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Abstract

Calculations can naturally be described as graphs in which vertices represent

computation and edges reflect data dependencies. By partitioning the vertices of

a graph, the calculation can be divided among processors of a parallel computer.

However, the standard methodology for graph partitioning minimizes the wrong

metric and lacks expressibility. We survey several recently proposed alternatives

and discuss their relative merits.

1 Introduction

Graphs are widely used to describe the data dependencies within a compu-

tation. Recall that a graph, G = (V, E), consists of a set of vertices, V =

{?J~,v~,... ‘v }, ~ , and a set of pairwise relationships, 13 c V x V, called edges.

If (z+,Vj) c l?, then we say that vertices vi and Vj are neighbors. For our pur-

poses, the vertices of the graph will represent units of computation, and the

edges will encode data dependencies. Sometimes it is appropriate to associate

weights with the nodes and/or edges of the graph to indicate the amount of

work and/or data, respectively.
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For example, differential equations are usually solved numerically on a grid.

During each iteration in the process towards a solution, all the grid points are

updated using neighboring values in the mesh. In Fig. 1 we show the mesh

and an associated data dependency graph for a symmetric 7-point stencil.

Here each vertex in the graph at right represents the computation to update

the associated point on the grid. Each vertex has edges connecting it to the

vertices from which it needs information. Outputs from one iteration serve as

inputs for the next.

7F
Fig. 1. Grid, Stencil, and Graph.

Once we have a graph model of a computation, graph partitioning can be

used to determine how to divide up the work and data for an efficient parallel

computation. Our objectives, stated loosely, are to evenly distribute the com-

putations over p processors by partitioning the vertices into p equally weighted

sets while minimizing interprocessor communication which is represented by

edges crossing between partitions.

It is this simple relationship between graphs and computations which explains

the ubiquity of graph partitioning in parallel computing. Graph partitioning

is universally employed in the parallelization of calculations on unstructured

grids including finite element, finite difference and finite volume techniques

using both explicit and implicit methods. It is used in the parallelization of

matrix-vector multiplication for all types of iterative solvers. It is also used

to parallelize neural net simulations, particle calculations, circuit simulations,

and a variety of other computations.

Until recently only the standard graph partitioning approach has been em-

ployed. The standard approach is to model the problem using a graph as

described above and partition the vertices of the graph into equally weighted

sets in such a way that the weight of the edges crossing between sets is min-

imized. Well-known software packages such as Chaco [13] and METIS [19]

can be used for this purpose. Note that the graph partitioning problem is

NP-hard [91, so these tools merely apply heuristics to generate approximate

solutions.

Unfortunately, the standard graph partitioning approach has several signifi-

cant shortcomings which are discussed in detail in 52. The edge cut metric

that it tries to minimize is, at best, an imperfect model of communication in
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a parallel computation. The model also suffers from a lack of expressibility

which limits the applications it can address.

This paper is an extension of and an elaboration upon Hendrickson’s critique

of the standard partitioning model [10]. Whereas Hendrickson restricted his

concerns to matrix-vector products, in the current paper we show that the

same issues plague virtually all applications of graph partitioning to parallel

computation. In ~3 we survey some recent work on alternative models which

address some of the limitations of the standard approach. We follow with a

brief discussion of algorithms in $4, and suggest some fertile areas for further

research in $5.

2 Shortcomings of the Standard Graph Partitioning Approach

We discuss several shortcomings of the standard graph partitioning approach.

We begin with flaws associated with using the edge cuts metric (~2.1) and

continue with limitations of the standard graph model (fj2.2).

2.1 Flaws of the Edge Cut Metric

Minimizing edge cuts has several major flaws. First of all, although it is not

widely acknowledged, edge cuts are not proportional to the total communi-

cation volume. The scenario is illustrated in Fig. 2. The ovals correspond to

different processors among which the vertices of the graph are partitioned.

Assume that each edge has a weight of two corresponding to one unit of data

being communicated in each direction. So the weight of the cut edges is ten.

However, observe that the data from node Vz on processor PI need only be

communicated once to processor 1’2; similarly with nodes V4 and V7. Thus,

the actual communication volume is only seven. In general, the edge cut met-

ric does not recognize that two or more edges may be representing the same

information flow, so it over counts the true volume of communication.
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Fig. 2.Edge cuts versus communication volume
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Secondly, the time to send a message on a parallel computer is a function

of the latency (or start-up time) as well as the size of the message. Graph

partitioning approaches try to (approximately) minimize the total volume,

but not the total number of messages. Depending on the machine architecture

and problem size, message latencies can be more important than message

volume.

Thirdly, the performance of a parallel application is generally limited by the

slowest processor. Even if the computational work is well balanced, the com-

munication effort might not be. So, rather than minimizing the total commu-

nication volume or even the total number of message, we may instead wish to

minimize the maximum volume and/or number of messages handled by any

single processor. The standard edge cuts measure does not encapsulate this

type of objective.

Lastly, on many architectures the time to send a message depends upon the

distance between the sending and receiving processors. Geographic distance

is not the issue here, but rather the number of switches the message is routed

through. Although most modern machines have some form of cut-through or

wormhole routing which enables a single message to travel quickly between

distant processors, the communication network is usually handling many mes-

sages simultaneously. A message between distant processors ties up many wires

which cannot be used by other messages. So to avoid message contention and

improve the overall throughput of the message traffic, it is preferable to have

communication restricted to processors which are near each other. So, for the

problem illustrated in Fig. 2, on a one-dimensional row of processors, the

layout F’s – PI – Pz would be preferable to PI – P2 – F!3.

In actuality, we are interested in all of these metrics to varying degrees, de-

pending on how they affect the overall speed of the application. So we will

likely want to minimize an objective function with several components (e.g.,

total volume and total number of messages), weighted to reflect the importance

of each measure. In even more complicated settings, we may wish to balance

the sum of the computational and communications work on each processor

while minimizing these combined objectives.

Despite these problems with the edge cut measure, the standard partitioning

approach has proved successful for the parallel solution of differential equa-

tions and grid-based problems in general. There are several reasons for this

success. First, grid points generally have only a small number of neighbors, so

the number of edge cuts is within a small multiple of the actual communication

volume. This is not true of more general problems with more complex data

dependencies. Second, computational grids generally exhibit a high degree of

geometric locality which ensures that good partitions exist [26]. If the grid

size, n, is increased while the number of processors is held fixed, the ratio of
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communication volume to computational work grows as n-113 in three dimen-

sions and n-li2 in two dimensions. Similarly, geometric locality ensures that

the number of messages each processor sends is bounded. Lastly, the commu-

nication volume per processor is fairly evenly distributed since there usually

is not an enormous difference “in the size of the boundary of each piece of the

grid. For all these reasons large grid computations tend to be limited by com-

putational performance, so the details of the communication (and hence the

partition) are not critical. For other applications with more complex depen-

dency patterns the quality of the partition can have a much more dramatic

impact on overall performance.

2.2 Limitations of the Standard Graph Model

Besides minimizing the wrong objective function, the standard graph parti-

tioning approach suffers from limitations due to the lack of expressibility in

the model.

One limitation of the undirected graph model is that it can only express sym-

metric data dependencies. For example, the graph associated with a symmetric

matrix is shown in Fig. 3. For the computation y = Ax, vertex vi is associated

with the computation of the inner product between row i of the matrix A

with the vector x. Observe that the edge between node VI and V2 symbolizes

a symmetric dependency: V1needs

12345

II

lxxx

2X XXX

3X XXX

4 Xxxx

5 xx

Z2, and V2needs Z1.

VI

VzIL’V5

V3 V4

Fig. 3. Graph of a Symmetric Matrix

However, if the matrix is square but unsymmetric, then the dependencies are

unsymmetric as well: V1 might need X2, while V2 does not need Z1. This sit-

uation can be easily represented in a directed graph, but not in the standard

model. In a directed graph, edges are directed ~rom the data producing ver-

tex to the data consuming vertex. There are two work-arounds to make the

standard model ‘fit’ unsymmetric dependencies. The first is to convert the di-

rected edges to undirected edges. The second is a slight extension of the first;

an edge that represents only a one-way communication gets a. weight of one,

and an edge that represents two-way communication

Unsymmetric dependencies show up in other settings

flow calculations often involve unsymmetric stencils as

gets a weight of two.

as well. For example,

depicted in Fig. 4.
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Fig. 4. Grid, Stencil, and Directed Graph.

Secondly, the symmetric model forces the partition of the input and output

data to be identical. This is often desirable, particularly when the output from

the previous computation is the input to the next computation. But in many

situations it is an unnecessary restriction. For instance, the standard model

generates the identical partitions of z and y when computing y = Az for a

square matrix. For unsymmetric matrices, communication may be reduced by

allowing the two partitions to differ. For example, The input x may be the

result of a previous two-part operation which first computes y = Az and then

z = ATy; this effectively maps from z-space to y-space and back to x-space.

(The data layout and communication for application of A and AT is identical;

see [12]). This brings us to the last two important issues.

The third limitation of the standard model is that it assumes that the input

and output of the calculation are the size. For example, when A is rectangular

in the calculation of y = Ax, the Z- and g-spaces are of different dimensions.

Recall that the standard model handles symmetric matrix-vector multiplica-

tion (~ = Ax) by having a sing~e vertex vi represent both ~i and vi. When the

matrix is not square, z and y are of different lengths, and the standard model

is inapplicable.

Lastly, even within the general framework of calculations which are repeated

over and over again, it is common for the calculation to consist of several

distinct phases. Examples include the application of a matrix and a precon-

ditioned in an iterative method, solving a differential equation and applying

boundary conditions, simulating different phenomena in a multi-physics cal-

culation, and advancing a grid and detecting contacts in a transient dynamics

computation. The union of multiple phases cannot generally be described via

an undirected graph. As we will see in the next section, some alternatives to

the standard model retain its basic simplicity while enabling some of these

more complex situations to be handled.
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3 Alternative Graph Partitioning Models

Some of theshortcomings of the standard graph partitioning model can be

addressed by using recently developed alternatives. We describe four such

non-standard models below.

3.1 A Bipartite Graph Model

As we noted in $2.2, the standard model using an undirected graph can only

encode symmetric data dependencies and symmetric partitions. These lim-

itations are particularly problematic for iterative solvers on unsymmetric or

non-square matrices. When using preconditioners, the inability of the standard

model to capture multiple phase calculations are also problematic. In [11,12,23]

Kolda and Hendrickson propose a bipartite graph model for describing matrix-

vector multiplication which addresses some of these shortcomings. The bipar-

tite model can also be applied to other applications involving unsymmetric

dependencies and multiple phases.

A bipartite graph, G = (U, Vz, E), is a special type of graph in which the

vertices are divided into two disjoint subsets, VI and V2, and 1? c VI x V2. So,

no edges connect two vertices in the same subset; instead, all the edges cross

between VI and V2.

This bipartite graph representation is most useful when the initial tasks are

logically distinct from the final tasks. This occurs in the transfer between

phases of the multi-phme calculations described in $2.2. An important example

is matrix-vector multiplication with non-square matrices. Fig. 5 shows the

bipartite graph representation of a rectangular matrix. Herej the sets VI and

V2 correspond to the row and column vertices respectively. Each row vertex

in V1 is weighted with the number of nonzeros in its row; e.g., row vertex 74

has a weight of one. This weighting reflects the computational work required

in the matrix-vector product. Whichever processor owns vertex ri will own

the piece gi of the resulting solution vector y = Ax. The partitioning of the

column vertices (V2) affects the layout of the input vector, x. The column

vertices may be left unweighed so that x may be partitioned in the optimal

way to minimize edge cuts. Better yet, the column vertices may be weighted

to distribute the computation of another operation on the input data such

as level-l BLAS operations or multiplication by another matrix such as a

preconditioned in an iterative method.

The bipartite graph model is useful principally where the standard model

fails to be a good representation, and it has three main advantages. First,

it can encode a class of problems that the standard graph model cannot.
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Fig. 5. Rectangular Matrix and Bipartite Graph.

Specifically, the initial (or input) vertices can be different from the final (or

output) vertices. Second, even if the initial vertices are identical to the final

vertices, the bipartite model allows for the initial partition to differ from the

final partition. It achieves this by representing each vertex twice, once as an

initial vertex and once as a final vertex. This freedom can allow for a reduction

in communication. However, in many applications a symmetric partition is

preferable, and this model cannot provide that. Third, by partitioning both

the initial and the final vertices, it can ensure load balance in two separate

operations, as mentioned above.

A1though the bipartite model has expressibility that the standard model lacks,

the algorithms in [12] still optimize the flawed metric of edge cuts (as well as

sharing the other problems of the standard model described in $2.1). As we

will see in the next section, this problem can be addressed by optimizing a

graph quantity other than cut edges.

Although the bipartite model is good for describing two computational oper-

ations, it is not able to accurately encode more. One possible generalization

is to use a k-partite graph in which the first set of vertices is connected to a

second set, which is connected to a third set, and so on. An alternative is the

multi-constraint methodology described below in 33.3.

3.2 A Hypergraph Model

Recall that edge cuts are not equal to communication volume, as illustrated

in Fig. 2. In the figure, vertex V2on processor Pl, for example, has two edges

connecting to vertices on processor P2, but V2 need only be communicated

once. The true communication volume is not a function the number of edges

being cut, but rather the sum of the number of processors to which each vertex

has connections. More formally, the total communication volume is xi bi where

bi is the number of external partitions in which vertex vi has neighbors. We

will call this quantity the boundary cut of a partition. The observation that

boundary cuts are the more appropriate metric was made in [10] and motivated

a modification in METIS to minimize this more accurate metric [17]. Boundary

cuts can also be employed in the bipartite graph model from j3.1.
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A more elegant expression of this metric is in the hypergraph model proposed

by Qatalyurek, Aykanat, Pinar, and Pinar [3,4,25]. A hypergraph is a gener-

alization of a graph in which edges can include more than two vertices. A

hypergraph, G = (V, H’), consists of a set of vertices, V, and a set of hyper-

edges, H. Each hyperedge comprises a subset of vertices. Note that graphs

are special cases of hypergraphs in which each hyperedge only contains two

vertices. For our purposes, a hyperedges allow an alternative representation of

the data dependencies. The partitioning problem is now to divide the vertices

into equally weighted sets so that few hyperedges cross between partitions.

As we will discuss below, the hypergraph model has broader applicability

than the standard approach. But even for problems that can be described

with the standard model, the hypergraph model is preferable since it correctly

minimizes the communication volume. To see this, consider a computation like

the one in Fig. 2 which can be describe by a standard undirected graph G =

(V, E). Now construct an equivalent hypergraph (V, H) with IVI hyperedges.

Each vertex vi G, corresponds to a hyperedge hi consisting of vi and all its

neighbors in G. A hyperedge reflects all of the entities that either produce or

consume a piece of data. W’hen the vertices are partitioned among processors,

that piece of data must be communicated from the processor which produced

it to to all those consume it. Thus, the communication associated with a

hyperedge is one less than the number of processors its constituent vertices

are partitioned among. (This corresponds to the boundary cut value from

the discussion above.) So by partitioning the hypergraph in such a way that

hyperedges are split among as few processors as possible, the model correctly

minimizes communication volume.

In [4], Qatalyiirek and Aykanat apply this model to symmetric matrix-vector

multiplication. For a set of highly unstructured matrices from linear program-

ming problems they report that the hypergraph model reduces communication

by over 30% on average over the standard partitioning approach. However, for

reasons discussed in $2.1, the gains were more modest for matrices from grid

calculations, generally less than 10% [I].

In addition to resolving the principle problem of the edge cut metric, the

hypergraph approach is more expressive than the standard model. It can en-

code problems in with unsymmetric dependencies and even problems in which

the initial vertices differ from the final vertices. In Figure 6, we show two

different sketches of a hypergraph relating the data dependencies for the rect-

angular matrix-vector multiply in Fig. 5. For example, hyperedge h2 contains

all the vertices that need Z2, i.e., {V2,V4}. In the left figure the hyperedges

are illustrated by the ovals. In the right figure the vertices are on one side

and hyperedges on the other, and each hyperedge is connected to the vertices

which comprise it. We include this second hypergraph representation to un-

derline the one-to-one relationship between hypergraphs and bipartite graphs.
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The hypergraph partitioning model is closely related to the

from $3.1, but the partitioning objectives are different.

bipartite model
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Fig. 6. Two Hypergraph Representations.

The guiding principle in the construction of a hypergraph is that each hyper-

edge contains the set of vertices which generate or need some data. This prin-

ciple applies equally well to the case when dependencies are uni-directional,

and it continues to correctly model the communication volume. However, there

is a subtle requirement that the data is produced by one of the vertices that

depends on it. For example, in Fig. 6 we assume that the data associated with

hyperedge hl will live on the processor that owns vertex V5. If that is not the

case for some reason, e.g., hl is the output of VI, then hl should also include

its producing vertex, e.g., VI.

The hypergraph model can also be used

output data partitions are not identical,

ural as the bipartite model in this case.

even in cases where the input and

although it is perhaps not as nat-

We simply find the best partition

for the computation nodes using a hypergraph partitioned, and this yields a

partition of the output data. Then, rather than assuming the input data has
L

the same partition as the output data, we can calculate the optimal input

data partitioning as an assignment problem. So, the hypergraph model can be

an alternative to the bipartite model when we are only encoding one opera-

tion; however, the bipartite (or k-partite) models are still best when encoding

multi-step operations.

In summary, we find the hypergraph model to be uniformly superior to the

standard model. It is also an attractive alternative to the bipartite model

for unsymmetric problems when only one operation is being encoded. How-

ever, the bipartite (or k-partite) models are still more powerful when encod-

ing multi-phase operations. This is particularly true when the bipartite model

minimizes the boundary cut value as discussed above.

3.3 k!k~ti-~onstraint Partitioning

The bipartite model from

culations. An alternative

$3.1 is able to describe some types of multi-phase cal-

approach is the multi-constraint partitioning model
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of Karypis and Kumar [21]. Strictly speaking, the multi-constraint approach is

not an alternative to other models but rather an augmentation. In the multi-

constraint model, each vertex is assigned a vector of k weights which represent

the work associated with that vertex in each of k computational phases. The

goal is now to partition the vertices of that graph in such a way that commu-

nication is minimized and that the each of the k weights is balanced. In this

way, each phase of the computation will be load balanced. The edges in the

graph represent data dependencies in all the computational phases.

This is a very general and powerful model. For instance, when solving a differ-

ential equation and also applying boundary conditions, each vertex can have

two weights. The first weight will reflect the work required by a grid point

in the solver, and the second can encode the work required for the boundary

condition. For vertices not on the boundary, the value of the second weight

will be zero. So partitioning this problem will ensure that the equation solver

is balanced in such a way that each processor has an equal fraction of the

surface vertices.

The multi-constraint model includes the bipartite (and k-partite) approaches

as a special case. Given a bipartite graph G = (Vl, V2, E), an equivalent multi-

constraint model would have a set of vertices V = V1 U V2, and and edges

identical to those in the bipartite graph. Each vertex would be assigned two

weights, one for the phase modeled by VI and the second for the phase modeled

by V2. Hence, each vertex would have one of its weights set to zero. More

generally, the multi-constraint model can encode multiple phases with distinct

vertices via a model in which it includes the union of all vertices in all phases.

As originally proposed by Karypis and Kumar, the multi-constraint model

attempts to minimize edge cuts, but this is an unnecessary restriction. Hyper-

edges could be used or, equivalently, the boundary cut value from ~3.2.

A1though the power of the

criteria problems is difficult.

may be easier to work with.

3..4 Skewed partitioning

model is attractive, partitioning general multi-

When other, simpler models can be applied, they

Yet another alternative to the standard partitioning model is the skewed par-

titioning partitioning approach developed by Pellegrini [24] and Hendrickson,

Leland and Van Driessche [15]. As with the multi-constraint model, skewed

partitioning is really an augmentation of any of the other graph partitioning

models rather than a true alternative. In the skewed model, each vertex is

allowed to have a set of k preference values expressing its respective desire to

be in each of the k sets. When determining how to partition the vertices, these

11
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preference values are considered along with the metrics of communication cost.

Preference values can be used in several different ways to achieve different

objectives. In dynamic load balancing it is desirable that the new partition

be similar to the existing one to limit the amount of data that needs to be

moved. This can be encoded in the preference values by giving each datum

a preference to remain in its current partition [27]. The magnitude of the

preference values can be adjusted to trade off between partition quality and

reduction in data movement.

Another use for preference values is to encourage communicating objects

to be assigned to architecturally close processors to reduce message conges-

tion [24,15]. Assume you partitioning for p processors by recursive application

of a k-way partitioned. After the first partition, the graph is divided into k

parts which are assigned to k portions of the parallel machine. When doing

subsequent partitions, each vertex can be assigned a preference to be assigned

to a portion of the machine which is near its neighbors. In this way, the parti-

tioning step is coupled with the problem of assigning partitions to processors.

The result is a partition which exhibits better message locality. As before,

the magnitude of the preferences can be altered to trade off between partition

quality and message locality.

This same idea was developed independently in the circuit placement com-

munity to place circuit elements on a chip with short overall wire lengths [7].

Several algorithms for this problem have been devised including multilevel and

spectral approaches [15].

4 Partitioning Algorithms

The different graph partitioning models reviewed in $3 are only viable if ef-

ficient and effective algorithms can be developed to partition them. Fortu-

nately, the multilevel paradigm for partitioning has proven to be quite robust

and general. The multilevel approach was devised independently by several

researchers in the early 90s [2,6,14] and popularized by the the Chaco [13] and

METIS [19] partitioning tools. The basic idea is quite simple. A large graph is

approximated by a sequence of smaller and smaller graphs. The smallest graph

is partitioned using any suitable algorithm. This partition is then propagated

back through the sequence of larger and larger graphs, being refined along the

way.

Adapting the multilevel approach to a particular partitioning problem requires

the following tools.



(1) A method for generating a sequence of smaller graphs which preserve the

essential properties of the original.

(2) An algorithm for partitioning the smallest graph.

(3) A refinement technique for improving the partition as it is propagated

back up to the original graph.

These tools are generally straightforward to devise; however, the precise de-

tails of these tools require some attention to the nature of the partitioning

problem being addressed. The generation of smaller graphs is typically done

with some kind of edge contraction scheme. Any existing algorithm which

handles weights on edges and vertices can be used to partition the small-

est graph. The refinement often involves a greedy algorithm in the spirit of

Kernighan-Lin [22].

Following the multilevel paradigm, efficient and effective partitioners have

been developed for partitioning graphs to minimize edge cuts [2,14], minimize

vertex cuts [16], and perform multi-constraint partitioning [21]. The same

approach has been successfully used to partition hypergraphs to minimize cut

hyperedges [6,18,5] and to partition bipartite graphs [12]. The flexibility of

the technique makes it well suited to address a range of different partitioning

models and metrics.

5

In

Conclusions and Directions for Further Research

many respects, those of us working in the partitioning field have been

fortunate. The dominant application for our algorithms and tools has been

differential equation solvers. Whether solved implicitly or explicitly, these ap-

plications produce dependency graphs which are fairly easy to partition, and

large problems are computation rather than communication bound. The ap-

plications achieved good parallel performance despite the limitations of our

approaches.

But different applications are becoming common which are much more sen-

sitive to partition quality. Challenging partitioning problems that arise from

interior point methods for linear programming, least squares problems, circuit

simulation, truncated singular value computations for latent semantic indexing

in information retrieval, and other applications are revealing the limitations

of our traditional approaches. The standard graph partitioning methodology

optimizes an inappropriate quantity, and its expressibility is too limited to

address some important classes of applications.

We surveyed several alternative models which address some of the problems

with the standard methodology. The bipartite model and the hypergraph

13
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model can both handle unsymmetric dependencies. The hypergraph approach

correctly encodes communication volume, while the bipartite model and its

k-partite generalization have the advantage of being able to represent some

multi-phase calculations. The multi-constraint approach offers an alternative

way to represent multiple phases, while the skewed partitioning model pro-

vides a mechanism for including extra information in a partitioning problem

to, for example, reduce message congestion. However, these new models only

start to address the problems detailed in $2. A number of important open

problems remain, including the following.

(1)

(2)

(3)

Partitioning for alternate objectives or multi-objectives. Mod-

els which are well suited to minimizing the number of messages or the

maximum communication per processor instead of the total communi-

cation are still needed. Of further value would be hybrid models which

encapsulate several metrics. h-ew partitioning metrics may lead to new

algorithmic challenges.

Partitioning for alternative architectures. Most of the work in parti-

tioning techniques have been motivated by distributed memory architec-

tures and has tried to minimize int.erprocessor communication. Similar,

but not identical, issues occur in shared memory machines (SMPS). It is

advantageous to partition the shared memory between the processors to

minimize cache coherence overhead. However, the precise objectives in

the shared memory setting may differ from those for distributed memory

machines. There is little published work on this problem.

Other architectural trends pose different challenges for partitioners.

One important development is the growing importance of heterogeneous

machines. Many current parallel machines consist of a collection of shared

memory nodes networked together. These machines exhibit significant

network heterogeneity. Accesses within an SMP are fast, but between

SMPS are slow. It is unclear how best to partition for these architectures.

Another important architectural development is the growing popular-

ity of build-it-yourself parallel computers, epitomized by Beowulf-class

machines. Machines built in this way can exhibit both network and pro-

cessor heterogeneity. The partitioned will need to worry about differing

processor speeds and memory sizes, as well as varying access times. Ap-

propriate machine models and partitioning approaches for heterogeneous

architectures is largely an untouched area.

Parallel partitioning. lMost of the work on parallel partitioning has

been done in the context of dynamic load balancing. Algorithmically, dy-

namic load balancing is more challenging than the problems we have been

discussing since there is a pm-existing partition. If the new partition de-

viates significantly from the current one? then a large remapping cost is

incurred. This consideration does not occur in static settings and compli-

cates the evaluation of dynamic partitioning algorithms. Independent of

dynamic problems, several trends are increasing the need for parallel par-



,
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. .

titioners. First is the interest in very large meshes, which will not easily

fit on a sequential machine and so must be partitioned in parallel. Second,

for a more subtle reason, is the growing interest in heterogeneous parallel

architectures. Generally, partitioning is performed as a preprocessing step

in which the user specifies the number of processors the problem will run

on. With heterogeneous parallel machines, the number of processors is

insufficient — the partitioned should also know their relative speeds and

memory sizes. A user will want to run on whatever processors happen to

be idle when the job is ready, so it is impossible to provide this informa-

tion to a partitioned in advance. A better solution is to partition on the

parallel machine when the job is initiated. A number of parallel parti-

tioners have been implemented including Jostle [28] and ParMETIS [20].

This is an active area of research.

(4) Partitioning for domain decomposition. Domain decomposition is

a numerical technique in which a large grid is broken into smaller pieces.

The solver works on individual subdomains first, and then couples them

together. The properties of a good decomposition are not entirely clear,

and they depend upon the details of the solution technique. But they

are almost certainly not identical to the criteria used to minimize par-

allel communication. For instance, Farhat, et al. [8] argue that the do-

mains must have good aspect ratios (e.g., not be long and skinny). It can

also be important that subdomains are connected, even though the best

partitions for parallel communication need not be. For the most part,

practitioners of domain decomposition have made due with partitioning

algorithms developed for other purposes, with perhaps some minor per-

turbations at the end. But a concerted effort to devise schemes which meet

the need of this community could lead to significant advances. Progress

in this area will probably require a combination of ideas from numerical

analysis and graph algorithms.

Despite the general feeling that partitioning is a mature area, there are a

number of open problems and many opportunities for significant advances in

the state of the art. We expect to see a continuing stream of new insights

and approaches which more closely fit the different classes of applications. As

the hegemony of the standard approach crumbles, we foresee a balkanization

of the partitioning field as different researchers choose to work on different

models and applications. This is a. positive development to the extent that

this more focused work leads to be$ter tools for specific applications.
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