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Abstract

Existing graph partitioning approaches are mainly
based on optimizing edge cuts and do not take the distri-
bution of edge weights (link distribution) into consider-
ation. In this paper, we propose a general model to parti-
tion graphs based on link distributions. This model for-
mulates graph partitioning under a certain distribution
assumption as approximating the graph affinity matrix
under the corresponding distortion measure. Under this
model, we derive a novel graph partitioning algorithm to
approximate a graph affinity matrix under various Breg-
man divergences, which correspond to a large exponen-
tial family of distributions. We also establish the con-
nections between edge cut objectives and the proposed
model to provide a unified view to graph partitioning.

Introduction

Graph partitioning is an important problem in many machine
learning applications, such as circuit partitioning, VLSI de-
sign, task scheduling, bioinformatics, and social network
analysis. Existing graph partitioning approaches are mainly
based on edge cut objectives, such as Kernighan-Lin objec-
tive (Kernighan & Lin 1970), normalized cut (Shi & Malik
2000), ratio cut (Chan, Schlag, & Zien 1993), ratio asso-
ciation(Shi & Malik 2000), and min-max cut (Ding et al.
2001).

The main motivation of this study comes from the fact that
graphs from different applications may have very different
statistical characteristics for their edge weights. Specifically,
the graphs may have very different link distributions, where
the link distribution refers to the distribution of edge weights
in a graph. For example, in a graph with binary weight
edges, the link distribution can be modeled as a Bernoulli
distribution; in a graph with edges of real value weights, the
link distribution may be modeled as an exponential distribu-
tion or a normal distribution. This fact naturally raises the
following questions: is it appropriate to use edge cut objec-
tives for all kinds of graphs with different link distributions?
If not, what kinds of graphs the edge cut objectives work
well for? How to make use of link distributions to partition
different types of graphs? This paper attempts to answer
these questions.
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Another motivation of this study is to derive an effective
algorithm to improve the existing graph partitioning algo-
rithms on some aspects. For example, the popular spectral
approaches involve expensive eigenvector computation and
extra post-processing on eigenvectors to obtain the partition-
ing; the multi-level approaches such as METIS (Karypis &
Kumar 1998) restrict partitions to have an equal size.

In this paper, we propose a general model to partition
graphs based on link distributions. The key idea is that by
viewing the link distribution of a graph as a mixture of link
distributions within and between different partitions, we can
learn the mixture components to find the partitioning of the
graph. The model formulates partitioning a graph under a
certain distribution assumption as approximating the graph
affinity matrix under the corresponding distortion measure.
Second, under this model, we derive a novel graph partition-
ing algorithm to approximate a graph affinity matrix under
various Bregman divergences, which correspond to a large
exponential family distributions. Our theoretic analysis and
experiments demonstrate the the potential and effectiveness
of the proposed model and algorithm. Third, we also es-
tablish the connections between the proposed model and the
edge cut objectives to provide a unified view to graph parti-
tioning.

We use the following notations in this paper. Capital let-
ters such as A, B and C denote matrices; Aij or [A]ij de-
note the (i, j)th element in A; small boldface letters such
as a, b and c denote column vectors. A graph is denoted
by G = (V , E , A), which is made up of a set of vertices V
and a set of edges E , and the affinity matrix A of dimension
|V| × |V|, whose entries represent the weights of the edges.

Related Work

Graph partitioning divides a graph into subgraphs by finding
the best edge cuts of the graph. Several edge cut objectives,
such as the average cut (Chan, Schlag, & Zien 1993), aver-
age association (Shi & Malik 2000), normalized cut (Shi &
Malik 2000), and min-max cut (Ding et al. 2001), have been
proposed. Various spectral algorithms have been developed
for these objective functions (Chan, Schlag, & Zien 1993;
Shi & Malik 2000; Ding et al. 2001). These algorithms
use the eigenvectors of a graph affinity matrix, or a matrix
derived from the affinity matrix, to partition the graph.

Multilevel methods have been used extensively for graph
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partitioning with the Kernighan-Lin objective, which at-
tempts to minimize the cut in the graph while maintaining
equal-sized clusters (Bui & Jones 1993; Hendrickson & Le-
land ; Karypis & Kumar 1998). In multilevel algorithms,
the graph is repeatedly coarsened level by level until only a
small number of nodes are left. Then, an initial partitioning
on this small graph is performed. Finally, the graph is un-
coarsened level by level, and at each level, the partitioning
from the previous level is refined using a refinement algo-
rithm.

Recently, graph partitioning with an edge cut objec-
tive has been shown to be mathematically equivalent to an
appropriately weighted kernel k-means objective function
(Dhillon, Guan, & Kulis 2004; 2005). Based on this equiva-
lence, the weighted kernel k-means algorithm has been pro-
posed for graph partitioning (Dhillon, Guan, & Kulis 2004;
2005). Yu, Yu, & Tresp (2005) propose graph-factorization
clustering for the graph partitioning, which seeks to con-
struct a bipartite graph to approximate a given graph. Long
et al. (2006) propose a framework of relation summary net-
work to cluster K-partite graphs.

Another related field is unsupervised learning with Breg-
man divergences (S.D.Pietra 2001; Wang & Schuurmans
2003). Banerjee et al. (2004b) generalizes the classic k-
means to Bregman divergences. A generalized co-clustering
framework is presented by Banerjee et al. (2004a) wherein
any Bregman divergence can be used in the objective func-
tion.

Model Formulation

We first define the link distribution as the follows.

Definition 1. Given a graph G = (V , E , A), the link distri-
bution fV1V2

is the probability density of edge weights be-
tween nodes in V1 and V2, where V1,V2 ⊆ V .

Based on Definition 1, the link distribution for the
whole graph G is fVV . The model assumption is that
if G has k disjoint partitions V1, . . . ,Vk, then fVV =∑

1≤i≤j≤k πijfViVj
, where πij is the mixing probability

such that
∑

1≤i≤j≤k πij = 1. Basically, the assumption

states that the link distribution of a graph is a mixture of the
link distributions within and between partitions. The intu-
ition behind the assumption is that the vertices within the
same partition are related in a (statistically) similar way to
each other and the vertices from different partitions are re-
lated in different ways to each other from those within the
same partition. In Section 5, we show that the traditional
edge cut objectives also implicitly make this assumption un-
der a normal distribution with extra constraints.

Let us have an illustrative example. Figure 1(a) shows
a graph of six vertices and seven unit weight edges. It is
natural to partition the graph into two components, V1 =
{v1, v2, v3} and V2 = {v4, v5, v6}. The link distribution
of the whole graph can be modeled as a Bernoulli distribu-
tion fVV(x; θVV) with the parameter θVV = 7

15
(the num-

ber of edges in the graph is 7 and the number of possi-
ble edges is 15). Similarly, the link distributions for edges
within and between V1 and V2 are Bernoulli distributions,
fV1V1

(x; θV1V1
) with θV1V1

= 1, fV2V2
(x; θV2V2

) with
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Figure 1: A graph with two partitions (a) and its graph affin-
ity matrix (b).

θV2V2
= 1, and fV1V2

(x; θV1V2
) with θV1V2

= 1

9
. Note

that fVV is a mixture of fV1V1
, fV2V2

and fV1V2
, which can

be verified by θVV = 3

15
θV1V1

+ 9

15
θV1V2

+ 3

15
θV2V2

(the

mixing probability for fV1V2
, 9

15
, follows the fact that the

number of possible edges between V1 and V2 is 9; similarly
for other proportion probabilities).

Learning mixture components of the link distribution of a
graph is much more difficult than learning a traditional mix-
ture model, since the graph structure needs to be considered,
i.e., our goal is to find the mixture components associated
with subgraphs and not just to simply draw the similar edges
from anywhere in the graph to form a component. For exam-
ple, in Figure 1(a), without considering the graph structure,
the edge weights from two partitions V1 and V2 cannot be
separated. To tackle this difficulty, we model the problem
based on the graph affinity matrix, which contains all the
information for a graph.

Figure 1(b) shows the graph affinity matrix for the graph
in Figure 1(a). We observe that if the vertices within
the same partition are arranged together, the edge weights
within and between partitions form the diagonal blocks and
off-diagonal blocks, respectively. Hence, learning the link
distribution in a graph is equivalent to learning different dis-
tributions for non-overlapping blocks in the graph affinity
matrix. To estimate the sufficient statistic for each block,
we need to solve the problem of likelihood maximization.
It is shown that maximizing likelihood under a certain dis-
tribution corresponds to minimizing distance under the cor-
responding distortion measure (Collins, Dasgupta, & Reina
2001). For example, the normal distribution, Bernoulli dis-
tribution, multinomial distribution and exponential distribu-
tion correspond to Euclidean distance, logistic loss, KL-
divergence and Itakura-Satio distance, respectively. There-
fore, learning the distributions of the blocks in a graph affin-
ity matrix can be formulated as approximating the affinity
matrix under a certain distortion measure. Formally, we de-
fine graph partitioning as the following optimization prob-
lem of matrix approximation.

Definition 2. Given a graph G = (V , E , A) where A ∈
R

n×n, a distance function D, and a positive integer k, the
optimized partitioning is given by the minimization,

min
C∈{0,1}n×k,B∈Rk×k

D(A, CBCT ), (1)

where C ∈ {0, 1}n×k is an indicator matrix such that∑
j Cij = 1, i.e., Cij = 1 indicates that the ith vertex be-

longs to the jth partition, and D is a separable distance
function such that D(X, Y ) =

∑
i,j D(Xij , Yij).
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We call the model in Definition 2 as the Graph Partition-
ing with Link Distribution (GPLD). GPLD provides not only
the partitioning of the given graph, which is denoted by the
partition indicator matrix C, but also the partition repre-
sentative matrix B, which consists of the sufficient statistics
for edge weights within and between partitions. For exam-

ple, B =
[

1 1/9

1/9 1

]
for the example in Fig 1(b). B also

provides an intuition about the quality of the partitioning,
since the larger the difference between the diagonal and the
off-diagonal elements, the better the partitions are separated.
Note that GPLD does not restrict A to be symmetric or non-
negative. Hence, it is possible to apply GPLD to directed
graphs or graphs with negative weights, though in this pa-
per our main focus is undirected graphs with non-negative
weights.

Algorithm Derivation

First we derive an algorithm for GPLD model based on the
most popular distance function, Euclidean distance function.
Under Euclidean distance function, our task is

min
C∈{0,1}n×k,B∈Rk×k

||A − CBCT ||2. (2)

We prove the following theorem which is the basis of our
algorithm.

Theorem 3. If C ∈ {0, 1}n×k and B ∈ R
k×k
+ is the optimal

solution to the minimization in (2), then

B = (CT C)−1CT AC(CT C)−1. (3)

Proof. The objective function in Definition 2 can be ex-
panded as follows.

L = ||A − CBCT ||2

= tr((A − CBCT )T (A − CBCT ))

= tr(AT A) − 2tr(CBCT A) + tr(CBCT CBCT )

Take the derivative with respect to B, we obtain

∂L

∂B
= −2CT BC + 2CT CBCT C. (4)

Solve ∂L
∂B

= 0 to obtain

B = (CT C)−1CT AC(CT C)−1; (5)

This completes the proof of the theorem.

Based on Theorem 3, we propose an alternative optimiza-
tion algorithm, which alternatively updates B and C until
convergence. We first fix C and update B. Eq (3) in Theo-
rem 3 provides an updating rule for B,

B = (CT C)−1CT AC(CT C)−1. (6)

This updating rule can be implemented more efficiently
than it appears. First, it does not really involve comput-
ing inverse matrices, since CT C is a special diagonal ma-
trix with the size of each cluster on its diagonal such that
[CT C]pp = |πp|, where |πp| denotes the size of the pth par-

titioning; second, the product of CT AC can be calculated

without normal matrix multiplication, since C is an indica-
tor matrix.

Then, we fix B and update C. Since each row of C is an
indicator vector with only one element equal to 1, we adopt
the re-assignment procedure to update C row by row. To
determine which element of the hth row of C is equal to 1,
for p = 1, . . . , k, each time we let Chp = 1 and compute the

objective function L = ||A − CBCT ||2, which is denoted
as Lp, then

Chp∗ = 1 for p∗ = argmin
p

Lp (7)

Note that when we update the hth row of C, the necessary
computation involves only the hth row or column of A and
CBCT .

Therefore, updating rules (6) and (7) provide a new graph
partitioning algorithm, GPLD under Euclidean distance.

Presumably for a specific distance function used in Def-
inition 2, we need to derive a specific algorithm. How-
ever, a large number of useful distance functions, such as
Euclidean distance, generalized I-divergence, and KL di-
vergence, can be generalized as the Bregman divergences
(S.D.Pietra 2001; Banerjee et al. 2004b), which correspond
to a large number of exponential family distributions. More-
over, the nice properties of Bregman divergences make it
easy to generalize updating rules (6) and (7) to all Breg-
man divergences. The definition of a Bregman divergence
is given as follows.

Definition 4. Given a strictly convex function, φ : S �→ R,
defined on a convex set S ⊆ R

d and differentiable on the
interior of S, int(S), the Bregman divergence Dφ : S ×
int(S) �→ [0,∞) is defined as

Dφ(x, y) = φ(x) − φ(y) − (x − y)T∇φ(y), (8)

where ∇φ is the gradient of φ.

Table 1 shows a list of popular Bregman divergences and
their corresponding Bregman convex functions. The follow-
ing Theorem provide an important property of Bregman di-
vergence.

Theorem 5. Let X be a random variable taking values in
X = {xi}

n
i=1 ⊂ S ⊆ R

d following v. Given a Bregman
divergence Dφ : S × int(S) �→ [0,∞), the problem

min
s∈S

Ev[Dφ(X, s)] (9)

has a unique minimizer given by s∗ = Ev[X ].

The proof of Theorem 5 is omitted (please refer
(S.D.Pietra 2001; Banerjee et al. 2004b)). Theorem 5 states
that the Bregman representative of a random variable is al-
ways the expectation of the variable. Hence, when given a
sample of a random variable, the optimal estimation of the
Bregman representative is always the mean of the sample.
Under the GPLD model, Bpq is the Bregman representative
of each block of an affinity matrix. When C is given, i.e., the
membership of each block is known, according to Theorem
5, Bpq is obtained as the mean of each block,

Bpq =
1

|πp||πq|

∑
i∈πp,j∈πq

Aij , (10)
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Table 1: A list of Bregman divergences and the corresponding convex functions.
Name Dφ(x, y) φ(x) Domain

Euclidean distance ||x − y||2 ||x||2 R
d

Generalized I-divergence
Pd

i=1
xi log(xi

yi
) −

Pd
i=1

(xi − yi)
Pd

i=1
xi log(xi) R

d
+

Logistic loss x log(x
y
) + (1 − x) log( 1−x

1−y
) x log(x) + (1 − x) log(1 − x) {0, 1}

Itakura-Saito distance x
y
− log xy − 1 − log x (0,∞)

Hinge loss max{0,−2sign(−y)x} |x| R \ {0}

KL-divergence
Pd

i=1
xi log(xi

yi
)

Pd
i=1

xi log(xi) d-Simplex

Mahalanobis distance (x− y)T A(x − y) xT Ax R
d

Algorithm 1 Graph Partitioning with Bregman Divergences

Input: A graph affinity matrix A, a Bregman divergence
Dφ, and a positive integer k.
Output: A partition indicator matrix C and a partition rep-
resentative matrix B.
Method:

1: Initialize B.
2: repeat
3: for h = 1 to n do
4: Chp∗ = 1 for p∗ = argminp Lp where Lp denotes

Dφ(A, CBCT ) for Chp = 1.
5: end for
6: B = (CT C)−1CT AC(CT C)−1.
7: until convergence

where πp and πq denote the pth and the qth cluster, respec-
tively, and 1 ≤ p ≤ k, 1 ≤ q ≤ k, 1 ≤ i ≤ n and
1 ≤ j ≤ n. If we write Eq (10) in a matrix form, we
obtain Eq. (3), i.e., Theorem 3 is true for all Bregman di-
vergences. Hence, updating rule (6) is applicable to GPLD
with any Bregamen divergneces. For updating rule (7), there
is only a minor change for a given Bregman divergence, i.e.,
we calculate the object function L based on this given breg-
man divergence.

Therefore, we obtain a general graph partitioning al-
gorithm, Graph Partitioning with Bregman Divergences
(GPBD), which is summarized in Algorithm 1. Unlike the
traditional graph partitioning approaches, this simple algo-
rithm is capable of partitioning graphs under different link
distribution assumptions by adopting different Bregman di-
vergences. The computational complexity of GPBD can be
shown to be O(tn2k) for t iterations. For a sparse graph, it
is reduced to O(t|E|k). GPBD is faster than the popular
spectral approaches, which involve expensive eigenvector
computation (typically O(n3)) and extra post-processing on
eigenvectors to obtain the partitioning. Comparing with the
multi-level approaches such as METIS (Karypis & Kumar
1998), GPBD does not restrict partitions to have an equal
size.

The convergence of Algorithm 1 is guaranteed based on
the following facts. First, based on Theorem 3 and Theorem
5, the objective function is non-increasing under updating
rule (6); second, by the criteria for reassignment in updating
rule (7), it is trivial to show that the objective function is
non-increasing under updating rule (7).

A Unified View to Graph Partitioning
In this section, we establish the connections between the
GPLD model and the edge cut objectives to provide a unified
view for graph partitioning.

In general, the edge cut objectives, such as ratio associ-
ation (Shi & Malik 2000), ratio cut(Chan, Schlag, & Zien
1993), Kernighan-Lin objective (Kernighan & Lin 1970),
and normalized cut (Shi & Malik 2000), can be formu-
lated as the following trace maximization (Zha et al. 2002;
Dhillon, Guan, & Kulis 2004; 2005),

max tr(C̃T AC̃). (11)

In (11), typically C̃ is a weighted indicator matrix such that

C̃ij =

{
1

|πj |
1
2

if vi ∈ πj

0 otherwise

where |πj | denotes the number of nodes in the jth partition.

In other words, C̃ satisfies the constraints C̃ ∈ R
n×k
+ and

C̃T C̃ = Ik, where Ik is the k × k identity matrix.
We propose the following theorem to show that the var-

ious edge cut objectives are mathematically equivalent to
a special case of the GPLD model. To be consistent with
the weighted indicator matrix used in edge cut objects, in
the following theorem we modify the constraints on C as
C ∈ R+ and CT C = Ik to make C to be a weighted indi-
cator matrix.

Theorem 6. The GPLD model under Euclidean distance
function and B = rIk for r > 0, i.e.,

min
C∈R

n×k
+

,

CT C=Ik

||A − C(rIk)CT ||2 (12)

is equivalent to the maximization

max tr(CT AC), (13)

where tr denotes the trace of a matrix.

Proof. Let L denote the objective function in Eq. 12.

L = ||A − rCCT ||2

= tr((A − rCCT )T (A − rCCT ))

= tr(AT A) − 2rtr(CCT A) + r2tr(CCT CCT )

= tr(AT A) − 2rtr(CT AC) + r2k

The above deduction uses the property of trace tr(XY ) =
tr(Y X). Since tr(AT A), r and k are constants, the
minimization of L is equivalent to the maximization of
tr(CT AC). The proof is completed.
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Table 2: Summary of the synthetic graphs
Graph Parameter n k distribution

syn1

2
4

3 3 2.7

3 2.7 2.7

2.7 2.7 3

3
5 300 3 Normal

syn2

2
4

6.9 7 6.3

7 6.3 6.3

6.3 6.3 7

3
5 600 3 Poisson

syn3 R
20×20 20000 20 Normal

Theorem 6 states that with the partition representative ma-
trix B restricted to be of the form rIk , the GPLD model un-
der Euclidean distance is reduced to the trace maximization
in (13). Since various edge cut objectives can be formulated
as the trace maximization, Theorem 6 establishes the con-
nection between the GPLD model and the existing edge cut
objective functions.

Based on this connection, edge cut objectives make two
implicit assumptions for a graph’s link distribution. First,
Euclidean distance in Theorem 6 implies normal distribu-
tion assumption for the edge weights in a graph. Second,
since the off-diagonal entries in B represent the mean edge
weights between partitions and the diagonal elements of B
represent the the mean edge weights within partitions, re-
stricting B to be of the form rIk for r > 0 implies that the
edges between partitions are very sparse (close to 0) and the
edge weights within partitions have the same positive ex-
pectation r. However, these two assumptions are not appro-
priate for the graphs whose link distributions deviate from
normal distribution or dense graphs. Therefore, compared
with the edge cut based approaches, the GPBD algorithm
is more flexible to deal with graphs with different statistic
characteristics.

Experimental Results

Although GPBD actually provides a family of algorithms
under various Bregman divergences, due to the space limit,
in this paper we present the experimental evaluation of the
effectiveness of the GPBD algorithm under two most pop-
ular divergences, GPBD under Euclidean Distance (GPBD-
ED) corresponding to normal distribution, and GPBD un-
der Generalized I-divergence (GPBD-GI) corresponding to
Poisson distribution, in comparison with two representative
graph partitioning algorithms, Normalized Cut (NC) (Shi
& Malik 2000; Ng, Jordan, & Weiss 2001) and METIS
(Karypis & Kumar 1998).

We use synthetic data to simulate graphs whose edge
weights are under normal and poisson distributions. The dis-
tribution parameters to generate the graphs are listed in the
second column of Table 2 as matrices. In a parameter matrix
P , Pij denotes the distribution parameter that generates the
edge weights between the nodes in the ith partition and the
nodes in the jth partition. Graph syn3 has twenty partitions
of 20000 nodes and about 10 million edges. Due to the space
limit, its distribution parameters are omitted here.

The graphs based on the text data have been widely used
to test graph partitioning algorithms (Ding et al. 2001;
Dhillon 2001; Zha et al. 2001). In this study, we con-

struct real graphs based on various data sets from the 20-
newsgroups (Lang 1995) data, which contains about 20, 000
articles from the 20 news groups and can be used to generate
data sets of different sizes, balances and difficulty levels. We
pre-process the data by removing stop words and file headers
and selecting the top 2000 words by the mutual information.
Each document is represented by a term-frequency vector
using TF-IDF weights and the cosine similarity is adopted
for the edge weight. Specific details of data sets are listed
in Table 3. For example, the third row of Table 3 shows
that three data sets NG5-1, NG5-2 and NG5-3 are generated
by sampling from five newsgroups with size 900, 1200 and
1450, respectively, and with balance 1.5, 2.5, and 4, respec-
tively. Here balance denotes the ratio of the largest partition
size to the smallest partition size in a graph. Normalized
Mutual Information (NMI) (Strehl & Ghosh 2002) is used
for performance measure, which is a standard way to mea-
sure the cluster quality. The final performance score is the
average of twenty runs.

Table 4 shows the NMI scores of the four algorithms. For
the synthetic data syn1 and syn3 with normal link distribu-
tion, the GPBD-ED algorithm, which assumes normal distri-
bution for the links, provides the best NMI score. Similarly,
for data syn2 with poisson link distribution, the GPBD-GI
algorithm, which assumes poisson distribution for the links,
provides the best performance.

For real graphs, we observe that GPBD-GI provides best
NMI scores for all the graphs and preforms significantly bet-
ter than NC and METIS in most graphs . This implies that
link distributions of the graphs are closer to Poisson distribu-
tion than normal distribution. How to determine appropriate
link distribution assumption for a given graph is beyond the
scope of this paper. However, the result shows that the ap-
propriate link distribution assumption (appropriate distance
function for GPBD) leads to a significant improvement on
the partitioning quality. For example, for the graph NG2-3,
even NC totally fails and other algorithms perform poorly,
GPBD-IS still provides satisfactory performance. We ob-
serve that all the algorithms perform poorly for NG10. One
possible reason for this is that in NG10 some partitions are
heavily overlapped and very unbalanced. We also observe
that the performance of the GPBD with the appropriate dis-
tribution is more robust to unbalanced graphs. For exam-
ple, from NG2-1 to NG2-3, the performance of GPBD-IS
decreases much less than those of NC and METIS. One pos-
sible reason for METIS’s performance deterioration on un-
balanced graphs is that it restricts partitions to have equal
size.

Conclusion
In this paper, we propose a general model to partition graphs
based on link distribution. This model formulates graph par-
titioning under a certain distribution assumption as approx-
imating the graph affinity matrix under the corresponding
distortion measure. Under this model, we derive a novel
graph partitioning algorithm to approximate a graph affin-
ity matrix under various Bregman divergences, which cor-
respond to a large exponential family of distributions. Our
theoretic analysis and experiments demonstrate the potential
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Table 3: Subsets of Newsgroup Data for constructing graphs.
Name Newsgroups Included # Documents Balance

NG2-1/2/3 alt.atheism, comp.graphics 330/525/750 1.2/2.5/4

NG3-1/2/3 comp.graphics, rec.sport.hockey,talk.religion.misc 480/675/900 1.2/2.5/4

NG5-1/2/3 comp.os.ms-windows.misc, comp.windows.x,
rec.motorcycles,sci.crypt, sci.space 900/1200/1450 1.5/2.5/4

NG10 comp.graphics, comp.sys.ibm.pc.hardware, rec.autos,
rec.sport.baseball,sci.crypt, sci.med,comp.windows.x,
soc.religion.christian, talk.politics.mideast,talk.religion.misc 5600 7

Table 4: NMI scores of the five algorithms
Data NC METIS GPBD-ED GPBD-GI

syn1 0.673 ± 0.081 0.538 ± 0.016 0.915 ± 0.017 0.893 ± 0.072
syn2 0.648 ± 0.052 0.533 ± 0.018 0.828 ± 0.139 0.863 ± 0.111
syn3 0.801 ± 0.029 0.799 ± 0.010 0.933 ± 0.047 0.811 ± 0.055
NG2-1 0.482 ± 0.299 0.759 ± 0.024 0.678 ± 0.155 0.824 ± 0.045
NG2-2 0.047 ± 0.041 0.400 ± 0.000 0.283 ± 0.029 0.579 ± 0.073
NG2-3 0.042 ± 0.023 0.278 ± 0.000 0.194 ± 0.008 0.356 ± 0.027
NG3-1 0.806 ± 0.108 0.810 ± 0.017 0.718 ± 0.128 0.852 ± 0.081
NG3-2 0.185 ± 0.116 0.501 ± 0.012 0.371 ± 0.131 0.727 ± 0.070
NG3-3 0.048 ± 0.013 0.546 ± 0.016 0.235 ± 0.091 0.631 ± 0.179
NG5-1 0.598 ± 0.077 0.616 ± 0.032 0.550 ± 0.043 0.662 ± 0.025
NG5-2 0.5612 ± 0.030 0.570 ± 0.020 0.546 ± 0.032 0.670 ± 0.022
NG5-3 0.426 ± 0.060 0.574 ± 0.018 0.515 ± 0.033 0.668 ± 0.035
NG10 0.281 ± 0.011 0.310 ± 0.017 0.308 ± 0.015 0.335 ± 0.009

and effectiveness of the proposed model and algorithm. We
also show the connections between the traditional edge cut
objectives and the proposed model to provide a unified view
to graph partitioning.
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