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1 Introduction

Partitioning a graph G = (V,E) into many “well-separated” cells is a fundamental problem in
computer science with applications in areas such as VLSI design [3], computer vision [20], image
analysis [36], distributed computing [21], and route planning [6]. Most variants of this problem
are known to be NP-hard [9] and focus on minimizing the number of edges linking vertices from
different cells, the cut size. Given its importance, there is a rich literature on the problem,
including a wealth of heuristic solutions (see [32, 35] for comprehensive overviews).

A popular approach is multilevel graph partitioning (MGP), which generally works in three
phases. During the first phase, the graph is iteratively shrunk by contracting edges. This is re-
peated until the number of remaining vertices is small enough to perform an expensive initial par-
titioning, the second stage of MGP. Finally, the graph is partially uncontracted, and local search
is applied to improve the cut size. This approach can be found in many software libraries, such as
SCOTCH [26], METIS [17], DiBaP [23], JOSTLE [35], CHACO [14], PARTY [27], KaPPa [16],
and KaSPar [24].

Although MGP approaches can be used for road networks, they do not exploit the natural
properties of such networks in full. In particular, road networks are not uniform: there are densely
populated regions (which should not be split) close to natural separators like bridges, mountain
passes, and ferries. Moreover, known MGPs focus on balancing the sizes of the cells while sacri-
ficing either connectivity (METIS, SCOTCH, KaPPa, KaSPaR) or cut size (DiBaP). This makes
sense for more uniform graphs, such as meshes. However, many road network applications require
cells to be connected and one does not want to sacrifice the cut size. Such applications include
route planning [15, 22, 5], distribution of data [19], and computation of centrality measures [11].

In this paper, we introduce PUNCH (Partitioning Using Natural Cut Heuristics), a parti-
tioning algorithm tailored to graphs containing natural cuts, such as road networks. Given an
input parameter U (the maximum size of any cell), PUNCH partitions the graph into cells of size
at most U while minimizing the number of edges between cells. (See Figure 1 for an example.)
Our algorithm runs in two phases: filtering and assembly.

The filtering phase aims to reduce significantly the size of the graph while preserving its overall
structure. It keeps the edges that appear in natural cuts, relatively sparse cuts close to denser
areas, and contracts other edges. The notion of natural cuts and efficient algorithms to compute
them are the main contributions of our work. Note that to find a natural cut it is not enough to
pick pairs of random vertices and run a minimum cut computation between them: because the
average degree in road networks is small, this is likely to yield a trivial cut. We do better by finding
minimum cuts between carefully chosen regions of the graph. Edges that never contributed to a
natural cut are contracted, reducing the graph size by up to three orders of magnitude. Despite
being much smaller, the contracted graph preserves the natural cuts of the input.

The second phase of our algorithm (assembly) is the one that actually builds a partition. Since
the filtered graph is much smaller than the input instance, our algorithm can afford to use more
powerful (and time-consuming) techniques in this phase. Another important contribution of our
work is a better local search algorithm for the second phase. Note that the assembly phase only
tries to combine fragments (the contracted vertices). In contrast with existing partitioners, we do
not disassemble individual fragments.

Note that our focus is on finding partitions with small cells, but with no hard bound on the
number of cells thus created. As already mentioned, previous work in this area has concentrated

1



Figure 1: Example for a partition generated by PUNCH. The input is the road network of the
US, taken from [7], having 24 million nodes and 29.1 million edges. We set U (the maximum cell
size) to 1 million. The number of resulting cut edges is 1493 and the number of cells obtained
is 30.

on finding balanced partitions, in which the total number of cells is bounded. We show how one
can use simple heuristics to transform the solutions found by our algorithm into balanced ones.
Our comparison shows that PUNCH significantly improves the best previous bounds for road
networks.

We are not aware of any approach using min-cut computations to reduce the graph size in
the context of graph partitioning. However, work on improving a partition is vast. For example,
many of the algorithms within the MGP framework use local search based on vertex swapping,
which improves the cut size by moving vertices from one cell to another. The most important ones
are the FM and KL heuristics [8, 18]. The FM heuristic runs in worst-case linear time by allowing
each vertex to be moved at most once. Local improvements based on minimum cuts often yield
better results than greedy methods. For example, Andersen and Lang [1] run several minimum
cut computations to improve the cut between two neighboring cells. Another common approach
to optimize a cut between two cells is based on parametric minimum cut computation [4]. Besides
vertex swapping and minimum cuts, local search based on diffusion gives good results as well [23].
This approach has the nice side effect of optimizing the shape of the cells, but it requires an
embedding of the graph. Most other methods, including ours, do not.

The remainder of this paper is organized as follows. Section 2 gives basic definitions and
notation. We explain the two phases of our algorithm in Sections 3 (filtering) and 4 (assembly).
Section 5 shows how to find balanced partitions with PUNCH. In Section 6 we present extensive
experiments. Section 7 contains concluding remarks.
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2 Preliminaries

The input to the partitioning problem is an undirected graph G = (V,E). Each vertex v ∈ V has
a positive size s(v), and each edge e = {u, v} ∈ E has a positive weight w(e) (or, equivalently,
w{u, v}). We are also given a cell size bound U . Without loss of generality, we assume that G
is simple. To simplify the description of our algorithm, we assume G is connected, since we can
process each connected component independently.

By extension, the size s(C) of any set C ⊆ V is the sum of the sizes of its vertices, and the
weight of a set F ⊆ E is the sum of the weights of its edges. A partition P = {V1, V2, . . . , Vk} of
V is a set of disjoint subsets (also called cells) such that ∪k

i=1Vi = V . Any edge {u, v} with u ∈ Vi

and v /∈ Vi is called a cut edge. Given a set S ⊆ V , let δ(S) = {{u, v} : {u, v} ∈ E, u ∈ S, v 6∈ S} be
the set of edges with exactly one endpoint in S. The set of edges between cells in a partition P is
denoted by δ(P ). The cost of P is the sum of the weights of its cut edges, i.e., cost(P ) = w(δ(P )).

The graph partitioning problem is to find a mimimum-cost partition P = {V1, V2, . . . , Vk} such
that the size of each cell is bounded by U . This problem is NP-hard [9].

3 Filtering Phase

The goal of the filtering phase of our algorithm is to reduce the size of the input graph while
preserving its sparse cuts. The phase detects and contracts relatively dense areas separated by
small cuts. The edges in these cuts are preserved, while other all edges are contracted.

To contract vertices u and v, we replace these two vertices with a new vertex x with s(x) =
s(u) + s(v). Moreover, for each edge {u, z} or {v, z} (with z 6∈ {u, v}) we create a new edge
{x, z} with the same weight. If multiple edges are created (which happens when u and v share a
neighbor), we merge them and combine their weights. By extension, contracting a set of vertices
means repeatedly contracting pairs of vertices in the set (in any order) until a single vertex
remains. Similarly, contracting an edge means contracting its endpoints.

The filtering phase has two stages. The first finds tiny cuts, i.e., cuts with at most two edges.
The second stage applies a randomized heuristic to find natural cuts, arbitrary cuts that are small
relative to the neighboring areas of the graph. We discuss each stage in turn.

3.1 Detecting Tiny Cuts

The first stage starts with the original graph and gradually contracts some of its vertices. It
consists of three passes.

The first pass identifies all edge-connected components of the graph using depth-first search.
They form a tree T . We make T rooted by choosing as a root the edge-connected component
with maximum size, which on road networks typically corresponds to most of the graph. We then
traverse T in a top-down fashion. As soon as we enter a subtree S of total size at most U , we
contract it into a single vertex, as Figure 2 illustrates. It easy to see that this does not affect the
optimum solution value: any solution that splits S in more than one cell can be converted (with
no increase in cost) into one in which S defines a cell on its own.

To shrink the instance even further, we merge the newly-contracted vertex with its neighbor in
the parent component, as long as (1) the subtree has size at most τ (a pre-determined threshold)
and (2) the resulting merged vertex has size at most U . (We use τ = 5 in our experiments.)
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Figure 2: Contracting one-cuts. If there is a one-cut separating a small component from the rest
of the graph (left), we contract the small component into a single vertex (center). If the combined
size of this vertex and its neighbor is sufficiently small, we contract them again (right).

Unlike the previous contraction rule, this one is heuristic: we may lose optimality. This is also
the case with most of the reductions that follow.

During the second pass, we identify all vertices of degree 2. They form paths, which we
contract to a single vertex unless their total size is bigger than U .

The third pass, in which we process 2-cuts (cuts with exactly 2 edges), is more elaborate.
In principle there could be Ω(m2) such cuts, but it is easy to see that the following predicate
P ⊆ E × E is an equivalence relation:

(e, f) ∈ P ↔ e = f or e and f form a 2-cut,

but neither e nor f form a 1-cut.

We use the (quite elegant) algorithm of Pritchard and Thurimella [28] to identify these equivalence
classes in linear time. We then process the equivalence classes one by one.

To process a class S ⊆ E, we first compute the connected components of the graph GS =
(V,E \ S), then contract every component whose size is at most U . See Figure 3.

Note that we cannot afford to spend O(|V |) time to process each equivalence class, since
there are too many of them. We get around this by always traversing two components at a
time. Initially, we take an arbitrary edge of the equivalence class and start traversing the two
components containing its endpoints. Whenever we finish traversing one component, we start
visiting the next one in the cycle. After k − 1 components are visited in full (where k is the
number of components), we stop. At this point, only the largest component, which typically
contains almost the entire graph, will not be fully visited. In total, to process the equivalence
class we visit no more than twice the number of vertices in the smaller components.

Figure 3: Contracting 2-cuts. The set of edges in the same equivalence class determines a set of
components. We contract each component of size at most U into a single vertex.
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3.2 Detecting Natural Cuts

The second stage of the filtering phase of our algorithm detects natural cuts in the graph. Unlike
the cuts in the previous section, natural cuts do not have a preset number of edges. Intuitively,
a natural cut is a sparse cut separating a local region from the rest of the graph. Our algorithm
finds natural cuts throughout the graph, ensuring that every vertex is inside some such cut.

It is tempting to look for a good cut by picking two vertices (s and t) within a local region and
computing the minimum cut between them. Unfortunately, since the average degree on a road
network is very small (lower than 3), such s–t cuts are usually trivial, with either s or t alone in
its component.

Alternatively, one could try a more complicated procedure, such as determining the sparsest
cut of some region R, i.e., the cut C ⊆ R minimizing w(δ(C))/(s(C) · s(R \ C))). This could
be useful, but finding such a cut is NP-hard, and practical approximation algorithms are not
known [2].

By computing a minimum cut between sets of vertices, we get a notion of natural cuts that is
both useful and tractable. These cuts are nontrivial and can be computed by a standard s–t cut
algorithm, such as the push-relabel method [12].

Our algorithm works in iterations. In each iteration, it picks a vertex v as a center and grows
a breadth-first search (BFS) tree T from v, stopping when s(T ) (the sum of its vertex sizes)
reaches αU , for some parameter 0 < α ≤ 1. We call the set of neighbors of T in V \ T the ring
of v. The core of v is the union of all vertices added to T before its size reached αU/f , where
f > 1 is a second parameter. (In our experiments, we use α = 1 and f = 10 as default.) We
temporarily contract the core to a single vertex s and the ring into a single vertex t and compute
the minimum s–t cut between them (using w(.) as capacities), as shown in Figure 4.

To pick the centers in each iteration, we need a rule that ensures that every vertex eventually
belongs to at least one core, and is therefore inside at least one cut. We accomplish this by picking
v uniformly at random among all vertices that have not yet been part of any core. The process
stops when there are no such vertices left. Note that we can repeat this procedure C times in
order to increase the number of marked edges, where C (the coverage) is a user-defined parameter.

v

Figure 4: Computing a natural cut. A BFS tree of size less than αU is grown from a center vertex
v. The external neighboring vertices of this tree are the ring (solid line). The set of all vertices
visited by the BFS while the tree had size less than αU/f is the core (gray region). The natural
cut (dashed line) is the minimum cut between the contracted versions of the core and the ring.
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Figure 5: During the filtering phase, several natural cuts are detected in the input graph (left).
At the end of this phase, any edge not contributing to a cut is contracted. Each vertex of the
resulting graph (right) represents a fragment.

When these iterations finish, we contract each connected component of the graph GC =
(V,E \ C), where C is the union of all edges cut by the process above. We call each contracted
component a fragment. Figure 5 gives an example.

Note that setting α ≤ 1 ensures that no fragment in the contracted graph has size greater
than U . The transformed problem can therefore still be partitioned into cells of size at most U ,
and any such partition can be transformed into a feasible solution to the original instance.

Finally, we note that the generation of natural cuts can be parallelized easily. In our imple-
mentation, we first pick all centers sequentially (for simplicity), and then run each minimum-cut
computation (including the creation of the appropriate subproblem) in parallel.

4 Assembly Phase

During the assembly phase, we finally find a partition. We take the graph produced by the filtering
phase as input. To simplify notation, in this section we use G = (V,E) to refer to this filtered
instance (which is actually the graph of fragments, not the original graph). Any valid partition
of this input corresponds to a valid partition of the original graph, with the same cost.

To obtain good partitions, the assembly phase uses several different tools: a greedy algorithm,
a local search, and a multistart heuristic with combination. We discuss each in turn.

4.1 Greedy Algorithm

To find a reasonably good initial partition, we use a greedy algorithm. It repeatedly contracts
pairs of adjacent vertices, and stops when no new contraction can be performed without violating
the size constraint.
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In each step, the algorithm picks, among all pairs of adjacent vertices with combined size at
most U , the pair {u, v} that minimizes a certain score function. This function is randomized
and depends on the sizes of both vertices and on the weight of the edge between them. We tried
several score functions and settled for

score({u, v}) = r ·
(

w{u, v}
√

s(u)
+

w{u, v}
√

s(v)

)

,

where r is a random number between 0 and 1.
Intuitively, we want to merge vertices that are relatively small but tightly connected. The

precise formula is based on the observation that, on road networks, we expect a region of size k to
have about O(

√
k) outgoing edges. Moreover, by adding two independent fractions we implicitly

give higher importance to the smaller region. Different score functions may work better for other
classes of graphs.

The randomization term (r) is relevant for the local search and the multistart heuristic, as we
shall see. It is biased towards 1 to ensure that in most cases the contribution of the deterministic
term is not too small. More precisely, we use two constants a and b, both between 0 and 1. With
probability a, we pick r uniformly at random in the range [0, b]; with probability 1− a, we pick r
uniformly at random from [b, 1]. After some parameter testing, we ended up using a = 0.03 and
b = 0.6.

For a fixed pair of vertices, the score function is computed once and stored. After each
contraction, the function is recomputed (with fresh randomization terms) for all edges adjacent
to the contracted vertex.

4.2 Local Search

Greedy solutions may be reasonable, but they can be greatly improved by local search. The local
search views the current partition as a contracted graph H. Each vertex of H corresponds to a
cell of the partition, and there is an edge {R,S} in H between cells R and S if there is at least
one edge {u, v} in G with u ∈ R and v ∈ S. As usual, the weight of {R,S} in H is the sum of
the weights of corresponding edges in G.

We tried several variants of the local search, all of them consisting of a sequence of reopti-
mization steps. Each such step first creates an auxiliary instance G′ = (V ′, E′) consisting of a
connected subset of cells of the current partition. In this auxiliary instance, some of the original
cells are uncontracted (i.e., decomposed into their constituent fragments inG), while others remain
contracted. The weight of an edge in E′ is given by the sum of the weights of the corresponding
edges in G.

We then run the randomized greedy algorithm (described above) on G′. The solution on G′

can then be used to create the modified solution H ′ in a natural way. If H ′ is better than H, we
make H ′ our new current solution, replacing H. Otherwise, we say that this reoptimization step
failed, and keep the original solution H.

We tested three local searches, which differ in how they build the auxiliary instances G′, as
Figure 6 illustrates. The simplest variant picks, in each step, a pair {R,S} of adjacent cells and
creates an auxiliary instance G′

RS
consisting of the uncontracted versions of R and S. We call

this variant L2. The second variant, L+
2 , is similar, but also includes in G′

RS
the (contracted)
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Figure 6: Local searches L2, L+
2 , and L∗

2 as defined by the same pair of cells. Search L2 (left)
reoptimizes an auxiliary instance corresponding to the uncontracted versions of the two central
cells. L+

2 (center) also includes the (contracted) neighboring cells in the auxiliary instance. Finally,
in L∗

2 (right) the neighboring cells are uncontracted as well. (In the picutre, cells subdivided by
dashed lines are uncontracted. Cells in the auxiliary instance are shaded.)

neighbors of R and S in H. The third variant, L∗
2, extends L+

2 by also uncontracting the neighbors
of R and S.

For all variants, each step is fully determined by a pair {R,S} of cells. The reoptimization step
itself, however, is heuristic and randomized. In practice, it is worth repeating it multiple times for
the same pair {R,S}. We maintain for each pair {R,S} of adjacent cells a counter ϕRS , initially
set to zero, which roughly measures the number of unsuccessful reoptimization steps applied to
{R,S}. If a reoptimization step on {R,S} fails, we increment ϕRS . If it succeeds, we reset the
counters associated with all edges in H ′ having at least one endpoint in an uncontracted region
of G′

RS
.

Our algorithm uses the ϕRS counters, together with a user-defined parameter ϕ ≥ 1, to
decide when to stop. The parameter limits the maximum number of allowed failures per pair.
Among all pairs {R,S} with ϕRS < ϕ, the algorithm picks one uniformly at random for the
next reoptimization step. If no such edge is available, the algorithm stops. As one would expect,
increasing ϕ leads to better solutions, but slows down the algorithm.

Our implementation of the local search algorithm is parallelized in a straightforward way. We
try several pairs of regions simultaneously and, whenever an improving move is found, we make
the corresponding change to the solution sequentially.

4.3 Multistart and Combination

We use two strategies to improve the quality of the solutions we find. The first is to run a
multistart heuristic. In each iteration, it runs the greedy algorithm from Section 4.1 and applies
local search to the resulting solution. Since both the greedy algorithm and the local search are
randomized, different iterations tend to find distinct solutions. After M iterations (where M is
an input parameter), the algorithm stops and returns the best solution found.

We can find even better partitions by combining pairs of solutions generated during the mul-
tistart algorithm. To do so, we keep a pool of elite solutions with capacity k, representing some
of the best partitions found so far. Here k is a parameter of the algorithm; a reasonable value is
k = ⌈

√
M⌉. This is a standard application of the evolutionary approach, widely used in combi-
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natorial optimization heuristics, including genetic algorithms [13] and path-relinking [10].
In the first k iterations of the multistart algorithm, we simply add the resulting partition P

to the pool. Each subsequent iteration also starts by generating a new solution P (using the
randomized greedy algorithm and local search), but P is not immediately added to the pool.
Instead, we perform a few additional steps. First, we create another solution P ′ by combining
two distinct solutions picked uniformly at random from the pool. We then combine P and P ′,
obtaining a third solution P ′′. Finally, we try to insert P ′′, P ′, and P into the pool, in this order.

We still have to describe how to combine two solutions and how to decide whether a new
solution should be inserted into the pool or not. We discuss each issue in turn.

4.3.1 Combination

Let P1 and P2 be two partitions. The purpose of combining them is to obtain a third solution P3

that shares the good features of the original ones. Intuitively, if P1 and P2 “agree” that an edge
(u, v) is on the boundary between two regions, it should be more likely to be a boundary edge in
P3 as well.

Our algorithm implements this intuition as follows. First, it creates a new instance G′ with
the same vertices and edges as G. For each edge e, define b(e) as the number of solutions (among
P1 and P2) in which (u, v) is a boundary edge. Clearly, the only possible values of b(e) are 0,
1, and 2. The weight w′(e) of e in G′ is its original weight w(e) in G multiplied by a positive
perturbation factor pb(e), which depends on b(e). Intuitively, to make P3 mimick P1 and P2 we
want p0 > p1 > p2, since lower-weight edges are more likely to end up on the boundary. The
algorithm is not too sensitive to the exact choice of parameters; our experiments use p0 = 5,
p1 = 3 and p2 = 2.

We use the standard combination of greedy algorithm and local search to find a solution of
G′, which we turn into P3 (a solution of G) by restoring the original edge weights. Note that
the idea of combining solutions by applying a greedy algorithm and local search to a perturbed
version of original instance has been used before (see [31], for example).

4.3.2 Pool management

The purpose of the pool of solutions is to keep good solutions found by the algorithm. While the
pool has fewer than k solutions, any request to add a new solution P is granted. If, however, the
pool is already full, we must decide whether to actually add P or not and, if so, we must pick a
solution to evict. If all solutions already in the pool are better than P , we do nothing. Otherwise,
among all solutions that are no better than P , we evict that one that is most similar to P . For
this purpose, the difference between two solutions is defined as the cardinality of the symmetric
difference between their sets of cut edges. This replacement strategy has been shown to make
similar evolutionary algorithms more effective by ensuring some diversity in the pool [30].

4.4 Local Branch and Bound

Recall that our local search algorithms explore well-defined neighborhoods, but in a heuristic
fashion. We use a randomized greedy heuristic to find a solution to the subproblem defined by
a pair of adjacent cells (and their neighbors) in the current partition. To determine how far our
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heuristic solutions are from true local minima (i.e., to measure how good our local search is), we
would like to solve these subproblems exactly. They are, however, NP-hard.

Even so, we can still find exact solutions to the subproblems generated by a restricted variant
of L2, the simplest local search we studied. For each pair {R,S} of adjacent cells, we consider the
auxiliary instance defined solely by uncontracted versions of R and S. Moreover, for efficiency we
restrict ourselves to solutions to this instance with at most two cells (in principle, one could find
solutions with even fewer cut edges by allowing a partition in three cells).

We now describe a branch-and-bound algorithm to find solutions to this restricted problem.
Formally, we have an undirected graph G′ = (V ′, E′) with vertex sizes and edge weights denoted
by s(.) and w(.). (In our case, V ′ is the set of all fragments of R and S, whereas E′ represents all
edges between these fragments.) We want to divide it into two parts (A,B) such that:

1. the total size of each part is at most U ;

2. the total weight of the edges that connect A and B is minimized.

Our algorithm implicitly enumerates all possible sets A and B, in search for the sets A∗ and
B∗ that represent the optimum solution to our problem.

At all times, we maintain A′ and B′, two disjoint subsets of V ′, both initially empty. The
assumption is that A′ ⊆ A∗ and B′ ⊆ B∗. In each step, we divide the current subproblem in two
by picking a vertex v from V ′ \ (A′∪B′) and assigning it to either A′ or B′. (Of course, the vertex
is not assigned to a particular set if their combined size exceeds U .) We then recursively solve
both subproblems created, and return the best solution found, if any.

To make this algorithm practical, we need a good lower bound on the cost of any solution
(A,B) with A′ ⊆ A and B′ ⊆ B. Note that, for any such pair (A,B), the set of edges between A
and B is also a cut separating A′ and B′. Therefore, the minimum cut between A′ and B′ in G′ is
a lower bound on the value of the final solution—and a good one in practice. Whenever the lower
bound is at least as high as the best known upper bound (initialized with our heuristic solution),
we make no recursive calls, effectively pruning the search tree. After all, we know no subproblem
would lead to a better solution. Moreover, if the minimum cut happens to be balanced (i.e., with
the size of both parts bounded by U), we prune the tree as well, updating the best upper bound
if necessary.

Note again that we use this branch-and-bound routine only to evaluate the solution quality of
our heuristic local searches. We do not use it in the “production” version of PUNCH.

5 Balanced Partitions

As described so far, PUNCH solves the standard graph partitioning problem, which does not
guarantee any bound on the number of cells in the solution; it only ensures that no cell will have
a size greater than U . However, we can use PUNCH to compute a balanced partition as well.
In this variant of the problem, the inputs are the number of cells (k) and the tolerated level of
imbalance (ε); the partitioner must find k cells, each with size at most (1 + ε)⌈n/k⌉, where n is
the total number of vertices in the original graph.

Suppose we want to find an ε-balanced partition that consists of at most k cells. We do so by
first using the algorithms described so far (a combination of filtering and assembly) to produce
a standard (potentially unbalanced) partition with U := ⌊(1 + ε)⌈n/k⌉⌋. The only constraint
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the partition can potentially violate is that it could contain ℓ > k cells. To fix this, we run a
rebalancing algorithm: we choose a set of k base cells and distribute the fragments of the remaining
ℓ− k cells among the base cells.

More precisely, let V1, V2, . . . , Vk denote the base cells, and let W be the set of fragments of the
remaining cells. We start an iterative process. In each round, we set U ′ = max1≤i≤k(U − s(Vi))
and find a partition P ′ of G[W ] (the subgraph induced by W ) with U ′ as an upper bound on the
cell size. We then heuristically merge cells of P ′ with base cells. If all cells of P ′ can be thus
allocated, we are done. Otherwise, we proceed to the next round by decreasing U ′ (taking the
modified base cells into account) and finding a new partition P ′.

Note that some of the details of this rebalancing algorithm have yet to be specified.
First, we have to specify how to choose the k initial base cells. Our implementation uses a

randomized algorithm. Each cell C of the initial solution we assign the score (2 + r)s(C), where
r is picked uniformly at random between 0 and 1, and choose the k cells with highest score.

Second, we need to specify how we assign cells of P ′ to the base cells. Once again, we use
randomization. We process the cells of P ′ in decreasing order of their sizes. For each cell C ∈ P ′,
we check if it fits in any of the base cells Vi. Among all base cells Vi with s(Vi) + s(C) ≤ U , we
pick one at random with probability proportional to 1/s(Vi), thus preferring tighter fits. If cell C
does not fit anywhere, we just skip it; it will be split in the next round.

Because the rebalancing algorithm is randomized (and relatively quick), we run it several times
to rebalance a single initial solution, and pick the best.

One problem remains: our approach may fail due to the fact that the fragments built during
the filtering phase are too big. Especially when ε is very small, it may happen that we cannot
rebalance the partition. To make this less likely, when computing balanced partitions we actually
use U/3 during the initial filtering stage, thus creating smaller fragments. If the rebalancing
procedure still fails, we could reduce the threshold during filtering even further and start all over
again. However, for the inputs tested, setting the threshold to U/3 is sufficient.

Note that, like other algorithms for the balanced problem, we may sacrifice the connectivity
of the cells to make them balanced.

6 Experiments

6.1 Methodology

We implemented our partitioning algorithm in C++ and compiled it with Microsoft Visual C++
2010. For parallelization, we use OpenMP. The evaluation was conducted on a machine equipped
with two Intel Xeon X5680 processors and 96 GB of DDR3-1333 RAM, running Windows 2008R2
Server. Each CPU has 6 cores clocked at 3.33 GHz, 6 x 64 kB L1, 6 x 256 kB L2, and 12 MB L3
cache.

We use two graphs in our main experiments, both taken from the webpage of the 9th DIMACS
Implementation Challenge [7]. The Europe instance represents the road network of Western
Europe, with 18 million vertices and 22.5 million edges, and was made available by PTV AG [29].
The USA road network (generated from TIGER/Line data [33]) has 24 million vertices and 29.1
million edges. In all cases we use an undirected and unweighted variant of the graphs. Note
that the USA data is already undirected. For Europe, this means interpreting all input arcs as
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undirected and eliminating all parallel edges: If arcs (v, w) and (w, v) are in the input, we have a
single edge {v, w} = {w, v}.

We implemented the push-relabel algorithm of Goldberg and Tarjan [12] to compute s–t cuts.
For our application, we found that the version using FIFO order, frequent global relabelings, and
the send operation performs best (see [12] for details).

Unless otherwise stated, we use the following parameters for PUNCH. During the filtering
phase, we use α = 1, f = 10, and C = 2, and detect both tiny and natural cuts. In the assembly
phase, we use the variant L+

2 as local search, with ϕ = 16. We do not use the combination heuristic
by default. After giving our main results in the following subsection, we present additional
experiments that confirm that these parameter choices present a reasonable trade-off between
running times and solution quality. Unless otherwise mentioned, we use all 12 cores during natural-
cut detection and the assembly phase; our implementation of tiny-cut detection is sequential.

6.2 Main Results

We start our experimental evaluation by reporting the performance of the default version of
PUNCH on Europe and USA when varying U from 210 to 222. Table 1 reports the average number
of cells, the average solution quality (i.e., the number of cut edges), and the average running time
of PUNCH. Since our algorithm is nondeterministic due to parallelism and randomness, all values
are aggregated over 50 runs, with different random seeds. (To speed up the computation, we ran
the filtering phase 5 times, generating 5 contracted graphs, and then ran the assembly phase 10
times on each.)

As expected, the filtering phase reduces the graph size significantly. The tiny-cut procedure
eliminates about half the vertices, while the natural-cut routine further decreases the number of
vertices by 1 to 4 orders of magnitude, depending on U . The actual number varies because the
filtering phase grows BFS trees parameterized by U . When U is small, more edges are marked as
candidates and are kept uncontracted.

This dependence also explains our running times. The procedure for detecting tiny cuts, which
is not parallelized, is almost independent of U and takes about 30 seconds. Natural-cut detection
is executed on bigger subgraphs as U increases. Still, the total time spent on it increases only by
one order of magnitude as U increases by more than three (from 210 to 222). The reason is that
the number of min-cut computations decreases as U increases. Conversely, the assembly phase
gets faster as U increases because it operates on smaller graphs. For very small values of U , the
assembly phase is the main bottleneck because filtering is less effective. In total, we need between
1 and 3 minutes to find good partitions of Europe or the USA, which is quite practical.

We note there are differences between the two graphs. When U is large, the contracted version
of USA has less than half as many vertices as the corresponding graph of Europe, even though
Europe is 25% smaller than USA before contraction. This indicates the USA network has more
obvious natural cuts at a more global scale.1 The difference is much less pronounced for smaller
values of U .

We observe that, although randomized, our algorithm is very robust. Over 50 executions, the
best and worst solutions found are not far from the average. Another interesting observation is
that the solutions found by our algorithm, although not perfectly balanced, are not too far from

1This could be—at least partially—an artifact of this particular data set; as observed on the DIMACS webpage,

several important road segments, including some on bridges and freeways, are missing from the USA graph.
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Table 1: Performance of 50 runs of PUNCH on Europe and USA, with varying maximum cell
sizes (U). Under “cells”, we report the lower bound (lb = ⌈n/U⌉) and the average number of
cells in the actual solution. Column |V ′| refers to the average number of vertices (fragments) after
filtering. “solution” reports the average and best solutions found. Finally, the average running
times of each phase of the algorithm (tiny cuts, natural cuts, and assembly) and in total are
shown.

cells solution time [s]
graph U lb avg |V ′| best avg worst tny nat asm total
Europe 1024 17589 20128.7 1366070 168463 168767 169098 24.5 17.5 37.6 79.7

4096 4398 5000.4 605864 68782 69034 69290 24.5 18.2 19.9 62.5
16384 1100 1247.5 258844 28279 28448 28604 24.5 27.1 10.1 61.6
65536 275 313.9 104410 11257 11403 11518 24.4 51.3 4.8 80.5

262144 69 80.9 34768 4124 4194 4268 24.4 80.0 1.7 106.1
1048576 18 21.8 10045 1422 1464 1527 24.4 122.9 0.6 147.9
4194304 5 5.8 2014 369 371 376 24.2 172.2 0.3 196.6

USA 1024 23387 26725.2 1826293 222349 222636 222896 33.1 21.1 50.3 104.6
4096 5847 6642.6 787382 87584 87762 87949 33.1 21.3 25.5 79.9
16384 1462 1661.2 293206 34175 34345 34523 33.1 30.6 11.3 75.0
65536 366 417.7 89762 12627 12767 12906 33.1 53.1 3.7 89.9

262144 92 108.6 22728 4506 4556 4616 33.1 69.2 1.0 103.3
1048576 23 27.4 4615 1415 1504 1607 33.1 84.3 0.3 117.6
4194304 6 7.0 931 381 383 389 33.1 105.3 0.3 138.7

it. On average, PUNCH finds solutions with about 15% more cells than a perfectly balanced
partition.

In the remainder of this section we study the effects of various parameters on the overall
performance of PUNCH. To simplify the exposition, the experiments focus on a single instance:
Europe with U = 65 536.

6.3 Filtering Phase

We start our parameter tests by determining whether the filtering phase is helpful. On Europe
with U = 65 536, we ran different versions of the filtering phase, with or without the routines for
detecting tiny and natural cuts. Whenever natural cuts were used, we set C = 2. In every case
we ran the standard PUNCH assembly phase (with ϕ = 16).

Table 2 summarizes the results obtained. In each case, we show the average number |V ′| of
vertices (fragments) at the end of the filtering phase, the average solution cost (after the assembly
phase), and the running times in second (of each subphase separately and in total). Because these
experiments are rather slow, each entry is aggregated over 10 runs.

These results show that natural cuts are crucial to the overall performance of PUNCH.Without
natural cuts, the assembly phase must work on a much larger graph. Not only does this make
the overall algorithm much slower (by orders of magnitude), it also leads to significantly worse
solutions on average. By contracting dense regions, natural cuts eliminate many potential bad
choices the assembly phase could make.

In contrast, the effect of tiny cuts is more muted. They do not have any discernible positive
effect on solution quality. (The effect may even be slightly negative, maybe due to the biases it
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Table 2: Performance of PUNCH on Europe with U = 65 536 depending on whether tiny cuts
(tny) and/or natural cuts (nat) are processed (X) or not (×) during the filtering phase.

cuts time [s]
tny nat |V ′| sol tny nat asm total
× × 18010173 11996 — — 2234.6 2234.6
X × 8966360 12124 24.4 — 1148.5 1172.9
× X 114268 11382 — 109.0 5.3 114.3
X X 104410 11432 24.4 48.2 4.9 77.5

introduces when trees are grown during natural cut generation.) By reducing the total number of
fragments, however, tiny cuts accelerate the assembly phase slightly. But the biggest advantage of
tiny cuts is making the generation of natural cuts much faster, thus reducing the overall running
time of the entire algorithm. The difference would be even more pronounced on machines with
fewer cores: while tiny-cut detection uses only one core, natural cuts use twelve.

Next, we check how the choice of natural cuts affects the performance of PUNCH. Recall that
the main parameters are α (which determines the ring size) and f (which sets the core size relative
to the ring). Table 3 reports the average solution values on Europe with U = 65 536 when α and
f vary. As usual, averages are taken over 50 runs.

Table 3: Average solutions for U = 65 536 on Europe depending on the sizes of the ring and the
core, as controlled by parameters α and f .

f
α 5 10 15 20

0.25 11614 11596 11617 11683
0.50 11546 11484 11522 11582
0.75 11481 11453 11458 11499
1.00 11471 11413 11402 11444

The table shows that the algorithm is not too sensitive to the exact choice of parameters, but
solutions improve slightly as α increases. In particular, growing BFS trees of size exactly U (i.e.,
setting α = 1.0) seems to be a reasonable choice, since it generates cuts at the appropriate scale
and creates fewer candidate edges. (In fact, when C > 1, one could even consider having α > 1 in
at least one iteration.) The dependence on f is less clear, with slight advantage to values between
10 and 15, supporting our choice of f = 10 as default.

Another parameter of the filtering phase is the coverage factor C, which controls how many
times a vertex belongs to a core. Table 4 reports, for various coverage factors C, the number
of vertices in the contracted graph, the running time of each phase, and the quality of the final
solutions obtained.

As one would expect, increasing C yields bigger contracted graphs (and higher running times),
since more edges are marked. In contrast, the solution quality increases only slightly when switch-
ing from C = 1 to C = 2, then it gets worse again. This indicates that the assembly phase can be
“misguided” when given too many options, since it is just a heuristic. We have already observed
a similar behavior in Table 2.

In fact, one should expect this effect to become less pronounced as more sophisticated (and
time-consuming) procedures are used in the assembly phase. To test this, we repeated the same
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Table 4: Performance of PUNCH on Europe with U = 65 536 and different coverage (C) values.
time [s]

C |V ′| sol flt asm total
1 62546 11425 50.2 2.7 53.0
2 104410 11415 74.3 4.8 79.0
3 134146 11438 100.2 6.4 106.6
4 157318 11464 123.4 7.6 131.0
5 176523 11470 147.4 8.8 156.2

experiment but varied ϕ (the maximum number of failures in the local search) as well. The
average solutions thus obtained are shown in Table 5.

Table 5: Average solution quality on Europe with U = 65 536 for different coverage (C) and
maximum failure (ϕ) values.

coverage
ϕ 1 2 3 4 5
4 11635 11652 11708 11750 11769
16 11425 11415 11438 11464 11470
64 11299 11250 11258 11285 11300

With ϕ = 4, the assembly phase actually finds the best solutions when C = 1; for such a simple
heuristic, increasing C only hurts. For ϕ = 16, as already seen, C = 2 is slightly better. When
ϕ = 64, setting C to 2 or even 3 is clearly better than 1. Overall, using C = 2 is a reasonable
compromise between speed and solution quality.

Finally, we test the scalability of our implementation. As already mentioned, the tiny-cut
processing routine is sequential, but both the natural-cut heuristic (the main bottleneck of the
filtering phase) and the assembly phase are parallelized. Table 6 reports the average running
times of each stage of our algorithm when the number of cores varies. We notice that running on
more cores significantly accelerates the algorithm. The speedups is not perfect, however, mainly
because all phases still have some sequential subroutines, such as finding centers or updating the
current solution. Moreover, contention to access the two memory banks in our machine can be
an issue.

Table 6: Execution time (in seconds) of each stage (tiny cuts, natural cuts, and assembly) when
varying numbers of cores.

average time [s]
cores tny nat asm total

1 24.4 247.1 27.1 298.6
2 24.3 140.9 14.9 180.2
4 24.4 82.4 8.8 115.5
6 24.4 65.5 6.8 96.6
8 24.4 59.1 5.8 89.2

12 24.3 51.1 4.9 80.3
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6.4 Assembly Phase

We now consider different parameter choices during the assembly phase. We start by evaluating
how running times and solution quality are affected by ϕ, the parameter that controls the number
of failures allowed per pair during the local search. Table 7 reports the results on Europe with
U = 65 536. Values are aggregated over 50 runs of L+

2 , our default local search. For each value,
we show the average solution found, the number of subproblems improved and tested, and the
average running time of the assembly phase in seconds. (See Table 1 for data on the filtering
stage, including running times.)

Table 7: Performance of L+
2 on Europe for U = 65 536 and varying ϕ: average solution, average

number of subproblems improved and tested, and average assembly time (in seconds).
subproblems

ϕ sol improv tested time
0 14422 0 0 0.2
1 12106 461 2486 1.6
2 11838 572 4746 2.1
4 11660 672 8670 2.7
8 11513 755 15852 3.5
16 11395 838 28866 4.8
32 11327 899 52953 6.9
64 11256 946 96924 10.8

128 11195 1003 180506 18.1
256 11161 1029 328338 30.8
512 11113 1060 616928 55.8

These results demonstrate that the local search procedure finds significantly better results
than the constructive algorithm (shown as ϕ = 0 in the table). As expected, both solution quality
and running times increase with ϕ. More interestingly, the success rate varies significantly: about
20% of the subproblems examined are actually improved with ϕ = 1, but fewer than 1% for
ϕ ≥ 64. Our default value ϕ = 16 is a reasonable compromise between solution quality and
running time.

We now compare the three neighborhoods we considered: L2, L+
2 , and L∗

2. As shown in
Figure 6, they differ in how a subproblem is defined: L2 reoptimizes two neighboring cells, L+

2

also considers contracted versions of its neighbors, and L∗
2 disassembles the neighbors as well. We

tested each local search with three different values of ϕ (16, 64, and 256). Table 8 reports, in
each case, the average solution found, the assembly time in seconds, and the average number of
subproblems improved and tested. Averages are taken over 50 runs of each local search, from the
same 50 initial solutions.

As one would expect, L2 and L+
2 , which must solve subproblems with similar sizes, have

comparable running times, and are much faster than L∗
2. Curiously, L+

2 is actually slightly faster
than L2, despite the fact that the subproblems it must solve are bigger. This is because L+

2 needs
fewer improvements to reach a local optimum, which leads to fewer subproblems tested in total.

In terms of solution quality, the algorithm based on L+
2 also dominates the other neighbor-

hoods. This is not surprising in the case of L2, which visits a much more restricted neighborhood.
In contrast, the neighborhood explored by L∗

2 dominates L+
2 in theory, but ends up being worse

in practice because we solve subproblems only heuristically.
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Table 8: Different combinations of local search (ls) and maximum failure (ϕ) on Europe with
U = 65 536: average solution, number of subproblems improved and tested, and assembly times
in seconds.

subproblems
ϕ ls sol improv tested time
16 L2 12036 954 35486 5.1

L+

2 11398 834 28849 4.8
L∗

2 12366 324 34902 18.8

64 L2 11784 1124 115534 11.6
L+

2 11255 947 96273 10.7
L∗

2 12140 398 126744 60.5

256 L2 11640 1232 385100 33.0
L+

2 11152 1025 329584 30.9
L∗

2 11933 472 473439 219.5

In fact, the branch-and-bound algorithm proposed in Section 4.4 can improve the solutions
found by all local searches. For example, it improves a local optimum found by L+

2 (with φ = 256)
by more than 1% (from 11134 to 10980), but the computation takes more than a day. As the
next section will show, however, there are faster ways of obtaining good solutions.

6.5 Combination

We now consider how to obtain better solutions if more time is available. One possibility has
already been discussed: increasing the maximum number of failures. As shown in Table 7, setting
ϕ to 512 instead of 16 improves the average solution by roughly 3%.

We now consider two other methods. The first is a simple multistart heuristic: run the
combination of constructive algorithm and local search M times and pick the best solution thus
found. The second is a combination method: as explained in Section 4.3.1, it maintains a pool of√
M elite solutions, and combines them periodically (among themselves and with new solutions).
Table 9 reports the average solutions and running times of both heuristics as a function of M

(the number iterations) and ϕ. Running times are for the assembly phase only, since all methods
share the same filtering stage (see Table 1). Solution values and times are averages over five runs.

As expected, solutions get better as the number of multistart iterations increases. They do
so quite slowly, though. For a fixed ϕ, increasing M from 16 to 256 improves the solution by less
than 1%. Comparing this with Table 7, increasing ϕ seems to be a more effective use of the extra
time.

In contrast, the combination algorithm leads to significantly better solutions. With the highest
values of M and ϕ we tested, the algorithm takes almost an hour, but improves the average
solutions found by the basic version of PUNCH, reported in Table 1, by almost 6%. Even a less
agressive choice of parameters, such as M = 16 and ϕ = 32, already leads to improvements of up
to 4% over the basic solution in less than five minutes (including the filtering stage). By setting
these parameters appropriately, users can trade off solution quality for running time.
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Table 9: Average results on Europe for U = 65 536 when varying ϕ and the number of iterations
(M). “Multistart” is a plain multistart algorithm. “Combination” includes the multistart algo-
rithm plus recombination, using a pool with capacity

√
M . All times are in seconds and refer to

the assembly phase only.
multistart combination

M ϕ sol time sol time
16 1 11944 29.5 11274 43.0

2 11733 36.9 11185 53.0
4 11531 46.9 11081 66.5
8 11395 59.4 10991 85.4
16 11311 79.8 10970 119.3
32 11223 114.5 10901 179.6

64 1 11913 118.4 11073 179.2
2 11686 148.6 10977 219.7
4 11483 186.0 10900 274.8
8 11367 240.2 10864 359.9
16 11273 319.1 10814 500.2
32 11200 453.8 10812 753.2

256 1 11874 467.9 10955 714.7
2 11638 595.2 10862 888.6
4 11464 744.0 10812 1107.4
8 11347 953.6 10764 1444.7
16 11251 1277.3 10731 2023.8
32 11155 1816.7 10722 3070.4

6.6 Balanced Partitions

We now study how effective PUNCH is when computing balanced partitions, in which the maxi-
mum number k of cells is bounded. The size of each cell must be at most U∗ = ⌊(1 + ε)⌈n/k⌉⌋,
where ε is the tolerated imbalance. We use ε = 0.03, as is common in the literature [26, 17, 16, 24].

As described in Section 5, to find a balanced partition with PUNCH we first run the filtering
stage with U = U∗/3. We can then run the assembly stage with U = U∗ to generate an initial
unbalanced solution, which we make balanced by reassigning some fragments. In practice, we
noticed the variance of the assembly phase is rather large when k is very small (2 or 4), which we
can remedy by running it several times and picking the best result.

More precisely, our default algorithm for finding a balanced partition is as follows: (1) run the
filtering stage once with U = U∗/3; (2) use the multistart algorithm to create ⌈32/k⌉ (unbalanced)
solutions with U = U∗; (3) rebalance each unbalanced solution 50 times (as described in Section 5);
(4) return the best balanced solution thus found. We use ϕ = 512 when finding unbalanced
solutions (step 2), and ϕ = 128 during rebalancing (step 3).

We tested values of k ranging from 2 to 64, and ran the entire algorithm 100 times for each k.
Table 10 reports the results, including the time spent during each phase of the algorithm: filtering
(flt), generating the ⌈32/k⌉ unbalanced solutions (unb) and rebalancing each 50 times (bal).
Averages in the table are taken over all 100 executions.

For consistency with previous work, we ran our algorithm on the version of the European road
network tested in [16, 24]. Although it comes from the same source [29], it has a few more vertices
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Table 10: Performance of PUNCH when finding balanced partitions on Europe∗ with ε = 0.03,
aggregated over 100 runs. We report the average (avg sol) and best (best sol) solutions found,
both before (unb) and after (bal) rebalancing. We also show the average running time of each
stage: filtering, finding a potentially unbalanced solution, and rebalancing it.

instance avg sol best sol time [s]
gph cel unb bal unb bal flt unb bal
DEU 2 166 166 164 164 36.5 8.6 4.8

4 408 410 400 400 30.4 21.5 5.5
8 702 746 689 711 25.3 24.3 11.7
16 1158 1188 1136 1144 21.5 25.0 3.4
32 1962 2032 1913 1960 18.9 20.7 3.2
64 3185 3253 3127 3165 14.0 32.1 3.9

EUR 2 130 130 129 129 183.2 10.1 61.9
4 307 309 307 309 163.2 16.5 35.1
8 668 671 634 634 137.3 27.7 10.8
16 1322 1353 1268 1293 115.4 28.3 7.6
32 2328 2362 2269 2289 97.6 28.7 3.7
64 3867 3984 3796 3828 82.8 52.1 9.7

USA 2 70 70 69 69 137.8 6.2 11.3
4 263 263 263 263 127.6 6.1 5.4
8 514 546 514 530 118.6 6.8 4.9
16 1009 1037 988 1011 110.3 9.6 2.8
32 1838 1883 1808 1829 102.5 11.5 1.3
64 3246 3350 3204 3260 93.5 22.8 3.6

(less than 1%) than our version (downloaded from [7]), and it is not connected. We refer to the
disconnected instance as EUR, as in [16, 24]. We also run our algorithm on DEU, a subgraph of
EUR (also disconnected) representing Germany, and on the USA graph.

The table shows that rebalancing an unbalanced partition increases the cut size only slightly.
The additional rebalancing time does not depend much on k, and is usually much smaller than
the time spent to generate the unbalanced partition.

As already mentioned, the most prominent general-purpose software libraries focus on finding
balanced partitions. Tables 11 and 12 show how the average and best solutions found by PUNCH
compare with those found by other popular methods (as reported in [25], the full version of [24]).
Note that deu and eur are the only road networks for which detailed results are presented in
that paper. For consistency with the other methods, Table 12 only considers the first 10 random
seeds for PUNCH.

Note that, on average, PUNCH finds much better solutions than METIS or SCOTCH do.
These methods, however, are faster than ours, as Table 13 indicates. Their emphasis is on finding
an adequate solution very quickly.

In contrast, KaPPa, KaSPar, and PUNCH sacrifice some running time in order to obtain
significantly better partitions. (The values we report refer to the “strong” versions of KaPPa
and KaSPar.) Even so, for every k the average solution found by our algorithm improves on the
previously best known results, which were obtained by KaSPar. The improvement is often higher
than 10%. Moreover, KaSPar is considerably slower (but sequential) on a comparable machine
(an Intel Xeon X5355 running at 2.67 GHz), as Table 13 shows. We conclude that PUNCH is
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Table 11: Average balanced partitions with ε = 0.03 for various algorithms on Europe.
instance average solution
gph cel punch kaspar kappa scotch metis

DEU 2 166 172 221 295 286

4 410 426 542 726 761

8 746 773 962 1235 1330

16 1188 1333 1616 2066 2161

32 2032 2217 2615 3250 3445

64 3253 3631 4093 4978 5385

EUR 2 130 138 — 469 —

4 309 375 619 952 1626

8 671 786 1034 1667 3227

16 1353 1440 1900 2922 9395

32 2362 2643 3291 4336 9442

64 3984 4526 5393 6772 12738

Table 12: Best balanced partitions (over 10 runs) found by various algorithms with ε = 0.03.
instance best solution
gph cel punch kaspar kappa scotch metis

DEU 2 164 167 214 295 268

4 404 419 533 726 699

8 721 762 922 1235 1174

16 1159 1308 1550 2066 2041

32 1993 2182 2548 3250 3319

64 3187 3610 4021 4978 5147

EUR 2 129 133 — 469 —

4 309 355 543 952 846

8 639 774 986 1667 1675

16 1293 1401 1760 2922 3519

32 2314 2595 3186 4336 7424

64 3912 4502 5290 6772 11313

Table 13: Average running times (in seconds) of different partitioning packages to find balanced
partitions with ε = 0.03.

instance average time [s]
gph cel punch kaspar kappa scotch metis

DEU 2 50 231 68 3 5

4 57 244 77 6 5

8 61 250 100 10 5

16 50 278 106 13 5

32 43 284 73 16 5

64 50 294 50 19 5

EUR 2 255 1946 — 12 —

4 215 2168 441 25 29

8 176 2232 418 39 29

16 151 2553 498 52 31

32 130 2599 418 65 31

64 145 2534 308 77 30
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an excellent alternative for finding balanced partitions of road networks. We stress that, unlike
PUNCH, the other algorithms are general-purpose partitioners. Their performance could be much
better on other types of graphs.

In order to evaluate whether these improvements stem from our filtering or assembly phase,
we ran SCOTCH on our contracted graph (after filtering). The resulting cuts are much better
than those found by pure SCOTCH (particularly for large k), but still worse than those found by
PUNCH alone. This indicates that both phases of PUNCH are important for the improvements
we observe.

7 Conclusion

We presented PUNCH, a new algorithm for graph partitioning that works particularly well on
road networks. The key feature of PUNCH is its graph reduction routine: By identifying natural
cuts and contracting dense regions, it can reduce the input size by orders of magnitude. More
importantly, it preserves the natural structure of the graph. Because of this efficient reduction
in size, we can run more time-consuming routines to assemble a good partition. As a result, we
obtain the best known partitions for road networks, improving previous bounds by more than
10% on average. Altogether, PUNCH is slower compared to some previous graph partitioning
algorithms, but it needs only a few minutes to generate an excellent partition, which is fast enough
for most applications.

Regarding future work, we are interested in testing PUNCH on other inputs. Preliminary
experiments on a set of standard benchmark instances [34] indicate that the filtering phase of
PUNCH is not very helpful. This is expected, since these instances do not have as many natural
cuts as road networks do. However, running the assembly phase of PUNCH alone improves the
best known solution for some instances. We plan to investigate this more thoroughly in the future.
In addition, it would be interesting to develop a distributed version of PUNCH, which we believe
would work well because most of the computations are largely independent from one another.
Finally, we are interested in developing a more realistic model for road networks, incorporating
the concept of natural cuts.
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Figure 7: Partition generated by PUNCH. The input is the European road network, U is set
to 1 000 000. PUNCH identifies the alps and the borders (Switzerland/France, France/Germany,
Italy/France) as natural cuts.
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Figure 8: Partition generated by PUNCH. The input is the European road network, U is set to
1 000 000. PUNCH identifies the Pyrenees as natural cut.
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Table 14: Performance of 50 runs of PUNCH on subraphs of USA, with varying maximum cell
sizes (U). Under “cells”, we report the lower bound (lb = ⌈n/U⌉) and the average number of
cells in the actual solution. Column |V ′| refers to the average number of vertices (fragments) after
filtering. “solution” reports the average and best solutions found. Finally, the average running
times of each phase of the algorithm and in total are shown.

instance cells solution time (s)
gph n U lb avg |V ′| best avg worst tny nat asm total

NY 264346 1024 259 300.6 24210 3156 3187 3221 0.3 0.3 0.6 1.1

4096 65 76.1 8575 1067 1091 1132 0.3 0.4 0.2 0.9

16384 17 18.9 2650 360 372 385 0.3 0.6 0.1 1.0

65536 5 6.0 526 65 65 66 0.3 1.1 0.0 1.4

BAY 321270 1024 314 370.8 22853 2774 2802 2829 0.3 0.2 0.5 1.1

4096 79 92.4 8588 879 893 909 0.3 0.3 0.2 0.8

16384 20 23.9 2540 249 260 274 0.3 0.5 0.0 0.8

65536 5 6.0 512 52 54 56 0.3 0.8 0.0 1.1

COL 435666 1024 426 497.7 26639 3204 3251 3287 0.4 0.3 0.6 1.3

4096 107 126.9 10367 1131 1152 1175 0.4 0.3 0.2 1.0

16384 27 31.1 3456 412 424 448 0.4 0.5 0.1 1.0

65536 7 7.7 1047 126 135 156 0.4 0.9 0.0 1.3

FLA 1070376 1024 1046 1227.4 61553 7685 7723 7762 1.2 0.8 1.2 3.2

4096 262 304.5 24636 2646 2674 2697 1.2 0.8 0.5 2.5

16384 66 78.7 8763 831 846 862 1.2 1.4 0.2 2.7

65536 17 18.8 2460 224 233 246 1.2 2.5 0.0 3.7

NW 1207945 1024 1180 1365.2 70626 8533 8575 8638 1.3 0.8 1.4 3.5

4096 295 345.8 27764 3000 3038 3081 1.3 0.8 0.6 2.7

16384 74 87.0 9519 1028 1043 1065 1.3 1.2 0.2 2.7

65536 19 22.3 2490 310 322 337 1.3 2.2 0.1 3.6

NE 1524453 1024 1489 1704.4 123613 15300 15363 15437 1.9 1.5 2.9 6.2

4096 373 421.2 51596 5847 5892 5937 1.9 1.6 1.3 4.8

16384 94 106.6 18942 2229 2260 2286 1.9 2.5 0.6 4.9

65536 24 28.9 5414 726 749 768 1.9 4.3 0.2 6.3

CAL 1890815 1024 1847 2140.6 129274 15952 16025 16095 2.3 1.6 3.0 6.9

4096 462 533.7 49670 5634 5674 5722 2.3 1.7 1.2 5.2

16384 116 135.4 16234 1896 1948 1983 2.3 2.6 0.4 5.3

65536 29 33.0 4288 577 587 607 2.3 4.4 0.1 6.8

LKS 2758119 1024 2694 3053.9 257252 31316 31414 31504 3.5 2.7 7.0 13.1

4096 674 758.3 113523 12839 12921 13009 3.5 2.8 3.7 10.0

16384 169 190.6 42198 5121 5184 5244 3.5 4.3 1.7 9.4

65536 43 48.7 12145 1845 1896 1943 3.5 7.1 0.5 11.0

E 3598623 1024 3515 4020.7 260877 31847 31921 31999 4.5 3.1 6.2 13.7

4096 879 999.1 112245 12433 12503 12579 4.5 3.2 2.9 10.6

16384 220 251.8 41452 4765 4816 4890 4.5 4.7 1.3 10.4

65536 55 66.2 12513 1667 1711 1759 4.5 8.2 0.4 13.1

W 6262104 1024 6116 7089.0 409602 49953 50093 50223 8.2 5.5 9.7 23.5

4096 1529 1765.7 158007 18001 18085 18190 8.2 5.6 3.9 17.7

16384 383 441.9 53243 6475 6525 6593 8.2 8.0 1.4 17.6

65536 96 109.0 15174 2167 2195 2237 8.2 13.7 0.4 22.3

CTR 14081816 1024 13752 15632.6 1147988 139717 139888 140153 25.2 18.8 34.9 79.0

4096 3438 3881.5 511257 56394 56621 56746 25.2 18.3 18.5 62.0

16384 860 972.7 194985 22490 22612 22728 25.2 22.9 8.3 56.4

65536 215 244.9 60154 8381 8472 8617 25.2 36.0 2.7 63.9

USA 23947347 1024 23387 26725.3 1826293 222386 222564 222765 33.2 22.9 50.4 106.5

4096 5847 6640.8 787382 87541 87785 87956 33.1 22.8 25.4 81.3

16384 1462 1661.6 293206 34206 34355 34566 33.1 31.8 11.2 76.1

65536 366 417.9 89762 12634 12761 12854 33.1 53.9 3.7 90.8
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