
“© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.”

Manuscript for IEEE TMM

Graph PCA Hashing for Similarity Search
Xiaofeng Zhu, Xuelong Li, Fellow, IEEE, Shichao Zhang, Zongben Xu, Litao Yu, and Can Wang

Abstract—This paper proposes a new hashing framework to
conduct similarity search via the following steps: first, employing
linear clustering methods to obtain a set of representative data
points and a set of landmarks of the big dataset; second, using
the landmarks to generate a probability representation for each
data point. The proposed probability representation method is
further proved to preserve the neighborhood of each data point.
Third, PCA is integrated with manifold learning to lean the hash
functions using the probability representations of all representative
data points. As a consequence, the proposed hashing method
achieves efficient similarity search (with linear time complexity)
and effective hashing performance and high generalization ability
(simultaneously preserving two kinds of complementary similarity
structures, i.e., local structures via manifold learning and global
structures via PCA). Experimental results on four public datasets
clearly demonstrate the advantages of our proposed method in
terms of similarity search, compared to the state-of-the-art hashing
methods.

Index Terms—Hashing, image retrieval, manifold learning,
similarity search, spectral clustering.

I. INTRODUCTION

 Similarity search is defined as quickly finding out the most
similar data points from the big data set for a given query
niques (such as kd-tree, B-tree, R-tree, M-tree, cover tree, met-
ric tree, and QUC-tree) and hashing methods (such as data-
dependent hashing and data-independent hashing) [6]–[10]. In-
dex techniques conduct exact similarity search, but only effec-
tive for dealing with the low-dimensional data sets [11]–[13].

X. Zhu and S. Zhang are with the Guangxi Key Laboratory of MIMS and the

College of Computer Science and Information Technology, Guangxi Normal
University, Guilin 541004, China (e-mail: xfzhu0011@hotmail.com; zhangsc@
mailbox.gxnu.edu.cn).

X. Li is with the Xi’an Institute of Optics and Precision Mechanics, Chinese
Academy of Sciences, Xi’an 710119, China (e-mail: xuelong_li@opt.ac.cn).

Z. Xu is with the School of Mathematics and Statistics, Xian Jiaotong Uni-
versity, Xian 710049, China (e-mail: zbxu@mail.xjtu.edu.cn).

L. Yu is with the School of Information Technology and Electrical
Engineering, University of Queensland, Queensland, QLD 4072, Australia
(e-mail: l.yu4@uq.edu.au).

C. Wang is with the School of Information and Communication
Technology, Griffith University, Southport, QLD 4215, Australia (e-mail:
canwang613@ gmail.com).

 By contrast, hashing techniques conduct Approximate
Near-est Neighbor (ANN) search and have been becoming
increas-ingly popular in real applications, such as
multimedia search [14]–[16], database management [17], [18],
and medical image analysis [19].

Different from exact similarity search, hashing needs less
retrieval cost via scanning a subset of the entire data set
to effectively conduct ANN search on high-dimensional data
sets. The key step of hashing is hash function learning,
which converts the high-dimensional continuous data into low-
dimensional binary codes while preserving the similarity infor-
mation (i.e., similarity structures of the data) among data points
[20]–[22].

Previous methods of hash function learning include Local-
ity Sensitive Hashing (LSH) based hashing methods [23]–[26],
Principal Components Analysis (PCA) based hashing meth-ods
[27]–[30], and manifold based hashing methods [30]–[35].
LSH based hashing methods randomly select a linear function
as the hash function. The process of hash function learning is
independent from the data, so LSH based hashing meth-ods are
usually called data-independent hashing methods. PCA based
hashing methods and manifold based hashing methods,
respectively, utilize PCA and manifold techniques, to learn the
hash functions. Moreover, PCA based methods and manifold
based methods explore the data distribution to separately pre-
serve the global and the local similarity structures of the data,
and thus are called data-dependent hashing methods. In brief,
LSH based hashing methods achieve fast retrieval speed, but
need long bits to represent each data point for achieving rea-
sonable hashing performance. Both PCA and manifold based
hashing methods achieve significant hashing performance, but
are with inefficient retrieval speed, i.e., at least quadratic time
complexity for the training stage.

In this paper, we propose a linear hashing method to over-
come the drawbacks of previous hashing methods. Specifically,
we first employ linear spectral clustering methods to obtain the
representative set and the landmark set of the big data set. We
then use the landmark set to obtain the probability repre-
sentation of the big data set, and also prove that the resulting
probability presentation preserves the neighborhood of the
data. We further combine PCA with manifold learning in a
unified framework to learn hash functions using the
representation set. As a result, the use of the representative set
and the landmark set achieves a linear hashing, while both the

Manuscript for IEEE TMM

probability rep-resentation and the process of hash function
learning enable to achieve high generalization ability and
effective retrieval results.

Different from previous hashing methods, the proposed
method has the following contributions:

1) The proposed method is a data-dependent method, which
has been shown to outperform the data-independent hash-
ing methods (such as LSH based hashing methods).
Moreover, our method only needs representing the high-
dimensional data by short binary codes (such as less than
64 bits in our experiments), while LSH based hashing
methods need to represent each data point by long binary
codes, such as more than 100-bit binary codes [21].

2) Even though the hashing methods (including PCA based
methods, manifold based methods, and our proposed
method) are data-dependent, our method achieves less
computation cost, shorter binary codes and more effective
hashing performance, than other data-dependent hashing
methods. On one hand, the proposed method learns the
hash functions using the landmark set, whose size is much
small than the size of the big data set, so our hash func-
tion learning process needs less storage and computation
costs. On the other hand, our proposed method learns the
hash functions via preserving both the local and global
similarity structures of the data, and thus enables to out-
put significant hashing performance. By contrast, previous
hashing methods only consider each of these two types of
similarity structures, even though they have been shown
to provide complimentary information to each other.

3) Experimental results in public data sets show that our pro-
posed method achieves the best performance in terms of
similarity search in large-scale data sets, compared to the
state-of-the-art hashing methods. This verifies the theoret-
ical advantages of our proposed method, i.e., concurrently
preserving the global (via PCA) and the local (via mani-
fold learning) similarity structures of the data.

II. RELATED WORK

Hashing methods for ANN search usually include two steps,
i.e., hash function learning and binarization. Hash function
learning usually involves finding a continuous embedding of
original data. Binarization converts the embedding of original
data to binary codes by threshold methods. For example, the
literatures in [36]–[38] simply quantize the low-dimensional
embedded data into binary codes by a threshold, such as mean
and median. Hierarchical hashing (HH) [39] first divides the real
values of each dimension into four regions via three thresholds,
and then encodes each dimension with double bits. Double-Bit
Quantization (DBQ) [40] learns adaptive thresholds to quan-
tize each projected dimension into double bits. However, above
methods separately learn the hashing functions and the thresh-
old, so that it is difficult for such sequential two-step methods
to receive the optimal hashing performance even though each
of two steps achieves their individual optimizations [33]. To
address this issue, the method in [33] simultaneously learns the

hash functions and the threshold to output the optimal results of
both hash functions and the threshold.

In the literature, most hashing methods focus on the step of
learning hash function. Therefore, in this section, we categorize
previous hashing methods into three categories, such as uni-
modal hashing, multi-modal hashing, and cross-modal hashing,
according to the number of the data sets to learn hash functions
[8], [41].

Uni-modal hashing conducts ANN search on a data set and
can be categorized into three sub-categories, such as unsuper-
vised hashing, supervised hashing and semi-supervised hashing.
Unsupervised hashing learns the hash functions without taking
prior knowledge (i.e., label information) into account [32], [42]–
[44]. Supervised hashing learns the hash functions via consid-
ering prior knowledge, such as “similar” and “dissimilar” pairs
of the data [36], [45], [46]. Semi-supervised hashing employs a
supervised term to minimize the empirical error on the labeled
data and an unsupervised term to maximize desirable proper-
ties, such as variance and independence of individual bit in the
binary codes [30], [34].

This paper focuses on unsupervised hashing since it is expen-
sive to obtain prior knowledge for the construction of hashing
in real applications. We further partition current unsupervised
hashing methods into two sub-groups, such as data-independent
hashing methods (such as LSH based hashing) and data-
dependent hashing methods (such as PCA based hashing meth-
ods and manifold based hashing methods). Data-independent
hashing methods generate hash functions without considering
the properties of the data. For example, LSH and its variants
[17], [23], [24], [47] learn the hash functions based on ran-
dom projections. The Kernelized LSH (KLSH) [25] captures
the intrinsic relationships among training samples using kernel
functions instead of linear inner products. Shift-invariant Ker-
nel LSH (SKLSH) [26] learns the hash functions by mapping
the random features into shift-invariant kernels. Data-dependent
hashing methods have been becoming increasingly popular in
the applications of ANN search since it can generate effective
hash functions by exploring the properties of training data. For
example, PCA based hashing methods [28], [48] learn the hash
functions via preserving the maximal covariance of original data
and have been shown to outperform LSH based hashing methods
in [29]. However, PCA based hashing methods assign the same
weight to each bit, even though different bits contain differ-
ent variance. To address this issue, Isotropic hashing (IsoHash)
learns the hash functions for producing projected dimensions
with isotropic variances (equal variances) [39], while ITerative
Quantization (ITQ) [29] designs a non-orthogonal relaxation or
sequential projection to alleviate such an unbalanced variance
issue. Manifold based hashing methods [31], [35], [44], [49]
employ manifold learning techniques to learn hash functions,
for preserving the local similarity structures of the data, i.e.,
similar data points have similar binary codes. The key issues of
most manifold based hashing methods are the high time com-
plexity [32] and the out-of-sample problem (i.e., not generating
explicit hash functions), such as the methods [32], [44], [50].

Multi-modal hashing is designed to conduct hash function
learning for encoding multi-modal data [16], [51]. For example,

the method [16] first uses an iterative method to preserve the
semantic similarities among training examples, and then keeps
the consistency between the hash codes and the correspond-
ing hashing functions designed for multiple modals. Multiple
Feature Hashing (MFH) [20] preserves the local structure infor-
mation of each modal and also globally considers the alignments
for all the modals to learn a group of hash functions for real-time
large scale near-duplicate web video retrieval. However, multi-
modal hashing is constraint to the real applications because it is
difficult and impractical to obtain multi-modal queries.

Cross-modal hashing is much more popular because only
one view is needed for a query. For example, in real appli-
cations, we can use search engines (such as Google, Bing, and
Baidu) to conduct cross-modal search, such as searching images
via a text query. Besides, the retrieval tasks (such as image-to-
image, text-to-image, and image-to-text) can also be conducted
by cross-modal hashing. In the literatures, Multi-modal Latent
Binary Embedding (MLBE) [52] devises a generative model
to conduct hash function learning using only hundreds of data
points out of millions data points as training samples, i.e., a
small subset of training data. Both Cross-Modal Similarity Sen-
sitive Hashing (CMSSH) [16] and Inter-Media Hashing (IMH)
[2] are not used to learn the hash functions from large-scale
training data sets yet since they need high time complexity,
such as O(n3) where n is the sample size. To reduce the time
complexity, Linear Cross-Modal Hashing (LCMH) [13] takes
both the intra-similarity in each modal and the inter-similarity
across the modals to conduct cross-modal hashing within lin-
ear time complexity. Recently, Latent Semantic Sparse Hashing
(LSSH) [53] conducts cross-modal similarity search by employ-
ing sparse coding and matrix factorization, while Deep Cross-
Modal Hashing (DCMH) [54] integrates feature learning with
hash function learning in a framework.

III. PRELIMINARY

In this section, we first show the notions used in this paper, and
then separately introduce the background of PCA based hashing
and manifold based hashing, followed by the motivation of our
proposed method.

A. Notations

In this paper, we denote matrices, vectors, and scalars, respec-
tively, as boldface uppercase letters, boldface lowercase letters,
and normal italic letters. We summarize other notations used in
this paper in Table I.

Given a set of n data points Z = {z1 , z2 , ..., zn} ∈ Rn×d

where d is the number of features, we assume that the matrix Z
is zero-centered, i.e.,

∑n
j = 1 zj,i = 0 (i = 1, ..., d). The goal of

this paper is to learn a binary code matrix B ∈ {−1, 1}n×c for
Z without label information to conduct uni-modal unsupervised
hashing, where c denotes the number of the codes. Specifically,
for the k-th bit (k = 1, ..., c), we denote its binary encoding
function as hk (z) = sgn(zwk), and

sgn(v) =
{ 1, if v ≥ 0,
−1, otherwise.

(1)

TABLE I
DETAILS OF USED NOTATIONS IN THIS PAPER

Z The feature matrix of a data set

X The feature matrix of the representative set
x a vector of X
x i the i-th row of X
xj the j-th column of X
xi , j the element in the i-th row and the j-th column of X

||X ||F the Frobenius norm of X , i.e., ||X ||F =
√∑

i , j x2
i , j

||X ||2 , 1 the �2 , 1 -norm of X , i.e., ||X ||2 , 1 =
∑

i

√∑
j x2

i , j

rank(X) the rank of X
XT the transpose of X
tr(X) the trace of X
X−1 the inverse of X

where sgn(·) denotes the result of element-wise application and
W = [w1 , ...,wd] ∈ Rd×c is the transformation matrix. There-
fore, we have the following formulation:

B = sgn(ZW). (2)

B. PCA Hashing

According to the point of view of the information-theory,
a hashing should maximize the information provided by each
bit [30], i.e., a binary bit giving balanced partitioning of Z
may produce maximum information. However, it is difficult to
find such hash functions to meet the balancing requirement. To
do this, PCA based hashing first assumes that the maximum
entropy partitioning implies to maximize the variance of each
bit. That is, the variance of each bit is maximized and the bits
are pairwise uncorrelated as well [29], [30]. As a consequence,
this assumption results in the following formulation:

Γ(W) =
∑

k

var(hk (z))

=
∑

k

var(sgn(zwk))

s.t., 1
n BT B = Ic

(3)

where var(·) is the variance of a vector (or a matrix), and Ic ∈
Rc×c is an identity matrix.

The maximized variance in (3) indicates that the encoding
functions produce exactly balanced bits, i.e., BT B = Ic . How-
ever, the discrete issue makes (3) intractable. To address this
issue, (3) is usually transferred to the following continuous
version:

Γ̃(W) = 1
n

∑

k

wT
k ZT Zwk

= 1
n tr(WT ZT ZW),

s.t.,WT W = Ic

(4)

where the orthogonal constraint WT W = Ic requires that the
vectors of W (the hyperplanes of the hash functions) are uncor-
related (or orthogonal to each other).

Equation (4) is exactly the PCA, so we call the resulting
hashing based on (4) and its variants as PCA based hashing
methods, and can obtain the optimal W as the top c eigenvectors
of the data covariance matrix ZT Z, which corresponds to the

Manuscript for IEEE TMM

top c non-zero eigenvalues of ZT Z. The PCA hashing in (4) has
been demonstrated to preserve the global similarity structures
of the data [33]. It is noteworthy that similarity preserving is
the key assumption of hash function learning, i.e., converting
original data to the low-dimensional binary codes [55].

The PCA based hashing methods need high time complexity
of the training stage, i.e., quadratic to the sample size, to con-
duct hash function learning. Moreover, the variance of the data
in different PCA directions is usually different. In particular, the
directions with high variance carry more information than the
directions with low variance. To deal with this issue, Spectral
Hashing (SH) [27] employs a separable Laplacian eigenfunction
to forbid assigning more bits to the directions with less variance.
However, SH is a heuristic method by assuming the data to fol-
low uniform distribution. Different from SH, Semi-Supervised
Hashing (SSH) [30] sequentially projects the directions via re-
laxing the orthogonality constraints of PCA. ITerative Quantiza-
tion (ITQ) searches a rotation of zero-centered data to minimize
the quantization error to keep the variance of the data.

C. Manifold Hashing

Different from the PCA based hashing methods [27]–[30] to
preserve the global similarity structures of all the data, manifold
based hashing methods [21][33] focus on the local similarity
structures, i.e., k Nearest Neighborhood (kNN) preservation for
each data point. Their motivation is that 1) the requirement of
some real applications. For example, conducting information
retrieval via search engines such as Google and Bing, usually
expects finding the most similar results (i.e., a subset of the
big data set) for a given query; 2) the requirement of manifold
learning. A lot of literatures have shown that the global similarity
structure preservation possibly results in bad performance due to
the adverse impact of noise and outliers, which will be avoided
by the local similarity preservation [56].

By following the literatures such as [56] to preserve the local
similarity for each data point, we first build a similarity matrix
S ∈ Rn×n using the following steps:

1) Constructing the adjacency graph: We calculate the sim-
ilarity (or the distance) between any two data points.

2) Constructing the sparse adjacency graph: We keep the
similarity of two data points if a data point is one of
the k nearest neighbors (where k is a tuning parameter)
of another data point, otherwise 0. This enables to keep
noise or outliers out of the local similarity preservation.

Above steps output a sparse similarity matrix for the data
set. After this, we also expect to minimize the weighted aver-
age Hamming distance of each data pair, and thus devise the
following objective function:

n∑

i,j=1
si,j‖bi − bj‖2 , s.t.,BT B = Ic ,BT 1 = 0 (5)

where each row of S indicates that each data point is represented
by a subset of all data points. Different from the global simi-
larity structures in (4), the local similarity structures in (5) are
preserved by a sparse kNN graph, which results in a significant
reduction of the storage and computation costs.

We define a diagonal matrix D ∈ Rn×n whose entries are
defined as Di,i =

∑n
j = 1 sij , and let L = D − S, (5) is thus

converted to the following objective function:

min
B

Tr(BT LB) s.t.,BT B = Ic ,BT 1 = 0 (6)

where 1 and 0, respectively, are the matrices with all entries as
1 and 0.

The manifold based hashing methods (such as Self-Taught
Hashing (STH) [57] and Anchor Graph Hashing (AGH) [31])
were designed to automatically preserve the local neighborhood
structures inherent in the data to learn compact binary codes.
Hence, manifold based hashing methods have been shown to
achieve more effective hashing performance than LSH based
hashing methods and PCA based hashing methods, but need
more expensive time cost than these two kinds of hashing
methods.

D. Motivation

By comparing two eigenvalue problems in (4) and (6), they
separately preserve the global similarity structures and the local
similarity structures of the data, to result in the time complexity
at least min{O(n2d, d3)} and O(n3), respectively.

On one hand, either PCA based hashing methods or manifold
based hashing methods only preserves one type of similarity
structures. However, in the literatures, both of these two kinds
of similarity structures have been demonstrated to strengthen the
performance of unsupervised spectral feature selection due to
providing complimentary information to each other [55], [58].
Specifically, the global similarity structure preservation con-
tains generalization ability, while the local similarity structure
preserves the manifolds of the data. It is noteworthy that the
process of hash function learning is actually a process of di-
mensionality reduction. Thus, it is reasonable to combine these
two types of similarity structures into a framework.

On the other hand, if the feature dimensions d is large, the high
time complexity of these two hashing techniques are forbidden
in the applications of big data. Moreover, big data are usually
stored in the disk rather than the memory of the PC. The retrieval
in the disk is time-consuming. This motivates us to select a
subset of big data (called the representative set in this paper),
which can be put into the memory of the PC, to learn the hash
functions.

Therefore, in this paper, we integrate PCA with manifold
learning to simultaneously preserve the local and global simi-
larity structures of the data to learn the hash functions on the
representative set with linear time complexity. First, we conduct
linear spectral clustering to hierarchically conduct clustering on
the big data set because the big data may not be fed into the
memory of modern PC for similarity search. Specifically, we
employ the spectral clustering method in [59] to output a set
of cluster centers, which can be fed into the memory of PC
and approximately represent the distribution of the big data set.
We regard the resulting cluster centers as the representative set
of the big data set. We then employ the same linear clustering
method on the representative set to further output their cluster
centers, which are called the landmarks of the representative

set (and also the big data set) in this paper. Second, we use
the landmark set (containing all the landmarks) to generate a
probability representation for each data point of the big data set,
and further prove that the probability representations preserve
the neighborhood of the big data set. Third, we use the proba-
bility representations of the representative set to learn the hash
functions by integrating the local similarity structure preserva-
tion (via PCA) with the global similarity structure preservation
(via manifold learning) in a framework. As a consequence, the
training stage outputs the landmark set, the hashing functions,
and the binary codes of the big data set.

In testing stage, we first yield the probability representation
of each query via the landmark set, and then transfer the result-
ing probability representation to its binary codes via the hash
functions. Finally, we conduct similarity search between binary
codes of the query and the big data set via calculating their
Hamming distance in the memory of PC.

IV. APPROACH

A. Graph PCA

We first transfer (4) via ignoring the factor 1
n to yield the

following objective function:

max tr(WT ZT ZW), s.t.,WT W = Ic . (7)

We then assume that the binary matrix B can be transferred
as a combination between the feature matrix X and a linear
transformation matrix W, i.e., B = XW. We further transfer
(6) to obtain the following formulation:

min
W

tr(WT ZT LZW), s.t.,WT W = Ic . (8)

By integrating (7) with (8), we have the objective function as
follows:

min tr(WT ZT LZW) − αtr(WT ZT ZW),
s.t.,WT W = Ic

(9)

where α is a tuning parameter. Finally, we have our final objec-
tive function to learn the hash functions as follows:

min tr(WT (ZT (L − αIn)Z)W),
s.t.,WT W = Ic

(10)

where In ∈ Rn×n is an identity matrix. (10) integrates the min-
imum of the local similarity structure preservation in (9) with
the maximum of the global similarity structure preservation in
(8) to achieve two kinds of similarity structure preservation at
the same time, where the tuning parameter α is used to balance
their weights.

Although (10) can simultaneously learn the local and global
structures of the data, its time complexity is still high, i.e.,
min{O(n2d), O(d3)}, whose complexity is same as that of PCA
hashing in (4). In the next subsection, we design to learn the rep-
resentative set and the landmark set to represent the distribution
of the big data set.

B. Probability Representation

Manifold based hashing methods [20], [34], [57], [60] gen-
erate semantic representations of original data, instead of using

original d feature spaces, to represent each data point for preserv-
ing the local similarity structures of the data. More specifically,
manifold based hashing methods assume that each data point
form a feature space, so that there are n feature spaces. In this
way, each data point represented by all the data points obtains
a probability or a coordinate in each feature space. Moreover,
each data point is sparsely represented by a subset of all data
points to avoid the adverse impact of noise or outliers. As a
result, the resulting representation naturally preserves the local
similarity structures among data points.

However, such a method has the following limitations to be
addressed. First, the time complexity to construct the repre-
sentation is at least O(n3), which is overwhelming for big data.
Second, given the resulting similarity matrix S in (5), we assume
that all the data points lie in an n dimensional feature space. Ac-
tually, in big data, the value of n is very large, and thus resulting
in a very high-dimensional data matrix, which needs expensive
storage and computation costs. Third, the high-dimensional data
have been demonstrated to have a low-dimensional feature space
where noise and redundancy are removed [55]. Finally, the sam-
ple size of the data set is usually too big to fit them in the memory
of PC. In this case, it will be very time consuming to learn the
hash functions.

In this paper, we propose a novel strategy to address the above
issues, by which an efficient scheme of hash function learning is
developed without using the whole data set for local similarity
structure preservation. First, we use linear clustering methods
to group the data set into subgroups whose cluster centers con-
sist of the representative set of the data set. The number of the
cluster centers can be large so that the representative set can be
fed into the memory of the PC. Second, we usually generate a
representative set as large as possible to capture the character-
istics of the data set, but it is still time consuming to conduct
hash function learning with the similarity matrix constructed
by the representative set. Hence, we further conduct clustering
on the representative set to obtain the cluster centers, i.e., the
landmarks, each of which is the cluster center of the representa-
tive set. Moreover, the number of cluster centers is regarded as
the dimensions of the low-dimensional feature space of original
data. Third, given the dimensions of the intrinsic space, we use
the landmark set to probabilistically represent each data point
of the big data set and the representative set as well. Finally,
we prove that the resulting representation preserves the local
similarity structures.

We have at least two methods to search the dimensions
of the intrinsic space via conducting clustering on the high-
dimensional data, such as the method of affinity propagation
clustering [61] and the cross-validation method. However, the
algorithmic complexity of affinity propagation is quadratic in
the number of data points and thus cannot be used to deal with
big data. In this paper, we predefine a set of dimensions and
then use the cross-validation methods to find the best number
of clusters for the data sets. Specifically, given the dimensions
of the intrinsic space of the original high-dimensional similarity
matrix, i.e., m, the further step is to partition the feature space
of the similarity matrix into clusters, which is actually a group
partition issue.

Manuscript for IEEE TMM

In this paper, we first employ the clustering method in [59]
with linear complexity to generate r cluster centers, which con-
sist of the representative set X ∈ Rr×d . Given the representative
set X, we then employ the same clustering method to generate
m clusters and regard the resulting cluster centers as the land-
marks, i.e., lk (k = 1, 2, ...,m). We further devise a probability
representation method to represent each data point by the land-
marks. Specifically, for a given representative set X, each data
point xi lies in the m-dimensional space spanned by the land-
mark set. Moreover, each data point has a probability belonging
to each space. Given a query y, we want to find the data points
which have similar locations to y in the space of X. That is, we
also give the probability of y to each space spanned by the land-
marks. In this way, finding the similar data points is transferred
to find the minimal distance of probability between the query
and each data point in the data set. Actually, we cannot obtain
exact probability of the data set without infinity data points, but
we can approximately estimate it via the following steps.

First, we calculate the Euclidean distance between each data
point xi and each cluster center lk , i.e.,

ui,k = ‖xi − lk‖2
2 . (11)

According to the literature [62], the probability of a data point
belonging to a space can be defined as the Euclidean distance
gi,k

gi,k =
exp(−ui,k /σ)

∑m
j=1 exp(−ui,j /σ)

(12)

where σ is a tuning parameter to control the decay rate of gi,k

with respect to ui,k .
Let gi = [gi,1 ; ...; gi,k ; ...; gi,m], gi forms a probability repre-

sentation of xi , which characterizes the probability distribution
of the location of xi in the space spanned by X. Actually, the
rationale of the probability definition of gi is similar to that of
kernel density estimation with a heat kernel. That is, if xi is
near the k-th cluster center, gi,k will have large value. Other-
wise, the value of gi,k will small. Moreover, the reduce rate will
be decided by the tune parameter σ, which is set as σ = 1 in
this paper.

Second, in the traditional similarity matrix S, each data point
is represented by a subset of all data points to avoid the effect
of noise. Hence, we also use a subset of landmarks (i.e., s)
to represent each data point. That is, in the local similarity
preservation, we only preserve first s largest probabilities in gi ,
and set the left probabilities to 0. Specifically, we denote gs as
the s-th most largest probability of gi to have

ĝi,k =

{
gi,k if gi,k ≥ gs

0 if gi,k < gs.
(13)

After this, we normalize ĝi,k to have the following equation:

g̃i,k =
ĝi,k∑m

j=1 ĝi,k
. (14)

Finally, we set the probability representation of xi as g̃i =
[g̃i,1 ; ...; g̃i,k ; ...; g̃i,m].

The probability representation g̃i is a sparse vector, which
characterizes the spatial structure of xi in the space spanned
by the representative set X or the big data set Z. In this case,
similar data points have similar probability representations, so
g̃i is a reasonable representation of xi . In the left of this section,
we use Theorem 1 to show that the proposed m-dimensional
representation model preserves the local similarity structures of
training data.

Theorem 1: Following the process from (11) to (14), the
neighborhood of each data point in either the representative set
X or the data set Z is preserved.

Proof. Here we focus on the proof of the neighborhood
preservation of the representative set, and the neighborhood
preservation of the big data set can be proved with the similar
principle. We first add these m cluster centers into X to form a
new dataset X

′
, i.e.,

X
′
= {x′

1 ,x
′
2 , . . . ,x

′
r ,x

′
r+1 , . . . ,x

′
r+m}

= {x1 ,x2 , . . . ,xr , l1 , . . . , lm}. (15)

We then denote each data point in X as

x
′
=

r + m∑

j = 1
g̃i,jx

′
j (16)

where j = 1, . . . , r + m, and g̃i,j = 0 if x
′
j is not one of the

m-nearest cluster centers of x
′
i .

According to the literature [63], each data point in X
′

can
be represented by m cluster centers as in (16). Obviously, this
is also applied to X since X is a subset of X

′
. Actually, (16)

leads to the following reconstruction (or representation) error
measured by the following cost function:

E(X) =
∑

i

∣
∣
∣x − ∑

j g̃i,jx
′
j

∣
∣
∣. (17)

Moreover, (16) shows two characteristics, i.e., sparseness and
invariance. The sparseness means that each representative data
point xi is represented by a subset of m cluster centers (i.e.,
s nearest neighbors) via enforcing g̃i,j = 0 if x

′
j does not be-

long to this set. According to the literature [63], the defined
g̃i,j in (14) minimizes the reconstruction errors in (16) as well
as obeys several important symmetries. That is, the new repre-
sentation of x

′
i in X

′
i is invariant to rotations, rescalings, and

translations. More specifically, (15) shows the invariance to rota-
tions and rescalings, and the constraint

∑
j g̃i,j = 1 ensures the

invariance to translations. Moreover, these symmetries ensure
that the reconstruction weights (i.e., the new representations)
make geometric properties independent on a particular distribu-
tion of the data. Therefore, the similarity structures of the data
points in X can be well preserved in the derived m-dimensional
representation. �

C. Hash Function Learning

In the proposed hashing method, namely graph PCA (gPCA),
we first conduct Section IV-B to yield the probability represen-
tation of each data point via Algorithm 1, and then optimize the
objective function in (10) to obtain W. Finally, the binary codes
of the data points can be obtained by sgn(G̃W). We list the

Algorithm 1: The Pseudo of Calculating the Probability
Representation of All Data Points

Input: y ∈ Rd ; Z ∈ Rn×d ; α: tuning parameter; s: the
Value of kNN; m: the number of clusters.
Output: g̃y ∈ Rm and G̃ ∈ Rn×m .

1: Conduct clustering to generate X via [59];
2: Conduct clustering to generate the landmarks via [59];
3: Calculate Euclidean distance of any data pair in Z via

(11);
4: Calculate the probability of each data point in Z via

(12);
5: Calculate the sparse probability representation of each

data point in Z via (13);
6: Normalize the sparse probability representation of each

data point in Z via (14);

Algorithm 2: Training Stage of the Proposed Method gPCA

Input: Z ∈ Rn×d ; α: tuning parameter; c: the number
of bits.
Output: B ∈ Rn×c ; W ∈ Rm×c .

1: Yield the probability representation Ĝ of X via
Algorithm 1;

2: Conduct eigenvalue decomposition on
(ĜT (L − αIn)Ĝ);

3: Yield the probability representation G̃ of X via
Algorithm 1;

4: Calculate B via sgn(G̃W) for all the data points of Z;

Algorithm 3: Testing Stage of the Proposed Method gPCA

Input: y ∈ Rd ; W ∈ Rm×c .
Output: by ∈ Rc .

1: Yield the probability representation g̃g of y via
Algorithm 1;

2: Calculate by via sgn(g̃yW);
3: Calculate the Hamming distance between by and B;

pseudo of training stage and testing stage, respectively, of our
proposed method, in Algorithm 2 and Algorithm 3.

The time cost of our method focuses on the clustering and
the eigenvalue decomposition. The clustering method is linear
(i.e., O(dmn)) and the eigenvalue decomposition is quadratic
to the number of landmarks, i.e., min{O(m2d), O(d3)}. Hence,
the time complexity of our method is O(dmn) (d � n). We list
the time complexity of training stage and testing stage of some
popular hashing methods in Table II.

The space complexity of our gPCA method is O(d(m + n))
in training stage and O(dl + ck) plus O(cn) (binary bits) in
testing stage.

D. Connection to Previous Hashing Methods

Comparing with data-independent hashing methods, i.e., LSH
based hashing methods in [17], [23]–[26], [47], our proposed

TABLE II
TIME COMPLEXITY COMPARISON OF THE HASHING METHODS

Training stage Testing stage

LSH [65] O (1) O (1)
SH [27] O (d2 n) O (dc)
ITQ [29] O (d2 n + c3) O (dc)
AGH [31] O (dmn + m 2 n) O (dm)
MDSH [28] O (d2 n) O (dc)
LLH [35] O (dn) O (sc)
IMH [32] O (dmn) O (dm)
gPCA O (dmn) O (dm)

Note that c, d, m, n, and s, respectively, are the length of binary
codes, the dimensions of the data, the number of centers, the
training size, and the number of nearest neighbors.

gPCA learns the hash functions according to the data distribu-
tion, so that outputting reasonable hashing performance. More-
over, our gPCA can use shorter binary codes (i.e., less than
64 bits) to represent each data point, than LSH based hashing.
Although our gPCA has higher time complexity than LSH based
hashing methods, in terms of training stage and testing stage,
our gPCA achieves linear time complexity for training stage
and constant time complexity for testing stage, and thus can be
easily run in the modern PC for conducting similarity research
on big data.

Comparing with PCA based hashing methods in [28]–[30],
[48] which only consider to preserve the maximum variance
of the data (i.e., the global similarity structures), our proposed
gPCA also considers the local similarity preservation. Moreover,
these current PCA based hashing methods have higher time
complexity than our methods. Comparing with manifold based
hashing methods in [2], [20], [57], [60] which only consider
to preserve the local similarity structures, our proposed gPCA
also considers the global similarity preservation by preserving
the maximum variance of the data. Moreover, these previous
manifold based hashing methods need at least quadratic time
complexity for training stage, while our method only needs
linear time complexity. It is noteworthy that both PCA based
hashing methods and manifold based hashing methods are a
special issue of our proposed gPCA methods. For example, our
method shrinks to a manifold based hashing methods by setting
α = 0 in (10), while our method becomes a PCA based hashing
method by setting the value of α as infinity.

Actually, the literatures [58], [64] have shown that both the
local and global similarity structures of the data provide compli-
mentary information to each other so that achieving optimal per-
formance. This indicates that it is reasonable for our method to
combine these two kinds of geometries together. Locally Linear
Hashing (LLH) [35] is the only hashing method which consid-
ers both of these geometries to conduct hash function learning.
However, LLH usually achieves suboptimal hashing results be-
cause it sequentially conducts two steps to preserve these two
similarity structures. By contrast, our proposed gPCA method
considers preserving them simultaneously and thus yielding op-
timal hashing results. Furthermore, our method only needs to
conduct eigenvalue decomposition once while LLH needs to do
that twice.

Manuscript for IEEE TMM

V. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed gPCA method on
four widely used benchmark data sets, i.e., CIFAR (60K) [66],
MNIST (70K) [59], NUS-WIDE (193K) [67], and GIST (500K)
[14]. We compare our gPCA with the data-independent hash-
ing method LSH [47], two PCA based hashing methods (i.e.,
MDSH [28] and ITQ [29]), two manifold based hashing meth-
ods (such as AGH [31] and IMH [32]), and the method LLH [35]
which sequentially preserves the local and the global similarity
structures of the data.

A. Comparison Methods

We list the details of the comparison methods as follows:
1) LSH randomly selects linear functions as hash functions.

In our experiments, we follow the literature [33] to gen-
erate a Gaussian random matrix as the hash functions.

2) MDSH first learns the similarity matrix of original data
to preserve the global similarity structures of the data,
and then optimizes a matrix factorization problem on the
resulting similarity matrix to output the top eigenvectors
as the hash functions.

3) ITQ first employs PCA to preserve the global similarity
structures of original data, and then learns an orthogonal
transformation matrix as the hash functions via solving
the issue of unbalanced variances on different directions.

4) AGH generates the graph representation of each data
point, and then uses the resulting new representations to
encode the testing data points with binary codes.

4) IMH first employs any non-parametric dimensionality re-
duction methods to convert original high-dimensional data
into their low-dimensional feature spaces via preserving
the local similarity structures of the data, and then pro-
poses a heuristic method to learn the hash functions.

5) LLH first captures the manifold structures of original data
using locality-sensitive sparse coding, and then designs a
joint minimization problem of the embedding error and
the quantization loss to recover the resulting manifold
structures in a low-dimensional Hamming space.

B. Data Sets

The CIFAR data set consists of 60,000 color images from
10 classes, where each class contains 6,000 images and each
image is represented by a 512-dimensional GIST feature vector.
In our experiments, we select 50,000 images (i.e., 5,000 images
per class) to be the representative set for hash function learning
in training stage, while the left 10,000 images are testing set.

The MNIST data set consists of 70,000 images which are
associated with a digit from ‘0’ to ‘9’. We represented each
image with a 784-dimensional feature vector. Following the
setting in [31], [33], we split MNIST into two parts, i.e., training
set and testing set, respectively, contains 69,000 images and
1,000 images.

The NUS-WIDE data set in our experiments consists of
195,969 images, in which each image is annotated by at least
one of the 21 most frequent labels out of original 81 concept

tags. Each image is represented by a 500-dimensional SIFT fea-
ture vector. We uniformly sample 100 images from each of these
21 tags to form testing set of 2,100 images. The left 193,869
images serve as the big data set.

The GIST data set includes 500,000 images and 1,000 testing
images, where each image is represented by a 960-dimensional
global GIST feature vector.

C. Evaluation Metric

We conduct two similarity search by following previous lit-
eratures [21], [31], i.e., hash lookup and Hamming ranking,
respectively. Hash lookup needs constant time complexity with
a single hash table, while Hamming ranking measures the search
quality via ranking the retrieved data points in terms of the Ham-
ming distances to a specific query.

In our experiments, we first use the mean precision of HAM-
ming radius 2 (HAM2) and the Mean Average Precision (MAP),
respectively, to evaluate the results of hash lookup and Ham-
ming ranking under different hash bits. We also evaluate all the
hashing methods in terms of precision-recall curves and time
cost.

By regarding the evaluation metric HAM2, we set the thresh-
old of Hamming radius as 2 to output the retrieved training data,
whose Hamming distance is less than 2 to the query. We then
report the mean precision of all the queries.

Given a query and r retrieved data points by the hashing
methods, we define MAP as follows:

AP (q) =
1
l

R∑

r=1

P (r)δ(r)

MAP =
1
q

Q∑

q=1

AP (q) (18)

where l and P (r), respectively, are the number of true neighbors
of the ground truth and the precision of the top r retrieved
training data, and δ(r) = 0 means the r-th retrieved data point
is a false neighbor of the query, otherwise δ(r) = 1. MAP is thus
defined as the mean of all queries’ average precision. Clearly, the
larger the HAM2 or MAP, the better the hashing performance is.

The data sets (such as CIFAR and MNIST) have class labels
for each image, so we regard their true nearest neighbors as the
semantic nearest neighbors, i.e., the images will be regarded
as neighbors if they share the same digital labels. For the data
sets (such as NUS-WIDE and GIST), we follow the literatures
[29], [31] to replace MAP with Mean Precision (MP) of top-
5000 returned neighbors since the calculation of MAP is time
consuming on the big data set.

D. Parameters Settings

For fair comparison, we set all the training data as the rep-
resentative set on the data sets CIFAR and MINST, while we
uniformly select 63,000 (i.e., 300 images per class) and 60, 000,
respectively, for the data sets NUS-WIDE and GIST, as the rep-
resentative set, to learn the hash functions. We set the number of
landmarks as {100, 300, 500, 700, 900} for the methods (such

Fig. 1. HAM2 results of our proposed gPCA with different numbers of landmarks and different values of α in (10) while setting the code length as 32, on four
data sets. (a) CIFAR. (b) MNIST. (c) NUS-WIDE. (d) GIST.

Fig. 2. HAM2 results of all hashing methods on four data sets at different number of hash bits, i.e., c ∈ [12, 16, 24, 28, 32, 48, 64]. (a) CIFAR. (b) MNIST. (c)
NUS-WIDE. (d) GIST.

Fig. 3. Results of MAP and MP, respectively, of all hashing methods, on the data sets CIFAR and MNIST and the data sets NUS-WIDE and GIST, at different
number of hash bits, i.e., c ∈ [12, 16, 24, 28, 32, 48, 64]. (a) CIFAR. (b) MNIST. (c) NUS-WIDE. (d) GIST.

as AGH, IMH, and our gPCA) using k-means to generate the
landmarks, and also set the range of all the parameters of all the
hashing methods as [0.01, 0.1, 1, 10, 100], where all the methods
output their best hashing performance.

E. Result Analysis

We report the parameters’ sensitivity on different numbers of
the landmarks and the variation of α in (10) in Fig. 1, and list
the results of three evaluation metrics of all hashing methods
in Figs. 2–4. We also report the running time of all the hashing
methods in Table III.

From Fig. 1, we know that our method achieves better hash-
ing results while increasing the number of landmarks. The rea-
son is that our proposed gPCA method may easier estimate
the distribution of the data set with more landmarks. On the
other hand, our proposed method selects different values of α
at different data sets to achieve the best hashing performanc.
Specially, the data sets (such as CIFAR and MNIST) select
large value (e.g., α ∈ [10, 100]) and the other two select small

value (e.g., α ∈ [0.1, 1]). It is noteworthy that the parameter α
in (10) is used to balance the weight between the PCA part and
the manifold part, i.e., the large value of α enables to add the
weight of the PCA part. According to our experimental results,
we know that small data sets (such as CIFAR and MNIST) need
more weight of local structures of the data than large data sets
(such as NUS-WIDE and GIST).

By regarding Figs. 2–4, our proposed gPCA method achieves
the best hashing performance and has comparable running time
to state-of-the-arts hashing methods. For example, our method
on average improves by 42.2%, 20.2%, 8.6%, and 5.7%, respec-
tively, than the data-independent hashing method (i.e., LSH),
the best PCA hashing method (i.e., MDSH), the best Mani-
fold based hashing method (i.e., IMH), and the best comparison
method (i.e., LLH), in terms of the HAM2 results in Fig. 2. We
list more observations as follows:

1) Data-dependent hashing methods (i.e., PCA based meth-
ods, Manifold based methods, LLH, and our gPCA)
outperform data-independent method, i.e., LSH. For
example, data-dependent hashing methods on average

Manuscript for IEEE TMM

Fig. 4. Precision-recall curves of all hashing methods, on four data sets at different number of hash bits, i.e., c ∈ [12, 16, 24, 28, 32, 48, 64]. (a) CIFAR. (b)
MNIST. (c) NUS-WIDE. (d) GIST.

TABLE III
RUNNING TIME (RECORDED IN SECONDS) FOR ALL THE HASHING METHODS

Methods CIFAR MNIST NUSWIDE GIST

training testing training testing training testing training testing

LSH 1.1 1.5 × 10−5 1.3 2.3 × 10−5 3.5 1.8 × 10−5 20.1 3.7 × 10−4

ITQ 14.5 4.7 × 10−5 15.0 2.5 × 10−5 30.4 2.1 × 10−5 135.0 4.5 × 10−4

MDSH 10.5 4.5 × 10−5 8.3 5.1 × 10−5 26.1 1.9 × 10−5 100.1 6.9 × 10−4

AGH 19.6 8.4 × 10−5 19.0 3.6 × 10−5 26.3 5.6 × 10−5 163.3 4.5 × 10−4

IMH 17.2 5.2 × 10−5 20.1 4.8 × 10−5 20.2 4.7 × 10−5 166.4 5.2 × 10−4

LLH 22.2 9.7 × 10−5 32.6 5.5 × 10−5 56.2 9.9 × 10−5 186.5 6.5 × 10−4

gPCA 15.9 5.1 × 10−5 16.0 4.3 × 10−5 29.2 5.0 × 10−5 150.2 5.8 × 10−4

improve by more than 32%, compared to the LSH method.
This indicates that it is reasonable for taking the data dis-
tribution into account for conducting similarity search.
Actually, we can regard the learnt data distribution as
prior knowledge. That is, data-dependent hashing meth-
ods consider constructing hashing with prior knowledge,
while data-independent hashing method LSH does not
take it into account.

2) We find that the methods (such as LLH and our gPCA)
on average improve by about 8.26% and 22.85%, re-
spectively, compared to manifold based hashing methods
and PCA based hashingn methods, since both LLH and
our gPCA simultaneously consider preserving the local
and global similarity structures of the data. This im-
plies that preserving two kinds of similarity structures
enables to achieve better hashing performance, compared
to the methods which only preserve each of these sim-
ilarity structures in our experiments. Our experimental
results further demonstrate that these two kinds of sim-
ilarity structures provide complimentary information to
each other, as shown in previous literatures [58], [64].

3) Our gPCA method outperforms LLH in terms of all three
evaluation metrics since the sequential steps in LLH easily
leads to suboptimal.

4) In terms of training time, data-dependent hashing meth-
ods (such as ITQ, MDSH, AGH, IMH, LLH, and gPCA)
are more time consuming than data-independent hash-
ing methods (i.e., LSH) since the former methods need
to conduct a learning process using training data. More
specifically, LSH is the fastest one, ITQ, MDSH, AGH,

IMH, LLH and gPCA have similar training time. In terms
of testing time, all the hashing methods are in the same
magnitude.

VI. CONCLUSION

In this paper, we proposed a novel and effective unsupervised
uni-modal hashing method via preserving the local and global
similarity structures of the data. To do this, we first partitioned
the whole data set into groups (or clusters) and generated the
probability representations of all the data points via sparsely
representing them by the landmarks. We then devised a new
objective function to conduct an eigenvalue problem on the rep-
resentative set, and further proved that such a method preserves
the neighborhood of the data. Our experimental results on pub-
lic benchmark data sets showed that our proposed gPCA hash-
ing method leaded to very competitive hashing performance,
compared to the comparison hashing methods, and achieved
real-time similarity retrieval in big data. In this paper, we only
considered the linear relationship among the data set and thus
cannot model the complex relationship among the big data set.
In our future work, we will extend our proposed framework to
consider the nonlinear relationship among the data via kernel
trick.

REFERENCES

[1] X. Mao, Y. Yang, and N. Li, “Hashing with pairwise correlation learning
and reconstruction,” IEEE Trans. Multimedia, vol. 19, no. 2, pp. 382–392,
Feb. 2017.

[2] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen, “Inter-media hashing
for large-scale retrieval from heterogeneous data sources,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2013, pp. 785–796.

[3] Y. Hao et al., “Stochastic multiview hashing for large-scale near-duplicate
video retrieval,” IEEE Trans. Multimedia, vol. 19, no. 1, pp. 1–14,
Jan. 2017.

[4] X. Nie, Y. Chai, J. Liu, J. Sun, and Y. Yin, “Spherical torus-based video
hashing for near-duplicate video detection,” Sci. China Inf. Sci., vol. 59,
no. 5, 2016, Art. no. 059101.

[5] Q. Wen, D. Wang, S. Feng, Y. Zhang, and G. Yu, “A novel cross-modal
hashing algorithm based on multimodal deep learning,” Sci. China Inf.
Sci., vol. 60, no. 9, 2017, Art. no. 092104.

[6] Z. Chen, J. Lu, J. Feng, and J. Zhou, “Nonlinear discrete hashing,” IEEE
Trans. Multimedia, vol. 19, no. 1, pp. 123–135, Jan. 2017.

[7] X. Lu, X. Zheng, and X. Li, “Latent semantic minimal hashing for im-
age retrieval,” IEEE Trans. Image Process., vol. 26, no. 1, pp. 355–368,
Jan. 2017.

[8] J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen, “A sur-
vey on learning to hash,” CoRR, 2016. [Online]. Available: http://
arxiv.org/abs/1606.00185

[9] X. Zhu, Z. Huang, J. Cui, and H. T. Shen, “Video-to-shot tag propagation
by graph sparse group lasso,” IEEE Trans. Multimedia, vol. 15, no. 3,
pp. 633–646, Apr. 2013.

[10] X. Peng, Z. Yu, Z. Yi, and H. Tang, “Constructing the l2-graph for robust
subspace learning and subspace clustering,” IEEE Trans. Cybern., vol. 47,
no. 4, pp. 1053–1066, Apr. 2017.

[11] X. Li, D. Hu, and F. Nie, “Large graph hashing with spectral rotation,” in
Proc. AAAI Conf. Artif. Intell., 2017, pp. 2203–2209.

[12] J. Song, L. Gao, Y. Yan, D. Zhang, and N. Sebe, “Supervised hashing with
pseudo labels for scalable multimedia retrieval,” in Proc. ACM MM, 2015,
pp. 827–830.

[13] X. Zhu, Z. Huang, H. T. Shen, and X. Zhao, “Linear cross-modal hashing
for efficient multimedia search,” in Proc. 23rd ACM Int. Conf. Multimedia,
2013, pp. 143–152.

[14] H. Jégou et al., “Aggregating local image descriptors into compact codes,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 9, pp. 1704–1716,
Sep. 2012.

[15] R. Hu et al., “Graph self-representation method for unsupervised feature
selection,” Neurocomputing, vol. 220, pp. 130–137, 2017.

[16] Y. Zhen, Y. Gao, D. Yeung, H. Zha, and X. Li, “Spectral multimodal
hashing and its application to multimedia retrieval,” IEEE Trans. Cybern.,
vol. 46, no. 1, pp. 27–38, Jan. 2016.

[17] H. Jain, P. Pérez, R. Gribonval, J. Zepeda, and H. Jégou, “Approximate
search with quantized sparse representations,” in Proc. Eur. Conf. Comput.
Vis., 2016, pp. 681–696.

[18] R. Ye and X. Li, “Compact structure hashing via sparse and similarity
preserving embedding,” IEEE Trans. Cybern., vol. 46, no. 3, pp. 718–729,
Mar. 2016.

[19] X. Zhu, K. Thung, J. Zhang, and D. Shen, “Fast neuroimaging-based
retrieval for Alzheimer’s disease analysis,” in Proc. MLMI, 2016,
pp. 313–321.

[20] J. Song, Y. Yang, Z. Huang, H. T. Shen, and R. Hong,
“Multiple feature hashing for real-time large scale near-duplicate
video retrieval,” in Proc. 19th ACM Int. Conf. Multimedia, 2011,
pp. 423–432.

[21] X. Zhu, Z. Huang, H. Cheng, J. Cui, and H. T. Shen, “Sparse hashing for
fast multimedia search,” ACM Trans. Inf. Syst., vol. 31, no. 2, May 2013,
Art. no. 9.

[22] X. Peng, H. Tang, L. Zhang, Z. Yi, and S. Xiao, “A unified framework for
representation-based subspace clustering of out-of-sample and large-scale
data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 12, pp. 2499–
2512, Dec. 2016.

[23] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proc. 20th Annu. Symp.
Comput. Geom., 2004, pp. 253–262.

[24] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimen-
sions via hashing,” in Proc. 25th Int. Conf. Very Large Data Bases, 1999,
pp. 518–529.

[25] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for scal-
able image search,” in Proc. IEEE Int. Conf. Comput. Vis., Sep.-Oct. 2009,
pp. 2130–2137.

[26] M. Raginsky and S. Lazebnik, “Locality-sensitive binary codes from shift-
invariant kernels,” in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1509–
1517.

[27] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc. Adv.
Neural Inf. Process. Syst., 2008, pp. 1753–1760.

[28] Y. Weiss, R. Fergus, and A. Torralba, “Multidimensional spectral hashing,”
in Proc. 12th Eur. Conf. Comput. Vis., 2012, pp. 340–353.

[29] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quantiza-
tion: A procrustean approach to learning binary codes for large-scale
image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12,
pp. 2916–2929, Dec, 2013.

[30] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for large-
scale search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 12,
pp. 2393–2406, Dec. 2012.

[31] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with graphs,” in
Proc. Int. Conf. Mach. Learn., 2011, pp. 1–8.

[32] F. Shen et al., “Hashing on nonlinear manifolds,” IEEE Trans. Image
Process., vol. 24, no. 6, pp. 1839–1851, Jun. 2015.

[33] X. Zhu, L. Zhang, and Z. Huang, “A sparse embedding and least variance
encoding approach to hashing,” IEEE Trans. Image Process., vol. 23, no. 9,
pp. 3737–3750, Sep. 2014.

[34] C. Wu, J. Zhu, D. Cai, C. Chen, and J. Bu, “Semi-supervised nonlin-
ear hashing using bootstrap sequential projection learning,” IEEE Trans.
Knowl. Data Eng., vol. 25, no. 6, pp. 1380–1393, Jun. 2013.

[35] G. Irie, Z. Li, X. Wu, and S. Chang, “Locally linear hashing for extracting
non-linear manifolds,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
Jun. 2014, pp. 2123–2130.

[36] F. Shen, C. Shen, W. Liu, and H. T. Shen, “Supervised discrete hashing,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2015, pp. 37–45.

[37] S. Conjeti et al., “Metric hashing forests,” Med. Image Anal., vol. 34,
pp. 13–29, 2016.

[38] X. Zhu, H. Suk, S. Lee, and D. Shen, “Subspace regularized sparse mul-
titask learning for multiclass neurodegenerative disease identification,”
IEEE Trans. Biomed. Eng., vol. 63, no. 3, pp. 607–618, Mar. 2016.

[39] W. Li, S. Wang, and W. Kang, “Feature learning based deep supervised
hashing with pairwise labels,” in Proc. 25th Int. Joint Conf. Artif. Intell.,
2016, pp. 1711–1717.

[40] W. Kong and W.-J. Li, “Double-bit quantization for hashing,” in Proc.
26th AAAI Conf. Artif. Intell., 2012, vol. 1, no. 2, pp. 634–640.

[41] J. Wang, W. Liu, S. Kumar, and S.-F. Chang, “Learning to hash for indexing
big data a survey,” Proc. IEEE, vol. 104, no. 1, pp. 34–57, Jan. 2016.

[42] S. Zhang and D. Metaxas, “Large-scale medical image analytics: Recent
methodologies, applications and future directions,” Med. Image Anal.,
vol. 33, pp. 98–101, 2016.

[43] T.-T. Do, A.-D. Doan, and N.-M. Cheung, “Learning to hash with bi-
nary deep neural network,” in Proc. Eur. Conf. Comput. Vis., 2016,
pp. 219–234.

[44] J. Heo, Y. Lee, J. He, S. Chang, and S. Yoon, “Spherical hashing: Binary
code embedding with hyperspheres,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 37, no. 11, pp. 2304–2316, Nov. 2015.

[45] B. Kulis and T. Darrell, “Learning to hash with binary reconstructive
embeddings,” in Proc. Adv. Neural Inf. Process. Syst., 2009, vol. 22,
pp. 1042–1050.

[46] M. Norouzi and D. J. Fleet, “Minimal loss hashing for compact binary
codes,” in Proc. 28th Int. Conf. Mach. Learn., 2011, pp. 353–360.

[47] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions,” Commun. ACM, vol. 51, no. 1,
pp. 117–122, 2008.

[48] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large image
databases for recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2008, pp. 1–8.

[49] V. Erin Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing for
compact binary codes learning,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., Jun. 2015, pp. 2475–2483.

[50] X. Peng, J. Lu, Z. Yi, and Y. Rui, “Automatic subspace learning via
principal coefficients embedding,” IEEE Trans. Cybern., to be published.

[51] Y. Wei, Y. Song, Y. Zhen, B. Liu, and Q. Yang, “Heterogeneous translated
hashing: A scalable solution towards multi-modal similarity search,” ACM
Trans. Knowl. Discovery Data, vol. 10, no. 4, 2016, Art. no. 36.

[52] M. M. Bronstein, A. M. Bronstein, F. Michel, and N. Paragios, “Data
fusion through cross-modality metric learning using similarity-sensitive
hashing.” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2010,
vol. 1, no. 2, p. 5.

[53] J. Zhou, G. Ding, and Y. Guo, “Latent semantic sparse hashing for cross-
modal similarity search,” in Proc. 37th Int. ACM SIGIR Conf. Res. De-
velop. Inf. Retrieval, 2014, pp. 415–424.

[54] Q.-Y. Jiang and W.-J. Li, “Deep cross-modal hashing,” CoRR, 2016.
[Online]. Available: http://arxiv.org/abs/1602.02255

[55] X. Zhu, X. Li, S. Zhang, C. Ju, and X. Wu, “Robust joint graph sparse
coding for unsupervised spectral feature selection,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 26, no. 6, pp. 1263–1275, Jun. 2017.

[56] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques
for embedding and clustering.” in Proc. Adv. Neural Inf. Process. Syst.,
2001, vol. 14, pp. 585–591.

[57] D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-taught hashing for fast simi-
larity search,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval,
2010, pp. 18–25.

[58] X. Zhu, X. Li, and S. Zhang, “Block-row sparse multiview multilabel
learning for image classification,” IEEE Trans. Cybern., vol. 46, no. 2,
pp. 450–461, Feb. 2016.

[59] D. Cai and X. Chen, “Large scale spectral clustering via landmark-based
sparse representation,” IEEE Trans. Cybern., vol. 45, no. 8, pp. 1669–
1680, Aug. 2015.

[60] D. Zhang, F. Wang, and L. Si, “Composite hashing with multiple infor-
mation sources,” in Proc. 34th Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2011, pp. 225–234.

Manuscript for IEEE TMM

[61] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” Science, vol. 315, no. 5814, pp. 972–976, 2007.

[62] J. Goldberger, S. T. Roweis, G. E. Hinton, and R. Salakhutdinov, “Neigh-
bourhood components analysis,” in Proc. Adv. Neural Inf. Process. Syst.,
2004, pp. 513–520.

[63] K. Q. Weinberger, F. Sha, and L. K. Saul, “Learning a kernel matrix for
nonlinear dimensionality reduction,” in Proc. 21st Int. Conf. Mach. Learn.,
2004, p. 106.

[64] S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally
linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[65] A. Andoni, T. Laarhoven, I. Razenshteyn, and E. Waingarten, “Opti-
mal hashing-based time-space trade-offs for approximate near neighbors,”
CoRR, 2016. [Online]. Available: http://arxiv.org/abs/1608.03580

[66] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A
large data set for nonparametric object and scene recognition,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 30, no. 11, pp. 1958–1970, Nov. 2008.

[67] T.-S. Chua et al., “Nus-wide: A real-world web image database from
National University of Singapore,” in Proc. ACM Int. Conf. Image Video
Retrieval, 2009, Art. no. 48.

	2017 IEEE
	PCA-Hashing

