defining the identity). This constriact
makes no assumption on the algebraic properties of thetsign@,C).

The second idea introduces a kind of generalization of thHemmf an as-
sociative and commutative operation. It concerns a subsiga(F,C) of (F’,C’).
Roughly speaking if in F is not associative, hence if we do not hdve, f (y,z)) =
f(f(xy),z) for f € F then we require that(x, f(y,z)) = f'(f(x,y),2) for some
f’ € F'. We say thafF’,C’) is (F,C)-flexible if this condition and similar ones
hold. This condition makes it possible to eliminate from martevritten withF, C,

o, e andld the operations, e and the constarid and somehow, to express them
in terms of operations d¥’.

The idea is to associate with a context Cxt(F,C) an objectm. denoted by
atermc’in T(F',C’) and a functionf® € F’ such thatet is equivalent tof ¢(¢,t).
For two contexts andc’ we have (by the condition of flexibility) an operatidf©



in F/ such thato ¢’ is equivalent tof ¢ (& ¢'). It follows that a special termover
F, C can be transformed into an equivalent ternTifF’,C’) of no larger height.

By combining the two constructions, we can transform a teen¥ (F,C) into
an equivalent 3-balanced termT{F’,C’).

In our applications to graph operations we will apply thisiteignatureF,C)
using k colors (e.g. (R«,Cx) corresponding to rank-width at mok} and prove
that some finitg F’,C’) O (F,C) is (F,C)-flexible. This technique also applies to
branch-width and tree-width [14].

Let.S be a countable set whose elements are calets A binary $-signature
is a pair(F,C) whereF is a set of binary function symbols, each of them having
a types; x s, — swheres;, 5,5 € S, andC is a set of nullary symbols, each of
them having a typsin S. A nullary symbol is called @onstant We say that a
binary 7 -signature(F,C) is a sub-signature afF’,C’) if T C S,F CF,CCC
and the types of the elementsffandC are the same fofF’,C’) and for (F,C).
Leto: FUC — S whereo(f) =sif f is a constant of types or a binary function
of types; x s, — s. We define the type of a terine T (F,C) asa(rt), wherer; is
its first symbol (the one at the root of its syntactic tree).

Special Terms.We letS=T(F U {o,e},CU{Id}). We letS; andS be the least
subsets o6 such that:

S=%eSUf(§§)Ub
S&=%& U f(§,%) U f(&,8) U f(§,1d) U f(Id,])

with rules for eachf in F, eachb in C. We denote them byPE(F,C) and
SPE(F,C) if we need to specifyfF andC. Note thatld ¢ S US.. The notions

of context and the operatiorsande extend in presence of sorts. We have actually
several operations, e and several constantd depending on sorts, but we will
overlook this technical point.

For termst in SPE(F,C) U SPE(F,C) we denote byt|-c the number of oc-
currences of symbols frorR UC, by |t|o the number of occurrences ofande,
and, by|t|;q the number of occurrences tf.

Every termt in SPE(F,C) evaluates into a terfgval(t) in T (F,C) and every
termcin SPE(F,C) evaluates into a conteival(c) in Cxt(F,C) — {ld}.

A more careful proof than the one of [8, Theorem 1] gives thie¥ang result.

Theorem 4.1 ([4]) For every termt in T(F,C) — C one can construct a terrf in
SPE(F,C) such that|t?|rc = [t|rc = |t], Eval(t®) =t and htt®) < 3log(|t| — 1).
This term can be constructed in timér@og(n)) if n = |t|.

Comb-term. Let Xpi1 = {X1,...,%+1}. A comb-termis a term inT (F, X, 1) of
the formq = f1(xq, fa(X2,..., fn(Xn, Xnt1)) - . .). It contains no constant. We denote
it also byq(Xy, ..., %n,Xn+1) in order to specify the list of variables, in the order in
which they occur.

Commutativity. A binary S-signature(F,C) is commutativevith respect to a class
of algebrasz” (that will be implicitly assumed in most cases) if for evefne F



there exists a functior in F such that

fm (Xv y) = fu (y7 X) (1)

forallM € &, all x,y € Dy.

Comb-decomposition. The comb-decompositionf a termt € T(F,C) —C is the
unique writing oft asq(ty,...,t,,b) whereq(xy,...,Xn+1) is @ comb-termp € C
andtj € T(F,C).

The following definition makes sense onlyHfis commutative. Let € Cxt(F,C) —
{ld}. Let us define by structural induction @na comb-termg(xg,...,X,,u) for
somen, and a sequendgy, . ..,t,) of terms inT (F,C) such that ~ q(ts,...,ty, )
and ~ denotes the equivalence of terms with respect to the inteotisss” of
algebras (for whichr is commutative).

We defineComkic) andsedc) as follows:

1. Comlc) = f(x,u) andsedc) = (t) if c= f(t,Id).

2. Comhkc) = Comk(c) andseqc) = seqc) if c = f(cy,t) andd = f(t,cp).

3. Combc) = f(x1,q(Xp,-..,%+1,U)) andseqdc) = (t).seqc) if c= f(t,c1),
c1 # ld andComHbc') = q(xa, ..., %y, U).

These definitions actually extend to contexts defined asstémB8PE(F,C).
We need only add one clause(g-(3):

(4) If c=c oc” (so thatc’ # Id, ¢” # Id) if Coml(c’) = o (X1, ...,Xp,u) and
ComKc”) =q"(xa, ..., %n,u) then we define

Coml(c) asq' (Xq, - - -, Xp, 0" (Xp+1, - - - s Xngp,U))
andsedc) asseqc’).seqc”).

In the following, we will extend the equivalence relatiorby letting Eval(t) ~
t andEval(c) ~ c for terms inSPE(F,C) U SPE(F,C).
Flexibility. We let(F’,C’) and(F,C) be two binary signatures such th& C) C
(F',C). We let% be a set of(F’,C’)-algebras. All equivalences of terms and

contexts denoted by will be considered with respect t6. We say tha{F’,C’)
is (F,C)-flexibleif the following conditions hold:

1. F andF’ are commutative.

2. There exist three mappinggi— §, q— f%9and(q,q ) — %9 which satisfy
the following properties:

(2.1) For every comb-term(x,...,X,,u) overF with n> 2, g is a comb-
termd(xy,...,%n) overF’.

(2.2) Ifg(x1,u) is the comb-terng(x;,u) thend= x; and f9=g.



(2.3) Forevengasin (2.1), we havé? € F' andq ~ f9(q, u).

(2.4) Forevery two comb-terms asin (2.1) or ()1, ..., Xp,u) andq (X, . . . , X, U)

we havef%¥ ¢ F’ and
qN ~ 44 (Q(XL s axp)v q,(xp-i-lv s »Xp+n))

whereq” = q(Xq, ..., Xp, 0 (Xp+1,-- s Xptn,U)).

If gis a comb-term as in (2.2), Property (2.3) also holds fromdeignitions of
g andfq,

Proposition 4.2 ([4]) If (F',C) is (F,C)-flexible, then for every termt in SRE,C)
one can define a teriin T(F’,C’) that is equivalent to t and such thitr.c =
t|rc and ht(f) < ht(t).

Combining Theorem 4.1 and Proposition 4.2 we get the folhgwheorem:

Theorem 4.3 ([4]) Let (F’,C’) be an(F,C)-flexible S-signature. Every termt in
T(F,C) of size n is equivalent toZbalanced term’tin T(F’,C’). This term can be
constructed in time (log(n)), if we assume thad, f9, f¢9 can be constructed

in time Q(max{|q(. |q(|})-

We can apply this theorem to m-clique-width, rank-widthgee-width and
NLC-width. It will suffice to check the flexibility conditioffior appropriate super-
signatures of the signatures that define m-clique-widthk-aidth, clique-width
and NLC-width.

Theorem 4.4 ([4, 7])

1. Every graph of m-clique-width k is the value oBdalanced term of m-
clique-width at mosek.

2. Every graph of rank-width k is the value oB#alanced term of rank-width
at most2k.

3. Every graph of clique-width or NLC-width k is the value o8-@alanced
clique-width expression of clique-width or NLC-width atstlkx 21,
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