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The main impetus for this thesis is to obtain new identities about colourings and

flows in graphs. Chapter 2 contains two smaller results about the Tutte polynomial

which have already been accepted for publication [26, 27]. The thesis then examines

the different polynomials introduced by Matiyasevich [43, 45] and Alon and Tarsi [6].

Chapter 3 is devoted to setting up the necessary machinery for a unifying treatment of

these polynomials and introduces the relevant notions of discrete Fourier analysis. The

groundwork carried out in this chapter leads to an assortment of identities, often just

for cubic graphs, involving the number of proper edge colourings and nowhere-zero flows.

The main results of Chapter 4 are new properties of the coefficients of the Matiyasevich

polynomial. Chapter 5 contains some curious correlation identities, which emerge from

a development of the ideas of Matiyasevich [45]. Some of these identities have been re-

proved by methods which do not rely on the discrete Fourier transform [69]. Chapter 5

concludes with an extension of these ideas to face colourings of cubic graphs embedded in

surfaces. Chapter 6 focuses on cubic graphs and the enumeration of nowhere-zero flows

and proper edge colourings. In its final section, identities are derived which relate proper

edge 3-colourings to colourings of the edges with a larger number of colours. The thesis

closes with a short outline of possible future extensions.
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Chapter 1

Introduction

In this chapter we outline the content of this thesis and give an account of a theorem of

Alon and Tarsi in [7] and a theorem of Matiyasevich in [45] which, together, motivated

the work set out in Chapters 3-6. All definitions and notation are introduced as they are

needed, although the basic terms of graph theory are assumed. We refer the reader to

[18] and [14] for more information about the notions from graph theory encountered in

this thesis.

In Chapter 2 we consider the evaluation of some specialisations of the Tutte polyno-

mial modulo a fixed integer. (See for example [68] for the significance of this polynomial

in many areas of combinatorics and physics.) With minor modifications, §2.2 is a paper

cowritten with Dominic Welsh which has appeared in [26] and §2.3 is a paper which has

appeared in [27]. The main import of Annan’s results in [8, §3] is that in all but a few un-

resolved cases the evaluation of the Tutte polynomial at a point (x, y) modulo any integer

k ≥ 3 is not possible in random polynomial time (provided RP 6= NP) if its evaluation

at some congruent point in Z is not possible in polynomial time (provided #P 6= FP).

In §2.3 we find some exceptions to the converse statement which are counterexamples to

Annan’s Conjecture 3.6.3 in [8].

The extensive groundwork carried out in Chapter 3 is a result of the synthesis of the

methods of Alon and Tarsi [6, 7] and Matiyasevich [43, 45], and in the use of half-edges and

weights is comparable to Jaeger’s [36] use of half-edges, transitions and weight functions. In

§§10-12 of Chapter 3 definitions and theorems from discrete Fourier analysis are tailored

for our purposes. Taking the discrete Fourier transform of our weight functions gives

many of the results set out in Chapters 4-6.

In Chapter 4 we obtain some new results about the Matiyasevich polynomial, the

subject of Matiyasevich’s paper [43] and given this name in for example [21]. Matiyasevich

in [43] considers this polynomial as a special case of the graph polynomial, which is the

subject of Matiyasevich’s earlier paper [42] as well as Alon and Tarsi’s papers [6, 7, 62].
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2 CHAPTER 1. INTRODUCTION

We define these polynomials in the second part of this introduction.

In Chapter 5 we derive some new results analogous to Matiyasevich’s probabilistic re-

statements of the Four Colour Theorem [45] and in particular provide comparable proba-

bilistic restatements of Alon and Tarsi’s interpretation of the coefficients and the ℓ2-norm

of the graph polynomial in [6, 7].

In Chapter 6 we use the discrete Fourier transform to generate a number of expressions

for the number of nowhere-zero k-flows and the number of proper edge k-colourings of

a cubic graph, which appear to be new and for which it would be interesting to have a

simpler direct proof.

Finally in Chapter 7 we highlight a few of the questions and open problems which

arise in the course of Chapters 2-6.

We conclude this introduction with a definition of the graph polynomial and the

Matiyasevich polynomial, together with a presentation of a theorem of Alon and Tarsi [6]

and a theorem of Matiyasevich [45]. The reader may wish to refer back to these before

embarking on Chapter 3, as motivation for the unification and generalisation to be found

in this chapter of the methodology of the authors just cited.

Suppose that G = (V,E) is a loopless graph with a fixed orientation. If {v0, v1} ∈ E

then we write v0 < v1 if v0 is directed towards v1. The graph polynomial of G, first studied

by Petersen [53], is defined by

f(G; (xv)) =
∏

{v0,v1}∈E, v0<v1

(xv1 − xv0),

where (xv) denotes a vector of |V | commuting indeterminates indexed by the vertex set

of G.

For k ∈ N, Alon and Tarsi [7] take the graph polynomial f(G) modulo the ideal

(xk
v − 1) of C[(xv)] generated by the polynomials {xk

v − 1 : v ∈ V } to obtain the following

polynomial:

fk(G; (xv)) =
∏

{v0,v1}∈E, v0<v1

(xv1 − xv0) mod (xk
v − 1).

Let Zk be the cyclic group of integers modulo k whose elements have been identified

with the first k nonnegative integers {0, 1, 2, . . . , k−1}. For a polynomial p ∈ C[(xv)]/(x
k
v−

1) given by

p((xv)) =
∑

λ:V →Zk

cλ
∏

v∈V

xλ(v)
v ,

the ℓ2-norm of p is defined by

‖p‖2
2 =

∑

λ:V →Zk

|cλ|2.
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Alon and Tarsi [7] apply a theorem from the theory of discrete Fourier analysis known as

Parseval’s formula (recorded in §3.10 of this thesis) to obtain the following expression for

the ℓ2-norm of fk(G):

Theorem [7] For any graph G = (V,E) and k ∈ N,

‖fk(G)‖2
2 = 4|E|k−|V | ∑

λ:V →Zk

∏

{v0,v1}∈E, v0<v1

sin2[
π(λ(v1) − λ(v0))

k
].

In particular

‖f3(G)‖2
2 = 3|E|−|V |P (G; 3),

where P (G; 3) is the number of proper vertex 3-colourings of G.

We now turn to Matiyasevich’s theorem from [45].

Suppose that G = (V,E) is a bridgeless planar cubic graph embedded in the plane

with planar dual G∗. The Matiyasevich polynomial [43, 45, 21] of G is defined by

∏

e0<e1<e2

(xe0 − xe1)(xe1 − xe2)(xe2 − xe0) mod (x3
e − 1),

where the product is over all triples of edges {e0, e1, e2} incident with a common vertex

of G taken in a clockwise order e0 < e1 < e2 in the embedding of G in the plane and

(x3
e − 1) denotes the ideal generated by the polynomials {x3

e − 1 : e ∈ E}.
In [43, 44] Matiyasevich has a number of results about the coefficients of this polyno-

mial, and in [45, 46] he gives some of them probabilistic interpretations, one of which we

will describe here. First we need to give some preparatory definitions.

Each edge e of G is divided into two half-edges (the two halves of e), one of each

incident with either end of e. Each vertex is incident with three half-edges since G is

cubic. The set of half-edges of G is denoted by H and a proper half-edge colouring of G is

a colouring function µ : H → {0, 1, 2} with the property that each vertex of G is incident

with half-edges of distinct colours.

Given a plane embedding of G, a vertex v is clockwise in a given proper half-edge

colouring of G if the colours 0, 1, 2 appear in a clockwise order around v, and anticlockwise

otherwise. A proper half-edge colouring is even or odd according as the parity of the

number of anticlockwise vertices is even or odd. Any given proper half-edge colouring of

G induces a (not necessarily proper) edge 3-colouring of G by adding together the colours

on the two halves of an edge modulo 3.

We now choose two proper half-edge colourings µ, µ′ uniformly at random (u.a.r.)

from the set of 6|V | proper half-edge colourings of G. Define “Equivalent” to be the event

that µ, µ′ induce the same edge colouring and “Same Parity” to be the event that the

number of anticlockwise vertices in each of µ, µ′ has the same parity.
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Matiyasevich shows that the Four Colour Theorem is equivalent to the following state-

ment: given that two proper half-edge colourings of a plane bridgeless cubic graph chosen

u.a.r. have the same parity, the probability that they induce the same colouring is in-

creased. More specifically, he proves the following:

Theorem [45] Let G = (V,E) be a plane cubic graph. Then

Pr(Equivalent | Same Parity) − Pr(Equivalent) =
1

4

(
1

4
√

3

)|V |
P (G∗; 4).

In this thesis we see how Alon and Tarsi’s theorem and Matiyasevich’s theorem are

related and develop in Chapter 3 a theoretical framework from which many similar results

can be derived.



Chapter 2

The Tutte polynomial modulo an

integer

2.1 Definitions

Let G = (V,E) denote a graph, with loops and parallel edges permitted, and G the

collection of all such graphs. The size of a graph G = (V,E) is |E|. If G has c(G)

connected components, then the rank of G, denoted r(E), is |V | − c(G). The rank r(A)

of a subset of edges A ⊆ E is the rank of the subgraph (V,A).

Let X,Y be commuting indeterminates. The Tutte polynomial T (G;X,Y ) is a map

T : G → Z[X,Y ] defined for all graphs G by

T (G;X,Y ) =
∑

A⊆E

(X − 1)r(E)−r(A)(Y − 1)|A|−r(A). (2.1)

An evaluation of the Tutte polynomial in a commutative ring R with 1 is a map T (x, y) :

G → Z[x, y] ⊆ R obtained from T by substituting (x, y) ∈ R × R for the indeterminate

pair (X,Y ) in (2.1).

2.2 On the parity of colourings and flows

Tarsi [62] proves that for a graph G the set of proper 3-colourings and the set of nowhere

zero 3-flows are of the same parity. We show that this is a special case of a more general

result.

As pointed out by Tarsi, the set C3(G) of proper 3-colourings has the property that

|C3(G)| is always divisible by 6 (permutations of the 3 colours), while flows come in

pairs (obtained by reversing the entire orientation). Thus, if NZF3(G) denotes the set of

5



6 CHAPTER 2. THE TUTTE POLYNOMIAL MODULO AN INTEGER

nowhere-zero 3-flows on G, what Tarsi actually shows (his Theorem 1.3) is that

|C3(G)| ≡ |NZF3(G)|mod4. (2.2)

We change notation to that of [68] and write P (G; k) for the chromatic polynomial

and F (G; k) for the flow polynomial. Thus (2.2) can be rewritten as

P (G; 3) ≡ F (G; 3) mod 4. (2.3)

To prove our results we use the spanning tree expansion of the Tutte polynomial (see for

example [14])

T (G;x, y) =
∑

ti,jx
iyj , (2.4)

and the identities

P (G; k) = (−1)r(E)kc(G)T (G; 1 − k, 0), (2.5)

F (G; k) = (−1)|E|−r(E)T (G; 0, 1 − k). (2.6)

Two well known properties of the Tutte polynomial are noted: for |E| > 0 we have

t0,0 = 0 and for |E| > 1 we have t1,0 = t0,1.

From (2.5) and (2.6)

P (G; k) = (−1)r(E)kc(G)
∑

i≥1

ti,0(1 − k)i (2.7)

and

F (G; k) = (−1)|E|−r(E)
∑

j≥1

t0,j(1 − k)j . (2.8)

Theorem 2.2.1 For a graph G = (V,E), |E| ≥ 2, and integer k, |k| ≥ 2,

P (G; 1 + k) ≡ (−1)|E|F (G; 1 + k) mod k2.

Proof. Using (2.7) and (2.8) we have

P (G; 1 + k) ≡ (−1)r(E)(1 + k)c(G)(−k)t1,0 mod k2,

and

F (G; 1 + k) ≡ (−1)|E|−r(E)(−k)t0,1 mod k2.

The result follows since (1 + k)c(G)(−k) ≡ (−k) mod k2 and t1,0 = t0,1.�
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Putting k = 2 gives as a corollary (2.3) above. Since P (G; 3) and F (G; 3) are even

and 2 ≡ −2 mod 4 the sign (−1)|E| of the theorem is redundant in this instance.

2.3 The Tutte polynomial modulo a prime

In this section we consider the question of when it is possible to compute an evaluation

of the Tutte polynomial modulo a fixed integer in polynomial time. Although in §2.2 we

noted that if G has at least one edge then T (G;−k, 0) ≡ T (G; 0,−k) ≡ (−k)t0,1 mod k2,

it is still left open by [8] and by the theorems of this chapter whether it is possible to

evaluate the Tutte polynomial at (−k, 0) and (0,−k) modulo k2 in polynomial time.

The principal concern of the remainder of this chapter is the evaluation of the Tutte

polynomial in the field Fp for p a prime. In other words, our problem is to determine for

which points (x, y) ∈ Z × Z it is possible to compute the Tutte polynomial modulo p.

We begin with the observation that for all commutative rings R with unity 1 and

(x, y) ∈ R×R, we have

T (G;x, y) = x|E|(x− 1)r(E)−|E| if (x− 1)(y − 1) = 1, (2.9)

so that the Tutte polynomial is polynomial-time computable at each of the points in the

set {(x, y) ∈ R×R : (x− 1)(y − 1) = 1}.
A theorem of [37] determines all the evaluations of the Tutte polynomial in C which

are polynomial-time computable in the size of the graph G. Apart from those covered by

(2.9) they are at the points

(−1, 0), (0,−1), (1, 1), (−1,−1), (2.10)

and

(i,−i), (−i, i), (j, j2), (j2, j), (2.11)

where i =
√
−1 and j = (−1 +

√
−3)/2.

In [68, §7.5] it is shown that all evaluations of the Tutte polynomial in F2 are polynomial-

time computable. All four evaluations in F2 reduce to finding the parity of evaluations in

Z at points in (2.9) and (2.10).

Annan [8] proved the following result:

Theorem 2.3.1 [8, §3.6] Provided random polynomial time RP is not equal to NP, the

only polynomial-time computable evaluations of the Tutte polynomial in F3 are at the

points (−1, 0), (0,−1), (1, 1), (−1,−1) and (0, 0).

He conjectured that similarly, for any prime p > 3, the only polynomial-time computable

evaluations of the Tutte polynomial in Fp correspond to the points covered by (2.9) and
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the points (−1, 0), (0,−1), (1, 1), (−1,−1) in Fp × Fp corresponding to the points (2.10)

in C × C. However, it will be shown that this conjecture needs to be modified to include

further pairs of points corresponding to (2.11) when −1 or −3 is a square in Fp.

We call a point (x, y) ∈ R × R easy if the evaluation T (G;x, y) in R is polynomial-

time computable in the size of G. If π is a ring homomorphism then π(T (G;x, y)) =

T (G;π(x), π(y)). The easy points (2.10) in Z × Z and the homomorphism π : Z →
R, z 7→ z1, ensure that (−1, 0), (0,−1), (1, 1), (−1,−1) are easy in any commutative ring

R with unity 1. This observation is made in [8, §3.6] for R = Fp.

The following shows that the points of (2.11) yield further easy points in Fp for

p ≡ 1 mod 4 or p ≡ 1 mod 3. The Legendre symbol (a/p) is defined to be +1 when a is a

non-zero square in Fp and −1 when a is not a square.

Theorem 2.3.2 Let p > 3 be a prime. There are (at least) p + 5 + (−1/p) + (−3/p)

polynomial-time computable evaluations of the Tutte polynomial in Fp. These are at the

following points in Fp × Fp:

{(x, y) ∈ Fp × Fp : (x− 1)(y − 1) = 1}, (2.12)

(−1, 0), (0,−1), (1, 1), (−1,−1), (2.13)

(a,−a), (−a, a), (2.14)

if p ≡ 1 mod 4 and a2 + 1 = 0 in Fp; and,

(b, b2), (b2, b), (2.15)

if p ≡ 1 mod 3 and b2 + b+ 1 = 0 in Fp.

Proof. For each odd prime p ∈ N there are ideals of norm p in Z[i] if and only if (−1/p) =

+1, or p ≡ 1 mod 4, and in Z[j] if and only if (−3/p) = +1, or p ≡ 1 mod 3 (see e.g. [24]

for proofs of these facts).

Hence, for p ≡ 1 mod 4, there is a prime r + si ∈ Z[i] with norm r2 + s2 = p and the

homomorphism π : Z[i] → Z[i]/(r+si) gives images of the easy points (i,−i), (−i, i) ∈ Z[i]

in the quotient ring. The homomorphic images of the points (i,−i), (−i, i) do not coincide

with the points given by (2.12) since (i−1)(−i−1) = 2, nor with the points (1, 1), (−1,−1)

of (2.13), since p > 2, nor with (−1, 0), (0,−1) since ±i are units and cannot be mapped

to 0. The ideal (r + si) is prime in the ring of ideals of Z[i], so the quotient Z[i]/(r + si)

is a field, has p elements, and hence is isomorphic to Fp.

Similarly, for p ≡ 1 mod 3, there is prime r + sj ∈ Z[j] with norm r2 − rs + s2 = p

and the homomorphism π : Z[j] → Z[j]/(r + sj) onto a field isomorphic to Fp has in

its domain the easy points (j, j2), (j2, j) ∈ Z[j]. The homomorphic images of these two
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points cannot coincide with any points in (2.12), (2.13), (2.14) since (j − 1)(j2 − 1) = 3

and p > 3.�

When p ∈ Z does not split in the larger ring Z[i] or Z[j] it generates a prime ideal (p)

of norm p2. The quotient ring is then isomorphic with Fp2 . The proof of Theorem 2.3.2

gives the following:

Corollary 2.3.3 For odd prime p ≡ −1 mod 4 or p ≡ −1 mod 3, the points listed in

(2.9), (2.10), (2.11) provide p2 + 5 − (−1/p) − (−3/p) easy points in Fp2 × Fp2 via the

homomorphism(s) Z[i] → Z[i]/(p) and/or Z[j] → Z[j]/(p).

For p ≡ 1 mod 12, p2 + 7 easy points in Fp2 × Fp2 arise from (2.9) and evaluation in the

subfield isomorphic to Fp: all 8 points in (2.13), (2.14), (2.15) exist for this p. It is a

small step to deduce the following:

Corollary 2.3.4 Let p > 3 be prime and n ≥ 1. If n is odd then there are pn + 5 +

(−1/p) + (−3/p) polynomial-time computable evaluations of the Tutte polynomial in Fpn.

If n is even then there are pn + 7 polynomial-time computable evaluations of the Tutte

polynomial in Fpn.

Proof. In Fpn×Fpn there are pn−1 points satisfying (2.9). Further easy points correspond

to the 6+(−1/p)+(−3/p) points (2.13), (2.14), (2.15) of Theorem 2.3.2, evaluation being

in the subfield Fp of Fpn . For n even, Corollary 2.3.3 provides polynomial-time evaluations

in the subfield Fp2 for the 2 − (−1/p) − (−3/p) remaining points.�

There are 2n + 2 easy evaluations in F2n for n ≥ 1. There are no elements of multi-

plicative order 4, and for even n, when there are two elements b, b2 of order 3, the points

(b, b2), (b2, b) are such that (b − 1)(b2 − 1) = 3 = 1 in F2n and so are counted already

under (2.9).

There are 3n + 3 + (−1)n easy evaluations in F3n for n ≥ 1, with no elements order 3

and, for even n, two elements order 4. The point (−1,−1) is already counted under (2.9)

since (−1 − 1)(−1 − 1) = 4 = 1 in F3n .

Interpreting evaluation in Fp as “counting modulo p” it is natural to extend Theorem

2.3.2 from evaluation in Z/pZ to evaluation in Z/mZ for compositem by use of the Chinese

Remainder Theorem. For prime p > 3 there are 1 + (−1/p) elements of multiplicative

order 4 in Z/pn
Z and 1 + (−3/p) elements of order 3. In Z/2n

Z, −1 is a square only if

n = 1 and −3 is a square only if n = 1, 2. In Z/3n
Z, −1 is not a square and −3 is only a

square for n = 1. We obtain the following corollary by counting the number of solutions

to a2 ≡ −1 modm and (2b+ 1)2 ≡ −3 modm.

Corollary 2.3.5 Let 3 < m ∈ N have s ≥ 0 distinct prime factors greater than 3 and

let φ(m) denote Euler’s totient function. Denote by e(m) the number of polynomial-time
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computable evaluations of the Tutte polynomial in Z/mZ. Then Theorem 2.3.2 yields the

following lower bounds on e(m), the number of easy points in Z/mZ × Z/mZ.

If m 6≡ 0 mod 4 and each of the odd prime factors p > 2 of m satisfy p ≡ 1 mod 12,

then

e(m) ≥ φ(m) + 4 + 2s+1. (2.16)

If m 6≡ 0 mod 4 and each of the odd prime factors p > 2 of m satisfy p ≡ 1 mod 4, at

least one of which satisfies p ≡ 5 mod 12,

or if m 6≡ 0 mod 8, m 6≡ 0 mod 9 and there are s ≥ 1 distinct prime factors p > 3 of m

each satisfying p ≡ 1 mod 3, at least one of which satisfies p ≡ 7 mod 12 if m 6≡ 0 mod 4

and m 6≡ 0 mod 3, then

e(m) ≥ φ(m) + 4 + 2s. (2.17)

Otherwise,

e(m) ≥ φ(m) + 4. (2.18)

Whether these inequalities for e(m) can be improved to equalities depends on whether

Theorem 2.3.2 describes all the easy points in Z/pZ × Z/pZ. We finish this chapter with

a brief discussion of this question.

For prime p > 3 it remains an open problem to determine if all the polynomial-time

computable evaluations of the Tutte polynomial in Fp have been found. A revised version

of the conjecture made in [8, §3.6] is the following:

Conjecture 2.3.6 Let p > 3 be prime. Provided RP 6= NP, any evaluation of the

Tutte polynomial in Fp not listed in Theorem 2.3.2 is not computable by a randomised

polynomial-time algorithm.

In [8, §3.7] some partial confirmation for this conjecture is adduced. Annan shows that

evaluating the Tutte polynomial at the following points cannot be random polynomial

time unless RP = NP:

{(1, y) ∈ Fp × Fp : y 6= 1}, (2.19)

and,

{(x, y) ∈ Fp × Fp : (x− 1)(y − 1) 6= 0, 1, 2; 〈x〉 = F ∗
p or 〈y〉 = F ∗

p }, (2.20)

where F ∗
p is the multiplicative group of units and 〈z〉 denotes the set generated multi-

plicatively by z ∈ Fp.

Apart from evaluation at the points

{(x, 1) ∈ Fp × Fp : x 6= 1}, (2.21)

{(x, y) ∈ Fp × Fp : (x− 1)(y − 1) = 2}, (2.22)
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the author has verified that the statement of Conjecture 2.3.6 is true for all evaluations

of the Tutte polynomial in Fp for 3 < p ≤ 37.

For p = 5, the points listed in (2.19) and (2.20) account for all the points not shown

to be easy by Theorem 2.3.2, except for the points in (2.21). All four points of (2.22) are

easy for p = 5.

For the restricted problem of evaluating the Tutte polynomial of planar graphs in Fp,

the points of (2.22) will be easy by a theorem of [65]: evaluating the Tutte polynomial of

planar graphs at the points {(x, y) ∈ C × C : (x− 1)(y − 1) = 2} is polynomial time.

We note that T (G; 2, 1) counts forests in G and (−1)|E|−r(E)T (G; 0, 1 − p) counts

nowhere-zero p-flows in G when evaluating the Tutte polynomial in Z. Interpreting eval-

uation in Fp as counting modulo a prime, the following question in particular arises from

(2.21).

Problem 2.3.7 [8, §3.8] For prime p > 3, is there a randomised polynomial-time al-

gorithm for counting the number of forests of a graph modulo p? Can the number of

nowhere-zero p-flows modulo p be found in random polynomial time?
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Chapter 3

Half-edges: partitions, colourings

and weights

3.1 Introduction

The framework constructed in this chapter provides the basis for unifying and developing

the results of Alon, Tarsi [62, 7, 6] and Matiyasevich [43, 45], two of which were presented

in the introductory Chapter 1. In Chapter 4 we explore some properties of the Matiya-

sevich polynomial by interpreting its coefficients in terms of the weights and induced

colourings introduced in §3.7 and §3.9 of this chapter. These weights and induced colour-

ings will be further used in Chapter 5 to extend the probabilistic results of Matiyasevich

[45] on edge 3-colouring cubic graphs; analogous results for vertex 3-colouring arbitrary

graphs are deduced, yielding probabilistic interpretations and extensions of the results of

Alon and Tarsi [7, 62]. In Chapter 6 we will use the weighted half-edge colourings defined

in this chapter to give some enumerative results analogous to Tarsi’s [62] expression for

the ℓ2-norm of the graph polynomial with exponents reduced modulo k as a sum over

weighted “k, 1-flows”. The content of this chapter consists entirely of preparatory mate-

rial for Chapters 4-6. In the final section §3.12 the three lemmas marked A,B,C are the

basis for many of the proofs in these later chapters.

3.2 Half-edges and edge double covers

Suppose G is an arbitrary graph embedded on a surface, so that vertices are points and

edges are smooth curves with endpoints their incident vertices. Edges only meet at points

representing vertices and a loop is a closed curve with just one vertex as a single endpoint.

The half-edges of a graph G may be regarded as the result of cutting each edge across the

middle, so that every edge comprises two half-edges and every vertex is incident with as

13
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Figure 3.1: Half-edges by cutting edges across their middle. For any graph, each edge comprises

two half-edges. For a cubic graph, each vertex comprises three half-edges.

many half-edges as its degree. (See Figure 3.1 above.)

We follow [17] and begin with half-edges as primitive undefined elements, gluing them

together to make the edges of G, rather than beginning with G and a given embedding

of G and then cutting edges in half to obtain half-edges. The advantage of this approach

is that the interpretation of half-edges is not fixed in terms of a given embedding, nor

need half-edges be edges cut across their middle (in §5.5, for example, we use a different

interpretation of half-edges).

Definition 3.2.1 Let G = (V,E) be a graph. The half-edges of G are defined by a pair

(H, E), where H is a set of 2|E| elements and E is a set {H(e) : e ∈ E} partitioning H

into 2-sets indexed by the edge set E.

Apart from the finest partition H = {{h} : h ∈ H} of H into singletons, the other

two partitions of H which we shall consider will be defined by reference to a double cover

of the edge set E of the graph G. For a given index set S, a multiset {E(s) : s ∈ S} of

subsets of E forms a double cover of E if each edge in E belongs to exactly two members

of {E(s) : s ∈ S}. We then let S := {H(s) : s ∈ S} be the set of blocks in a partition of

H with the following properties:

(1) for each s ∈ S, |H(s)| = |E(s)|,

(2) for each s ∈ S, H(s) ∩H(e) 6= ∅ if and only if e ∈ E(s).

For a given double cover {E(s) : s ∈ S} of E there are 2|E| partitions {H(s) : s ∈ S}
of H satisfing (1) and (2), since for each edge e ∈ E(s) there are two choices for which
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half-edge from H(e) is to belong to H(s). In order that one of these 2|E| partitions is

uniquely determined by the double cover {E(s) : s ∈ S} one of these choices must be

forced, determining a unique half-edge in H(e) ∩H(s) whenever e ∈ E(s). This can be

achieved by interpreting the half-edges as objects in the embedding of the graph G. In

§§3.3-3.4 below we use the definition of the set of half-edges H in a given embedding of

G as the set of 2|E| simple curves obtained by cutting each edge in half (at a point not

equal to a vertex in the embedding of G).

3.3 Partitioning half-edges of a graph by vertices

Let G = (V,E) be any graph, with edges considered as subsets of vertices of size 2 (non-

loops) or size 1 (loops). The set E(v) = {e ∈ E : v ∈ e} of edges incident with a common

vertex v is a cutset of G. The collection {E(v) : v ∈ V } of such cutsets forms a double

cover of the edges of G.

Given an arbitrary embedding of G on a surface with half-edge set H, we interpret

half-edges as being obtained by cutting the edges of G across their middle. The blocks of

the edge partition E of H comprise pairs of half-edges which are obtained from the same

edge. We define the vertex partition V = {H(v) : v ∈ V } of H to be the unique partition

of H which satisfies

(1) for each v ∈ V , |H(v)| equals the degree of the vertex v in G,

(2) for each v ∈ V and e ∈ E, H(v)∩H(e) 6= ∅ if and only if e ∈ E(v) (in other words,

v is incident with e in G),

(3) in the embedding of G on a surface, the half-edges in H(v) meet in a common point

(representing v in the embedding).

For an edge e = {u, v} not a loop, the intersection H(v) ∩ H(e) gives the half-edge

which has endpoint v and is half of the edge e. When e = {v} is a loop, H(v) ∩ H(e)

comprises the two halves of the loop.

Two vertices u, v ∈ V are adjacent in G if and only if there is some e ∈ E such that

H(u)∪H(v) ⊇ H(e) and r edges e1, e2, . . . er ∈ E contain the cutset E(v) = {e ∈ E : v ∈
e} of G if and only if H(e1) ∪H(e2) ∪ . . . ∪H(er) ⊇ H(v).

3.4 Partitioning half-edges of an edge-2-connected graph by

faces

We require some preliminary topological definitions in order to define the face partition F
of the half-edge set H of a given edge-2-connected graph G. The partition of the half-edge
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set of a graph by faces is used in §5.5, where we consider the problem of proper face 3-

and 4-colouring bridgeless cubic graphs 2-cell embedded on a surface. See for example

[10] for more on topological graph theory.

An embedding of G on a surface S (a compact Hausdorff topological space locally

homeomorphic to R
2) is a 2-cell embedding if the connected components of the surface

complement S\G of G are each homeomorphic to an open disk. Only connected graphs

have 2-cell embeddings; in what follows we take G to be not only connected but edge-2-

connected. Edge-2-connectivity ensures that each edge of G is incident with two distinct

faces. An embedding of a connected bridgeless cubic planar graph on a sphere is an

example of a 2-cell embedding.

The connected components of S\G are the faces of the 2-cell embedded graph G. A

face f of G will as usual be identified with the subset of edges which lie in its closure

(edges on its boundary) and the set of faces denoted by F . If a 2-cell embedding of a

planar graph G on the sphere S is punctured at a point in S\G to obtain an embedding

of G on the plane, the face which is punctured is called the outer face in this embedding.

The face boundaries E(f) = {e ∈ E : e lies on the boundary of f} in a 2-cell embed-

ding of an edge-2-connected graph G together form a cycle double cover of the edges of G.

MacLane’s Theorem [47] says that an edge-2-connected graph is planar if and only if it

has a cycle double cover which spans the cycle space of G. This implies that the faces in a

2-cell embedding of an edge-2-connected graph G span the cycle space of G only when G

is planar. By contrast, the cutset double cover {E(v) : v ∈ V } of the edges of any graph

G spans the cutset space of G.

The surface dual (or geometric dual) G∗ of an edge-2-connected graph G which has

been 2-cell embedded on a surface has vertices the faces of G, and two faces are adjacent

if they share a common boundary (the closures of the two faces meet in an edge). If G

is embedded in the plane, then the surface dual of G is a plane embedding of the planar

dual of G.

We present one way to define a unique face partition F of the half-edge set H of G

by using the edge double cover {E(f) : f ∈ F} by faces in a 2-cell embedding of G on

an orientable surface, which has the advantage of using the interpretation of half-edges

as edges cut across their middle into two halves, as used for the partitions E and V by

edges and vertices in §3.3. (In Chapter 5, a different definition for F is given that also

applies to 2-cell embedded graphs on non-orientable surfaces; this is achieved by giving a

different interpretation to half-edges in the embedding of G.)

Given a 2-cell embedded edge-2-connected graph G on an orientable surface with half-

edge set H and partition E by edges, we define the face partition F = {H(f) : f ∈ F} of

H as the unique partition satisfying the following properties:

(1) for each f ∈ F , |H(f)| equals the size of the face f in G,
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Figure 3.2: Faces as subsets of half-edges obtained by cutting edges across the middle. The

half-edges belonging to a face (1) belong to the edges on the boundary of the face, and (2) when the

edges of the face are traversed clockwise (anticlockwise for the outer face) the half-edges belonging

to the face are those which are first on each edge.

(2) for each f ∈ F and e ∈ E, H(f) ∩H(e) 6= ∅ if and only if e is on the boundary of

f in the embedding of G,

(3) if e is on the boundary of f , a half-edge h belonging to H(e) belongs to H(f)

only if it is the first half-edge encountered when traversing the face in a clockwise

direction. If the embedding of G is on the plane, then the outer face is traversed in

an anticlockwise direction rather than clockwise. (See Figure 3.2 above.)

3.5 Orientations and local vertex rotations

Let G be a graph with half-edge set H and E = {H(e) : e ∈ E} the partition of H by

edges and V = {H(v) : v ∈ V } the partition of H by vertices.

An arbitrary linear order is put on each block H(e) of E , denoted by <E , and this

linear order <E on each block of E defines an orientation of G. If e = {u, v} is an edge

in G, and H(e) = {a, b} with a ∈ H(u) and b ∈ H(v), then say u is directed towards v

if a <E b. Thus, the partitions V, E and the order <E on each block of E determine an

orientation of G.
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Similarly, a linear order <V on each block H(v) of V determines a local rotation at

each vertex v of G, which is a cyclic order on the set of edges incident with v. Taking

the half-edges in H(v) in <V -order and following the last half-edge in H(v) by the first

half-edge in H(v) gives a cyclic order on H(v). A cyclic order on the edges incident with v

is then defined by taking the edges incident with v in the cyclic order of the corresponding

set of half-edges at v: the position of a non-loop edge e incident with v in the cyclic order

of edges around v corresponds to the position of the half-edge H(e) ∩H(v) in the cyclic

order of H(v). For a loop e incident with v, both half-edges in H(e) belong to H(v) and

for definiteness we take the position of e in the cyclic order of edges at v to be the position

of the first half-edge of H(e) in the cyclic order on H(v). A set of local vertex rotations

for G corresponds to an orientable embedding of G. The local vertex rotations describe

the order of edges incident with a vertex when taken in a clockwise sense as viewed from

a fixed side of the orientable surface on which G is embedded. (See for example [10, 51]

for more on the combinatorial definition of embeddings by local vertex rotations and edge

signatures.)

Thus, given a graph G with half-edge set H, partition E by edges and partition V by

vertices, the <V -order on each block of V determines an orientable embedding of G.

In later chapters we shall only consider the order <V for a cubic graph G, where all

the blocks in the partition V = {H(v) : v ∈ V } of H by vertices have size 3. There are

then three linear orders <V on a block H(v) which determine the same rotation at v in

the embedding of G. The particular linear order which is chosen may be given a graphical

interpretation as follows.

Petersen [53] showed that every bridgeless cubic graph G has a 1-factor (1-regular

spanning subgraph). Given a set of local vertex rotations of a bridgeless cubic graph G

and a fixed 1-factor of G, we define a unique linear order on each block of V as follows:

(1) use the clockwise local vertex rotation of the 3-set H(v) of half-edges at each vertex

v to determine a cyclic order on each block H(v) belonging to V,

(2) for each vertex v there is a unique edge e incident with v and which lies on the

fixed 1-factor of G. The half-edge b ∈ H(e) ∩ H(v) is put between the two other

half-edges in H(v) by the linear order <V .

In this way, not only is the cyclic order of half-edges at each vertex in the given embedding

of G encoded by <V , but also the position of the edge which lies on the given 1-factor of

G (see Figure 3.3 below).
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Figure 3.3: A linear order on the three half-edges {a, b, c} at a vertex of a bridgeless cubic graph

with a fixed 1-factor. The first half-edge a in <
V

order is in an anticlockwise direction from the

second half-edge b which belongs to the edge on the 1-factor, and the third half-edge c in a clockwise

direction from b.

3.6 Colouring half-edges

A proper colouring of the vertices or edges of a graphG is independent of any embedding or

orientation of G, although the existence of a proper vertex- or edge-colouring does depend

on the set of surfaces on which it is possible to embed G. For example, a bridgeless cubic

graph has a proper edge 3-colouring if and only if it does not have a Petersen minor [55];

in particular, any bridgeless planar cubic graph has a proper edge 3-colouring (the Four

Colour Theorem).

The set H of half-edges of G together with its partitions by edges and vertices have

been defined in section §§3.3-3.4 in terms of a fixed embedding of G (and could also have

been defined in terms of a fixed orientation of G). The theme of Chapters 4-6 is that

colouring the half-edges of G tells us about proper colouring the vertices and edges of G in

terms of the particular surface on which G is embedded (or, in terms of a fixed orientation

of G).

In order to develop this connection, the structure of an additive Abelian group is put

on the set of k colours. In the subsequent technical details of this chapter the case of

an arbitrary Abelian group of order k follows a similar pattern to the simplest case of
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assuming the group is cyclic, although there are differences in graphical interpretation

according to the choice of group structure (alluded to in the concluding Chapter 7).

These differences in graphical interpretation are suggested by the case of nowhere-zero

Z2 × Z2-flows and nowhere-zero Z4-flows of a cubic graph. Nowhere-zero Z2 × Z2-flows

of a cubic graph G are proper edge 3-colourings of G with colours the non-zero elements

of Z2 ×Z2, while nowhere-zero Z4-flows of G are in bijective correspondence with totally

cyclic orientations of those 2-factors of G whose components are all of even size.

Henceforth, we take our set of colours be the additive cyclic group Zk of order k, for

some fixed k ∈ N. The elements of the set Zk will be taken to be the integers 0, 1, . . . , k−1

modulo k and these integers are put in the linear order 0 < 1 < · · · < k − 1. Fixing k,

the set ZH
k of half-edge colourings of a graph with half-edge set H is the set of all maps

µ : H → Zk from the set of half-edges into Zk. We will refer to a map into Zk as a

“colouring”, and, for example, a map µ : E → Zk as a “colouring of E” or an “edge

colouring”.

In §3.5 we introduced a linear order <E on each block of the partition E and a linear

order <V on each block of the partition V. A colouring of the half-edges with elements of

Zk assigns an element of Z2
k to each linearly ordered block of E and, for a cubic graph,

an element of Z3
k to a linearly ordered block of V. In other words, ZH

k
∼= (Z2

k)E when

the blocks of E have been <E -ordered and for a cubic graph we have the isomorphism

ZH
k

∼= (Z3
k)V when the blocks of V have been <V -ordered.

Ordered sets (tuples) of elements from {0, 1, . . . , k−1} will be concatenated to form a

string, wherever it is possible to make this abbreviation without confusion. Thus the pair

(1, 0) is abbreviated to 10 and the triple (0, 2, 1) is abbreviated to 021, while for example

(0, k − 1) is left as it is. For r ∈ N, the set of r-tuples on Zk is denoted by Zr
k .

For any given (l0, l1, . . . , lr−1) ∈ Zr
k we denote by (l0, l1, . . . , lr−1) the k-set {(l0 +

m, l1 +m, . . . , lr−1 +m) : m ∈ Zk} of r-tuples obtained from (l0, l1, . . . , lr−1) by cyclically

permuting the colour set Zk. We shall also use the notation (l0, l1, . . . , lr−1) for the r-set

{(l0, l1, . . . , lr−1), (lr−1, l0, l1, . . . , lr−2), . . . , (l1, l2, . . . , lr−1, l0)} of r-tuples obtained from

(l0, l1, . . . , lr−1) by cyclically permuting its components.

This notation will be most frequently used for k = 3 in Chapters 4-5, where, for

example,

00 = {00, 11, 22}, 01 = {01, 12, 20}, 10 = {10, 21, 02},

000 = {000, 111, 222}, 012 = {012, 120, 201} = 012, 021 = {021, 102, 210} = 021,

and 01 = {01, 10}, 12 = {12, 21}, 20 = {20, 02}.
Given a partition S = {H(s) : s ∈ S} of the half-edge set H of a graph G with a fixed

linear order on each block of S, the restriction of a half-edge colouring µ : H → Zk to

the set H(s) may be regarded interchangeably as a map H(s) → Zk or as the ordered
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set of values taken by µ on H(s). In other words, for a linearly ordered set H(s) we

use the isomorphism Z
H(s)
k

∼= Z
|H(s)|
k . Only the linear order of the elements in H(s)

will be needed, the identity of the elements themselves may be “forgotten”, for we are

ultimately interested in the properties of G as an unlabelled graph. We write µs both for

the restriction of µ to H(s) and for the ordered set of colours taken by µ on H(s).

The space of half-edge colourings, and more generally for a set U (such as a block of a

partition S of H, or one of E, V, F ) the space of U -colourings ZU
k , has a naturally defined

inner product, for which we introduce the following notation.

Definition 3.6.1 Let U be a set. The inner product 〈 , 〉 of two colourings λ, µ : U → Zk

is defined by

〈λ, µ〉 =
∑

u∈U

λ(u)µ(u),

where the arithmetic is carried out in Zk.

By taking U in Definition 3.6.1 to be the set of blocks in a partition S of H, we have

in particular that, for any half-edge colourings λ, µ : H → Zk,

〈λ, µ〉 =
∑

s∈S

∑

h∈H(s)

λ(h)µ(h) =
∑

s∈S

〈λs, µs〉,

expressing the inner product of two half-edge colourings in terms of their “local” inner

products on the blocks of S.

3.7 Refined and induced colourings

In our notation, Matiyasevich in [45] considers half-edge colourings µ : H → Z3 of a

cubic graph which have the property that for each block H(v) in the partition V of H by

vertices, µv assigns distinct colours to H(v). He then defines that a half-edge colouring µ

induces a given edge colouring λ : E → Z3 by adding together the two values taken by µ

on each block of the partition E by edges.

This definition of induced colourings generalises to other partitions of H.

Definition 3.7.1 Let T = {H(t) : t ∈ T} be any partition of H.

Given a half-edge colouring µ : H → Zk, the colouring µT : T → Zk induced on T by

µ is defined for each t ∈ T by

µT (t) =
∑

h∈H(t)

µ(h).

A colouring µ : T → Zk is refined to the colouring µH : H → Zk, defined for each

h ∈ H by

µH(h) = µ(t) if h ∈ H(t).
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We note that, for λ, µ : T → Zk,

〈λH , µH〉 =
∑

t∈T

|H(t)|〈λt, µt〉.

In particular, for two edge colourings λ, µ : E → Zk,

〈λH , µH〉 =
∑

e∈E

2〈λe, µe〉 = 2〈λ, µ〉.

For k = 3 we then have 〈λH , µH〉 = −〈λ, µ〉, a fact which will be used in Chapter 4.

The definition of induced colourings may be further extended to any pair of partitions

S, T of H as follows. If µ : S → Zk is an S-colouring, then the T -colouring induced by

µ is obtained by first refining µ to µH : H → Zk. This half-edge colouring then induces

µHT : T → Zk according to Definition 3.7.1 by setting

µHT (t) =
∑

h∈H(t)

µH(h) =
∑

s∈S

∑

h∈H(s)∩H(t)

µ(s).

For example, given a vertex colouring µ : V → Zk, the edge colouring induced on E

by µ is defined by

µHE (e) =
∑

v∈V

∑

h∈H(v)∩H(e)

µ(v)

= µ(u) + µ(v), where u, v are the endpoints of e in G.

In Chapters 4-5 we consider half-edge colourings and their induced T -colourings, where

T is one of E, V or F . We will be interested in which half-edge colourings induce the

same T -colouring, which motivates the following definition:

Definition 3.7.2 Let T = {H(t) : t ∈ T} be a partition of the half-edge set H. For a

fixed T -colouring λ : T → Zk, the class of half-edge colourings equivalent to λ is defined

by

[λ]T = {µ ∈ ZH
k : µT = λ}.

The equivalence classes {[λ]T : λ ∈ ZT
k } partition the set ZH

k of all half-edge colourings,

where two half-edge colourings lie in the same class if they induce the same T -colouring.

3.8 Colouring the blocks of a half-edge partition

In this section vertex, edge and face colourings of a graph G are represented as particular

types of half-edge colourings, defined in terms of the appropriate partitions of the half-

edge set of G. First we begin by defining three special subsets of Zr
k .
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Definition 3.8.1 A monochrome r-tuple is an element of Zr
k whose components are all

the same. A proper r-tuple is an element of Zr
k whose components are distinct. A null

r-tuple is an element of Zr
k whose components sum to zero in Zk.

The set of monochrome r-tuples in Zr
k form a subspace of Zr

k isomorphic to Zk. The

set of kr−1 null r-tuples form a subspace of Zr
k isomorphic to Zr−1

k . For example, for r = 2,

the null pairs in Z2
k are elements in the set {(0, 0), (1, k − 1), (2, k − 2), . . . , (k − 1, 1)}.

Permuting the order of the components in an r-tuple preserves the property of being

monochrome, proper or null, so that we extend the terms monochrome, proper and null

to unordered multisets of r colours. We use the following definition to represent vertex,

edge and face colourings of a graph as special types of half-edge colourings.

Definition 3.8.2 Let G = (V,E) be a graph with half-edge set H and S = {H(s) : s ∈ S}
any partition of H.

An S-monochrome half-edge colouring is a half-edge colouring µ : H → Zk which is

monochrome on each block of S. Similarly, an S-proper half-edge colouring is proper on

each block of S and an S-null half-edge colouring is null on each block of S.

Taking G = (V,E, F ) to be a graph with half-edge set H, vertex partition V, edge

partition E and, for a given 2-cell embedding of G, face partition F , in the terminology

of Definition 3.8.2 we have bijections between the following:

(1) (proper) vertex k-colourings and (E-proper) V-monochrome half-edge Zk-colourings,

(2) (proper) edge k-colourings and (V-proper) E-monochrome half-edge Zk-colourings,

(3) (proper) face k-colourings and (E-proper) F-monochrome half-edge Zk-colourings;

alternatively, (V-proper) F-monochrome half-edge Zk-colourings.

For example, when G is a cubic graph and k = 3, the set of proper edge 3-colourings

of G is identifiable with the set of half-edge colourings µ : H → Z3 with the property that

µ : E → 00 and µ : V → 012 ∪ 021.

We also have the following correspondences (see for example [18, 13, 35] for definitions

and more on flows and tensions):

(4) Zk-flows and E-null V-null half-edge Zk-colourings,

(5) for plane graphs, Zk-tensions and E-null F-null half-edge Zk-colourings.

If we call a half-edge colouring µ : H → Zk nowhere-zero if µ(h) 6= 0 for all h ∈ H, then

we have the usual definition of nowhere-zero flows and nowhere-zero tensions. Planarity

of G is required for our bijection between tensions and E-null F-null half-edge colourings

since the faces in an embedding of G span the cycle space of G only for plane graphs.
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We finish this section by recording the following proposition (see for example [34, 13]),

which relates flows and tensions of a plane graph to its face and vertex colourings.

Proposition 3.8.3 For a plane graph G with c(G) components,

(i) every Zk-tension of G uniquely determines kc(G) vertex Zk-colourings of G and every

nowhere-zero Zk-tension of G uniquely determines kc(G) proper vertex Zk-colourings

of G,

(ii) every Zk-flow on G uniquely determines k face Zk-colourings of G and every nowhere-

zero Zk-flow uniquely determines k proper face Zk-colourings of G.

3.9 Weights

For a given partition S of the half-edge set H of a graph G, we introduce some terminology

for the set of functions from the space of half-edge colourings ZH
k into the field of complex

numbers C which look at each half-edge colouring “locally” on each block H(s) of S,

giving a value which depends only on the ordered set of colours assigned to H(s).

We have seen in §3.8 that, for example, the colours assigned by a half-edge colouring

on the blocks of the partitions E and V of H by edges and vertices are determining

factors in the representation of proper vertex colourings of G as a subset of the half-edge

colourings of G. In the terminology of the following definition, the indicator function of

the set of proper vertex k-colourings of G is then the product of a V-weight (indicator

function of V-monochrome half-edge colourings) and an E-weight (indicator function of

E-proper half-edge colourings).

Definition 3.9.1 Let G be a graph with half-edge set H and S = {H(s) : s ∈ S} a

partition of H, where each of the sets H(s) have been put in some fixed linear order.

An S-weight is a function γS : ZH
k → C which satisfies the following:

(1) for each s ∈ S, the restriction γ(s) of the function γS to Z
H(s)
k depends only on

|H(s)|,

(2) the function γS is multiplicative over the blocks of S; in other words,

γS(µ) =
∏

s∈S

γ(s)(µs).

Property (1) says that the “local” value of an S-weight on a block of S only depends

on the size of the block, not on its particular elements. In (2) the map µs ∈ Z
H(s)
k may

be identified with its image in Z
|H(s)|
k , and by property (1) an S-weight is then simply a
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product of complex-valued functions on Zr
k for each r ∈ {|H(s)| : s ∈ S}. Letting S be

the coarsest partition {H} of H, an S-weight is just an arbitrary function from ZH
k into

C.

An S-weight extends additively to subsets of ZH
k . In particular, if T is a partition of H

and [λ]T is the equivalence class of half-edge colourings inducing the colouring λ : T → Zk,

then

γS([λ]T ) =
∑

µ∈[λ]
T

γS(µ).

We record two special cases of Definition 3.9.1 which are used in Chapters 4-5.

For an arbitrary graph G with edge partition E of its half-edge set and each block of

E in a fixed linear order, an E-weight is a function γ : Z2
k → C extending multiplicatively

to a function γE : (Z2
k)E → C by setting, for µ ∈ ZH

k ,

γE(µ) =
∏

e∈E

γ(µe).

For a cubic graph G with vertex partition V of its half-edge set H and each block of

V in a fixed linear order, a V-weight is a function γ : Z3
k → C extending multiplicatively

to a function γV : (Z3
k)V → C by setting, for µ ∈ ZH

k ,

γV(µ) =
∏

v∈V

γ(µv).

Example 3.9.2 The edge weight σE (used in a different notation by Alon and Tarsi [6])

is defined on the set of orientations of a graph given a fixed orientation (determined by the

order <E on each block of E). Orientations of a graph G can be represented as half-edge

Zk-colourings µ with the property that µ : E → 01. (The half-edge coloured 0 is the tail

and the half-edge coloured 1 is the head of the edge in the orientation µ.) Then, in our

notation, the edge weight σ of Alon and Tarsi is given for each e ∈ E by

σ(µe) =





+1 µe = 01,

−1 µe = 10,

0 otherwise.

Example 3.9.3 The vertex weight ρV (implicit in Matiyasevich [43, 45]) is defined on

half-edge Z3-colourings µ of a cubic graph G with local vertex rotations (determined by
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the order <V on the blocks of V). The vertex weight ρ is given for each v ∈ V by

ρ(µv) =





+1 µv ∈ 012,

−1 µv ∈ 021,

0 otherwise.

3.10 Discrete Fourier transforms

The material of this section is adapted from such accounts of Fourier analysis on the roots

of unity as that given in [41], which may be consulted for proofs of those standard results

which are only stated here.

Let U be a set (which in practice will be either H or a block in a partition of H)

and denote by C[ZU
k ] the vector space over C of functions from ZU

k into C. The vector

space C[ZU
k ] is an inner product space with the inner product (φ, ψ) of two functions

φ, ψ : ZU
k → C defined by

(φ, ψ) =
∑

µ:U→Zk

φ(µ)ψ(µ),

the bar denoting complex conjugation. Defining, for a function φ : ZU
k → C,

‖φ‖2
2 = (φ, φ) =

∑

µ:U→Zk

|φ(µ)|2,

the ℓ2-norm ‖φ‖2 of φ is the nonnegative real number (φ, φ)
1
2 . The ℓ2-norm has the

property that ‖φ‖2 = 0 if and only if φ = 0 , the function taking all zero values.

In §3.7 we defined, for a given partition T = {H(t) : t ∈ T} of the half-edge set H

and a T -colouring λ : T → Zk, the equivalence class of half-edge colourings inducing λ by

[λ]T = {µ ∈ ZH
k : µT = λ},

where

µT (t) =
∑

h∈H(t)

µ(h).

Analogously, for given φ ∈ C[ZH
k ], the function φT ∈ C[ZT

k ] is defined for any T -colouring

λ : T → Zk by

φT (λ) =
∑

µ∈[λ]
T

φ(µ) = φ([λ]T ),
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and for functions φ, ψ ∈ C[ZH
k ] we have the inner product of φT and ψT given by

(φT , ψT ) =
∑

λ:T→Zk

φ([λ]T )ψ([λ]T ).

In this section we derive expressions for φ([λ]T ) = φT (λ) and (φT , ψT ) which will find

wide application in Chapters 4-6 when taking φ, ψ ∈ C[ZH
k ] to be S-weights, for S one

of the partitions E ,V or F of the half-edge set H of a graph by edges, vertices or faces

respectively. In Chapter 4 we show that the coefficients of the graph polynomial modulo

the ideal (xk
v −1) of C[(xv)] are given by σE([λ]V ) for vertex colourings λ : V → Zk, where

σ is defined as in Example 3.9.2. Similarly the coefficients of the Matiyasevich polynomial

of a cubic graph are given by ρV([λ]E ) for edge colourings λ : E → Z3, where ρ is defined

as in Example 3.9.3. In Chapter 5 we intepret inner products of the form (φT , φT ) and

(φT , |φ|T ) in terms of a probability distribution on the space of half-edge colourings of a

graph, which lead to results analogous to Matiyasevich’s [45, 46] probabilistic restatements

of the Four Colour Theorem.

The S-weights introduced in §3.9 form a subspace of C[ZH
k ], equal to the direct sum

of the vector spaces {C[Z
H(s)
k ] : s ∈ S}. This decomposition of the space of S-weights as

a direct sum of smaller vector spaces facilitates the calculation of their Fourier transforms

(see Lemma 3.10.6 below). In section §3.11 we introduce notation for two bases for the

vector space C[ZH
k ] which helps us to calculate the discrete Fourier transform of S-weights

as and when required in Chapters 4-6.

Definition 3.10.1 Let U be a set, φ : ZU
k → C a function and j = e2πi/k. The (discrete

Fourier) transform operator t is defined for all λ : U → Zk by

tφ(λ) =
∑

µ:U→Zk

φ(µ)j〈λ,µ〉.

The notation t for the transform contains its dependence on k and U implicitly in that t

operates on a function φ : ZH
k → C.

Lemma 3.10.2 For all functions φ : ZU
k → C and colourings λ : U → Zk,

t−1φ(λ) = k−|U | ∑

µ:U→Zk

φ(µ)j−〈λ,µ〉.

In other words,

t−1φ(λ) = k−|U |tφ(−λ).

Proof. We shall verify that the transform of the right-hand side of the given identity is
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equal to φ(λ). Since t is linear, this transform is

k−|U | ∑

µ:U→Zk

tφ(µ)j−〈λ,µ〉 = k−|U | ∑

µ:U→Zk

∑

µ′:U→Zk

φ(µ′)j〈µ,µ′〉−〈λ,µ〉

= k−|U | ∑

µ′:U→Zk

(φ(µ′)
∑

µ:U→Zk

j〈µ,µ′−λ〉 )

= k−|U |k|U |φ(λ) = φ(λ),

where we have used the fact that

∑

µ:U→Zk

j〈µ,µ′−λ〉 =

{
k|U | µ′ = λ,

0 µ′ 6= λ.

(This latter fact is readily verified and is a particular case of Lemma 3.11.4 proved

below.) �

For a function φ : ZU
k → C, if we define the operator s by

sφ(λ) = φ(−λ),

for each λ ∈ ZU
k , Lemma 3.10.2 then says that

t−1φ = k−|U |tsφ.

We have the following useful inner product formula:

Lemma 3.10.3 For all functions φ, ψ : ZU
k → C,

(φ, ψ) = k−|U |(tφ, tψ).

Proof. We use the inversion formula of Lemma 3.10.2 to rewrite φ = t−1(tφ) :

(φ, ψ) =
∑

µ:U→Zk

φ(µ)ψ(µ) = k−|U | ∑

µ:U→Zk

ψ(µ)
∑

λ:U→Zk

tφ(λ)j−〈λ,µ〉

= k−|U | ∑

λ:U→Zk

tφ(λ)
∑

µ:U→Zk

ψ(µ)j−〈λ,µ〉 (reversing the order of summation)

= k−|U | ∑

λ:U→Zk

tφ(λ)tψ(λ) (using the linearity of complex conjugation and j = j−1),

= k−|U |(tφ, tψ).

�
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On taking φ = ψ in Lemma 3.10.3, the following result often known as Parseval’s

Formula is obtained:

Corollary 3.10.4 For all functions φ : ZU
k → C,

(φ, φ) = k−|U |(tφ, tφ).

(Alternatively, ‖φ‖2
2 = k−|U |‖tφ‖2

2.)

The dot product φ · ψ of two functions φ, ψ : ZU
k → C is defined by

φ · ψ =
∑

µ:U→Zk

φ(µ)ψ(µ) = (φ, ψ),

and will appear extensively in proving the results of Chapter 6. Another useful corollary

of Lemma 3.10.3 which will be much used in this later chapter is the following:

Corollary 3.10.5 For all functions φ, ψ : ZU
k → C,

φ · ψ = tφ · t−1ψ.

(Alternatively, φ · tφ = tφ · ψ.)

Proof. By Lemma 3.10.3,

φ · ψ = (φ, ψ) = k−|U |(tφ, tψ).

With

tψ(λ) =
∑

µ:U→Zk

ψ(µ)j〈λ,µ〉 =
∑

µ:U→Zk

ψ(−µ)j〈λ,µ〉

= tsψ(λ),

and, by Lemma 3.10.2,

t−1ψ = k−|U |tsψ,

we then have

φ · ψ = (tφ, t−1ψ) = tφ · t−1ψ.

�

The final lemma of this section is specific to S-weights. Just as an S-weight is mul-

tiplicative over the blocks of S, so too the transform of an S-weight can be found by

multiplying the transforms of its restrictions to the blocks of S.
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Lemma 3.10.6 Let S = {H(s) : s ∈ S} be a partition of H and γS : ZH
k → C an

S-weight. Then, for all λ ∈ ZH
k ,

tγS(λ) =
∏

s∈S

tγ(s)(λs).

Proof.

tγS(λ) =
∑

µ:H→Zk

γS(µ)j〈λ,µ〉

=
∏

s∈S

∑

µs:H(s)→Zk

γ(s)(µs)j
〈λs,µs〉 =

∏

s∈S

tγ(s)(λs).

�

When S is a partition into blocks of the same size r, an S-weight takes the form

γS(µ) =
∏

s∈S

γ(µs),

where γ : Zr
k → C is a fixed function. By Lemma 3.10.6, the transform of γ then

determines the transform of the S-weight γS : (Zr
k)S → C as follows:

tγS = (tγ)|S|.

This observation enables us to easily calculate the transforms of edge weights (the

partition E into blocks of size 2) on half-edge colourings of arbitrary graphs and, for

half-edge colourings of cubic graphs, the transform of vertex weights (the partition V into

blocks of size 3).

3.11 Two bases for weights

In order to calculate the discrete Fourier transform of S-weights, we introduce some

notation for two orthogonal bases for the vector space of S-weights. The first is the basis

of indicator functions, the second the image of this basis under the Fourier transform.

Definition 3.11.1 Let S = {H(s) : s ∈ S} be a partition of H and λ : H → Zk a

half-edge colouring with the property that

∀s, s′ ∈ S |H(s)| = |H(s′)| ⇒ λs = λs′ ,

where λs denotes the restriction of λ to the block H(s). The S-weights αℓ for ℓ ∈ Z
|H(s)|
k
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are defined on colourings µs : H(s) → Zk by

αℓ(µs) =

{
1 µs = ℓ,

0 µs 6= ℓ,

and extend multiplicatively as S-weights αS
λ on colourings µ : H → Zk to

αS
λ (µ) =

∏

s∈S

αλs
(µs).

Clearly, the set of weights {αS
λ : λ ∈ ZH

k , |H(s)| = |H(s′)| ⇒ λs = λs′} forms a basis for

the vector space of S-weights. In particular, when S is a partition of H into blocks of

equal size r, the set of S-weights {αS
ℓ : ℓ ∈ Zr

k} form a basis, where

αS
ℓ (µ) =

∏

s∈S

αℓ(µs).

In the notation of Definition 3.11.1, αS
ℓ = αS

λ where λs = ℓ for each s ∈ S.

For a subset L ⊆ Z
|H(s)|
k we write αL for the weight defined by

αL(µs) =
∑

ℓ∈L

αℓ(µs) =

{
1 µs ∈ L,

0 µs 6∈ L.

In other words, αL is the indicator function of the subset L. For example, in the

partition E of H into 2-sets, α00 extends multiplicatively over the blocks of E to the

edge weight αE
00 which counts just those half-edge colourings µ : H → Zk which are

monochrome on each block of E . For a cubic graph and k = 3 the vertex weight αV
012,021

counts just those half-edge colourings µ : H → Z3 which are proper on each block of V.

Alon and Tarsi’s edge weight σE (Example 3.9.2) is given by σ = α01 −α10 on Z2
k and

extends multiplicatively to a function on (Z2
k)E . Matiyasevich’s vertex weight ρV (Example

3.9.3) is given by ρ = α012−α021 on Z3
3 , extended multiplicatively to a function on (Z3

3 )V .

The next definition introduces a second basis for S-weights, which is the image of the

first basis of indicator weights under the discrete Fourier transform.

Definition 3.11.2 For a partition S of H, the S-weights βℓ for ℓ ∈ Z
|H(s)|
k are defined

on colourings µs : H(s) → Zk by

βℓ(µs) = j〈ℓ,µs〉,

where the inner product on the right-hand side is on Z
|H(s)|
k . These maps extend multi-
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plicatively to S-weights on ZH
k by setting, for µ : H → Zk,

βSλ (µ) =
∏

s∈S

βλs
(µs) = j

∑
s∈S〈λs,µs〉 = j〈λ,µ〉,

where λ : H → Zk has the property that if H(s),H(s′) ∈ S are of the same size then

λs = λs′.

In particular, when S is a partition of H into blocks of equal size r, the S-weights {βSℓ :

ℓ ∈ Zr
k} form a basis, where

βSℓ (µ) =
∏

s∈S

βℓ(µs).

In the notation of Definition 3.11.2, βSℓ = βSλ where λs = ℓ for each s ∈ S.

For L ⊆ Zr
k we let βL denote the weight given by

βL(µs) =
∑

ℓ∈L

βℓ(µs).

Having set up notation, the following proposition records how the transform t and its

inverse t−1 act on the bases (αS
λ ) and (βSλ ) for S-weights, and is simply a consequence of

the definition of these bases and of the transform t.

Proposition 3.11.3 Let λ : H → Zk be such that λs = λs′ whenever |H(s)| = |H(s′)|,
so that αS

±λ, β
S
±λ are S-weights. Then,

tαS
λ = βSλ , tβSλ = k|H|αS

−λ,

and

t−1αS
λ = k−|H|βS−λ, t−1βSλ = αS

λ .

Given a partition S of the half-edge set H of a graph G with a linear order on each

block of S, the set of half-edge colourings ZH
k is isomorphic to the direct product of rings

of the form Zr
k , where r is the size of a block in S.

The subsets of Zr
k which are of most interest in Chapter 6 all have the property that

their description is independent of k and r. For example, the “monochrome” elements

of Zr
k can be described as those elements whose components are all the same. We use

generic names for the following subsets of Zr
k , some of which have already been introduced

in Definition 3.8.1:

“zero” = {(0, 0, . . . , 0)}, “all” = Zr
k ,

“monochrome” = {(l0, l1, . . . , lr−1) ∈ Zr
k : l0 = l1 = . . . lr−1},
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“null” = {(l0, l1, . . . , lr−1) ∈ Zr
k : l0 + l1 + · · · lr−1 = 0},

“null no zeroes” = {(l0, l1, . . . , lr−1) ∈ Zr
k : l0 + l1 + · · · lr−1 = 0, l0 6= 0, . . . , lr−1 6= 0},

and

“proper” = {(l0, l1, . . . , 1r−1) ∈ Zr
k : l0, l1, . . . , lr−1 distinct}.

Recall that the indicator function αM : Zr
k → C of a subset M of Zr

k is defined by

αM (ℓ) = 1 if ℓ ∈M and αM (ℓ) = 0 otherwise. We define the subgroup M⊥ orthogonal to

M by

M⊥ := {ℓ ∈ Zr
k : ∀m∈M 〈ℓ,m〉 = 0}.

For example, taking M as the set “monochrome”, M⊥ is the set “null”.

The discrete Fourier transform relates the indicator function of a subgroup M of Zr
k

to the indicator function of the subgroup M⊥ orthogonal to M .

Lemma 3.11.4 For given k, r ≥ 1 and any additive subgroup M of Zr
k,

tαM = |M |αM⊥ .

Proof. For j = e2πi/k and any ℓ ∈M⊥,

tαM (ℓ) =
∑

m∈M

j〈ℓ,m〉 =
∑

m∈M

1 = |M |,

while if ℓ 6∈M⊥ there is m1 ∈M such that 〈ℓ,m1〉 = d 6= 0. Then

∑

m∈M

j〈ℓ,m〉 = k−1
∑

m∈M

∑

z∈Zk

j〈ℓ,m+zm1〉

= k−1
∑

z∈Zk

jz〈ℓ,m1〉
∑

m∈M

j〈ℓ,m〉,

and since j〈ℓ,m1〉 6= 1 is a kth root of unity

∑

z∈Zk

jz〈ℓ,m1〉 =
(j〈ℓ,m1〉)k − 1

j〈ℓ,m1〉 − 1
= 0

and the result follows. �

In particular, we have the following relation between the two trivial subgroups of Zr
k :

tαzero = αall, and tαall = krαzero,
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and, of importance to the later results of this thesis,

tαmonochrome = kαnull, and tαnull = kr−1αmonochrome.

We now extend the scope of Lemma 3.11.4 from subgroups of Zr
k to subgroups of the

set of half-edge colourings ZH
k of a graph G with half-edge set H. Let T = {H(t) : t ∈ T}

be any partition of H with each block of T linearly ordered so that we can identify Z
H(t)
k

with Z
|H(t)|
k . For each t ∈ T we let Mt be a subgroup of Z

|H(t)|
k , subject to the condition

that if |H(t)| = |H(t′)| then Mt = Mt′ . Defining the subgroup M of ZH
k to be the direct

product of the groups {Mt : t ∈ T}, the function αM : ZH
k → C defined by

αM =
∏

t∈T

αMt
,

is a T -weight and is the indicator function of the subgroup M .

Since −M := {−m : m ∈ M} = M for any group M , we have α−M = αM and the

following result by Corollary 3.10.5:

Lemma 3.11.5 Let T = {H(t) : t ∈ T} be a partition of H and φ : ZH
k → C. Then for

any subgroup M of ZH
k whose restriction Mt to Z

H(t)
k depends only on |H(t)|,

φ · αM = k−|H||M | tφ · αM⊥ .

In particular, if each block of T has size r and N is a subgroup of Zr
k, then

φ · αT
N = k−|H||N ||T | tφ · αT

N⊥ .

Taking N to be the subgroup “monochrome” or “null” in Lemma 3.11.5 we have, for

a partition T of H,

tαT
monochrome = k|T |αT

null, and tαT
null = k|H|−|T |αT

monochrome.

3.12 Main lemmas

We finish this chapter with our three main lemmas for use in Chapters 4-6, collected

together here for ease of reference.

Lemma A Let T = {H(t) : t ∈ T} be a partition of H and φ ∈ C[ZH
k ]. For any

colouring λ : T → Zk,

φ([λ]T ) = k−|T | ∑

µ:T→Zk

tφ(µH)j−〈λ,µ〉.
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In particular,

φ([0 ]T ) = k−|T | ∑

µ:T→Zk

tφ(µH),

where 0 denotes the all-zero colouring of T .

Proof. Let a T -colouring λ : T → Zk be given. Choose any fixed half-edge colouring

ν ∈ [λ]T . Then

[λ]T = ν + [0 ]T ,

for if µ ∈ [λ]T then, for all t ∈ T ,

∑

h∈H(t)

(µ− ν)(h) = 0,

which is to say µ− ν ∈ [0 ]T .

Thus

α[λ]
T

= α[0 ]
T

+ν

and

t−1α[0 ]
T

+ν = k−|H|β[0 ]
T
−ν = β[0 ]

T
β−ν .

From Lemma 3.11.5,

β[0 ]
T

= βTnull = k|H|−|T |αT
monochrome,

and we then have by Corollary 3.10.5

φ([λ]T ) = φ · α[λ]
T

= tφ · t−1α[λ]
T

= φ · k−|H|+|H|−|T |αT
monochromeβ−ν .

This may be written as

φ([λ]T ) = k−|T | ∑

µ:T→Zk

β−ν(µH) = k−|T | ∑

µ:T→Zk

j−〈ν,µ
H
〉

and since, for µ : T → Zk,

〈ν, µH〉 =
∑

t∈T

∑

h∈H(t)

ν(h)µH(h)

=
∑

t∈T

µ(t)
∑

h∈H(t)

ν(h) =
∑

t∈T

µ(t)λ(t) = 〈λ, µ〉,

the result now follows.

�
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The next lemma is a restatement of Corollary 3.10.5 in a form which will be used in

Chapter 6.

Lemma B For all functions φ, ψ : ZH
k → C,

φ · ψ = k−|H|tφ · tsψ,

where sψ is defined for each λ : H → Zk by sψ(λ) = ψ(−λ).

Proof. This is Corollary 3.10.5 with t−1ψ replaced by k−|H|tsψ by Lemma 3.10.2.�

Note that if M = −M then sαM = αM ; in applications of Lemma B the function ψ

will often satisfy sψ = ψ.

Recall that for φ ∈ C[ZH
k ] we defined the function φT ∈ C[ZT

k ] for λ : T → Zk by

φT (λ) = φ([λ]T ). By the inversion formula of Lemma 3.10.2, we have

φT (λ) = k−|T | ∑

µ:T→Zk

tφT (µ)j−〈λ,µ〉

so that Lemma A implies that, for a T -colouring µ : T → Zk,

tφT (µ) = tφ(µH).

This observation is useful for the proof of the following lemma, which is used in order

to obtain many of the probabilistic results of Chapter 5:

Lemma C Let T = {H(t) : t ∈ T} be a partition of H and φ, ψ ∈ C[ZH
k ]. Then

∑

λ:T→Zk

φ([λ]T )ψ([λ]T ) = k−|T | ∑

µ:T→Zk

tφ(µH)tφ(µH),

where the bar denotes complex conjugation.

In particular, ∑

λ:T→Zk

|φ([λ]T )|2 = k−|T | ∑

µ:T→Zk

|tφ(µH)|2.

Proof. We have, by Lemma 3.10.3,

(φT , ψT ) = k−|T |(tφT , tψT )

Using the previously observed identity tφT (µ) = tφ(µH) for functions φ ∈ C[ZH
k ] and

µ : T → Zk,

k−|T |(tφT , tψT ) = k−|T | ∑

µ:T→Zk

tφ(µH)tψ(µH).

�



Chapter 4

The Matiyasevich polynomial

4.1 Introduction

The primary motivation for this chapter is [43], where Matiyasevich lists, without includ-

ing his proofs, many interesting properties of his “polynomial related to a triangulation

of the sphere”. Matiyasevich in [44] gives dual results for the class of 3-connected planar

cubic graphs embedded in the sphere. In this chapter we consider cubic graphs rather

than surface triangulations, allowing our graphs to be non-planar and with an arbitrary

fixed set of local vertex rotations. Included in this chapter are proofs of all the theorems

Matiyasevich gives in [43] which are not proved in his related papers [42, 44, 45, 46].

Theorems which are already known are given a reference to the paper(s) in which they

are to be found.

The main new results of this chapter concern the coefficients of the Matiyasevich

polynomial, in particular Theorems 4.4.4, 4.4.6, 4.4.7, 4.4.9 and 4.5.3. The remaining

new material comprises extensions of Matiyasevich’s results to non-plane cubic graphs

and alternative proofs of some of his results by use of the discrete Fourier transform.

4.2 Defining the Matiyasevich polynomial

Throughout this chapter G = (V,E) will be a cubic graph with a set of local vertex

rotations, half-edge set H, edge partition E of H into blocks of size 2 and vertex partition

V of H into blocks of size 3. Each block of V is put in one of the three linear orders <V

which are consistent with the fixed set of local vertex rotations of G.

The line graph L(G) = (E,L) of G has vertices the edges of G and two vertices of

L(G) are adjacent if the corresponding edges of G are incident. Since G is cubic, the line

graph L(G) is 4-regular.

For a given set of local vertex rotations of G, we define an orientation of L(G) as

follows. For a vertex v of G incident with edges e0, e1, e2 taken in a cyclic order according

37
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to the local vertex rotation at v, a totally cyclic orientation is given to the triangle of

edges {e0, e1}, {e1, e2}, {e2, e0} in L(G) so that e0 is directed towards e1, e1 towards e2

and e2 towards e0. In other words, following cyclically consecutive edges e0, e1, e2 at a

vertex v according to the local vertex rotation scheme of G corresponds to traversing the

triangle {e0, e1}, {e1, e2}, {e2, e0} by following the direction around the triangle according

to the orientation of L(G). We note that this is an Eulerian orientation of L(G).

The Matiyasevich polynomial of the cubic graph G is given by

f3(L(G); (xe)) =
∏

e0<e1

(xe1 − xe0) mod (x3
e − 1),

where (x3
e −1) is the ideal generated by the polynomials {x3

e −1 : e ∈ E} and the product

is over all directed edges e0 < e1 (e0 directed towards e1) in the orientation of L(G)

according to the local vertex rotations of G.

By grouping together in this product three factors which correspond to the directed

edges of a triangle {e0, e1}, {e1, e2}, {e2, e0} for which e0, e1, e2 are mutually incident edges

in G, we have Matiyasevich’s polynomial as presented (for plane embeddings) in [43, 44,

45] and Chapter 1:

f3(L(G); (xe)) =
∏

e0<e1<e2

(xe0 − xe1)(xe1 − xe2)(xe2 − xe0) mod (x3
e − 1),

where the product is over all 3-sets of mutually incident edges {e0, e1, e2} of G where the

order e0 < e1 < e2 follows the local vertex rotation scheme of G. (The signs of the factors

xe1 − xe0 and xe2 − xe1 have been reversed.)

Matiyasevich then interprets the coefficients of f3(L(G); (xe)) not in terms of the edge

orientations e0 < e1 taken singly, but taken three at a time e0 < e1, e1 < e2, e2 < e0

from the triangles {e0, e1}, {e1, e2}, {e2, e0} of L(G). In this way he is able to interpret

the coefficients of f3(L(G)) in terms of half-edge colourings of G and the local vertex

rotations of G, rather than in terms of orientations of L(G) or Eulerian subgraphs of

L(G) (Alon and Tarsi [6, 62]).

We begin this chapter by translating the interpretations of Matiyasevich and Alon

and Tarsi of the coefficients of f(L(G); (xe)) into the language of Chapter 3.

Lemma 4.2.1 Let G = (V,E) be a cubic graph with a set of local vertex rotations. Let

G have half-edge set H, partition E of H by edges and partition V of H by vertices into

blocks of size 3, with blocks of V linearly ordered consistently with the local vertex rotations

of G. Then the Matiyasevich polynomial of G is given by

f3(L(G); (xe)) =
∑

λ:E→Z3

ρV([λ]E )
∏

e∈E

xλ(e)
e ,
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where the vertex weight ρV : ZH
3 → {−1, 0,+1} on half-edge colourings of G is defined on

the restriction of half-edge colourings to blocks of V by ρ = α012 − α021.

Proof. Let (yh) be commuting indeterminates indexed by the half-edge set H and define,

for each v ∈ V ,

gv((yh)) =
∑

µv :H(v)→Z3

ρ(µv)
∏

h∈H

y
µv(h)
h .

If H(v) = {h0 <V h1 <V h2} then

gv((yh)) = yh0y
2
h1

+yh1y
2
h2

+yh2y
2
h0
−y2

h0
yh1−y2

h1
yh2−y2

h2
yh0 = (yh0−yh1)(yh1−yh2)(yh2−yh0).

Since V = {H(v) : v ∈ V } is a partition of H, we have

∏

h0<
V

h1<
V

h2

(yh0 − yh1)(yh1 − yh2)(yh2 − yh0) =
∏

v∈V

gv((yh)) =
∑

µ:H→Z3

ρV(µ)
∏

h∈H

y
µ(h)
h ,

where the product is over all triples of half-edges in blocks of V. Given the partition

E = {H(e) : e ∈ E} of H by edges, setting yh = xe for each e ∈ E and h ∈ H(e) and

working modulo the ideal (x3
e − 1), the term

ρV(µ)
∏

h∈H

y
µ(h)
h

becomes

ρV(µ)
∏

e∈E

x
µ
E
(e)

e

where µE : E → Z3 is the edge colouring induced by µ : H → Z3. By definition of [λ]E as

the set of half-edge colourings inducing the edge colouring λ, this yields

∑

λ:E→Z3

ρV([λ]E )
∏

e∈E

xλ(e)
e =

∏

e0<e1<e2

(xe0 − xe1)(xe1 − xe2)(xe2 − xe0) mod (x3
e − 1),

where the product is over all 3-sets of edges e0, e1, e2 incident with a common vertex

v ∈ V (a loop appears twice in such a 3-set and contributes a zero factor) and the order

e0 < e1 < e2 follows the vertex rotation of G. (The order e0 < e1 < e2 is inherited from

the <V -order of the corresponding half-edges in the subset H(v) of H: H(e0)∩H(v) <V

H(e1) ∩H(v) <V H(e2) ∩H(v).) �

Lemma 4.2.1 gives an interpretation of the coefficients of f(L(G); (xe)) in terms of

half-edge colourings of G inducing edge colourings of G. We also have an interpretation

in terms of half-edge colourings of L(G) inducing vertex colourings of L(G), derived from

a more general result of Alon and Tarsi [6] which interprets the coefficients of the graph

polynomial of an arbitrary directed graph. For k ∈ N, the graph polynomial of a directed
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graph G modulo the ideal generated by the polynomials {xk
v − 1 : v ∈ V } is defined by

fk(G; (xv)) =
∏

v0<v1

(xv1 − xv0) mod (xk
v − 1),

where the product is over all edges {v0, v1} with v0 directed towards v1 (v0 < v1).

Lemma 4.2.2 Let G be a graph with a fixed orientation and k ∈ N. Let G have half-edge

set H, half-edge partition V by vertices and half-edge partition E by edges, with each block

of E linearly ordered consistently with the orientation of G. Then the graph polynomial

of G modulo the ideal generated by the polynomials {xk
v − 1 : v ∈ V } is given by

fk(G; (xv)) =
∑

λ:V →Zk

σE([λ]V )
∏

v∈V

xλ(v)
v ,

where the edge weight σE : ZH
k → {−1, 0,+1} on half-edge colourings of G is defined on

half-edge colourings restricted to blocks of E by σ = α01 − α10.

Proof. Let V = {H(v) : v ∈ V } be the partition of H by vertices and (yh) be commuting

indeterminates indexed by the half-edge set H and define, for each e ∈ E,

ge((yh)) =
∑

µe:H(e)→Zk

σ(µe)
∏

h∈H

y
µe(h)
h .

If H(e) = {h0 <E h1} then

ge((yh)) = yh1 − yh0 .

Since E = {H(e) : e ∈ E} is a partition of H, we have

∏

h0<
E

h1

(yh1 − yh0) =
∏

e∈E

ge((yh)) =
∑

µ:H→Zk

σE(µ)
∏

h∈H

y
µ(h)
h ,

where the product is over all pairs of half-edges in blocks of E . Given the partition

V = {H(v) : v ∈ V } of H by vertices, setting yh = xv for each v ∈ V and h ∈ H(v) and

working modulo the ideal (xk
v − 1), the term

σE(µ)
∏

h∈H

y
µ(h)
h

becomes

σE(µ)
∏

v∈V

x
µ
V

(v)
v

where µV : V → Zk is the vertex colouring induced by µ : H → Zk. By definition of [λ]V
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as the set of half-edge colourings inducing the vertex colouring λ, this yields

∑

λ:V →Zk

σE([λ]V )
∏

v∈V

xλ(v)
v =

∏

v0<v1

(xv1 − xv0) mod (xk
v − 1),

where the product is over all 2-sets of vertices v0, v1 incident with a common edge e ∈
E (a loop appears twice in such a 2-set and contributes a zero factor) and the order

v0 < v1 follows the orientation of G (v0 is directed towards v1). The order v0 < v1 is

inherited from the <E -order of the corresponding half-edges in the subset H(e) of H:

H(v0) ∩H(e) <E H(v1) ∩H(e). �

Lemma 4.2.2 with k = 3 applied to the line graph L(G) of a cubic graph G with vertex

rotations yields the following alternative description of the Matiyasevich polynomial:

Corollary 4.2.3 Let G be a cubic graph with a set of local vertex rotations and L(G) =

(E,L) its line graph with orientation determined by the set of local vertex rotations of G.

Let L(G) have half-edge set H̃, half-edge partition Ẽ by the vertices of L(G) into blocks

of size 4 and half-edge partition L by the edges of L(G), with each block of L linearly

ordered consistently with the orientation of L(G). Then the Matiyasevich polynomial of

G is given by

f3(L(G); (xe)) =
∑

λ:E→Z3

σL([λ]
Ẽ
)
∏

e∈E

xλ(e)
e ,

where the edge weight σL : ZH̃
3 → {−1, 0,+1} on half-edge colourings of L(G) is defined

on half-edge colourings restricted to blocks of L by σ = α01 − α10.

In this chapter we will work with f3(L(G)) as given by Lemma 4.2.1, although in

Theorem 4.3.6 the form given by Corollary 4.2.3 is used. We note that changing the set

of local vertex rotations of G or changing the orientation of L(G) can only change the sign

of f3(L(G)), so that any assertion about f3(L(G)) which also holds for −f3(L(G)) (such

as the existence of non-zero coefficients) holds for any choice of local vertex rotations for

G and any orientation of its line graph L(G). However, in order that f3(L(G)) is the

Matiyasevich polynomial of G, for which we have the interpretation of the coefficients of

f3(L(G); (xe)) as given in Lemma 4.2.1, we shall always stipulate that the orientation of

L(G) accords with the set of local vertex rotations of G.

4.3 Evaluations and ℓ2-norm

A proper edge 3-colouring λ : E → Z3 of G refines to a half-edge colouring λH : H → Z3

monochrome on each block of E and proper on each block of V. We call a vertex v

of a cubic graph G with local vertex rotations anticlockwise in the proper colouring λ

if the colours 0, 1, 2 assigned by λ to the edges incident with v appear in an opposite
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rotational sense to the given rotation at v. (Thinking of G with local vertex rotations

as an embedding of G on an orientable surface, following the three edges incident with a

vertex v in the order of the rotation at v corresponds to a clockwise sense on the surface,

and following the edges incident v in the opposite sense corresponds to an anticlockwise

sense on the surface.) A proper edge 3-colouring is even if it has an even number of

anticlockwise vertices and odd if this number is odd. An edge colouring λ of G is even if

and only if ρ(λH) = +1 and odd if and only if ρ(λH) = −1.

Letting j = e2πi/3, note that |j − j2| = |j2 − 1| = |1 − j| =
√

3. It is clear that the

evaluation f3(L(G); (jλ(e))) of the Matiyasevich polynomial at a point (jλ(e)) is non-zero

if and only if λ : E → Z3 is a proper vertex 3-colouring of L(G), and that in this case

|f3(L(G); (jλ(e)))| =
√

3
|L|

= 3|E|. We begin with a proposition which will be useful later

when we need to know the sign of a non-zero evaluation of f3(L(G); (jλ(e))), which is

given here in terms of the parity of the proper edge 3-colouring λ of G.

In the proof of Proposition 4.3.1 and many other later theorems in this chapter we

use the following easily verified transforms of the indicator functions of clockwise (012)

and anticlockwise (021) half-edge colourings at a vertex of a cubic graph:

tα012 = β012 = 3(α000 + j2α012 + jα021),

tα021 = β021 = 3(α000 + jα012 + j2α021).

Proposition 4.3.1 Let G = (V,E) be a cubic graph with local vertex rotations and L(G)

its line graph with orientation determined by the local vertex rotations of G.

For any given λ : E → Z3, the Matiyasevich polynomial has the following evaluation

at the point (jλ(e)):

f3(L(G); (jλ(e))) = (−3)|E|ρV(λH),

where the half-edge colouring λH : H → Z3 refines the edge colouring λ : E → Z3 to a

half-edge colouring monochrome on each block of the partition E of the half-edge set by

edges.

Proof. The vertex weight ρ = α012 − α021 : Z3
3 → C has transform given by

tρ = β012 − β021 = 3(j2 − j)(α012 − α021) = −(−3)
3
2 ρ.

Thus, by Lemma 3.10.6 and with |V | even and 3
2 |V | = |E|, the transform of ρV is given

by

tρV = (−3)|E|ρV .

Setting φ = ρV , recall from §3.12 that by Lemma A the function φE : ZE
3 → C defined

by φE (λ) = φ([λ]E ) has transform given for λ : E → Z3 by tφE (λ) = tφ(λH).
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Since, by Lemma 4.2.1,

f3(L(G); (xe)) =
∑

µ:E→Z3

φE (µ)
∏

e∈E

xµ(e)
e ,

we have

f3(L(G); (jλ(e))) =
∑

µ:E→Z3

φE (µ)j〈λ,µ〉

= tφE (λ) = tφ(λH).

This gives us the result that

f3(L(G); (jλ(e))) = tρV(λH) = (−3)|E|ρV(λH).

�

For an arbitrary graph G = (V,E) given any orientation, Alon and Tarsi [7, Theorem

1.4] show that ‖f3(G)‖2
2 equals 3|E|−|V |P (G; 3). Taking the special case of the 4-regular

graph L(G) = (E,L) (with orientation determined by the local vertex rotations of G so

that f3(L(G)) is the Matiyasevich polynomial of G), Alon and Tarsi’s theorem yields the

following corollary, which shows that Theorem 1 in [43] does not require the cubic graph

G to be planar. Matiyasevich in his recent paper [46] observes this fact independently of

Alon and Tarsi’s result, drawing on the results of his earlier paper [42].

Theorem 4.3.2 [46] Let G be a cubic graph with a set of local vertex rotations and L(G)

its line graph with orientation determined by the local vertex rotations of G. Then

‖f3(L(G))‖2
2 = 3|E|P (L(G); 3).

The expression for the ℓ2-norm of the graph polynomial f3(G) of an arbitrary graph

G deduced by Tarsi [62] from his Theorem 1.2, gives, alternatively,

‖f3(L(G))‖2
2 =

∑

Z3-flows of L(G)

(−2)#zero edges,

where a zero edge in a Z3-flow of L(G) is an edge of the directed graph L(G) to which

the value zero is given.1

Our second combinatorial interpretation of the ℓ2-norm of f3(L(G)) is in terms of

Z3-flows of the cubic graph G rather than Z3-flows of its line graph L(G). We use the

definition of Chapter 3 of a Z3-flow of G as a half-edge Z3-colouring which is null on

each block of E and null on each block of V. In other words, for a cubic graph G, a

1We will always qualify “flow” by “nowhere-zero” when zero values are not permitted, just as we will
always qualify “colouring” by “proper” when adjacent/incident colours are to be distinct.
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Z3-flow is a half-edge colouring µ : H → Z3 with the property that µ : E → {00, 12} and

µ : V → {000, 012, 021}. We call a vertex v ∈ V monochromatic in a Z3-flow µ of G if

µ is monochrome on the block H(v) of V. Following Tarsi [62], we interpret a Z3-flow of

G as a partial orientation of G with the property that the indegree is congruent to the

outdegree modulo 3. A monochromatic vertex in a given Z3-flow of G is then a vertex

with either all or none of its incident edges directed. Our alternative expression for the

ℓ2-norm of the Matiyasevich polynomial is given by the following theorem.

Theorem 4.3.3 Let G be a cubic graph with a set of vertex rotations and L(G) its line

graph with orientation determined by the local vertex rotations of G. Then

‖f3(L(G))‖2
2 = 3|V | ∑

Z3-flows of G

(−2)# monochromatic vertices.

Proof. Using the result of Theorem 4.3.2,

‖f3(L(G))‖2
2 = 3|E| ∑

µ:E→Z3

αV
012,021(µH).

The weight |ρ|V = αV
012,021 has inverse transform given by

t−1|ρ|V = 3−|H|βV012,021 = 3−|H|3|V |(2α000 − α012,021)
V

= 3−2|V |(α012,021 − 2α000)
V ,

using |H| = 3|V | and the fact that γV = (−γ)V for any vertex weight γ since |V | is even.

By Lemma 3.12.C,

‖f3(L(G))‖2
2 = 32|E| · 3−2|V |(α012,210 − 2α000)

V([0 ]E )

= 3|V | ∑

µ:E→{00,12},V→{000,±012}
(−2)#monochrome blocks of V ,

where we have used the fact that 2|E| = 3|V |. The result follows. �

Matiyasevich [45] proves that for a cubic graph G embedded in the plane and line

graph L(G) with orientation according to the local vertex rotations determined by this

plane embedding of G, the constant term of f3(L(G)) equals P (L(G); 3) by using Theorem

4.3.4 below, which he proves by induction on the number of edges of G. 2

2The result of Theorem 4.3.4 was known to Penrose [52], although he states that his proof is too
unwieldy to include. Kaufmann [38] gives an elegant proof using the Jordan Curve Theorem for intersecting
simple smooth closed curves in the plane. See also Jaeger [35] for a short proof.
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Theorem 4.3.4 [52],[38],[45] Let G = (V,E) be a plane cubic graph and let µ : E → Z3

be any proper edge 3-colouring of G. If µH : H → Z3 is the half-edge colouring refining µ

to H, then

ρV(µH) = (−1)|E|.

In other words, the number of anticlockwise vertices in any proper edge 3-colouring of G

has the same parity as |E|.

Using Theorem 4.3.4, we obtain the following known theorem, which includes Matiya-

sevich’s evaluation of the constant term of f3(L(G); (xe)) for a plane cubic graph G as a

special case.

Theorem 4.3.5 [43, 11, 21] Let G be a cubic graph with a set of local vertex rotations

and L(G) its line graph with orientation determined by the local vertex rotations of G.

Then the constant term of f3(L(G)) is given by

(−1)|E| ( #{Even proper edge 3-colourings of G} − #{Odd proper edge 3-colourings of G} ) .

In particular, if G is a plane cubic graph and L(G) its line graph with orientation

determined by the local vertex rotations in the plane embedding of G, then the constant

term of f3(L(G); (xe)) equals P (L(G); 3).

Proof. We use the identity of Lemma 4.2.1 for f3(L(G)) which tells us that the constant

term is given by ρV([0 ]E ). By Lemma 3.12.A,

ρV([0 ]E ) = 3−|E| ∑

µ:E→Zk

tρV(µH).

With tρV = (−3)|E|ρV , it follows that

ρV([0 ]E ) = (−1)|E| ∑

µ:E→Zk

ρV(µH),

and this gives the theorem. If G is embedded in the plane then all proper edge 3-colourings

have the same parity, each contributing (−1)|E| to the sum by Theorem 4.3.4. �

It is interesting to compare the result of Theorem 4.3.5 with the following theorem,

which is not difficult to deduce from a more general theorem of Alon and Tarsi [6, 62]

(proved by using the interpretation of the coefficients of f3(L(G)) in terms of edge orien-

tations of L(G) in Corollary 4.2.3).

Theorem 4.3.6 [6], [62, proof of Theorem 1.2] Let G be a cubic graph with a set of local

vertex rotations and L(G) its line graph with orientation determined by the local vertex
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rotations of G. Then the constant term of f3(L(G)) is given by

#{Even Eulerian subgraphs of L(G)} − #{Odd Eulerian subgraphs of L(G)},

where an Eulerian subgraph of the directed graph L(G) is even or odd according to the

parity of its size (number of edges).

For a cubic graph G which has no proper edge 3-colouring and L(G) its line graph

with an arbitrary orientation, Theorem 4.3.5 and Theorem 4.3.6 imply that there are as

many even Eulerian subgraphs as odd Eulerian subgraphs of L(G). On the other hand, if

G is planar then the difference between the number of even and odd Eulerian subgraphs

is equal to P (L(G); 3).

It is easily checked that half of the 12 proper edge colourings of K3,3 are even and the

other half are odd, so that for any set of local vertex rotations of K3,3 and any orientation

of L(K3,3) the polynomial f3(L(K3,3)) has constant term equal to zero by Theorem 4.3.5.

Which graphs share this property with K3,3 is still open:

Problem 4.3.7 For which cubic graphs G does the constant term of f3(L(G)) equal zero?

Equivalently, which cubic graphs have as many even proper edge 3-colourings as odd proper

edge 3-colourings?

Other than the following, little seems to be known about connected cubic graphs for

which the constant term vanishes (but see [22] for another sufficient criterion in terms of

“Kempe equivalent” proper edge 3-colourings). All the coefficients of f3(L(G)) are equal

to zero when G has no proper edge 3-colouring; by [55] these graphs are precisely those

with a bridge or a Petersen minor. The Four Colour Theorem and Theorem 4.3.5 imply

that for bridgeless planar graphs the constant term is non-zero. For any cubic graph, if it

is given that P (L(G); 3) ≡ 6 mod 12 then the constant term of f3(L(G)) cannot be zero,

for the difference between the number of even and odd proper edge 3-colourings must be

an odd multiple of 6 since the same is true of of their sum P (L(G); 3). Finally, for any

cubic graph G such as K3,3 which has a pair of vertices u, v which are both incident with

the same three vertices, the constant term is zero. Given a proper edge 3-colouring of

such a graph, a proper edge 3-colouring with number of anticlockwise vertices of opposite

parity is obtained by swapping the colours on a pair of edges {u,w}, {v, w} for each of the

three vertices w incident with both u and v. This operation is self-inverse and no proper

edge 3-colouring is fixed, so that we may pair off proper edge 3-colourings into even and

odd.
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4.4 The multiset of coefficients

For any edge colouring λ : E → Z3, the coefficient [(x
λ(e)
e )]f3(L(G)) of the Matiyasevich

polynomial of G, which by Lemma 4.2.1 is equal to ρV([λ]E ), is zero if

∑

e∈E

λ(e) = 〈λ, 1 〉 6= 0,

where 1 denotes the colouring which is always equal to 1. This is due to the fact that E ,V
are partitions of H and any half-edge colouring µ ∈ [λ]E which is proper on each block of

V is also null on each block of V (the proper triples 012, 021 have colours which sum to

zero modulo 3). Supposing that µ ∈ [λ]E , we have

∑

h∈H

µ(h) =
∑

e∈E

∑

h∈H(e)

µ(h) =
∑

e∈E

λ(e),

while also ∑

h∈H

µ(h) =
∑

v∈V

∑

h∈H(v)

µ(h) = 0.

Thus we see that at least 2 · 3|E|−1 of the 3|E| coefficients of f3(L(G)) are zero.

The following lemma is key for proving a succession of theorems which describe in

further detail the multiset of coefficients of f3(L(G)).

In the statement of Lemma 4.4.1 we use the expression for f3(L(G)) of Lemma 4.2.1

which tells us that the coefficient [(x
λ(e)
e )]f3(L(G); (xe)) is equal to ρV([λ]E ), and its nota-

tion we use the fact that any weight on the set of half-edge colourings extends additively

to a function defined on subsets of half-edge colourings.

Lemma 4.4.1 Let G be a cubic graph with a set of local vertex rotations and L(G) its

line graph with orientation determined by the local vertex rotations of G. Then for any

edge colouring λ : E → Z3, the coefficient [(x
λ(e)
e )]f3(L(G); (xe)) of the Matiyasevich

polynomial of G is given by

(−1)|E|ρV([λ]E ) =

ρV
(
{µH : µ ∈ ZE

3 , 〈λ, µ〉 = 0}
)
− 1

2
ρV

(
{µH : µ ∈ ZE

3 , 〈λ, µ〉 6= 0}
)
.

Proof.

By Lemma 3.12.A,

ρV([λ]E ) = 3−|E| ∑

µ:E→Z3

tρV(µH)j−〈λ,µ〉

= (−1)|E| ∑

µ:E→Z3

ρV(µH)j−〈λ,µ〉.
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With

〈λ,−µ〉 = −〈λ, µ〉, and ρV(−µH) = ρV(µH),

a pair {µ,−µ} of edge colourings together contribute 0 as their weight to the sum if µ is not

proper, together contribute 2ρV(µH) if 〈λ, µ〉 = 0 and together contribute (j+j2)ρV(µH) =

−ρV(µH) if 〈λ, µ〉 6= 0.�

Our first consequence of Lemma 4.4.1 is a bound on the size of the coefficients of

f3(L(G)). We recall that the parity of a proper edge 3-colouring of a cubic graph embed-

ded in an orientable surface is the parity of the number of anticlockwise vertices.

Theorem 4.4.2 Let G = (V,E) be a cubic graph with a set of local vertex rotations and

L(G) its line graph with orientation determined by the local vertex rotations of G.

Then the coefficients of f3(L(G)) lie in the interval [−P (L(G); 3), P (L(G); 3)] of Z.

Furthermore, some coefficient equals P (L(G); 3) if and only if all proper edge 3-

colourings of G are of the same parity as |E|, in which case the constant term is P (L(G); 3)

and the minimum coefficient is −1
2P (L(G); 3).

Similarly, some coefficient equals −P (L(G); 3) if and only if all proper edge 3-colourings

of G are of opposite parity to |E|, in which case the constant term is −P (L(G); 3) and

the maximum coefficient is 1
2P (L(G); 3).

Proof. We wish to show that

max
λ:E→Z3

ρV([λ]E ) ≤ P (L(G); 3),

with equality if and only if for each proper edge 3-colouring µ : E → Z3 of G the weight

ρV(µH) equals (−1)|E|, where µ is refined to a half-edge colouring µH : E → 00,V →
{012, 021}. Also, if equality holds, then max ρV([λ]E ) = −2 min ρV([λ]E ) = ρV([0 ]E ).

By Lemma 4.4.1, if ρV(µH) = (−1)|E| for each proper edge colouring µ then

ρV([λ]E ) =
∣∣{µ ∈ ZE

3 : ρV(µH) 6= 0, 〈λ, µ〉 = 0}
∣∣ − 1

2

∣∣{µ ∈ ZE
3 : ρV(µH) 6= 0, 〈λ, µ〉 6= 0}

∣∣ .

Certainly 〈0 , µ〉 = 0 for all µ : E → Z3, so that

ρV([0 ]E ) =
∣∣{µ ∈ ZE

3 : ρV(µH) 6= 0}
∣∣ = P (L(G); 3).

Remaining under the hypothesis that all proper edge 3-colourings have weight (−1)|E|,

the minimum value a coefficient can take is

−1

2

∣∣{µ ∈ ZE
3 : ρV(µH) 6= 0}

∣∣ ≥ −1

2
P (L(G); 3),
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with equality if and only if there is some colouring λ : E → Z3 for which 〈λ, µ〉 6= 0 for

each proper edge 3-colouring µ. An example of such an edge colouring λ is that which

assigns the colour zero to all edges except for a pair of edges e1, e2 incident in G, to which

it gives the values 1 and 2. For all proper edge colourings µ : E → Z3 we have

〈λ, µ〉 = λ(e1)µ(e1) + λ(e2)µ(e2) = 1µ(e1) + 2µ(e2) = µ(e1) − µ(e2) 6= 0,

with 2 = −1 in Z3 and µ(e1) 6= µ(e2) for incident edges e1, e2.

It is similarly shown that

min
λ:E→Z3

ρV([λ]E ) ≥ −P (L(G); 3),

with equality if and only if all proper edge 3-colourings of G have weight −(−1)|E|, in

which case min ρV([λ]E ) = −2 max ρV([λ]E ) = ρV([0 ]E ).�

Theorem 4.3.4 says that it is sufficient for a cubic graph G to be planar in order that

all proper edge 3-colourings have the same parity for any fixed set of local vertex rotations

of G. Thus, for planar graphs one of the bounds of Theorem 4.4.2 is attained and as a

corollary we have a theorem of Matiyasevich:

Theorem 4.4.3 [43] Let G be a plane cubic graph and L(G) its line graph with orienta-

tion determined by the local vertex rotations of G. Then f3(L(G)) has largest coefficient

equal to its constant term P (L(G); 3) and smallest coefficient equal to −1
2P (L(G); 3).

Trivially, a non-planar graph with just 6 proper edge 3-colourings also has the property

that all proper edge 3-colourings have the same parity, an example of which is given by

one of the “generalised Petersen graphs” defined by Watkins [67] (see Figure 4.1 below,

and [23, §18] ).

A further consequence of Lemma 4.4.1 is the following extension of a result of Matiya-

sevich [43] for plane cubic graphs:

Theorem 4.4.4 Let G be a cubic graph with a set of local vertex rotations and L(G) its

line graph with orientation determined by the local vertex rotations of G.

Then every coefficient of f3(L(G)) is divisible by 3 and all its non-zero coefficients are

congruent to each other modulo 9.

Proof. Firstly we show that ρV([λ]E ) ≡ 0 mod 3 for all λ : E → Z3, and secondly

that the elements in the set of non-zero coefficients (which by the first observation of

this section is contained in {ρV([λ]E ) : λ ∈ ZE
3 , 〈λ, 1 〉 = 0}) are congruent to each other

modulo 9.
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Figure 4.1: A generalised Petersen graph G for which P (L(G); 3) = 6 is a coefficient of f3(L(G))

in some orientable embedding of G.

Using Lemma 4.4.1, with −2−1 ≡ 1 mod 3 we have

ρV([λ]E ) ≡ ρV({µH : µ ∈ ZE
3 }) ≡ ρV(00E) mod 3.

This is congruent to zero modulo 3, since for µ ∈ 00E ,

ρV(µ) = ρV(µ+ 1 ) = ρV(µ− 1 ).

This gives a partition of 00E into triples {µ, µ + 1 , µ − 1} of half-edge colourings which

between them contribute −3, 0 or 3 to ρV([λ]E ).

We have, for any proper edge colouring µ ∈ 00E ∩ {012, 021}V and any edge colouring

λ ∈ 00E satisfying 〈λ, 1 〉 = 0,

〈λ, µ〉 = 〈λ, µ+ 1 〉 = 〈λ, µ− 1 〉 = −〈λ,−µ〉 = −〈λ,−µ+ 1 〉 = −〈λ,−µ− 1 〉,

so that the six proper colourings {µ, µ + 1 , µ − 1 ,−µ,−µ + 1 ,−µ − 1} either all be-

long to {µ ∈ 00E : 〈λ, µ〉 = 0} or all belong to {µ ∈ 00E : 〈λ, µ〉 6= 0}. Further-

more, ρV(µ) = ρV(±µ ± 1 ). This implies that both ρV
(
{µ ∈ 00E : 〈λ, µ〉 = 0}

)
and

ρV
(
{µ ∈ 00E : 〈λ, µ〉 6= 0}

)
are divisible by 6 and thus the difference between any two

non-zero coefficients is a multiple of 9 (using the fact that if a, b ∈ Z are divisible by 6,

then (a± 6) − 1
2(b∓ 6) = (a− 1

2b) ± 9). In other words, all non-zero coefficients must lie

in one of the arithmetic progressions 9Z, 9Z + 3 or 9Z + 6. �

We have seen that at least 2·3|E|−1 coefficients of f3(L(G)) must be zero. The following

is a partial converse:

Theorem 4.4.5 Let G be a cubic graph with a set of local vertex rotations and L(G) its
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line graph with orientation determined by the local vertex rotations of G. If f3(L(G)) has

a coefficient not divisible by 9, then

[(xλ(e)
e )]f3(L(G)) 6= 0 ⇔ 〈λ, 1 〉 = 0.

In particular, if G is planar and P (L(G); 3) 6≡ 0 mod 18, then f3(L(G)) has 3|E|−1

non-zero coefficients.

Proof. It has already been remarked that it is necessary that 〈λ, 1 〉 = 0 in order for the

coefficient ρV ([λ]E ) of (x
λ(e)
e ) in f3(L(G)) to be non-zero (with L(G) given the orientation

determined by the local vertex rotations of G); the largest number of non-zero coefficients

possible is 3|E|−1.

By Lemma 4.4.1 all non-zero coefficients are congruent modulo 9. Thus, if there is a

coefficient not congruent to 0 modulo 9 then all coefficients {ρV ([λ]E ) : 〈λ, 1 〉 = 0} are

not congruent to 0 modulo 9. In particular, they are non-zero as integers.

For the second statement of the theorem, if G is planar then the constant term of

f3(L(G)) is ±P (L(G); 3) which is not a multiple of 9 iff P (L(G); 3) 6≡ 0 mod 18.�

Theorems 4.4.2 and 4.4.4 together say that the coefficients of f3(L(G)) for a cubic

graph G with a set of local vertex rotations lie in the interval

[−P (L(G); 3), P (L(G); 3)] = {m ∈ Z : −P (L(G); 3) ≤ m ≤ P (L(G); 3)},

and the non-zero coefficient values m all lie in one of the arithmetic progressions 9Z, 9Z+3

or 9Z + 6 according to the difference between the number of even and odd proper edge

3-colourings modulo 9.

Furthermore, when G is plane and L(G) has the orientation according to the local

vertex rotations of G the coefficients lie in

{ 9Z + P (L(G); 3) } ∩ [−1

2
P (L(G); 3), P (L(G); 3)].

In the remainder of this section we will explore the distribution of the coefficients of

f3(L(G)) amongst the integers in more detail.

We begin by observing that for an arbitrary directed graph G and k ∈ N, j = e2πi/k

the polynomial fk(G) has coefficient sum fk(G; (j0 (v))) equal to zero since the all-zero

colouring is not a proper vertex k-colouring. In particular, for a cubic graph G with any

set of local vertex rotations and line graph L(G) with orientation according to the local

vertex rotations of G, the sum of the coefficients of f3(L(G)) is zero. Consequently, the

distribution of the coefficients of f3(L(G)) has mean zero, although it is not necessarily

symmetric about zero. Indeed, if G is planar and has no bridges it has just been seen that
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the distribution is not symmetric about zero (with P (L(G); 3) 6= 0 by the Four Colour

Theorem).

In order to aid further discussion of the multiset of the coefficients of the Matiyasevich

polynomial we introduce the following notation. For a cubic graph G with a set of

local vertex rotations and line graph L(G) with orientation according to the local vertex

rotations of G, we denote by N(G;m) the number of coefficients in f3(L(G)) which are

equal to m ∈ Z. In other words,

N(G;m) = #{λ ∈ ZE
3 : ρV([λ]E ) = m}.

Since there are 3|E| edge colourings λ : E → Z3, we have

∑

m∈Z

N(G;m) = 3|E|,

and since the sum of the coefficients of f3(L(G)) is zero we also have

∑

m∈Z

mN(G;m) = 0.

Theorem 4.3.2 says that

∑

m∈Z

m2N(G;m) = 3|E|P (L(G); 3).

These relations on {N(G;m) : m ∈ Z} imply the following result:

Theorem 4.4.6 Let G be a cubic graph with a set of local vertex rotations and L(G) its

line graph with orientation determined by the local vertex rotations of G.

If P (L(G); 3) = 6 then the multiset of coefficients of f3(L(G)) is only a function of

the size |E| of G and the set of local vertex rotations (the latter determining the signs of

the coefficients).

Proof. Without loss of generality we may take a set of local vertex rotations of G

which makes the greatest positive coefficient of f3(L(G)) the maximum coefficient in abso-

lute value. The three independent relations above determine N(G; 6), N(G; 0), N(G;−3)

uniquely. Specifically, N(G; 6) +N(G; 0) +N(G;−3) = 3|E|, 6N(G; 6) − 3N(G;−3) = 0

and 62N(G; 6) + 32N(G; 3) = 6 · 3|E|. This implies that N(G; 6) = 3|E|−2, N(G;−3) =

2 · 3|E|−2 and N(G; 0) = 2 · 3|E|−1.�

The further information provided by Theorem 4.4.5 that N(G; 0) = 2·3|E|−1 whenever

G is planar and P (L(G); 3) 6≡ 0 mod 18 gives the following:
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Theorem 4.4.7 Let G be a plane cubic graph and L(G) the line graph of G with orien-

tation determined by the local vertex rotations of G.

If P (L(G); 3) = 12 then each coefficient of f3(L(G)) belongs to {−6, 0, 3, 12} and the

multiplicity of any one of these integers in the multiset of coefficients depends only on

|E|.

Proof. Under the hypotheses of the proposition,

N(G; 12) +N(G; 3) + 2 · 3|E|−1 +N(G;−6) = 3|E|,

12N(G; 12) + 3N(G; 3) − 6N(G;−6) = 0,

122N(G; 12) + 32N(G; 3) + 62N(G; 6) = 12 · 3|E|.

Solving these equations yields N(G; 12) = 3|E|−2, N(G; 3) = 4 · 3|E|−3 and N(G;−6) =

4 · 3|E|−3.�

When G = K3,3, where P (L(G); 3) = 12, it can be checked that N(G; 9) = N(G;−9) =

2 · 36, N(G; 0) = 23 · 36, so that there are at least two possibilities for the multiset of

coefficients of f3(L(G)) amongst graphs with exactly 12 proper edge 3-colourings.

This prompts the following:

Problem 4.4.8 Given P (L(G); 3), what are the possible coefficient multisets of the Matiya-

sevich polynomial f3(L(G)) of a cubic graph G? How far does knowing that G is planar

limit the possibilities?

The following proposition puts some limitation on what is possible.

Theorem 4.4.9 Let G be a connected non-bipartite cubic graph with a set of local vertex

rotations and L(G) its line graph with orientation determined by the local vertex rotations

of G. Then the number of coefficients of f3(L(G)) which are equal to a given non-zero

integer is divisible by 3|V |.

Proof. The statement of the proposition is vacuous for graphs with loops or bridges

for in these cases there are no proper edge 3-colourings and all coefficients are zero. So

assume G has no loops or bridges.

We use the expression for f3(L(G)) of Lemma 4.2.1 which tells us that the coefficients

of f3(L(G)) are equal to ρ([λ]E ) for λ : E → Z3. We wish to show that for any given

λ : E → Z3 there are 3|V | edge colourings κ : E → Z3 such that ρV([λ]E ) = ρV([κ]E ).

For any λ : E → Z3, Lemma 4.4.1 says that

(−1)|E|ρV([λ]E ) =
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ρV
(
{µH : µ ∈ ZE

3 , 〈λ, µ〉 = 0}
)
− 1

2
ρV

(
{µH : µ ∈ ZE

3 , 〈λ, µ〉 6= 0}
)
,

so that it suffices to find 3|V | edge colourings κ with the property that 〈κ, µ〉 = ±〈λ, µ〉
for all proper edge colourings µ. We recall that the refinement of a proper edge colouring

µ to a half-edge colouring µH has the property that µH is monochrome on each block of

E and proper on each block of V.

We define another partition V ′ = {H(v)′ : v ∈ V } of H by setting, for each v ∈ V ,

H(v)′ = {h ∈ H(e)\(H(e) ∩H(v) ) : e ∈ E, H(e) ∩H(v) 6= ∅ }.

In other words, for each vertex v ∈ V the block H(v)′ consists of the halves of the edges

incident with v which are not the half-edges in H(v). (Note that no vertex of G is incident

with a loop by our previous assumption.) Each block H(v)′ = {h′0, h′1, h′2} of V ′ is put in

the order h′0 < h′1 < h′2 so that if h0 < h1 < h2 are the half-edges in the corresponding

block H(v) of V then {h0, h
′
0}, {h1, h

′
1}, {h2, h

′
2} are blocks of E . In this way a half-edge

colouring whose restrictions to H(v) and H(v)′ are the same colouring for each v ∈ V is

monochrome on the blocks of E . For each proper edge colouring µ : E → Z3 not only

is µH proper on each block of V but also µH is proper on each block of V ′. Conversely,

a half-edge colouring monochrome on the blocks of E and proper on blocks of V ′ is also

proper on blocks of V.

For each v ∈ V let ℓv ∈ 000 be a monochrome triple and denote by ℓVv the half-

edge colouring whose restriction to the block H(v) is ℓv and denote by ℓV
′

v the half-

edge colouring whose restriction to the block H(v)′ is also ℓv. Then an edge colouring

κ : E → Z3 obtained from λ : E → Z3 by adding for each v ∈ V the three equal colours

of ℓv to the three edges incident with v is given (in terms of refined half-edge colourings)

by

κH = λH + ℓVv + ℓV
′

v .

For each proper edge colouring µ of G we then have,

−〈κ, µ〉 = 〈λH + ℓVv + ℓV
′

v , µH〉 = 〈λH , µH〉 + 〈ℓVv , µH〉 + 〈ℓV ′

v , µH〉 = 〈λH , µH〉 = −〈λ, µ〉,

with µH null on each block of V and each block of V ′ (since the proper triples ±012 are

null) and the inner products of null triples with monochrome triples are all zero in Z3.

Thus the coefficient ρV([λ]E ) of f3(L(G)) is equal to the coefficient ρV([κ]E ).

In order to show that the 3|V | possible choices for (ℓv : v ∈ V ) give distinct edge

colourings κ as defined above we need to show that if (mv : v ∈ V ) is another set of |V |
monochrome triples then

λH + ℓVv + ℓV
′

v 6= λH +mV
v +mV ′

v .
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Supposing λH + ℓVv + ℓV
′

v = λH +mV
v +mV ′

v , then

(ℓv −mv)
V = (mv − ℓv)

V ′
.

If the partitions V and V ′ share two blocks, so that H(u) = H(v)′,H(u)′ = H(v) for some

vertices u 6= v, then this equation is soluble by setting ℓu = mv, ℓv = mu and colouring

all other blocks 000. However, the partitions V,V ′ only have two blocks in common if two

vertices u 6= v of G are incident with the same three edges. The only connected cubic

graph for which this holds is the bipartite graph with two vertices and three parallel edges.

We claim then that the above equation cannot hold unless the monochrome colouring

ℓv −mv of the block H(v) and the monochrome colouring mv − ℓv of the block H(v)′ is

the zero colouring for each v ∈ V .

If u 6= v are adjacent vertices incident with a common edge e then

H(e) = (H(u) ∩H(v)′ ) ∪ (H(u)′ ∩H(v) ).

The blocks H(u),H(v)′ receive the same monochrome colouring through the common

half-edge in their overlap H(v) ∩H(u)′ and similarly the blocks H(u)′,H(v) receive the

same monochrome colouring. Now H(v) is coloured ℓv −mv while H(u) is coloured with

its negative mv − ℓv. Since it is not the case that H(u)′ = H(v) and H(u) = H(v)′, we

may repeat the argument for vertices u,w and onward around a cycle of edges to return

to v. Since G is not bipartite, for any vertex v we can find an odd cycle containing v (by

assumption G is connected) and this leads to ℓv −mv = 000. Hence, ℓv −mv is the zero

colouring on all blocks of V. �

By Proposition 4.4.6 the complete graph G = K4 on four vertices has N(K4; 6) =

34, N(K4; 0) = 2 · 35 and N(K4;−3) = 2 · 34 so that Theorem 4.4.9 is the best possible

result in this direction. In Corollary 4.5.3 below we deduce a similar result for bipartite

cubic graphs.

4.5 Contracting triangles

For a fixed cubic graph G with a set of local vertex rotations (which determines an

embedding of G on an orientable surface) we have considered the multiplicity of a given

integer value amongst the coefficients of f3(L(G)). We now consider the effect on the

multiset of coefficients when the graph G is changed.

The operation we shall consider is expanding a vertex of a G into a triangle, thereby

obtaining another cubic graph G′ embedded in the same surface as G. 3 The operation of

3See Duzhin et al. [21, 17] for a consideration of other operations and the interpretation of the
Matiyasevich polynomial as an antisymmetric knot invariant satisfying the “IHX” relation.
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contracting a triangle and expanding a vertex to a triangle are inverse operations which

preserve the number of proper edge 3-colourings of a cubic graph (see for example [23]).

It is not difficult to show the following:

Proposition 4.5.1 Let G be a cubic graph with a set of local vertex rotations and let G′

be obtained from G by contracting a triangle. Then

P (L(G′); 3) = P (L(G); 3).

Further, if λ′ is a proper edge 3-colouring of G′ which coincides with the proper edge

3-colouring λ of G restricted to the edges of G′, then λ and λ′ are of opposite parities.

The operation of contracting a triangle features in the conjecture [23] that every

“uniquely edge 3-colourable” cubic planar graph G (i.e. P (L(G); 3) = 6) can by contract-

ing triangles be reduced to the graph with two vertices and three parallel edges. We have

seen in Theorem 4.4.6 that the polynomial f3(L(G)) is up to sign uniquely determined

when P (L(G); 3) = 6, but the example already cited of a non-planar cubic graph with just

6 proper edge 3-colourings shows that we cannot move from the uniqueness of f3(L(G))

to uniqueness of G modulo contracting triangles.

Proposition 4.5.2 below says that the effect on f3(L(G)) of expanding a vertex to a

triangle is to enlarge the multiset of coefficients of f3(L(G)) by a factor of 27. This implies

that symmetric functions of the coefficients of f3(L(G)) are preserved under the operation

of contracting a triangle/expanding a vertex when multiplied by a suitable power of 3−|E|.

For example, we have

‖f3(L(G))‖2
2 =

∑

m∈Z

N(G,m)m2,

and then

‖f3(L(G′))‖2
2 =

∑

m∈Z

N(G′,m)m2 = 27
∑

m∈Z

N(G,m)m2.

Thus

3−|E| ∑

m∈Z

N(G,m)m2

is preserved under the operation of expanding a vertex to a triangle, since there are 3

extra edges in the graph G′ obtained from G. By Theorem 4.3.2 this agrees with the

already quoted fact that P (L(G); 3) is preserved under contracting triangles.

Another pair of examples of a function symmetric in the coefficients of f3(L(G)) are

the maximum and minimum coefficients, and these are invariant under contraction of

triangles. For planar G this reduces by Theorem 4.4.3 to the invariance of P (L(G); 3),

but for non-planar graphs it gives a different invariant under contracting triangles.
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Theorem 4.5.2 Let G be a cubic graph with a set of local vertex rotations and suppose

that G′ is a cubic graph obtained from G by expanding a vertex v of G into a triangle

whose three vertices have the same rotational sense as v. Then N(G′;m) = 27N(G,m).

Proof. Let the vertex of G = (V,E) be adjacent to the three edges a, b, c ∈ E and let

the triangle which expands this vertex have sides a′, b′, c′ ∈ E′ in G′ = (V ′, E′) opposite

to a, b, c respectively, as illustrated in the diagram below.

�
�

�

❅
❅

❅
✓

✓
✓

✓
✓
✓

❙
❙

❙
❙

❙
❙

b

a

c

b′

a′

c′

Let G′ have half-edge set H ′, partition E ′ of H ′ by edges and partition V ′ of H ′ by

vertices. By Proposition 4.5.1, for each proper edge colouring µ : E → Z3 of G there is a

unique proper edge colouring µ′ : E′ → Z3 of G′ which coincides with µ on E. We have

µ′(a′) = µ(a), µ′(b′) = µ(b), µ(c′) = µ(c) and µ, µ′ are of opposite parity:

ρV(µ′
H

) = −ρV ′
(µ′

H
).

We will show that for each edge colouring λ : E → Z3 there are 27 edge colourings

λ′ : E′ → Z3 uniquely determined by λ for which

〈λ′, µ′〉 = 0 ⇔ 〈λ, µ〉 = 0.

The result will then follow, since Lemma 4.4.1 says that the coefficients of f3(L(G))

are given by

(−1)|E|ρV([λ]E ) = ρV({µH : µ ∈ ZE
3 , 〈λ, µ〉 = 0}) − 1

2
ρV({µH : µ ∈ ZE

3 , 〈λ, µ〉 6= 0}),

and the coefficients of f3(L(G′)) by

−(−1)|E|ρV
′
([λ′]

E′ ) = ρV
′
({µ′′

H
: µ′ ∈ ZE′

3 , 〈λ′, µ′〉 = 0})−1

2
ρV

′
({µ′′

H
: µ ∈ ZE′

3 , 〈λ′, µ′〉 6= 0}).

In other words, we partition the set ZE′

3 of edge colourings of G′ into 27-sets of edge

colourings {C(λ) : λ ∈ ZE
3 } with the property that the 27 coefficients {ρV([λ′]

E′ ) : λ′ ∈
C(λ)} of f3(L(G′)) are all equal to the coefficient ρV([λ]E ) of f3(L(G)).
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For given λ : E → Z3, set λ′ = λ on E\{a, b, c}. Define nine possible values for λ′ on

the three edges a, b, c by setting

λ′(abc) = λ(abc) + ℓ′

where ℓ′ lies in a transversal of the 9 cosets of 000 in the additive group Z3
3 .

Fixing ℓ′, define three possible values for λ′ on the triangle a′b′c′ by putting

λ′(a′b′c′) ∈ −ℓ′ + 000.

We claim that this gives a set C(λ) ⊆ ZE′

3 of 27 possible edge colourings λ′ of G′

which cannot be obtained from any edge colouring of G other than λ. In other words, if

ν is another edge colouring of G, then C(λ) ∩ C(ν) = ∅.
For suppose that there is λ′ ∈ C(λ) which equals ν ′ ∈ C(ν). Then λ = ν on E\{a, b, c}

while λ(abc) 6= ν(abc). Suppose ν(abc) = λ(abc) + ℓ for some 000 6= ℓ ∈ Z3
3 . For it to be

possible that λ′ = ν ′ we must have

λ′(abc) = λ(abc) + ℓ′, ν ′(abc) = ν(abc) + ℓ′ − ℓ,

where ℓ′, ℓ′ − ℓ both lie in the transversal of cosets by 000, and ℓ′ 6= ℓ′ − ℓ since ℓ 6= 000.

But this implies ℓ′ − ℓ 6∈ ℓ′ + 000, which means that λ′(a′b′c′) ∈ −ℓ′ + 000 cannot equal

ν ′(a′b′c′) ∈ ℓ − ℓ′ + 000. Thus when λ 6= ν we have λ′ 6= ν ′, even if λ′ = ν ′ on E. This

establishes that C(λ) ∩ C(ν) = ∅ if λ 6= ν.

For any edge colouring λ′ of G′ we have

〈λ′, µ′〉 = 〈λ, µ〉 + 〈(λ′ − λ)(abc), µ(abc)〉 + 〈λ′(a′b′c′), µ′(a′b′c′)〉.

If µ′ is the unique proper edge 3-colouring extending to G′ the proper edge 3-colouring µ of

G, then µ′(a′b′c′) = µ(abc). Also, for λ′ ∈ C(λ), we have λ′(a′b′c′) ∈ −(λ′−λ)(abc)+000,

so that

〈(λ′ − λ)(abc), µ(abc)〉 + 〈λ′(a′b′c′), µ′(a′b′c′)〉 = 0 ( in Z3. )

This shows that we have 〈λ′, µ′〉 = 〈λ, µ〉 for any edge colouring λ of G and λ′ ∈ C(λ), all

proper edge colourings µ of G and µ′ the unique extension of µ to a proper edge colouring

of G′.�

We finish this section with a corollary of Proposition 4.5.2 which covers the cases left

out by Proposition 4.4.9.

Corollary 4.5.3 Let G be a connected bipartite cubic graph with a set of local vertex

rotations and L(G) its line graph with orientation determined by the local vertex rotations
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of G. Then the the number of coefficients of f3(L(G)) which are equal to a given non-zero

integer is divisible by 3|V |−1.

Proof. We may assume G has no loops or bridges. Expanding a vertex of G into a triangle

to obtain a non-bipartite graph G′, the multiplicity N(G′;m) of a non-zero integer m is

by Theorem 4.5.2 equal to 33N(G;m), and this is divisible by 3|V |+2 by applying Theorem

4.4.9 to G′. This yields the result.�

The plane bipartite graph G with two vertices and three parallel edges has N(G; 6) =

3, N(G; 0) = 2·32, N(G;−3) = 32 so that the result of Corollary 4.5.3 cannot be improved.

It is clear from its definition that f3(L(G)) is multiplicative over the connected com-

ponents of L(G), which correspond to the connected components of G. Thus Theorem

4.4.9 and Corollary 4.5.3 between them provide conditions on the coefficient multisets for

the Matiyasevich polynomial of any cubic graph.

4.6 Coefficients modulo a prime

Theorem 4.4.4 says that the coefficients of f3(L(G)) for a cubic graph G with directed

line graph L(G) are all zero modulo 3 and that the non-zero coefficients are either all

zero modulo 9 or all non-zero modulo 9. Clearly, if at least one coefficient of f3(L(G))

is non-zero modulo some prime p then at least one coefficient is non-zero in Z. Theorem

4.6.1 below says that for any fixed prime p other than 3 the converse holds: if there is at

least one coefficient non-zero in Z then there is at least one coefficient non-zero modulo

p. This extends a result of Matiyasevich [43] given for planar cubic graphs.

Theorem 4.6.1 Let G be a cubic graph with a set of local vertex rotations, L(G) its line

graph with orientation determined by the local vertex rotations of G and let p 6= 3 be a

prime in Z. Then

f3(L(G)) 6= 0 ⇔ f3(L(G)) 6≡ 0 mod p.

In other words, f3(L(G)) is non-zero if and only if it has a coefficient not divisible by

p.

Proof. With f3(L(G)) 6= 0 if and only if ‖f3(L(G))‖2
2 6= 0, it follows by Theorem

4.3.2 that f3(L(G)) 6= 0 if and only if there is an edge colouring λ : E → Z3 such that

ρV(λH) 6= 0. By Proposition 4.3.1, f3(L(G); (jλ(e))) = (−3)|E|ρV(λH), which is non-zero

modulo p for any prime p 6= 3 provided ρV(λH) 6= 0, since ρV(λH) ∈ {−1, 0,+1}. This

implies f3(L(G)) 6≡ 0 mod p.�
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Theorem 4.6.1 with p = 2 yields the following corollary, in which by a proper half-

edge colouring of G is meant a V-proper half-edge colouring (proper on each block of the

partition of half-edges by vertices).

Corollary 4.6.2 Let G be a cubic graph with a set of local vertex rotations and L(G) its

line graph with orientation determined by the local vertex rotations of G. Then f3(L(G))

is non-identically zero if and only if there exists an edge colouring of G which is induced

by an odd number of proper half-edge colourings of G.

We remark that if P (L(G); 3) > 0 then the edge colourings which are induced by an

odd number of half-edge colourings may not include any of the proper edge 3-colourings

themselves. For example, the graph K2 ×K3 obtained from K4 by expanding one vertex

into a triangle has the property that all proper edge colourings are induced by exactly 6

proper half-edge colourings (all of the same parity).

Theorem 4.6.3 below sharpens Corollary 4.6.2 when G is planar and is the final the-

orem of the chapter, for which we give a proof since Matiyasevich has only published its

statement.

Theorem 4.6.3 [43] Let G = (V,E) be a plane cubic graph. Then there are an even

number of proper half-edge 3-colourings of G which induce a given edge colouring of G

and whose number of anticlockwise vertices is of opposite parity to |E|.

Proof. The statement of the theorem is equivalent to asserting that, for all edge colourings

λ : E → Z3,

(|ρ|V − (−1)|E|ρV)([λ]E ) ≡ 0 mod 4,

where |ρ| = α012,021.

By Lemma 3.12.A, for any function φ : ZH
3 → C,

3|E|φ([λ]E ) =
∑

µ:E→Z3

tφ(µH)j−〈λ,µ〉.

If φ(−µH) = φ(µH) for all edge colourings µ : E → Z3 then this gives

3|E|φ([λ]E ) = tφ({µH : µ ∈ ZE
3 , 〈λ, µ〉 = 0}) − 1

2
tφ({µH : µ ∈ ZE

3 , 〈λ, µ〉 6= 0}).

The condition φ(−µH) = φ(µH) is satisfied by φ = (|ρ|V − (−1)|E|ρV), so we will use the

above identity for φ([λ]E ) in terms of the transform tφ.

We have

t|ρ|V(µH) = (6α000 − 3α012,021)
V(µH),
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and by Theorem 4.3.4, since µH is monochrome on blocks of E ,

tρV(µH) = (−3)|E|ρV(µH) = 3|E||ρ|V(µH).

Then, for all edge colourings µ : E → Z3,

t(|ρ|V − (−1)|E|ρV)(µH) = t|ρ|V(µH) − (−1)|E|tρV(µH)

= 3|V |(2α000 − |ρ|)V(µH) − (−1)|E|3|E||ρ|V(µH)

≡ (2α000 − |ρ|)V(µH) − |ρ|V(µH) mod 4.

For a given edge colouring µ ∈ ZE
3 , we write #000 for the number of vertices whose

incident edges are all of the same colour (monochrome vertices) and # ± 012 for the

number of vertices whose incident edges are of distinct colours (proper vertices). By the

previous and Lemma 4.4.1 we have

(−1)|E|(ρV − (−1)|E||ρ|V)([λ]E ) ≡

−2#{µ ∈ ZE
3 : #000 = 1,# ± 012 = |V | − 1, 〈λ, µ〉 = 0}

−#{µ ∈ ZE
3 : #000 = 1,# ± 012 = |V | − 1, 〈λ, µ〉 6= 0}

+2#{µ ∈ ZE
3 : #000 = 2,# ± 012 = |V | − 2, 〈λ, µ〉 6= 0} mod 4.

We will first show that for any cubic graph G,

#{µ ∈ ZE
3 : #000 = 1,# ± 012 = |V | − 1} = 0.

For suppose an edge colouring µ : E → Z3 has one monochrome vertex, and the rest

are proper. Without loss of generality, suppose the edges incident with the monochrome

vertex are coloured 0. Deleting edges coloured 1 then leaves a subgraph of G, where

vertices ofG which received distinct colours now all have degree 2 and the one monochrome

vertex remains of degree 3. This is impossible since the number of vertices of odd degree

in any graph must be even. This establishes that there cannot be just one monochrome

vertex when the rest are proper.

We now have

(−1)|E|(ρV − (−1)|E||ρ|V)([λ]E ) ≡

2#{{µ ∈ ZE
3 : #000 = 2,# ± 012 = |V | − 2, 〈λ, µ〉 6= 0} mod 4.

This is congruent to zero modulo 4, for if an edge colouring µ ∈ ZE
3 is such that there

are two monochrome vertices and the rest are proper, then this property is shared by −µ.
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Further, 〈λ, µ〉 6= 0 ⇔ 〈λ,−µ〉 6= 0. Hence the set {µ ∈ ZE
3 : #000 = 2,# ± 012 =

|V | − 2, 〈λ, µ〉 6= 0} partitions into pairs {µ,−µ} and is of even size. (If µ = −µ then

〈λ, µ〉 = 0.) �



Chapter 5

Probabilistic interpretations

5.1 Introduction

In this chapter we will consider a wide variety of probability distributions on the set of

half-edge colourings of a graph, developing the approach taken by Matiyasevich [45] to give

his probabilistic restatements of the Four Colour Theorem. We find all the probability

distributions which lead to criteria for the existence of proper edge 3-colourings of an

arbitrary cubic graph with a set of local vertex rotations in terms of the correlation

between two naturally defined events. In §5.2 a generally applicable definition of the two

key events of same parity and same induced colouring is given for any graph and any two

partitions of its half-edge set. This allows us in §5.3 to derive criteria for proper edge

3-colouring a cubic graph in terms of a given set of local vertex rotations and allows us

in §5.4 to deduce analogous criteria for proper vertex 3-colouring an arbitrary graph in

terms of a given orientation of its edges.

In §5.5 we deduce from §5.3 criteria for proper face 3-colouring 2-cell embedded bridge-

less cubic graphs (Theorem 5.5.1) and in Theorem 5.5.2 describe a criterion for the exis-

tence of proper face 4-colourings.

The main new results on edge 3-colouring cubic graphs in §5.3 are Theorems 5.3.1,

5.3.2, and 5.3.3 and Theorems 5.3.11 and 5.3.13. In §5.4 the main new results on vertex

3-colouring arbitrary graphs are Theorems 5.4.2, 5.4.4, 5.4.5 and 5.4.6.

5.2 Parity

Let G be an arbitrary graph with half-edge set H and S = {H(s) : s ∈ S}, T = {H(t) :

t ∈ T} two fixed partitions of H. The half-edges in each block of S are put in an arbitrary

fixed linear order. The half-edges in a block of T do not need to be linearly ordered. In

§§5.3-5.5, S will be either the partition V of H by vertices or the partition E of H by

63
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edges and T will be either E ,V or, when G is a bridgeless cubic graph 2-cell embedded

on a surface, the partition F of H by faces.

An S-weight γS : ZH
k → C extends additively to subsets of ZH

k . In particular, the

S-weight |γS | maps the set of half-edge colourings into the nonnegative reals R+∪{0} and

is a finite measure on ZH
k . By scaling we can make the absolute value of any S-weight into

a probability measure, for which we introduce the terminology of the following definition.

Definition 5.2.1 A probability S-weight is an S-weight γS for which

|γS |(ZH
k ) =

∑

µ:H→Zk

|γS(µ)| = 1.

The probability distribution on the set of half-edge colourings ZH
k determined by γS is

defined for each µ ∈ ZH
k by

Pr(µ) = |γS(µ)|.

We emphasise that a probability weight γS need not take positive real values: it is its

absolute value |γS | which defines a probability distribution on the set of half-edge colour-

ings. We will be particularly interested in probability S-weights of the following special

type:

Definition 5.2.2 A probability weight γS : ZH
k → C is a parity weight if its restriction

to each block of S is real-valued and furthermore

γS(ZH
k ) =

∑

µ:H→Zk

γS(µ) = 0.

The second condition for a parity weight implies that half-edge colourings are as likely

to have a negative weight as a positive weight, which will be formally proved in Proposition

5.2.4 below.

Example 5.2.3 Let G be a cubic graph with a set of local vertex rotations, partition V
of its half-edge set by vertices and each block of V put in a linear order consistent with

the local vertex rotations of G. Matiyasevich’s vertex weight ρV signs a V-proper half-edge

colouring positively or negatively according as the parity of the number of anticlockwise

vertices is even or odd.

By dividing by the total number of V-proper half-edge colourings we obtain the parity

weight (1
6ρ)

V = 6−|V | · (α012 − α021)
V .

The set of half-edge colourings ZH
k is partitioned into k|T | equivalence classes defined

for each λ ∈ ZT
k by [λ]T = {µ ∈ ZH

k : µT = λ}.1 By definition, for a probability S-weight

1See §3.7 for the definition of induced colourings and equivalence classes.
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γS ,

|γS |([λ]T ) = Pr(µ ∈ [λ]T ),

when choosing a half-edge colouring µ at random with probability |γS |(µ).

The set ZH
k of half-edge colourings also has a partition into the following parity classes,

defined in terms of a fixed parity weight γS :

Even = {µ ∈ ZH
k : γS(µ) ∈ R+}, Odd = {µ ∈ ZH

k : γS(µ) ∈ −R+},

Neither = {µ ∈ ZH
k : γS(µ) = 0}.

Thus a half-edge colouring is even if its weight is strictly positive and odd if its weight

is strictly negative. (The fixed parity weight γS on which the definition of “Even” and

“Odd” depend will be clear from the context in which these terms are used.)

The events “Even” and “Odd” can be defined naturally in terms of “local events”

on the blocks of S. For a given half-edge colouring µ : H → Zk, the restriction γ(s)

of the weight γS to the block H(s) of S determines that H(s) is a positive block of S
if γ(s)(µs) > 0 and a negative block if γ(s)(µs) < 0. For half-edge colourings chosen at

random according to the probability weight |γS |, “Even” is the event that there are an

even number of negative blocks of S, and “Odd” is the event that there are an odd number

of negative blocks of S.

It is not possible to choose the half-edge colourings in the set “Neither” under the

probability distribution determined by γS . In other words, Pr(Neither) = 0. We now

prove our earlier remark that because a parity weight γS must satisfy γS(ZH
k ) = 0 the

events “Even” and “Odd” have equal probability.

Proposition 5.2.4 Let γS : ZH
k → R be a parity weight. Then

Pr(Even) =
1

2
= Pr(Odd).

Proof. We have,

Pr(Even) = Pr({µ ∈ ZH
k : γS(µ) ∈ R+}) =

∑

γS(µ)∈R+

γS(µ),

Pr(Odd) = Pr({µ ∈ ZH
k : γS(µ) ∈ −R+}) =

∑

γS(µ)∈−R+

−γS(µ).

On subtracting we obtain

Pr(Even) − Pr(Odd) =
∑

µ∈ZH
k

γS(µ) = 0.
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Clearly Pr(Even) + Pr(Odd) = 1 and the statement of the proposition now follows. �

Our next proposition says that there is non-zero correlation between the events “Even”

and “Odd” and the event of inducing a fixed T -colouring if and only if there is some

equivalence class [λ]T for which γS([λ]T ) 6= 0.

Proposition 5.2.5 Let γS be a parity weight. Then

2γS([λ]T ) = Pr( [λ]T | Even ) − Pr( [λ]T | Odd ).

Proof. By Proposition 5.2.4,

Pr([λ]T | Even) − Pr([λ]T | Odd ) = 2 Pr([λ]T ∩ Even) − 2 Pr([λ]T ∩ Odd),

which by definition is equal to

= 2
∑

µ∈[λ]
T

,γS(µ)>0

γS(µ) − 2
∑

µ∈[λ]
T

,γS(µ)<0

−γS(µ)

= 2
∑

µ∈[λ]
T

γS(µ) = 2γS([λ]T ).

�

The correlation between the equivalence class events and the parity events will be

explored in terms of the “diagonal copies” of these events in the product space ZH
k ×ZH

k .

The advantage of considering this product space lies in the fact that the existence of

some equivalence class [λ]T such that γS([λ]T ) 6= 0 may be established by considering

all the equivalence classes together as a non-exhaustive event in this product space and

conditioning this event on a parity event.

Firstly, the event that two half-edge colourings induce the same T -colouring is defined

by

Equivalent :=
⋃

λ:T→Zk

[λ]T × [λ]T = {(µ, µ′) ∈ ZH
k × ZH

k : µT = µ′
T
}.

Secondly, the parity events are defined by

Both Even := Even × Even = {(µ, µ′) ∈ ZH
k × ZH

k : γS(µ) ∈ R+, γ
S(µ′) ∈ R+},

Both Odd := Odd × Odd = {(µ, µ′) ∈ ZH
k × ZH

k : γS(µ) ∈ −R+, γ
S(µ′) ∈ −R+},

Same Parity := Both Even ∪ Both Odd = {(µ, µ′) ∈ ZH
k × ZH

k : γS(µ)γS(µ′) ∈ R+}.

Implicit in the definition of “Equivalent” is a given partition T = {H(t) : t ∈ T} of

H, just as the parity events implicitly depend on the parity weight γS .
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If we choose two half-edge colourings µ, µ′ independently at random, selecting µ, µ′

with probabilities |γS |(µ), |γS |(µ′) respectively, then, by definition,

|γS |([λ]T )2 = Pr((µ, µ′) ∈ [λ]T × [λ]T ).

This, together with Lemma 3.12.C, yields the following expression for the probability that

two half-edge colourings induce the same T -colouring when they are randomly chosen

under the probability distribution defined by |γS |.

Theorem 5.2.6 Let γS : ZH
k → C be a probability weight and T = {H(t) : t ∈ T} a

partition of H. Then,

Pr(Equivalent) =
∑

λ:T→Zk

|γS |([λ]T )2

= k−|T | ∑

µ:T→Zk

∣∣ t|γS |(µH)
∣∣2 ,

where µH : H → Zk is the refinement of µ : T → Zk to a half-edge colouring monochrome

on each block of T .

The first of our correlations between “Equivalent” and the parity events is given by

the following, which determines the extent to which knowing that two half-edge colourings

are of the same parity affects the chances of them inducing the same colouring:

Theorem 5.2.7 Let γS be a parity weight and T = {H(t) : t ∈ T} a partition of H.

Then

Pr(Equivalent | Same Parity) − Pr(Equivalent ) =
∑

λ:T→Zk

γS([λ]T )2

= k−|T | ∑

µ:T→Zk

| tγS(µH) |2.

Proof. The event “Same Parity” is a disjoint union of the events “Both Even” and “Both

Odd”, and

Pr(Same Parity) = Pr(Both Even) + Pr(Both Odd) = Pr(Even)2 + Pr(Odd)2 =
1

2
.

Thus, for any λ : T → Zk,

Pr([λ]T ×[λ]T | Same Parity) =
Pr([λ]T × [λ]T ∩ Both Even) + Pr([λ]T × [λ]T ∩ Both Odd)

1
2

=
Pr([λ]T ∩ Even)2 + Pr([λ]T ∩ Odd)2

1
2

.
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If we write p0 = Pr([λ]T ∩ Even) and p1 = Pr([λ]T ∩ Odd), then

|γS |([λ]T ) = Pr([λ]T ) = Pr([λ]T ∩ Even) + Pr([λ]
T
∩ Odd) = p0 + p1,

and by Proposition 5.2.5, γS([λ]T ) = p0 − p1. It follows that

Pr([λ]T × [λ]T | Same Parity) − Pr([λ]T × [λ]T ) = 2(p2
0 + p2

1) − (p0 + p1)
2

= (p0 − p1)
2 = γS([λ]T )2.

The first equation of the theorem results on summing over all λ : T → Zk, and the second

equation follows by Lemma 3.12.C. �

Theorem 5.2.7 yields some related correlations between “Equivalent” and other parity

events. The event “Different Parity” is the complement of “Same Parity” in the product

space of half-edge colourings with non-zero probability,

Different Parity = {(µ, µ′) ∈ ZH
k × ZH

k : γS(µ)γS(µ′) ∈ −R+}.

Since Pr(Same Parity) = 1
2 = Pr(Different Parity) it is easy to derive the following:

Pr(Equiv. | Different Parity) − Pr(Equiv.) = −[ Pr(Equiv. | Same Parity) − Pr(Equiv. ) ],

Pr(Equiv. | Same Parity)−Pr(Equiv. | Different Parity) = 2[ Pr(Equiv. | Same Parity)−Pr(Equiv. ) ].

Theorem 5.2.7 enabled us to answer the question of whether knowing that two half-

edge colourings are of the same parity affects the chances of them being equivalent. The

next theorem allows us to answer questions such as whether knowing that two half-edge

colourings are both even makes the chances of them being equivalent better than they

would be were they both odd.

Theorem 5.2.8 Let γS be a parity weight and T = {H(t) : t ∈ T} a partition of H.

Then,

Pr(Equivalent | Both Even)−Pr(Equivalent | Both Odd) = 4
∑

λ:T→Zk

γS([λ]T )|γS |([λ]T )

= 4k−|T | ∑

µ:T→Zk

t|γS |tγS(µH),

where the bar denotes complex conjugation.

Proof. In the notation of the proof of Theorem 5.2.7,

Pr([λ]T × [λ]T | Both Even) − Pr([λ]T × [λ]T | Both Odd)
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=
p2
0 − p2

1
1
4

= 4(p0 − p1)(p0 + p1) = 4γS([λ]T )|γS |([λ]T ).

Summing over all λ : T → Zk gives the first equation, and Lemma 3.12.C gives the second

equation. �

Between them Theorems 5.2.7 and 5.2.8 enable us to answer questions of the form

Does the event A increase the chances of “Equivalent” (to a greater extent than the event

B)? where A and B are parity events. Questions of the form Does the event “Equivalent”

increase the chances of event A? may then be answered by using the identity

Pr(A | Equivalent) − Pr(A) = Pr(A)
Pr(Equivalent | A) − Pr(Equivalent)

Pr(Equivalent)
.

We finish this section by displaying a number of identities which illustrate how Theo-

rems 5.2.7 and 5.2.8 yield correlations between “Equivalent” and other parity events. All

these identities are used by Matiyasevich [45] to generate a number of his probabilistic

restatements of the Four Colour Theorem. Again, they are straightforward consequences

of the fact that the various parity events have probability either 1
2 or 1

4 .

Pr(Equiv. | Both Even) − Pr(Equiv.)

= [Pr(Equiv. | Same Parity)−Pr(Equiv.)]+
1

2
[ Pr(Equiv. | Both Even)−Pr(Equiv. | Both Odd) ],

Pr(Equiv. | Both Odd) − Pr(Equiv.)

= [Pr(Equiv. | Same Parity)−Pr(Equiv.)]−1

2
[ Pr(Equiv. | Both Even)−Pr(Equiv. | Both Odd) ],

Pr(Equiv. | Both Even) − Pr(Equiv. | Different Parity)

= 2[Pr(Equiv. | Same Parity)−Pr(Equiv.)]+
1

2
[ Pr(Equiv. | Both Even)−Pr(Equiv. | Both Odd) ],

Pr(Equiv. | Both Odd) − Pr(Equiv. | Different Parity)

= 2[Pr(Equiv. | Same Parity)−Pr(Equiv.)]−1

2
[ Pr(Equiv. | Both Even)−Pr(Equiv. | Both Odd) ].

5.3 Cubic graphs

In this section we apply the results of §5.2 to extend the results of Matiyasevich [45, 46]

on proper edge 3-colouring planar cubic graphs. We take G to be a cubic graph with a

set of local vertex rotations, half-edge set H, partition E = {H(e) : e ∈ E} of H by edges

into blocks of size 2 and partition V = {H(v) : v ∈ V } of H by vertices into blocks of size

3. A linear order is put on each block of V consistent with the local vertex rotations of

G.
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We denote the line graph of G by L(G) and the number of proper edge 3-colourings

of G by P (L(G); 3), the evaluation of the chromatic polynomial of L(G) at 3.

A half-edge colouring µ : H → Z3 is the same as a Z3
3 -colouring of V and a probability

weight γV : ZH
3 → R, defined by a function γ : Z3

3 → R with the property that |γ|(Z3
3 ) = 1,

extended multiplicatively over the blocks of V to γV : (Z3
3 )V → R, is a parity weight if

and only if γ(Z3
3 ) = 0.

In the terminology of §5.2, a triple ℓ ∈ Z3
3 is positive or negative according as γ(ℓ) > 0

or γ(ℓ) < 0 respectively. Given a half-edge colouring µ : V → Z3
3 , we call a vertex v

positive in the colouring µ if and only if γ(µv) > 0 and negative if γ(µv) < 0. The parity

of a half-edge colouring µ ∈ ZH
3 for which each vertex is either positive or negative is

then even if the number of negative vertices is even and odd if the number of negative

vertices is odd. A half-edge colouring µ : H → Z3 induces a (not necessarily proper) edge

3-colouring µE : E → Z3 of G defined by adding together the two colours on the two

halves of an edge and two half-edge colourings are equivalent if they induce the same edge

colouring.

For a triple ℓ ∈ Z3
3 we use the notation introduced in §3.6 and write ℓ for the set of

three triples {ℓ, ℓ+ 111, ℓ+ 222}. For example, 001 = {011, 122, 200}. We will use names

for the following special subsets of Z3
3 :

“proper” = {012, 021}, “clockwise” = 012, “anticlockwise” = 021,

“monochrome” = 000, “null” = {000, 012, 021} = “monochrome” or “proper”.

Our first example of a parity weight is the function 1
6ρ : Z3

3 → R, where ρ is defined

by

ρ(ℓ) = (αclockwise − αanticlockwise)(ℓ) =





+1 ℓ ∈ 012 (clockwise),

−1 ℓ ∈ 021 (anticlockwise),

0 ℓ 6∈ 012, 021 (not proper).

The probability distribution on ZH
3 determined by |ρ| = 1

6αproper corresponds to ran-

domly selecting a half-edge colouring by assigning to each block of V any of the six

proper colourings uniformly at random. In §4.3 we found 2 that tρ = −3
√
−3ρ and that

t|ρ| = 6αmonochrome−3αproper. The parity of a proper edge 3-colouring µ : E → Z3 (relative

to the parity weight ρ) is the parity of the number of vertices v ∈ V for which the colours

of the edges incident with v appear in an anticlockwise sense relative to the fixed set of

local vertex rotations of G. Theorem 4.3.4 says that for a plane cubic graph G with set

2These and other transforms can be calculated by using the matrix for the discrete Fourier transform
taking the basis {αℓ : ℓ ∈ Z3

3} to the basis {βℓ : ℓ ∈ Z3
3} of §3.11 or by methods similar to those used in

Chapter 6.
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of local vertex rotations determined by rotational sense of edges in the plane embedding

of G, if µ is any proper edge 3-colouring of G then ρV(µH) = (−1)|E|.

Theorems 5.2.6, 5.2.7 and 5.2.8 immediately yield the following extension of a theorem

of Matiyasevich [45] to non-planar graphs:

Theorem 5.3.1 Let G be a cubic graph with a set of local vertex rotations, half-edge

set H, partition E of H by edges and partition V of H by vertices, each block of V put

in a linear order consistent with the local vertex rotations of G. Suppose that a uniform

distribution is put on the set of half-edge Z3-colourings which give distinct colours to three

half-edges if they lie in the same block of V. If we call a colouring of a block of V positive

when the three colours appear in a clockwise sense and negative when the colours appear

in an anticlockwise sense, then

Pr(Equivalent | Same Parity) − Pr(Equivalent) = (
1

4
√

3
)|V |P (L(G); 3),

Pr(Equivalent | Both Even) − Pr(Equivalent | Both Odd)

= (−1)|E|4(
1

12
)|V |( #{Even proper edge 3-colourings} − #{Odd proper edge 3-colourings} ),

and

Pr(Equivalent) = (
1

12
√

3
)|V | ∑

edge 3-colourings, null vertices

4#monochrome vertices,

where the last sum is over all edge 3-colourings of G which have the property that each

vertex is either incident with edges of distinct colours (proper) or with edges of all the

same colour (monochrome).

By considering the parity weight 1
12γ where γ is defined by

γ(ℓ) = (αproper − 2αmonochrome)(ℓ) =





+1 ℓ ∈ 012, 021 (proper),

−2 ℓ ∈ 000 (monochrome),

0 otherwise,

which has transform tγ = −9αproper, and for which we have t|γ| = 12αmonochrome +

3αproper, we obtain our second example of a parity colouring scheme where the probabil-

ity that two half-edge colourings induce the same edge colouring is increased given the

knowledge that they have the same parity, by an amount proportional to the number of

proper edge 3-colourings:

Theorem 5.3.2 Let G be a cubic graph with half-edge set H, partition E of H by edges

and partition V of H by vertices. Call a half-edge colouring of a block in V positive if

there are three distinct colours and negative if all three colours are the same. Suppose half-

edge colourings are chosen randomly by first deciding u.a.r. whether to colour a vertex
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positively or negatively and then, having chosen the sign, choosing u.a.r. which particular

colouring of this sign to take. Then

Pr(Equivalent | Same Parity) − Pr(Equivalent) = (

√
3

16
)|V |P (L(G); 3),

Pr(Equivalent | Both Even) − Pr(Equivalent | Both Odd) = 4(
1

16
√

3
)|V |P (L(G); 3),

and

Pr(Equivalent) = (
1

48
√

3
)|V | ∑

edge 3-colourings,null vertices

16#monochrome vertices,

where the last sum is over all edge 3-colourings of G which have the property that each

vertex is either incident with edges of distinct colours (proper) or with edges of all the

same colour (monochrome).

Note that in Theorem 5.3.2 there is no linear order on the blocks of V since the monochrome

triples and proper triples remain respectively monochrome or proper under permutation.

Our final example of a parity colouring scheme depends not only on the cyclic order

determined by the linear order put on each block of V, which is the case for Theorem

5.3.3, but also on the particular linear order chosen.

A multiset permutation on the ordered set Z3 = {0 < 1 < 2} is a not necessarily

bijective function π : Z3 → Z3. If π has image (z0, z1, z2) ∈ Z3
3 , an inversion occurs if

either z0 > z1 or z0 > z2 or z1 > z2. Then π is an even permutation if the number of

inversions is even, and odd otherwise. We accordingly give names to the following subsets

of Z3
3 :

“even” = {000, 012, 100, 001, 200, 002}, “odd” = {021, 010, 020}.

By considering the parity weight 1
36γ, where γ is defined by

γ(ℓ) = (αeven − 2αodd)(ℓ) =





+1 ℓ ∈ {000, 012, 100, 001, 200, 002} (even),

−2 ℓ ∈ {021, 010, 020} (odd),

0 otherwise,

for which

tγ = 9
√
−3

(
j(α201 − α021,210) + j2(α012,120 − α102)

)
,

and

t|γ| = 36α000 + 3
√
−3

(
j(α021,210 − α201) + j2(α102 − α012,120

)
= 36α000 +

1

3
tγ,
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we obtain the following:

Theorem 5.3.3 Let G be a cubic graph with half-edge set H, partition E of H by edges

and partition V by vertices, and with an arbitrary linear order on each block of V. Call

a colouring of a block in V positive if it is an “even” colour triple and negative if it is an

“odd” colour triple. Suppose half-edge colourings are chosen randomly by first deciding

u.a.r. whether to colour a vertex positively or negatively and then, having chosen the sign,

choosing u.a.r. which particular colouring of this sign to take.

Then

Pr(Equivalent | Same Parity) − Pr(Equivalent) = (
1

16
√

3
)|V |P (L(G); 3),

Pr(Equivalent | Both Even) − Pr(Equivalent | Both Odd) = 4(
1

48
√

3
)|V |P (L(G); 3),

Pr(Equivalent) = (
1

144
√

3
)|V | ∑

edge 3-colourings proper/zero vertices

12#zero vertices,

where the last sum is over all edge Z3-colourings with the property that each vertex is

either incident with edges of distinct colours (proper) or with edges all coloured 0 (zero).

Having exhibited three parity weights for which “Equivalence” and “Parity” are cor-

related positively by an amount proportional to P (L(G); 3) it is natural to consider the

following problem.

Problem 5.3.4 Which parity weights determine probability distributions for which

Pr(Equivalent | Same Parity) − Pr(Equivalent) = C(|V |)P (L(G); 3)

for some non-zero function C(|V |) depending only on |V |?

Referring to the result of Theorem 5.2.7, a parity weight γV : (Z3
3 )V → [ − 1

2 ,
1
2 ] will

lead to a solution to Problem 5.3.4 if and only if

tγ =
∑

p proper

cpαp,

where the sum is over proper triples in Z3
3 and cp ∈ C are of constant absolute value

c ∈ R+. In this case, Theorem 5.2.7 says that

Pr(Equivalent | Same Parity) − Pr(Equivalent) = k−|E|c|V |P (L(G); 3).
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Let γ : Z3
3 → [−1

2 ,
1
2 ] define a parity weight γV with the property that |tγ| is the con-

stant c ∈ R+ on {p ∈ Z3
3 : p proper} and zero otherwise. Then γ satisfies the hypotheses

of the following proposition, which provides a necessary condition on a parity weight to

be a solution to Problem 5.3.4. The support supp(γ) of a function γ : Z3
3 → C is the set

{ℓ ∈ Z3
3 : γ(ℓ) 6= 0}.

Proposition 5.3.5 Let γ : Z3
3 → C be a vertex weight with the property that supp(tγ) ⊆

{p ∈ Z3
3 : p monochrome or proper }. Then γ(ℓ) = γ(ℓ′) whenever ℓ− ℓ′ is monochrome.

Proof. The monochrome and proper triples in Z3
3 are precisely the null triples, i.e. their

components sum to zero modulo 3. Thus for any monochrome m and null p in Z3
3 we

have 〈m, p〉 = 0. Thus, if ℓ − ℓ′ ∈ 000 is a monochrome triple, then for any null triple p

we have 〈ℓ′, p〉 = 〈ℓ− (ℓ− ℓ′), p〉 = 〈ℓ, p〉 − 〈ℓ− ℓ′, p〉 = 〈ℓ, p〉. Hence

γ(ℓ′) = 3−3
∑

p null

tγ(p)j〈ℓ
′,p〉 = 3−3

∑

p null

tγ(p)j〈ℓ,p〉 = γ(ℓ).

�

Consequently, any solution γ to Problem 5.3.4 takes the form

γ =
∑

ℓ

bℓαℓ, bℓ ∈ [−1

2
,
1

2
],

∑

ℓ

|bℓ| = 1,
∑

ℓ

bℓ = 0,

where the summations range over the transversal {000,±012,±100,±010,±001} of Z3
3

modulo its additive subgroup 000 of monochrome triples. In other words, in the random

colouring scheme determined by γ, triples which differ by a monochrome triple in Z3
3 must

have the same sign (positive, negative, neither) and be chosen with the same probability.

In the notation introduced above for the parity weight γ, the probability of choosing

a particular colour triple in ℓ for a block of V is |bℓ|/3. If bℓ > 0 then the three triples in

ℓ are positive colourings, if bℓ < 0 then the triples in ℓ are negative colourings, and finally

if bℓ = 0 then the triples in ℓ are neither positive nor negative.

In order to describe the set of parity weights which are solutions to Problem 5.3.4 it

will be convenient to represent a parity weight γ =
∑

ℓ bℓαℓ by its coefficients placed in a

matrix as follows: 


b000 b012 b021

b100 b001 b010

b200 b020 b002


 .

For example, the coefficient matrices of the parity weights of Theorems 5.3.1,5.3.2 and
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5.3.3 are respectively given by




0 1
2 −1

2

0 0 0

0 0 0


 ,




−1
2

1
4

1
4

0 0 0

0 0 0


 ,

1

12




1 1 −2

1 1 −2

1 −2 1


 .

There are three types of operation on the coefficient matrices of parity weights which

preserve the correlation between “Equivalent” and “Same Parity”. In particular, these

operations preserve the property of a parity weight being a solution to Problem 5.3.4.

The first is quite straightforward to verify: since |V | is even we have t(−γ)V = tγV

so that if γ is a solution to Problem 5.3.4 then so is −γ. Thus negating each entry in the

coefficient matrix preserves the property of being a solution to Problem 5.3.4.

The second operation arises as a consequence of the following proposition:

Proposition 5.3.6 Let γ : Z3
3 → C be defined by

γ =
∑

ℓ∈Z3
3

aℓαℓ, where aℓ ∈ C,

and for a fixed ℓ′ ∈ Z3
3 let γ′ : Z3

3 → C be defined by γ′(ℓ) = γ(ℓ− ℓ′) for each ℓ ∈ Z3
3 . In

other words,

γ′ =
∑

ℓ∈Z3
3

aℓαℓ+ℓ′ .

Then

|tγ| = |tγ′|.

Proof. Since tαℓ+ℓ′ = βℓ+ℓ′ = βℓ′βℓ we have tγ′(ℓ) = βℓ′tγ, and |βℓ′ | = 1 gives the result.

�

For any fixed ℓ′ ∈ Z3
3 , the cosets ℓ of the monochrome triples 000 are wholly contained

in the orbits of the permutation ℓ 7→ ℓ+ ℓ′ on Z3
3 . Hence, this permutation on Z3

3 induces

a well-defined permutation on the set {ℓ : ℓ ∈ Z3
3} and the map ℓ 7→ ℓ+ ℓ′ permutes the

coefficients of the parity weight

γ =
∑

ℓ

bℓαℓ.

In terms of the coefficient matrix of γ, the action ℓ 7→ ℓ+ ℓ′ transforming γ into

γ′ =
∑

ℓ

bℓαℓ+ℓ′

permutes rows cyclically (ℓ′ = 000, 100, 200), columns cyclically (ℓ′ = 000, 012, 021), or is

a combination of these two permutations.
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Figure 5.1: Operations on the coefficient matrix [ bℓ ] of a parity weight which preserve

Pr(Equivalent | Same Parity) − Pr(Equivalent): (1) Negation of each entry bℓ 7→ −bℓ,
(2) cyclic permutation of rows and columns bℓ 7→ bℓ+ℓ′ , (3) bℓ 7→ b

−ℓ.

The third operation on the coefficient matrices of parity weights which preserves the

property of being a solution to Problem 5.3.4 is a consequence of the following proposition:

Proposition 5.3.7 Let γ : Z3
3 → R be a parity weight. Then the weight sγ defined

for each ℓ ∈ Z3
3 by sγ(ℓ) = γ(−ℓ) satisfies tsγ = tγ, where the bar denotes complex

conjugation.

Proof. We have

tsγ(ℓ) = tγ(−ℓ) =
∑

m∈Z3
3

γ(−m)j〈ℓ,m〉 =
∑

m∈Z3
3

γ(m)j−〈ℓ,m〉 = tγ(ℓ),

the last step using the fact that γ is real-valued. �

The permutation ℓ 7→ −ℓ on the cosets of 000 in Z3
3 , which maps the parity weight

γ to the parity weight sγ of Proposition 5.3.7, switches the second and third entries of

the first column, the second and third entries of the first row and cross-changes the four

entries in the lower right corner of the coefficient matrix (see Figure 5.1 above).

It is readily calculated that the discrete Fourier transform tγ of any given parity

weight of the form

γ =
∑

ℓ

bℓαℓ

and with the property that supp(tγ) ⊆ {p ∈ Z3
3 : p proper} is given in terms of the

coefficients bℓ of γ as follows:
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tγ = 3




b000

b012

b021

b100

b010

b001

b200

b020

b002




⊤ 


1 1 1 1 1 1

j2 j2 j2 j j j

j j j j2 j2 j2

1 j j2 1 j2 j

j j2 1 j2 j 1

j2 1 j j 1 j2

1 j2 j 1 j j2

j2 j 1 j j2 1

j 1 j2 j2 1 j







α012

α120

α201

α021

α210

α102




.

The column sums of the matrix obtained by multiplying the transposed vector (bℓ)
⊤

with the matrix representing the transform t are the coefficients c012, c120, c201, c021, c210, c102

of tγ as defined by

tγ =
∑

p proper

cpαp.

Lemma 5.3.8 A necessary condition for a parity weight γ to be a solution to Problem

5.3.4, when given by its matrix of coefficients




b000 b012 b021

b100 b001 b010

b200 b020 b002


 ,

is that the entries in each row sum to zero.

Proof. Since γ is real-valued, γ(−ℓ) = γ(ℓ). The inverse of the matrix above representing

the discrete Fourier transform t is then by the relation t−1γ(ℓ) = 3−3tγ(−ℓ) its conjugate

transpose scaled by 3−3:

γ = 3−2




c012

c120

c201

c102

c210

c021




⊤ 


1 j j2 1 j2 j 1 j j2

1 j j2 j2 j 1 j j2 1

1 j j2 j 1 j2 j2 1 j

1 j2 j 1 j j2 1 j2 j

1 j2 j j j2 1 j2 j 1

1 j2 j j2 1 j j 1 j2







α000

α012

α210

α100

α010

α001

α200

α020

α002



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The column sums of the transposed vector (cp)
⊤ multiplied with the matrix repre-

senting the inverse transform t−1 are the coefficients bℓ of the weight γ. The sum of the

first three columns in the matrix above representing t−1 is zero. Similarly, the sum of

the middle three columns is zero and the sum of the final three is also zero. This implies

that b000 + b012 + b021 = 0, b100 + b010 + b001 = 0 and b200 + b020 + b002 = 0.�

If we define the triple of points (A,B,C) ∈ C
3 by




A

B

C


 =




b000 b012 b021

b100 b001 b010

b200 b020 b002







1

j2

j


 ,

and relate to the points (A,B,C) another triple (a, b, c) ∈ C
3 through the bijective linear

transformation 


a

b

c


 =




1 1 1

1 j2 j

1 j j2







A

B

C


 ,

then the discrete Fourier transform

t : γ =
∑

ℓ

bℓαℓ 7→
∑

p proper

cpαp,

is given in terms of the points (a, b, c) by

( c012 c120 c201 c021 c210 c102 ) = 3( a c b a c b ).

The following lemma summarises our progress thus far towards resolving Problem

5.3.4.

Lemma 5.3.9 Let G be a cubic graph embedded in an arbitrary surface with half-edge set

H, partition E by edges and partition V by vertices into blocks of size 3, each block of V
given an arbitrary linear order.

Let the parity weight γV be defined on any fixed block of V by

γ =
∑

ℓ

bℓαℓ,
∑

ℓ

bℓ = 0,
∑

ℓ

|bℓ| = 1,

where, for each block of V, |bℓ| gives the probability of choosing one of the three colourings

in ℓ and, when non-zero, the sign of bℓ determines whether the three colour triples in ℓ

are positive or negative half-edge colourings.



5.3. CUBIC GRAPHS 79

Let a, b, c ∈ C be defined by




a

b

c


 =




1 1 1

1 j2 j

1 j j2







b000 b012 b021

b100 b001 b010

b200 b020 b002







1

j2

j


 .

Then we have

Pr(Equiv. | Same Parity) − Pr(Equiv.)
> 0 if P (L(G); 3) > 0,

= 0 if P (L(G); 3) = 0,

only if




b000 b012 b021

b100 b001 b010

b200 b020 b002







1

1

1


 =




0

0

0


 .

If this condition holds then,

Pr(Equivalent | Same Parity) − Pr(Equivalent)

= 3−|E| ∑

proper edge Z3-colourings

(|a|2)#±012(|b|2)#±201(|c|2)#±120,

where for example #± 012 means the number of vertices in the proper edge Z3-colouring

of G whose incident edges in linear order are either coloured 012 or 021.

In particular

Pr(Equiv. | Same Parity) − Pr(Equiv.) = C(|V |)P (L(G); 3),

for some non-zero C(|V |) depending only on |V | if and only if

0 6= |a| = |b| = |c|.

Cyclic permutation of the components of a colour triple in Z3
3 is transitive on the set

{100, 001, 010}, transitive on the set {200, 020, 002} and fixes each of 000, 012 and 021. If a

parity weight gives equal probability to colour triples which are cyclic permutations of each

other, then we have |b100| = |b001| = |b010| and, by Lemma 5.3.8, b100+b001+b010 = 0. Since

b100, b001, b010 are real, this forces b100 = b001 = b010 = 0. Similarly b200 = b020 = b002 = 0.

Hence by Lemma 5.3.9 we deduce the following:

Corollary 5.3.10 Let G be a cubic graph with half-edge set H, partition E of H by edges

and partition V of H by vertices, each of whose blocks have been linearly ordered.
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Then the most general parity weight giving equal probability to colour triples which are

cyclic permutations of each other and for which the correlation between “Equivalence” and

“Same Parity” is equal to P (L(G); 3) up to a factor dependent only on |V |, has coefficient

matrix (up to permutation of columns and negation) equal to




q 1
2 − q −1

2

0 0 0

0 0 0


 ,

1

4
≤ q ≤ 1

2
.

For such a parity weight,

Pr(Equivalent | Same Parity) − Pr(Equivalent) = (
4q2 − 2q + 1

4
√

3
)|V |P (L(G); 3).

The quantity 4q2 − 2q + 1 is maximised on [14 ,
1
2 ] at q = 1

2 and minimised for q = 1
4 .

The former gives the coefficient matrix of the parity weight of Theorem 5.3.1, the latter

the coefficient matrix of the parity weight of Theorem 5.3.2 (after suitably shuffling the

columns of the matrix given by Corollary 5.3.10).

In the remainder of this section we find all parity weights for which the correlation

between the events “Equivalent” and “Same Parity” is up to a factor dependent only

on |V | equal to P (L(G); 3). There are two cases to consider, the first of which is more

straightforward and this we describe in the following:

Theorem 5.3.11 Let G = (V,E) be a cubic graph with half-edge set H, partition E by

edges and partition V by vertices into blocks of size 3, each block of V given an arbitrary

linear order.

Let there be given the second and third rows of a 3 × 3 matrix over R




· · ·
x1 y1 z1

x2 y2 z2




with the properties that x1 + y1 + z1 = 0 = x2 + y2 + z2 and the row (x1 y1 z1) is not

a cyclic permutation of the row (x2 y2 z2).

Then there exists a unique (x0, y0, z0) ∈ R
3 such that the matrix

±




qx0 qy0 qz0

qx1 qy1 qz1

qx2 qy2 qz2


 ,

is, for a uniquely determined positive real number q, the coefficient matrix of a parity
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weight for which the correlation between the events “Equivalent” and “Same Parity” is

equal to P (L(G); 3) up to a factor dependent only on |V |.

Proof. First we find (x0, y0 , z0) ∈ R
3 (which must satisfy x0 + y0 + z0 = 0 by Lemma

5.3.8) so that the matrix 


x0 y0 z0

x1 y1 z1

x2 y2 z2




has the property that

|A+B + C| = |A+ j2B + jC| = |A+ jB + j2C| 6= 0,

where 


A

B

C


 =




x0 y0 z0

x1 y1 z1

x2 y2 z2







1

j2

j


 .

We then choose the unique positive value of q ∈ R such that

q( |x0| + |y0| + |z0| + |x1| + |y1| + |z1| + |x2| + |y2| + |z2| ) = 1,

so that the matrix 


qx0 qy0 qz0

qx1 qy1 qz1

qx2 qy2 qz2




defines the requisite parity weight of Theorem 5.3.11.

We are given B = x1 + j2y1 + jz1, C = x2 + j2y2 + jz2 as fixed points in the complex

plane and we wish to construct a point A = x0 + j2y0 + jz0 satisfying |A+B+C| =|A+

j2B+jC| =|A+jB+j2C| 6= 0. Using −z0 = x0+y0 to write A = (2x0+y0)+j
2(x0+2y0),

we use the basis {2 + j2, 1 + 2j2} for C to give the coordinates of a point in the complex

plane. The notation (x, y) is used to denote a point in the complex plane relative to this

basis (2 + j2, 1 + 2j2), so that for example B = (x1, y1), C = (x2, y2).

A row in the coefficient matrix of a parity weight is zero if and only if one of A,B,C

equals zero and two rows are cyclic permutations of each other if and only if multiplying

one of A,B,C by j gives either one of the other two. Corollary 5.3.10 covers the case where

the given rows (x1 y1 z1), (x2 y2 z2) are both zero. The following lemma says that if we

exclude this case then we may assume that neither of the given rows (x1 y1 z1), (x2 y2 z2)

are zero, i.e. B,C 6= 0.
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Lemma 5.3.12 Let A,B,C ∈ C satisfy

|A+B + C| = |A+ j2B + jC| = |A+ jB + j2C|.

Then if one of A,B,C equals zero, exactly two of A,B,C are zero.

In particular, a coefficient matrix representing a parity weight for which the correlation

between “Equivalent” and “Same Parity” is equal to P (L(G); 3) up to a factor dependent

only on |V | has either no zero rows or exactly two zero rows.

Proof. Take for example C = 0. Then

|A+B| = |A+ j2B| = |A+ jB|.

If B 6= 0 then the points −B,−j2B,−jB are the vertices of an equilateral triangle with

circumcentre the origin. The circumcentre of a triangle is uniquely determined as the

point equidistant from its vertices. Hence A coincides with the origin, i.e. A = 0.�

Since the rows (x1 y1 z1), (x2 y2 z2) of the matrix given in Theorem 5.3.11 are not

cyclic permutations of each other, the points B, jB, j2B,C, jC, j2C are distinct. It follows

that the points −(B + C),−(j2B + jC),−(jB + j2C) are distinct, forming the vertices

of a triangle ∆ in the complex plane. The relations |A + B + C| = |A + j2B + jC| =

|A+ jB+ j2C| then determine A uniquely as the circumcentre of the triangle ∆, since A

is equidistant from its vertices.

If A has coordinates (x0, y0) relative to our basis (2 + j2, 1 + 2j2) for C, then the

matrix with given second and third rows (x1 y1 z1), (x2 y2 z2) and first row equal to

(x0 y0 −x0 − y0) has rows with zero sums and satisfies |A+B+C| = |A+ j2B+ jC| =

|A+ jB + j2C| 6= 0. It just remains to multiply the matrix by the unique q ∈ R+ which

makes the sum of the absolute values of all the entries equal to 1. �

We now present the final result of this section, completing our solution to Problem

5.3.4.

Theorem 5.3.13 Let G = (V,E) be a cubic graph with half-edge set H, partition E by

edges and partition V by vertices into blocks of size 3, each block of V given an arbitrary

linear order.

Let there be given the second and third rows of a 3 × 3 matrix over R




· · ·
x1 y1 z1

x2 y2 z2



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with the properties that x1 + y1 + z1 = 0 = x2 + y2 + z2, (x1, y1, z1) 6= (0, 0, 0) and the row

(x1 y1 z1) is a cyclic permutation of the row (x2 y2 z2).

Then for an infinite set of values of (x0, y0, z0) ∈ R
3 and q ∈ R+ uniquely determined

by (x0, y0, z0),

±




qx0 qy0 qz0

qx1 qy1 qz1

qx2 qy2 qz2




is the coefficient matrix of a parity weight for which the correlation between the events

“Equivalent” and “Same Parity” is equal to P (L(G); 3) up to a factor dependent only on

|E|. The values of (x0, y0, z0) and q satisfy the following:

(1) if (x1 y1 z1) is not a scalar multiple of (1 1 −2) or one of its cyclic permutations,

then there exists a line ℓ and an octagon in the complex plane such that x0+j
2y0+jz0

lies on ℓ and ±q(x0 + j2y0 + jz0) lie on the boundary of the octagon,

(2) if (x1 y1 z1) is a scalar multiple of (1 1 −2) or one of its cyclic permutations, then

there exists a line ℓ and a hexagon in the complex plane such that x0 + j2y0 + jz0

lies on ℓ and ±q(x0 + j2y0 + jz0) lie on the boundary of the hexagon.

In particular, the first row of the coefficent matrix of a parity weight of the above form

has each of its three entries given by one of three or four linear functions of q, the values

of q ranging over some subinterval of R+.

Before embarking on the proof of Theorem 5.3.13 we remark that the result of Corol-

lary 5.3.10 is the excluded case (x1 y1 z1) = ( 0 0 0 ) in this theorem. The locus of all

points in the complex plane which correspond to the first row of the coefficient matrices

for the parity weights of Corollary 5.3.10 traces the boundaries of a pair of hexagons,

which compares with the single hexagon described in case (2) of Theorem 5.3.13. The

points {q+ j2(1
2 − q)− 1

2j : 0 < q ≤ 1
2} trace one side of a hexagon in the complex plane,

the points {−1
2 + j2q − j(1

2 − q) : 0 < q ≤ 1
2} and {(1

2 − q) − j2 1
2 − jq : 0 < q ≤ 1

2} two

further sides, and the negatives the opposite sides to these three. The conjugates of all

these points form a distinct congruent hexagon.

Proof. We divide the proof of Theorem 5.3.13 into two steps. First, we find all points

(x0, y0) in the complex plane (coordinates relative to the basis (2 + j2, 1 + 2j2)) which

lead to the condition |A + B + C| = |A + j2B + jC| = |A + jB + j2C| 6= 0 being

satisfied, where A,B,C are defined as in the proof of Theorem 5.3.11. Second, we describe

the points (x0, y0) in terms of a real parameter r and then use the equation q−1 =

|x0|+ |y0|+ |z0|+ |x1|+ |y1|+ |z1|+ |x2|+ |y2|+ |z2| defining q ∈ R+ to express r in terms

of q and thereby obtaining a “piecewise linear” parametrisation of (x0, y0) in q.
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Since the second and third rows (x1 y1 z1), (x2 y2 z2) given in the hypothesis of The-

orem 5.3.11 are cyclic permutations of each other, we have either B = C or B = jC

or B = j2C. By Lemma 5.3.12 we may assume B,C 6= 0. Then two of the points

−(B +C),−(j2B + jC),−(jB + j2C) coincide and the third point is different. If B = C

then the two points are −2B,B, if B = jC the two points are −2jB, jB and if B = j2C

then the two points are −2j2B, j2B. We will denote by B′, C ′ a fixed pair of distinct

points amongst these three possible pairs. The locus of points A equidistant from B′ and

C ′ is the perpendicular bisector of B′ and C ′, and we will denote this line by ℓ. The line

ℓ does not pass through the origin O since the point on ℓ closest to O is the midpoint of

the line segment B′C ′ passing through O, and this midpoint is one of 3
2B,

3
2jB, or 3

2j
2B

according as B = C,B = jC or B = j2C.

We choose a point A = (x0, y0) on ℓ arbitrarily, and then take the unique value of q

satisfying

q−1 = |x0| + |y0| + | − x0 − y0| + 2|x1| + 2|y1| + 2|z1|.

The signs of x1, y1, z1 are fixed since the point B = (x1, y1) is fixed. We define the sign

function by sgn(x) = + if x ≥ 0 and sgn(x) = − if x < 0 and note that there are one of

six possible sign triples associated with the three reals x0, y0,−x0 − y0:

sgn(x0), sgn(y0), sgn(−x0 − y0) ∈ {+ + −,+ −−,+ − +,−− +,− + +,− + −}.

When (x0, y0) ranges over the points on the line ℓ the number of possible sign triples

is reduced, this number depending on whether or not ℓ is parallel to one of the lines

x = 0, y = 0, x+ y = 0 in the (x, y)-plane with basis (2 + j2, 1 + 2j2) = (ij2
√

3,−i
√

3).

Lemma 5.3.14 The perpendicular bisector ℓ of B′ and C ′ is parallel with one of the two

axes x = 0, y = 0 or the line x + y = 0 if and only if B is a real scalar multiple of

either 1, j or j2. The latter occurs if and only if the row (x1 y1 z1) is a scalar multiple

of (1 1 − 2) or one of its cyclic permutations.

When ℓ is parallel to one of the lines x = 0, y = 0 or x + y = 0 there are exactly 3

sign triples in the set

{sgn(x0), sgn(y0), sgn(−x0 − y0) : points (x0, y0) lying on ℓ}.

Otherwise, when ℓ is not parallel to any of the three lines x = 0, y = 0, x + y = 0,

there are exactly 4 sign triples in this set.

Proof. We will use complex numbers to describe the direction of a line in the (x, y)-plane:

two lines ℓ′, ℓ′′ in the complex plane lie in the same direction if the difference between any

two points on ℓ′ as a complex number is a scalar multiple of the difference between any

two points on ℓ′′ as a complex number.
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According as B = C, jC, j2C we have the three cases (B′, C ′) = (B,−2B), (jB,−2jB)

or (j2B,−2j2B), for which the direction of the perpendicular bisector ℓ is given respec-

tively by iB, ijB or ij2B. The direction of the axis y = 0 is given by −i
√

3, the direction

of the axis x = 0 is given by ij2
√

3, and the direction of the line x + y = 0 is given by

1+2j2 − 2− j2 = −ij
√

3. This yields the stated condition on B. By equating coefficients

of 1 and j2 in the equations 2x1 + y1 + j2(x1 + 2y1) = 1, j(= −1 − j2) or j2 respectively

we find that B is a scalar multiple of 1, j or j2 if and only if (x1 y1 z1) is a scalar multiple

of (1 − 2 1), (1 1 − 2) or (−2 1 1) respectively.

Two non-parallel lines in the complex plane meet in exactly one point. Since ℓ does not

pass through the origin it does not coincide with any of the lines x = 0, y = 0, x+y = 0. If

ℓ is parallel to one of x = 0, y = 0, x+y = 0 then it meets each of the other two, otherwise

it meets all three lines, each in one point. This implies that ℓ passes through respectively

3 or 4 of the 6 regions of the plane bounded by the lines x = 0, y = 0, x+ y = 0 removed.

Corresponding to these 3 or 4 regions are 3 respectively 4 sign triples for x0, y0,−x0−y0.�

We now move to the second stage of the proof of Theorem 5.3.13, using a parametri-

sation of the line ℓ in order to parametrise the point (qx0, qy0) in terms of q and x1, y1.

A point (x0, y0) lies on the perpendicular bisector ℓ of B′ and C ′ if and only if 2x0+y0+

j2(x0+2y0)−B′+C′

2 is a scalar multiple of i(B′−C ′). The line ℓ thus has a parametrisation

of the form

x0 = a0r + b0, y0 = c0r + d0, r ∈ R,

where a0, b0, c0, d0 ∈ R depend on x1, y1. Then q is defined by

q−1 = (±a0 ± c0 ± (−a0 − c0))r + (±b0 ± d0 ± (−b0 − d0)) + 2|x1| + 2|y1| + 2|x1 + y1|,

where both choices of the three signs ±±± correspond to the sign triple of x0, y0,−x0−y0.

First we consider the case where ℓ is not parallel to any of the lines x = 0, y = 0, x+y =

0, when we have a0 6= 0, c0 6= 0 and a0 + c0 6= 0. Then ±a0 ± c0 ± (−a0 − c0) 6= 0 since

the sign triples + + +,−−− are impossible for x0, y0,−x0 − y0.

The line ℓ passes through 4 of the 6 regions of the plane bounded by the lines x =

0, y = 0, x+y = 0. A set of points on ℓ for which the triple of signs sgn(x0), sgn(y0), sgn(z0)

is constant is a line segment. In terms of the parametrisation of ℓ in r, the set of r ∈
R for which the sign triple sgn(a0r + b0), sgn(c0r + d0), sgn(−(a0 + c0)r − b0 − d0) is

constant is one amongst two bounded half-open intervals, one open unbounded interval

and one closed unbounded interval, which together partition R. Restricting r to any

one of these 4 intervals, we can solve the equation for q to obtain an equation for r

linear in q−1. Since x0, y0 are linear in r, we then have qx0 = ar + b, qy0 = cq + d for

some a, b, c, d dependent on x1, y1 and for q lying in a bounded subinterval of (0,∞).

In fact, since q > 2|x1| + 2|y1| + 2|x1 + y1|, q must lie in a subinterval of (0, q0) where
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q−1
0 = 2|x1| + 2|y1| + 2|x1 + y1|

Taking each of the 4 intervals on which x0, y0,−x0 − y0 have constant sign triple,

we obtain 4 parametrisations for the row (qx0 qy0 qz0) with entries in terms of x1, y1

and linear in q, where q ranges over one of the 4 subintervals of (0, q0). By taking the

points (x0, y0) on ℓ continuously the values of q are taken continuously. Hence the 4 dif-

ferent parametrisations for the point (qx0, qy0) in the complex plane describe a connected

curve consisting of 4 straight line segments and the locus of the points ±(qx0, qy0) is the

boundary of an octagon.

The case where ℓ is parallel to one of x = 0, y = 0, x+ y = 0 is proved in an entirely

similar way. The parameter q is similarly defined and the locus of the points ±(qx0, qy0)

as (x0, y0) ranges over ℓ is the boundary of a hexagon since there are now just 3 different

sign triples. We note that a0 = 0 if ℓ is parallel with x = 0, c0 = 0 if ℓ is parallel with

y = 0 and a0 + c0 = 0 if ℓ is parallel to x + y = 0. This implies that for one interval of

values of r for which the sign triple sgn(a0r+b0), sgn(c0r+d0), sgn(−(a0 +c0)r−b0−d0)

is constant, the parameter q is not a function of r−1 but equal to a constant (dependent

on x1, y1). This constant coincides with the appropriate constant value of x0 = a0r + b0,

y0 = c0r + d0 or z0 = −(a0 + c0)r − b0 − d0 according as ℓ is parallel to x = 0, y = 0 or

x+ y = 0.�

We finish this section with an illustration of Theorem 5.3.13.

Example 5.3.15 We find all parity weights with the property that the correlation between

the events “Equivalent” and “Same Parity” is equal to P (L(G); 3) up to a factor dependent

only on |V | and whose coefficient matrix (up to negation and permutation of rows and

columns) have two rows given up to scalar multiples by




· · ·
1 1 −2

1 −2 1


 .

Here we have B = −3j = j2C 6= 0, and the perpendicular bisector ℓ of the points

j2B = −3,−2j2B = 6 in the complex plane is parallel to the axis x = 0 (relative to the

basis (2 + j2, 1 + 2j2)). By Theorem 5.3.13 we will find 3 parametrisations in terms of

a positive real q. The line ℓ has parametrisation {(1, r) : r ∈ R} in the complex plane

(relative to the basis (2+ j2, 1+2j2)) and the sign triples of 1, r,−1−r switch to different

sign triples at r = 0 and r = −1. We then solve for r each of the 3 equations

q−1 = 2r + 10, 0 ≤ r,

q−1 = −2r + 10, −1 ≤ r < 0,



5.4. VERTEX 3-COLOURING ARBITRARY GRAPHS 87

q−1 = −2r + 6, r < −1,

finding that the first row (qx0 qy0 qz0) = (q, qr,−q − qr) has one of the following 3

parametrisations:

(q
1

2
− 5q 4q − 1

2
), 0 < q ≤ 1

10
,

(q 5q − 1

2

1

2
− 6q),

1

12
< q ≤ 1

10
,

(q 3q − 1

2

1

2
− 4q), 0 < q ≤ 1

8
.

We thus find that the parity weight of Theorem 5.3.3 is the special case q = 1
12 of the

set of parity weights with coefficient matrix given by




q 1
2 − 5q 4q − 1

2

q q −2q

q −2q q


 , 0 < q ≤ 1

10
.

5.4 Vertex 3-colouring arbitrary graphs

In this section we reverse the rôles of edges and vertices to those played in §5.3 by

considering parity edge weights and induced vertex colourings, rather than parity vertex

weights and induced edge colourings, and by doing so derive probabilistic criteria for a

graph to have a proper vertex 3-colouring.

Let G = (V,E) be an arbitrary graph with half-edge set H, E = {H(e) : e ∈ E} the

partition of H by edges into blocks of size 2, and V = {H(v) : v ∈ V } the partition of H

by the vertices of G. For each v ∈ V , the block H(v) has size equal to the degree of v.

A linear order on each block of E is determined by any fixed orientation of G, much as

a linear order on each block of V in §5.3 was made consistently with a fixed set of local

vertex rotations of G.

A half-edge colouring µ : H → Z3 is the same as a Z2
3 -colouring of E . We recall from

Definition 5.2.1 that any given probability weight δE : ZH
3 → R is defined on each block

of E by a function δ : Z2
3 → R with the property that |δ|(Z2

3 ) = 1 and that δE is a parity

weight if and only if δ(Z2
3 ) = 0 (Definition 5.2.2).

A pair of colours ℓ ∈ Z2
3 is positive or negative with respect to δ according as δ(ℓ) > 0

or δ(ℓ) < 0. Given a half-edge colouring µ : E → Z2
3 , we call an edge e positive in the

colouring µ if δ(µe) > 0 and negative if δ(µe) < 0. The parity of a half-edge colouring

µ ∈ ZH
3 for which each edge is either positive or negative is then even if the number of

negative edges is even and odd otherwise. A half-edge colouring µ : H → Z3 induces a

(not necessarily proper) vertex 3-colouring µV : V → Z3 of G which colours a vertex v ∈ V

with the sum in Z3 of the colours of the half-edges in H(v). Two half-edge colourings are
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equivalent if they induce the same vertex colouring.

We ask a similar question to that posed in §5.3: Which parity edge weights on the half-

edge colourings of a graph G with a fixed orientation have the property that the correlation

between “Equivalent” (same induced vertex colouring) and “Same Parity” (same number

of negative edges modulo 2) is up to a factor, dependent only on the size of G, equal to

the number of proper vertex 3-colourings of G? We use Lemma 5.4.1 below to show how

the parity vertex weights of Theorems 5.3.10, 5.3.11 and 5.3.13 allow us to immediately

deduce the answer.

Lemma 5.4.1 For ℓ = (l0, l1, l2) ∈ Z3
3 and a null triple m = (m0,m1,−m0 −m1) ∈ Z3

3

we have

tαℓ(m) = 3tαℓ′(m
′),

where ℓ′ = (l0 − l2, l1 − l2) ∈ Z2
3 is uniquely determined by ℓ and m′ = (m0,m1) ∈ Z2

3 .

Moreover, the function

γ =
∑

ℓ∈Z3
3/000

bℓαℓ

satisfies γ(Z3
3 ) = 0 and |tγ| = 3dα±012 for some d 6= 0 if and only if the function

δ =
∑

ℓ′∈Z2
3

bℓαℓ′

satisfies δ(Z2
3 ) = 0 and |tδ| = dα±01.

Proof. When m is not a null triple we have tαℓ(m) = j〈ℓ,m〉(1 + j〈111,m〉 + j−〈111,m〉) = 0,

and if m is null this equation gives tαℓ(m) = 3tαℓ(m).

The mapm 7→ m′ removing the last component ofm is an isomorphism of the subspace

of null triples in Z3
3 with Z2

3 and maps the set 012 ∪ 021 to the set 01 ∪ 10. Explicitly,

m 7→ m′ is given by

(000, 111, 222, 012, 120, 201, 021, 210, 102) ↔ (00, 11, 22, 01, 12, 20, 02, 21, 10),

where the elements in Z2
3 have been grouped by cosets of the subspace of monochrome

pairs {00, 11, 22}, and we see that proper triples are mapped to proper pairs and monochrome

triples to monochrome pairs.

The map (l0, l1, l2) 7→ (l0−l2, l1−l2) is well-defined as a map (l0, l1, l2) 7→ (l0−l2, l1−l2)
on the cosets ℓ of monochrome triples and the latter is an isomorphism of the vector space

Z3
3/000 with the vector space Z2

3 . The bijection ℓ 7→ ℓ′ is given by

(000, 012, 021, 100, 001, 010, 200, 020, 002) ↔ (00, 12, 21, 10, 22, 01, 20, 02, 11),
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where we have grouped the elements of Z2
3 by cosets of the set of null pairs {00, 12, 21}.

For null m = (m0,m1,−m0 −m1) ∈ Z3
3 ,

tα(l0,l1,l2)((m0,m1,−m0 −m1)) = 3tα(l0,l1,l2)((m0,m1,−m0 −m1)),

and since

〈 (l0, l1, l2), (m0,m1,−m0 −m1) 〉 = l0m0 + l1m1 − l2m0 − l2m1

= (l0 − l2)m0 + (l1 − l2)m1 = 〈 (l0 − l2, l1 − l2), (m0,m1)〉,

it follows that

tα(l0,l1,l2)((m0,m1,−m0 −m1)) = 3tα(l0−l2,l1−l2)((m0,m1)).

This gives our result that tαℓ(m) = tαℓ′(m
′) where ℓ′ is obtained from ℓ by the iso-

morphism (l0, l1, l2) 7→ (l0− l2, l1− l2) and m′ from m by the isomorphism (m0,m1,−m0−
m1) 7→ (m0,m1).

The remainder of the lemma follows since m 7→ m′ maps proper triples to proper pairs

and so given the hypothesis that |tγ(m)| is constant for m ∈ 012 ∪ 021 the same is true

of |tδ(m′)| for m′ ∈ 01 ∪ 10. Similarly, |tγ(m)| = 0 when m ∈ Z3
3 is monochrome if and

only if |tδ(m′)| = 0 for monochrome m′ ∈ Z2
3 . �

As a consequence of Lemma 5.4.1, we see that if the vertex weight γV on the set of

half-edge colourings of a cubic graph is given on blocks of V by

γ =
∑

ℓ∈Z3
3/000

bℓαℓ,

and the edge weight δE on the set of half-edge colourings of an arbitrary graph is given

on blocks of E by

δ =
∑

ℓ′∈Z2
3

bℓαℓ′ ,

where ℓ′ is given by the isomorphism ℓ 7→ ℓ′ in the proof of Lemma 5.4.1, then there is

d 6= 0 such that |tγV | = (3d)|V |αV
proper if and only if |tδE | = d|E|αE

proper for the same value

of d. Thus, if γ is a parity vertex weight on the half-edge colourings of an cubic graph

G = (V,E) (with a linear order on each block of its half-edge partition V by vertices), so

that we have, by Theorem 5.2.7,

Pr(Equivalent | Same Parity) − Pr(Equivalent) = 3−|E|d2|V |P (L(G); 3),

where “Equivalent” means the same induced edge colouring and “Same Parity” means
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the same number of negative vertices modulo 2, then δ as defined above is a parity weight

on the half-edge colourings of an arbitrary graph G = (V,E) (with a linear order on

each block of its half-edge partition E by edges, i.e. an orientation of its edges) and, by

Theorem 5.2.7,

Pr(Equivalent | Same Parity) − Pr(Equivalent) = 3−|V |d2|E|P (G; 3),

where “Equivalent” in the last statement means the same induced vertex colouring and

“Same Parity” means the same number of negative edges modulo 2.

We summarise these conclusions in Theorem 5.4.2 below. For an arbitrary parity edge

weight δE given on each block of E by the function

δ =
∑

ℓ∈Z2
3

aℓαℓ,

we write the coefficients {aℓ : ℓ ∈ Z2
3} in a 3 × 3 matrix




a00 a12 a21

a10 a22 a01

a20 a02 a11


 ,

so that the entry aℓ′ is in the same place as the entry bℓ in the coefficient matrix of a

parity vertex weight, where ℓ 7→ ℓ′ is the isomorphism of Lemma 5.4.1.

Theorem 5.4.2 Let δE be a parity E-weight on the set of half-edge colourings of a graph

G = (V,E) with a fixed orientation which determines a probability distribution on the set

of half-edge colourings of G for which

Pr(Equivalent | Same Parity) − Pr(Equivalent) = 3−|V |d2|E|P (G; 3),

where d 6= 0 is constant.

Then δ has coefficient matrix given by




a00 a12 a21

a10 a22 a01

a20 a02 a11


 =




b000 b012 b021

b100 b001 b010

b200 b020 b002




where the matrix on the right-hand side is the coefficient matrix of a parity V-weight de-

termining a probability distribution on the set of half-edge colourings of a cubic graph G =

(V,E) for which Pr(Equivalent | Same Parity) − Pr(Equivalent) = 3−|E|d2|V |P (L(G); 3)

for the same constant d.
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We now consider an example of a parity edge weight satisfying the conditions of

Theorem 5.4.2 which is related to Matiyasevich’s parity vertex weight 1
6ρ = 1

6(α012−α021)

on the set of half-edge colourings of a cubic graph. Through the isomorphism ℓ 7→ ℓ′ of

Lemma 5.4.1 we obtain from the parity vertex weight 1
6ρ the parity edge weight δ =

1
2(α12 − α21), which has transform tδ = − i

√
3

2 (α01 − α10). Before proceeding to deduce

the correlations between “Equivalent” and the various parity events from Theorem 5.3.1

by appealing to Theorem 5.4.2, we introduce some preliminary terminology in order to

be able to interpret our results.

We consider the elements 0, 1, 2 of Z3 in the cyclic order ( 0 1 2 ). If the elements of

Z3 are the beads of a necklace with 0, 1, 2 appearing in clockwise order then cyclically

consecutive elements of Z3 are obtained by moving clockwise around the necklace.3 Each

block H(e) of the partition E of H by edges is put in a linear order consistent with the

fixed orientation ω of G. A half-edge colouring µ weakly preserves the orientation ω of the

edge e if µe is monochrome and preserves the orientation ω if µe colours H(e) properly

with two colours in cyclic order (i.e. µe ∈ 01). Otherwise, when µe properly colours H(e)

against the cyclic order of Z3 (i.e. µe ∈ 10), we say that µ reverses the orientation ω of

the edge e .

A V-monochrome E-proper half-edge colouring µ is a proper vertex 3-colouring of G

which on each edge of G either preserves or reverses the orientation ω. Under the parity

weight 1
6(α01 − α10), a proper vertex colouring is even or odd according as it reverses an

even or odd number of edges. This is comparable to a proper edge 3-colouring of a cubic

graph being even or odd according as it preserves or reverses the clockwise rotation of an

even or odd number of vertices.

Interpreting half-edge colourings of G which colour each block of E either with 12 (pre-

serving ω) or with 21 (reversing ω) as orientations of G, we have the following consequence

of Theorem 5.4.2 and Theorem 5.3.1:

Theorem 5.4.3 Let G be any graph and let a given orientation of G induce a colouring

of the vertices of G with elements of Z3 by colouring a vertex with its indegree minus its

outdegree modulo 3. If we choose two orientations of G u.a.r., then

Pr(Equivalent | Same Parity) − Pr(Equivalent) = 3|E|−|V |4−|E|P (G; 3),

where two orientations are equivalent if they induce the same vertex colouring and

have the same parity if they differ on an even number of edges.

By permuting rows and columns of the coefficient matrix to obtain the parity edge

3In Chapter 6 we shall use the identification of elements of Zk with beads of a necklace in order to
distinguish different types of k-colourings, of which the clockwise/anticlockwise order of two or three
distinct colours is an instance.
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weight 1
2(α01 − α10), the same theorem holds with “indegree minus outdegree modulo 3”

replaced by “indegree modulo 3”. This provides a probabilistic interpretation of Alon

and Tarsi’s result [7] that ‖f3(G)‖2
2 = 3|E|−|V |P (G; 3). By Lemma 4.2.2 of Chapter 4,

the coefficients of f3(G) are given by σE([λ]V ) for vertex colourings λ : V → Z3, where

σ = α01−α10. Note also that this extends a result of Matiyasevich [46], who has Theorem

5.4.3 with “outdegree modulo 3”, but only considers planar cubic graphs (due to the fact

that he is seeking equivalents to the Four Colour Theorem).

An immediate corollary of Theorem 5.4.3 is that the correlation between “Equivalent”

and “Same Parity” is always positive for a graph which has a proper vertex 3-colouring.

Welsh [69] has an alternative proof of this fact, with independent proofs of both Theorem

5.4.3 and Theorem 5.4.5 below.

Given a graph G with a fixed orientation ω, for two orientations chosen u.a.r. the

event “Both Even” occurs when both orientations switch the direction of an even number

of edges in the orientation ω. The event “Both Odd” is similarly defined. The weight

|δ| = 1
2α±12 has transform given by t|δ| = 1

2(2α00 − α±01). By Theorem 5.2.8, if |E| is

even then

Pr(Equivalent | Both Even) − Pr(Equivalent | Both Odd)

= (−1)|E|/23|E|/2−|V |41−|E|(#{Even proper vertex 3-colourings}−#{Odd proper vertex 3-colourings}),

If |E| is odd this correlation equals 0 for the following reason. If the pair of half-edge

colourings µ, µ′ : E → {±12} are equivalent and both even, inducing the vertex colouring

λ : V → Z3, then the pair of half edge colourings −µ,−µ′ are still equivalent (inducing

the vertex colouring −λ) but now both of them are odd since the sign of the parity

weight δE has changed on each of the odd number of blocks of E . In other words, for

each λ : V → Z3 we have a bijection between the set [λ]V × [λ]V ∩ Both Even and the set

[−λ]V × [−λ]V ∩ Both Odd. Since Pr(Both Even) = Pr(Both Odd), this implies

∑

λ:V →Z3

[Pr([λ]V × [λ]V | Both Even) − Pr([−λ]V × [−λ]V | Both Odd)] = 0.

With

Equivalent =
⋃

λ:V →Z3

[λ]V × [λ]V =
⋃

λ:V →Z3

[−λ]V × [−λ]V ,

we conclude that when |E| is odd

Pr(Equivalent | Both Even) − Pr(Equivalent | Both Odd) = 0.

We will interpret the correlation Pr(Equivalent | Both Even)−Pr(Equivalent | Both Odd)

for the special case of a line graph of a cubic graph, thereby exhibiting the connection with

the similar correlation of Theorem 5.3.1. Let L(G) = (E,L) be the line graph of a cubic
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graph G = (V,E) with a set of local vertex rotations. If we give L(G) the Eulerian ori-

entation ω determined by the local vertex rotations of G as described in Chapter 4, §4.2,

then a proper vertex 3-colouring of L(G) either preserves ω on all three edges of a triangle

{e0, e1}, {e1, e2}, {e2, e0} of L(G) for which e0, e1, e2 are three mutually incident edges in

G, or reverses ω on all three edges of such a triangle of L(G). Three preserved edges on a

triangle {e0, e1}, {e1, e2}, {e2, e0} of L(G) corresponds to the three colours 0, 1, 2 appear-

ing in a clockwise order on the vertices e0, e1, e2 around the triangle, and three reversed

edges to an anticlockwise order. A proper vertex 3-colouring of L(G) is a proper edge

3-colouring of G, and clockwise (anticlockwise) triangles {e0, e1}, {e1, e2}, {e2, e0} of L(G)

in the proper vertex 3-colouring of L(G) correspond to clockwise (anticlockwise) vertices

in the proper edge 3-colouring of G.

Since |L| = 2|E| is even, in the probability distribution determined by the edge parity

weight 1
2(α12 − α21) on half-edge colourings of L(G) we have

Pr(Equivalent | Both Even) − Pr(Equivalent | Both Odd)

= (−1)|E|41−2|E|(#{Even proper vertex 3-colourings of L(G)}−#{Odd proper vertex 3-colourings of L(G)}).

This yields the following theorem, which provides a probabilistic interpretation of the

constant term of f3(L(G)) (see Theorems 4.3.5 and 4.3.6):

Theorem 5.4.4 Let G = (V,E) be a cubic graph with a set of local vertex rotations,

L(G) its line graph and ω the orientation of L(G) determined by the local vertex rotations

of G. An orientation of L(G) is even or odd according as it differs from ω on an even or

odd number of edges and induces a vertex 3-colouring of L(G) by colouring a vertex with

its indegree minus its outdegree modulo 3.

If we choose any two orientations of L(G) u.a.r. then

Pr(Equivalent | Both Even) − Pr(Equivalent | Both Odd)

= (−1)|E|41−2|E|(#{Even proper edge 3-colourings of G}−#{Odd proper edge 3-colourings of G}),

where a proper edge 3-colouring of G is even or odd according as the number of anticlock-

wise vertices is even or odd. In particular, if G has set of local vertex rotations corre-

sponding to an embedding of G on the plane then this correlation equals 41−2|E|P (L(G); 3).

Finally, we determine the value of Pr(Equivalent) under the probability distribution

defined by the probability edge weight |δ| = 1
2α±12 in terms of an evaluation of the Tutte

polynomial of G, thus completing our derivation of expressions analogous to those of

Theorem 5.3.1. In order to do this we introduce the monochrome polynomial of a graph.

For an arbitrary graph G, positive integer k and indeterminate s, the monochrome
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polynomial B(G; k, s) of G is defined by

B(G; k, s) =
∑

vertex k-colourings of G

s#monochrome edges,

where an edge is monochrome if its endpoints receive the same colour. Evaluating

B(G; k, s) at s = 0 counts vertex k-colourings with no monochrome edges so thatB(G; k, 0) =

P (G; k). Evaluating the monochrome polynomial at s = 1 counts all k|V | vertex k-

colourings of G. In [68] it is shown that for any connected graph G the monochrome

polynomial has the evaluation

B(G; k, s) = k(s− 1)|V |−1T (G;
s+ k − 1

s− 1
, s),

so that B(G; k, s) is a specialisation of the Tutte polynomial. The definition of the

monochrome polynomial closely relates it to the Potts partition function, where the k

colours are “states” (see for example [68, §4.4]).

Theorem 5.4.5 Let G be any graph and let a given orientation of G induce a 3-colouring

of the vertices of G by colouring a vertex with its indegree minus its outdegree modulo 3.

If we choose two orientations of G u.a.r., then the probability that they induce the same

colouring is given by

Pr(Equivalent) = 3−|V |4−|E|B(G; 3, 4) = 4−|E|T (G; 2, 4).

Proof. For the parity edge weight δ = 1
2(α12 − α21) we have t|δ| = 1

2(2α00 − α01,10), so

that | t|δ| | = 1
2(2αmonochrome + αproper). By Theorem 5.2.6,

Pr(Equivalent) = 3−|V |2−2|E| ∑

µ:V →Z3

∣∣ (2αmonochrome + αproper)
E(µH)

∣∣2

= 3−|V |4−|E| ∑

vertex 3-colourings

4# monochrome edges = 3−|V |4−|E|B(G; 3, 4).

�

We remark that “indegree modulo 3” or “outdegree modulo 3” may be substituted

for “indegree minus outdegree modulo 3” in Theorem 5.4.5 since
∣∣ t|α01 − α10|E

∣∣2 =∣∣ t|α12 − α21|E
∣∣2.

We finish this section with an analogue of Corollary 4.6.2 which provides a cri-

terion for the existence of a proper vertex 3-colouring of an arbitrary graph. Since∣∣ t(α12 − α21)
E ∣∣2 = 3|E| =

∣∣ t(α01 − α10)
E ∣∣2 we obtain the following in an entirely similar

way to the proof of Theorem 4.6.1:
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Theorem 5.4.6 Let G be any graph and let a given orientation of G induce a 3-colouring

of the vertices of G by colouring a vertex with its indegree modulo 3. Then G has a proper

vertex 3-colouring if and only if there is a 3-colouring of the vertices of G which is induced

by an odd number of orientations.

We remark that even when P (G; 3) > 0 the vertex 3-colourings induced by an odd

number of orientations may not include any of the proper vertex 3-colourings themselves.

For example, it is easily checked that K2 ×K3 has the property that all its proper vertex

3-colourings are induced by exactly 2 orientations.4

5.5 Face 3- and 4-colouring 2-cell embedded cubic graphs

For a cubic 2-cell embedded graphG,5 we can deduce probabilistic criteria for the existence

of proper face 3-colourings of G directly from §5.3 by using the same parity vertex weights

but inducing face colourings of G rather than edge colourings of G. The existence of a

proper face 3-colouring of a plane cubic graph G is by planar duality equivalent to the

existence of nowhere-zero 3-flows of G, and cubic graphs only have nowhere-zero 3-flows if

they are bipartite (see e.g. [34]). Since the faces of a 2-cell embedded plane graph G span

the cycle space of G, a 2-cell embedded cubic plane graph has a proper face 3-colouring

if and only if all the faces are of even size.

The problem of characterising graphs which have a proper face 4-colouring is for

planar graphs settled by the Four Colour Theorem. At the end of this section we obtain

a probabilistic criterion different to those deducible from §§5.3-5.4 for the existence of a

proper face 4-colouring of a cubic graph 2-cell embedded on an orientable surface. For

non-planar graphs we do not have the correspondence between proper edge 3-colourings

(or nowhere-zero 4-flows) and proper face 4-colourings, since the surface dual G∗ of G

is not the matroidal dual of G for non-planar graphs. However, if a graph has a proper

face k-colourable 2-cell embedding in some orientable surface then it has a nowhere-zero

k-flow [34, Theorem 3.1], so that by [55] we know that cubic graphs with a Petersen minor

cannot have a proper face 4-colouring.

For a cubic graph G with a 2-cell embedding on a surface S and with half-edge set

H, we define the partition F of H by faces dually to the way we defined the partition

by vertices in §3.3, in the sense that the vertices of the surface dual G∗ = (F,E, V ) are

the faces of G = (V,E, F ). This has the advantage that the blocks of F correspond more

naturally to the faces as components of S\G than in their definition of §3.4. Half-edges

are obtained not by cutting edges across their middle but by splitting them lengthways.

4This graph also has the property that each proper edge 3-colouring is induced by exactly 6 proper
half-edge colourings. See the observation following Corollary 4.6.2.

5See §3.4 for definitions of 2-cell embeddings, faces and surface duals.
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Figure 5.2: Edges and faces as subsets of half-edges obtained by splitting edges lengthways. For

any graph, each edge comprises two half-edges and each face as many half-edges as its size.

For purposes of illustration we take a plane cubic graph G whose edges are straight line

segments. The faces of G become a set of disjoint, non-overlapping polygons (see Figure

5.2 above). Each face comprises half-edges forming a polygon with as many sides as

edges bounding the face in the embedding of G. Each edge of G comprises two half-edges

belonging to the polygons corresponding to its two incident faces.

In order to have a natural definition of the partition V by vertices we adapt this

definition of F , making it into a partition of the set of face corners (see Figure 5.3 below).

A face corner at a vertex v is the intersection of a neighbourhood of v (containing no

vertices other than v) in the embedding of G and a face whose closure contains v. A

block H(f) in the partition F of H by faces is identified with the set of face corners

contained in the closure of f . A block H(v) in the partition V by vertices is identified

with the set of face corners containing v.

We define a proper face-corner colouring of a 2-cell embedded graphG to be a colouring

of the face corners of G with the property that the face corners incident with a common

vertex receive distinct colours. A face colouring of G which gives distinct colours to faces

incident with a common vertex also has the property that each pair of faces incident with

a common edge receive distinct colours, and vice versa.

Given a proper face-corner Z3-colouring of a 2-cell embedded cubic graph G on an

orientable surface, we define as negative those vertices where the colours 0, 1, 2 appear

in an anticlockwise rotational sense in the surface and as positive those vertices where

the colours are clockwise. The parity of a proper face-corner colouring is the number of
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Figure 5.3: Edges and vertices as face boundaries and face corners. For any graph, each edge

comprises two face boundaries and each vertex (face) as many corners as its degree (size).

negative vertices modulo 2. If the surface on which G is embedded is not orientable, we

can alternatively define two proper face-corner colourings to be of the same parity if there

are an even number of vertices at which the cyclic order of colours in one face-corner

colouring is different to the cyclic order in the other colouring. A face 3-colouring of

G is induced by a face-corner colouring by colouring a face with the sum of the colours

of its face corners modulo 3. Corresponding to Theorem 5.3.1 we have the following by

Theorem 5.2.7:

Theorem 5.5.1 Let G = (V,E, F ) be a cubic graph 2-cell embedded on a surface S, set

of faces F and surface dual G∗. If two proper face-corner Z3-colourings of G are chosen

u.a.r. then

Pr(Equivalent | Same Parity) − Pr(Equivalent) = 3|V |−|F |4−|V |P (G∗; 3),

where two face-corner colourings are equivalent if they induce the same face colouring

and have the same parity if they differ in the rotational sense of their colours at an even

number of vertices.

More generally, suppose γV is a parity weight on the half-edge colourings of a cubic

graph with the property that γV determines a probability distribution in such a way that

Pr(Equivalent | Same Parity) − Pr(Equivalent) = 3−|E|d2|V |P (L(G); 3),
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where half-edge colourings are equivalent if they induce the same edge colouring of G.

By the identification of half-edges with face corners, we can then deduce that γV is

a parity weight on the face-corner colourings of a 2-cell embedded cubic graph with the

property that

Pr(Equivalent | Same Parity) − Pr(Equivalent) = 3−|F |d2|V |P (G∗; 3).

where two face-corner colourings are equivalent if they induce the same face colouring of

G.

When we have a 2-cell embedding of G on an orientable surface it is possible to avoid

mention of half-edges and face-corners altogether by using a bijection from half-edges of

G = (V,E) to the edges of the medial graph G̃ = (E,L) of G. The medial graph G̃ is an

embedding of the line graph L(G) on the same surface S on which G is 2-cell embedded:

a vertex of G̃ is placed at the middle of each edge of G, and edges of G̃ join two vertices

of G̃ if they lie on cyclically consecutive edges of G in its local vertex rotation scheme (i.e

mutually incident edges for a cubic graph G). The medial graph G̃ is a 2-cell embedding

of L(G): the faces of the medial graph G̃ are coloured black if they contain a vertex of G

and white if they are contained in a face of G. The orientation is given to G̃ which has the

property that the edges on black faces are cyclically oriented in a clockwise sense. (This

is the same as the orientation of the edges of L(G) determined by a set of local vertex

rotations of G which was used to define the Matiyasevich polynomial in Chapter 4, the

set of local vertex rotations here defined by taking the three edges of G incident with a

vertex of G in the clockwise sense on S.)

The blocks of the partitions V and F of the half-edges or corners of G by vertices

and faces become the black faces and white faces of G̃ respectively, and the edges on

a black face are cyclically ordered by taking edges in the order which follows the cyclic

orientation of the black face in the orientation of G̃. A face-corner colouring of G by

this correspondence becomes a colouring of the edges of G̃ and a vertex weight γV on the

half-edge colourings of G becomes a function on the set of edge colourings of G̃ defined

locally on each black face of G̃.

This medial graph interpretation is illustrated in our final theorem of this section,

which considers face 4-colouring a 2-cell embedded cubic graph G on an orientable surface

S. We take our set of colours to be Z4 = {0, 1, 2,−1} with cyclic order (0 1 2 − 1) but

we will in fact only use three of the four colours to colour the edges of G̃.

Call a colouring of the three edges of a black face of G̃ with the colours 0, 1,−1 negative

if the colours of the edges in cyclic order (0 1 − 1) appear in an anticlockwise rotational

sense on S and positive if the colours appear in a clockwise sense. An edge colouring

of G̃ using the colours 0, 1,−1 and assigning distinct colours to each black triangle is

even or odd according as it has an even or odd number of negative (anticlockwise) black
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triangles. An edge colouring induces a colouring of the white faces of G̃ by colouring a

face with the sum of the colours on its bounding edges modulo 4. A vertex in a proper

face 4-colouring of G is anticlockwise if the colours of its incident faces appear in an

anticlockwise rotational sense on S.

Theorem 5.5.2 Let G = (V,E, F ) be a cubic graph 2-cell embedded on an orientable

surface S and G̃ = (E,L) its medial graph. Suppose two edge colourings of G̃ with the

colours 0, 1,−1 appearing on each black triangle of G̃ are chosen u.a.r. Then,

Pr(Equivalent | Same Parity) − Pr(Equivalent) = 4|V |−|F |9−|V |P (G∗; 4),

where two edge colourings of G̃ are equivalent if on each white face of G̃ the sum of their

colours is the same modulo 4, and are of the same parity if they differ in the rotational

sense of their colours at an even number of black triangles.

Futhermore, if S has Euler genus 2g then

Pr(Equivalent | Both Even) − Pr(Equivalent | Both Odd)

= (−1)|E|16g−19−|V |( #{Even proper face 4-colourings of G}−#{Odd proper face 4-colourings of G} )

where an edge colouring is even or odd according to the number of anticlockwise black

triangles modulo 2 and a proper face 4-colouring of G is even or odd according as it has

an even or odd number of anticlockwise vertices.

Proof. The weight α
(0,1,−1)

− α−(0,1,−1)
has discrete Fourier transform −4i(αclockwise −

αanticlockwise) where the clockwise vertex colourings are {012.013, 023} = 012 and the an-

ticlockwise {210, 310, 320} = 210 (in Chapter 6 we describe the calculations for this and

other transforms) and the weight α±(0,1,−1)
has transform taking the value −2 on all each

proper colouring. The theorem results on applying Theorems 5.2.7 and 5.2.8. In order to

simplify the exponent of 16 in the second correlation we use Euler’s formula, which says

that for an orientable surface S of Euler genus 2g (twice the number of holes in S) and

for a graph G = (V,E, F ) embedded on S, |V | − |E| + |F | = 2 − 2g. �
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Chapter 6

Enumerations

6.1 Introduction

In this chapter we derive in §6.2 a number of identities for the number of proper edge

k-colourings and nowhere-zero k-flows of a cubic graph G and deduce as a result three

expressions for the number of proper edge 3-colourings of G. The set of proper edge

k-colourings of G can be represented as a set of half-edge Zk-colourings of G and the

same is true for the set of nowhere-zero k-flows of G (see §3.8). The formulae in §6.2

are derived by using the discrete Fourier transform of the characteristic function of the

appropriate set of half-edge Zk-colourings of G. We give just those expressions which do

not appear to be known already or which do not seem to have an obvious combinatorial

interpretation, for example Theorems 6.2.2 and 6.2.5 and Corollaries 6.2.4 and 6.2.6.

In §6.3 we use the well-known equivalence between the existence of a proper edge 3-

colouring of a cubic graph G and the existence of a 2-factor of G whose components are all

of even size. We define two polynomials for a given cubic graph G as a sum over weighted

2-factors of G, both of which have a non-zero evaluation only if G has a proper edge

3-colouring. Expressions for the evaluation of these polynomials at any positive integer

are derived and we finish with some particular evaluations. In particular Theorem 6.3.4

gives a correspondence between proper edge 3-colourings of a cubic graph and proper edge

4-colourings, and in the final theorems of the chapter we explore the relation between the

existence of proper edge 3-colourings of a cubic graph to the non-vanishing of sums over

weighted proper edge 5-colourings.

6.2 Nowhere-zero flows and proper edge colourings of cubic

graphs

We begin by tailoring Lemma 3.11.5 and Lemma 3.12.B for our purposes in this chapter.

101
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Lemma 6.2.1 Let k ≥ 1 be an integer and G any graph with half-edge set H, partition E
of H by edges and partition V of H by vertices. Then for any vertex weight γV : ZH

k → C

we have the identities

γV · αE
null = k−|E| tγV · αE

monochrome, and

γV · αE
monochrome = k−|E| tγV · αE

null.

Also, for any edge weight γE : ZH
k → C,

γE · αV
monochrome = k|V |−|H| tγE · αV

null, and

γE · αV
null = k−|V | tγE · αV

monochrome.

Proof. The edge weights αE
monochrome and αE

null on ZH
k have by Lemma 3.11.5 transforms

given by

tαE
monochrome = k|E|αE

null, tαE
null = k|H|−|E|αE

monochrome = k|E|αE
monochrome,

and the vertex weights αV
monochrome and αV

null on ZH
k have transforms

tαV
monochrome = k|V |αV

null, tαE
null = k|H|−|V |αE

monochrome.

We now just need to apply Lemma 3.12.B.�

Let G be a graph with half-edge set H, partition E of H by edges and partition V of

H by vertices. In §3.8 we saw how the set of nowhere-zero k-flows of G can be represented

as the set of half-edge colourings µ : H → Zk\{0} which are both null on blocks of E and

null on blocks of V.

Thus,

F (G; k) = αV
null · αE

null no zeroes,

where the weights are on ZH
k .

For r = 2 we have αnull no zeroes = αnull − αzero so that

tαnull no zeroes = t(αnull − αzero) = (k − 1)αmonochrome − αnot monochrome.

By Lemma 6.2.1 this yields the following:

F (G; k) = k−|V |αV
monochrome · ((k − 1)αmonochrome − αnot monochrome)

E

= (−1)|E|k−|V | ∑

vertex k-colourings of G

(1 − k)# monochrome edges.
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We recognise this as the evaluation

B(G; k, 1 − k) = k(−k)|V |−c(G)T (G; 0, 1 − k)

= (−1)|V |−c(G)k|V | · (−1)|E|−|V |+c(G)F (G; k) = (−1)|E|k|V |F (G; k)

of the monochrome polynomial B(G; k, s) at s = 1 − k, where c(G) is the number of

components of G. (See §5.4 and [68] for the relation between the monochrome polynomial

and the Tutte polynomial.)

Alternatively, we also have the identity

F (G; k) = αV
null no zeroes · αE

null,

where the weights are on ZH
k . For this expression to be useful in enumerating nowhere-

zero Zk-flows of an arbitrary graph we need to calculate tαnull no zeroes for any value of r

(the size of a block of V, equal to the degree of a vertex in G). Here we will consider the

special case r = 3, where the graph G is cubic (V is a partition of H into blocks of size

3).

Theorem 6.2.2 Let G = (V,E) be a cubic graph and k ∈ N. Then

F (G; k) = k−|E| ∑

edge k-colourings of G

(1−k)# monochrome vertices(2−k)|V |−# proper vertices2# proper vertices,

where the sum is over all edge k-colourings of G and vertices are “monochrome” or

“proper” in a given edge colouring according as their incident edges have the same colour

or have distinct colours.

Proof. For αnull no zeroes : Z3
k → C we have

tαnull no zeroes = t(αnull − αzero − αnull, one zero)

The null elements of Z3
k with just one zero are given by {(m,−m, 0), (0,m,−m), (−m, 0,m) :

0 6= m ∈ Zk}, so that for any (l0, l1, l2) ∈ Z3
k ,

tαnull, one zero((l0, l1, l2)) =
∑

0 6=m∈Zk

jm(l0−l1) + jm(l1−l2) + jm(l2−l0).

Since j is a kth root of unity,

tαnull, one zero((l0, l1, l2)) =





3(k − 1) l0 − l1, l1 − l2, l2 − l0 all equal to zero,

(k − 1) − 2 exactly one zero amongst l0 − l1, l1 − l2, l2 − l0,

−3 no zeroes amongst l0 − l1, l1 − l2, l2 − l0,
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so that

tαnull, one zero = 3(k − 1)αmonochrome + (k − 3)αtwo colours − 3αproper.

Hence

tαnull no zeroes = k2αmonochrome − αall + 3αproper + (3 − k)αtwo − 3(k − 1)αmonochrome

= (k − 1)(k − 2)αmonochrome + 2αproper + (2 − k)αtwo colours.

We then have by Lemma 6.2.1,

F (G; k) = αV
null no zeroes · αE

null = k−|E|tαV
null no zeroes · αE

monochrome,

and this yields the result (using the fact that for a cubic graph G = (V,E) we have

(2− k)|V | = (k− 2)|V | since |V | is even). We remark that for even integer 2k ≥ 2 we may

rewrite the identity as

F (G; 2k) = 2|V |−|E|k−|E| ∑

edge 2k-colourings of G

(1 − 2k)# monochrome vertices(1 − k)|V |−# proper vertices.

In particular, putting 2k = 2 in the latter, the expression obtained is the trivial F (G; 2) =

2|V |−|E|P (G̃; 2) = 0. �

For an arbitrary graphG with line graph L(G), the number of proper edge k-colourings

of G is by definition given by

P (L(G); k) = αV
proper · αE

monochrome,

where the weights are on ZH
k . For a cubic graph, where V has blocks of size 3, we will

deduce the value of tαproper via the transform tαnull no zeroes already calculated in the proof

of Theorem 6.2.2.

The map π : (l0, l1, l2) 7→ (l0 − l1, l1 − l2, l2 − l0) is a homomorphism from Z3
k onto

its subring of null triples with kernel equal to the subring of monochrome triples. The

function π has the property that the set “proper” is mapped onto the set “null no zeroes”.

We shall temporarily denote the set of proper triples by P and the set of null triples with

no zeroes by Q.

For each ℓ = (l0, l1, l2) ∈ Z3
k and p = (p0, p1, p2) ∈ P , the homomorphism π satisfies

〈π(ℓ), p〉 = 〈(l0 − l1, l1 − l2, l2 − l0), (p0, p1, p2)〉

= l0(p0 − p2) + l1(p1 − p0) + l2(p2 − p1)
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= 〈(l0, l1, l2),−(p2 − p0, p0 − p1, p1 − p2)〉 = 〈ℓ, π(p∗)〉

where p∗ = −(p2, p0, p1) lies in P since P is closed under negation and cyclic permutation

of components. The set of proper triples P is a union of cosets of the monochrome subring

of Z3
k and we write P = {p′ : p′ ∈ P ′}, where P ′ is any transversal of these cosets. We

note that π is constant on each set p′ for p′ ∈ P ′ and that π : P ′ → Q is a bijection. Then

for each ℓ ∈ Z3
k ,

tαP (ℓ) =
∑

p∈P

j〈ℓ,π(p)〉

= k
∑

p′∈P ′

j〈ℓ,π(p′)〉 = k
∑

q∈Q

j〈ℓ,q〉 = ktαQ(ℓ).

In other words,

tαproper = ktαnull no zeroes

= k ( (k − 1)(k − 2)αzero + 2αnull no zeroes + (2 − k)αnull, one zero ) .

We deduce by Lemma 6.2.1 the following counterpart to Theorem 6.2.2:

Theorem 6.2.3 Let G be a cubic graph, L(G) its line graph and k ≥ 3 any integer. Then

P (L(G); k) = k|V |−|E| ∑

k-flows of G

(1 − k)# all zero vertices(2 − k)|V |−# no zero vertices2#no zero vertices,

where the sum is over all k-flows of G and a vertex is “all zero” in a k-flow if its three

incident edges all have zero flow value and a “no zero” vertex is incident with no edges

with flow value equal to zero.

Taking k = 3 in Theorem 6.2.3, the result of Theorem 5.3.3 is obtained as a special case:

P (L(G); 3) = 3|V |−|E| ∑

3-flows of G

(−2)# vertices with three or no zeroes .

For cubic graphs F (G; 4) counts proper edge 3-colourings as well as nowhere-zero

Z4-flows. In other words, for r = 3 we have

F (G; 4) = αV
null · αE

null no zeroes

where the weights are on ZH
4 , and also

F (G; 4) = P (L(G); 3) = αV
proper · αE

monochrome,

where the weights are now on ZH
3 . Theorem 6.2.2 yields a different expression for the

number of proper edge 3-colourings of G to that of Theorem 5.3.3:
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Corollary 6.2.4 Let G be a cubic graph and L(G) its line graph. Then

P (L(G); 3) = 4−|V | ∑

edge 4-colourings of G

(−3)# monochrome vertices(−1)# proper vertices,

where the summation is over all edge 4-colourings of G and a vertex is “proper” in a given

edge 4-colouring if it is incident with edges of distinct colours and “monochrome” if it is

incident with edges all of the same colour.

It is interesting to compare the expression of Corollary 6.2.4 for F (G; 4) for a cubic graph

G obtained by taking k = 4 in Theorem 6.2.2 with the expression for F (G; 3) obtained

by taking k = 3 in the same theorem:

F (G; 3) = 3−|E| ∑

edge 3-colourings of G

(−2)# monochrome vertices(−2)# proper vertices.

Subsequent to Theorem 6.2.5 below, we deduce for a cubic graph G another expression

for P (L(G); 3), over weighted vertex 4-colourings of G rather than the weighted edge 4-

colourings of Corollary 6.2.4.

Theorem 6.2.5 Let G be a cubic graph. Then the number of nowhere-zero 4-flows of G

satisfies the following identity for all non-zero z ∈ C:

F (G; 4) = (−1)|E|(2z)−|V | ∑

vertex Z4-colourings of G

(−1−z)# monochrome edges(−1+z)# nonconsecutive edges,

where the summation is over all vertex Z4-colourings of G and where an edge is “monochrome”

in a given vertex colouring if its endpoints receive the same colour and an edge is “non-

consecutive” if its endpoints receive colours whose difference is equal to 2 in Z4.

Proof. Let G = (V,E) be any cubic graph with half-edge set H, partition E of H by

edges and partition V by vertices. An orientation of G corresponds to a linear order

on each block of E . A nowhere-zero Z4-flow of G represented as a half-edge colouring

µ : H → Z4\{0} is null on blocks of E and null on blocks of V. In other words µ : V →
±(1, 1, 2), E → {±(1, 3), (2, 2)}. Then µ has the property that the blocks of E which are

coloured with (2, 2) ∈ Z2
4 correspond to the edges on a 1-factor of G, so that there are

always |E|/3 blocks of E with colour pair (2, 2). Hence, for any s ∈ C,

s|E|/3F (G; 4) = αV
null · (α±(1,3) + sα(2,2))

E ,

where the weights are on ZH
4 . (This result holds vacuously when G has a bridge: since G

does not have any nowhere-zero 4-flows, both left and right-hand side are always zero.)

For any (l0, l1) ∈ Z2
4 ,
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tα±(1,3)((l0, l1)) = il0−l1 + il1−l0 =





2 l0 − l1 = 0,

−2 l0 − l1 = 2,

0 l0 − l1 = ±1,

and

tα(2,2)((l0, l1)) = i2(l0+l1) =

{
1 l0 + l1 = 0, 2,

−1 l0 + l1 = 1, 3.

In other words, tα±(1,3) = α(0,0) − 2α(0,2) and tα(2,2) = α(0,0),(0,2) −α(0,1),(0,3), so that

t(α±(1,3) + sα(2,2)) = (s+ 2)α(0,0) + (s− 2)α(0,2) − sα±(0,1).

Hence

s|E|/3F (G; 4) = 4−|V | ∑

vertex Z4-colourings

(s+ 2)# monochrome(s− 2)# nonconsecutive(−s)# consecutive,

and on dividing through by (−s)|E| for s 6= 0 and writing z = 2s−1 we obtain the result.�

Taking z = 2, the identity of Theorem 6.2.5 coincides with the expression

F (G; 4) = (−1)|E|4−|V | ∑

vertex 4-colourings of G

(−3)# monochrome edges

obtained for k = 4 from the previous expression for the number of nowhere-zero k-flows

F (G; k) of an arbitrary graph G as an evaluation of the monochrome polynomial. Taking

z = −1 yields our third expression for P (L(G); 3):

Corollary 6.2.6 Let G be a cubic graph and L(G) its line graph. Then

P (L(G); 3) = (−1)|E|2−|V | ∑

proper vertex Z4-colourings of G

(−2)# nonconsecutive edges,

where the summation is over all proper vertex Z4-colourings of G and an edge in a proper

vertex Z4-colouring is nonconsecutive if the colours of its endpoints lie 2 apart in Z4.

6.3 Even 2-factors of cubic graphs

Throughout this section G is a cubic graph and L(G) its line graph. A set of local vertex

rotations of G will be interpreted as an embedding of G on an orientable surface S, where

three edges incident with a vertex v taken in the order determined by the local vertex
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rotation are in a clockwise sense on S.

A 1-factor (or perfect matching) of G is a 1-regular spanning subgraph of G and a

2-factor is a 2-regular spanning subgraph of G. (A loop is counted as having degree

2.) Since G is cubic, the edge complement of a 1-factor of G is a 2-factor of G. A

1-factorisation of G is a set of 1-factors such that each edge lies in exactly one of the

1-factors. A 1-factorisation of G corresponds to a set of six proper edge 3-colourings of

G equivalent to each other under permutation of the three colours. An even 2-factor of

G is a 2-factor of G whose components all have even size and a directed 2-factor of G is

a 2-factor of G with a totally cyclic orientation. Each component of a directed 2-factor

has either a clockwise or anticlockwise rotational sense in S by following the direction of

the edges given by the cyclic orientation.

We begin by enumerating the number of 2-factors of G as a sum over integer-weighted

edge 2-colourings. The method used in the proof of Theorem 6.3.1 is a simple illustration

of the technique which will be used to prove subsequent theorems. We use the bijective

correspondence of the set of 2-factors of G with the set of edge Z2-colourings of G having

the property that each vertex is incident with two edges coloured 1 and one edge coloured

0.

Theorem 6.3.1 For any cubic graph G = (V,E),

#{2-factors of G} = 2−|E| ∑

edge 2-colourings of G

(−3)#monochrome vertices,

where the sum ranges over all edge 2-colourings and a vertex is “monochrome” in a given

edge 2-colouring of G if it is incident with three edges of the same colour.

Proof. Let G have half-edge set H, partition E by edges and partition V by vertices.

Each 2-factor of G corresponds to a half-edge Z2-colouring which is monochrome on

each block of E and colours each block of V with a colour triple belonging to (0, 1, 1) =

{(0, 1, 1), (1, 0, 1), (1, 1, 0)}.
Hence

# {2-factors of G} = (αV
(0,1,1)

· αE
monochrome) (ZH

2 ).

For (l0, l1, l2) ∈ Z3
2 ,

tα
(0,1,1)

((l0, l1, l2)) = (−1)l0+l1+(−1)l1+l2+(−1)l2+l0 =

{
3 if (l0, l1, l2) is monochrome,

−1 if (l0, l1, l2) is not monochrome.

By Lemma 6.2.1,

αV
(0,1,1)

· αE
monochrome = 2−|E|tαV

(0,1,1)
· αE

null),
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and in Z2
2 the null pairs (0, 0), (1, 1) are precisely the monochrome pairs so that αnull =

αmonochrome and the result now follows.�

In the remainder of this section we will be concerned with finding expressions involving

the even 2-factors of a cubic graph, which are of interest due to the following well-known

identity (see e.g. [23])

P (L(G); 3) =
∑

directed even 2-factors of G

1 =
∑

even 2-factors of G

2# components.

Given a cubic graph G we define the polynomial E(G) in Z[x] by

E(G;x) =
∑

directed even 2-factors of G

x# components =
∑

even 2-factors of G

(2x)# components,

which we have just seen has the evaluation E(G; 1) = P (L(G); 3).

As well as the polynomial E(G) we will be interested in a related polynomial, which

we shall denote by E	(G), which encodes some information about the orientable surface

S on which G is embedded. In order to define the polynomial E	(G) we use the rotational

sense of the components of a given directed 2-factor of G on the surface S.

A vertex v is anticlockwise in a directed 2-factor ofG if, when traversing the component

C of the 2-factor which contains v according to the cyclic orientation of C, the edge

directed out of v is anticlockwise in S from the edge directed into v. The vertex v is

clockwise in the directed 2-factor otherwise. Reversing the cyclic orientation of C switches

the rotational sense of v. Consequently, if C has an odd number of vertices then reversing

its cyclic orientation changes the parity of the number of anticlockwise vertices in C.

For a cubic graph G and a given embedding of G in an orientable surface, we define

the polynomial E	(G) in Z[x] by

E	(G;x) =
∑

directed 2-factors of G

(−1)# 	x# components,

where the summation is over all directed 2-factors of G and, for a given directed 2-

factor, the exponent #	 of −1 counts the number of anticlockwise vertices of the 2-factor.

Embedding G on a different orientable surface S
′ can only change the sign of E	(G), since

the embedding of G in S
′ either switches the sign of (−1)# 	 for all the directed 2-factors

of G from its sign when G is embedded in S or preserves the sign of (−1)# 	 for all directed

2-factors of G. If a 2-factor of G has c components and contains a component C of odd

size then its 2c totally cyclic orientations contribute zero to the polynomial E	(G), for

the reason already given that reversing the cyclic orientation of C switches the parity of

the number of anticlockwise vertices.

Thus, in the definition of E	(G) the summation can be restricted to directed even
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2-factors of G:

E	(G;x) =
∑

directed even 2-factors of G

(−1)# 	x# components.

We note that each of the totally cyclic orientations of a fixed even 2-factor has the same

sign (−1)# 	. Since even 2-factors of G exist if and only if P (L(G); 3) 6= 0, the polynomial

E	(G) has the property that

E	(G;x) 6= 0 ⇒ P (L(G); 3) 6= 0.

However, the converse does not hold. If for each c ∈ N there as many directed even

2-factors of G which have c components and an even number of anticlockwise vertices

as there are directed even 2-factors of G with c components and an odd number of

anticlockwise vertices then E	(G;x) = 0. An example of such a case is K3,3, whose

six 2-factors all have one component, but in any orientable embedding of K3,3 three of

the 2-factors have an even number of anticlockwise vertices and the other three an odd

number of anticlockwise vertices.

For given k ≥ 3 and 0 6= l ∈ Zk we define the vertex weight ρl : Z3
k → C by

ρl = α
(0,l,−l)

− α
(0,−l,l)

.

In particular, for k = 3, the weight ρ1 is equal to Matiyasevich’s vertex weight ρ =

αclockwise − αanticlockwise. For L ⊆ Zk with the property that L ∩ (−L) = ∅ we define the

vertex weight ρL by

ρL =
∑

l∈L

ρl =
∑

l∈L

α
(0,l,−l)

− α
(0,−l,l)

.

The condition on L is needed since ρ−l = −ρl, and it implies that |L| ≤ ⌊k−1
2 ⌋.

For 0 6= l ∈ Zk, we define the vertex weight τl : Z3
k → C by

τl = α±(0,l,l)

and, for L ⊆ Zk with the property that L ∩ (−L) = ∅,

τL =
∑

l∈L

τl =
∑

l∈L

α±(0,l,l)
.

The vertex weights just defined allow us to express evaluations of E(G) and E	(G)

at a positive integer m in terms of a sum of weighted edge k-colourings of G for any

k ≥ 2m+ 1.

Lemma 6.3.2 Let G = (V,E) be a cubic graph embedded on an orientable surface S with
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half-edge set H, partition E of H by edges and partition V by vertices, the half-edges in

each block of V put in a linear order consistent with the clockwise rotation on S.

Let k ≥ 3 be an integer and L a subset of Zk with the property that L ∩ (−L) = ∅.
Then,

E	(G; |L|) = ρVL · αE
null = k−|E|tρVL · αE

monochrome,

and

E(G; |L|) = τVL · αE
null = k−|E|tτVL · αE

monochrome,

where the weights are on ZH
k .

Proof. We begin by proving the first identity. Suppose µ : H → Zk is any half-edge

colouring which colours each block of V with a triple from {±(0, l,−l) : l ∈ L} and each

block of E with a null pair (which is either (0, 0) or ±(l,−l) for some l ∈ L). Then µ

has the property that for fixed l ∈ L the edges in the set {e ∈ E : µe ∈ ±(l,−l)} form

a 2-regular subgraph of G. Since each vertex is coloured with a triple from ±(0, l,−l)
for some l ∈ L, the edges {e ∈ E : µe 6= (0, 0)} form a 2-factor F of G. If µ′ is

obtained from µ by negating the colours of the half-edges on an odd component of F then

ρL(µ′) = −ρL(µ). Hence, any 2-factor of G with a component of odd size contributes 0

to ρVL · αE
null. However, if F is the edge set of an even 2-factor with c components, then

there are 2c|L|c half-edge colourings in the support of the product ρVLα
E
null which colour

the half-edges in {H(f) : f ∈ F} with non-zero colours, and the sign of ρL is constant on

this set of (2|L|)c half-edge colourings. These (2|L|)c half-edge colourings with support

{H(f) : f ∈ F} together contribute (−1)# 	(2|L|)c to ρVL · αE
null, where #	 is the number

of blocks of V receiving a colour triple of the form (0,−l, l). Suppose H(e) = {hv0 , hv1}
is a block of E , where hv0 ∈ H(v0), hv1 ∈ H(v1). For each l ∈ L, we interpret colouring

H(e) with the colour pair (l,−l) as directing the edge e = {v0, v1} from v0 to v1, and

colouring H(e) with (−l, l) as the reverse direction. Then if the half-edge colouring µ

colours the block H(v) of V with a triple in −(0, l,−l), the vertex v is an anticlockwise

vertex in the directed 2-factor F whose half-edges are coloured with non-zero colours by

µ. This establishes that

ρVL · αE
null =

∑

directed even 2-factors of G

(−1)	|L|# components = E	(G; |L|).

We now prove the second identity. Any half-edge colouring µ : H → Zk which colours

each block of V with a triple from {±(0, l, l) : l ∈ L} and each block of E with a null

pair has the property that the edges in the set {e ∈ E : µe ∈ ±(l,−l)} form a 2-regular

subgraph of G which must be of even size, since vertices adjacent in the subgraph receive

colour triples from ±(0, l, l) of opposite signs (in order that the blocks of E receive null

colour pairs). Since each vertex is coloured with a triple from ±(0, l, l) for some l ∈ L,
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the edges {e ∈ E : µe 6= (0, 0)} form a 2-factor of G whose components are all of even

size. Each component of a given even 2-factor can be coloured in 2|L| different ways with

non-zero colours on its half-edges, and this establishes that

τVL · αE
null =

∑

even 2-factors of G

(2|L|)# components = E(G; |L|).

�

We finish the chapter with some illustrations of Lemma 6.3.2, beginning with its

second identity and concluding with some special cases of the first identity.

If we define for a given triple (l0, l1, l2) ∈ Z3
k the pairwise sum multiset {c0, c1, c2} =

{l0 + l1, l1 + l2, l2 + l0}, then for any given ℓ ∈ (l0, l1, l2)

tτL(ℓ) =
∑

l∈L

jlc0 + j−lc0 + jlc1 + j−lc1 + jlc2 + j−lc2

= 2
∑

l∈L

cos(
2πlc0
k

) + cos(
2πlc1
k

) + cos(
2πlc2
k

).

In particular, tτL(−ℓ) = tτL(ℓ).

Suppose L has the property that L ∪ (−L) ∪ {0} is the subgroup Zm of Zk, where

1 6= m | k. If k is even then k/2 equals its negative −k/2 in Zk, so that Zm cannot

contain k/2 when k is even. In other words, m must always be an odd divisor of k. Since

j is a kth root of unity, for each c ∈ Zk,

∑

l∈L

jlc + j−lc =

{
−1 c 6= 0,

m− 1 c = 0.

A given (l0, l1, l2) ∈ Z3
k will be classified according to the number of zeroes in its

pairwise sum multiset:

Sn = {ℓ ∈ Z3
k : exactly n zeroes in the pairwise sum multiset of ℓ }, n = 0, 1, 2, 3.

We note that for any k ≥ 3, S3 = {(0, 0, 0)}. For any ℓ ∈ Z3
k , the value of tτL(ℓ) only

depends on how many zeroes there are in the pairwise sum multiset of ℓ:

tτL = 3(m− 1)αS3 + (2m− 3)αS2 + (m− 3)αS1 − 3αS0 .

By Lemma 6.3.2 we then have the following:

Theorem 6.3.3 Let G be a cubic graph, k ≥ 3 an integer and m 6= 1 an odd divisor of
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k. Then

∑

even 2-factors of G

(m−1)# components = k−|E| ∑

edge Zk-colourings of G

(3m−3)# S3(2m−3)# S2(m−3)# S1(−3)# S0 ,

where #Sn counts for n = 0, 1, 2, 3 the number of vertices incident with edges of colours

l0, l1, l2 such that there are n zeroes amongst the elements l0 + l1, l1 + l2, l2 + l0 of Zk.

For example, for k = 3 Theorem 6.3.3 says that

P (L(G); 3) =
∑

even 2-factors of G

2# components = 3|V |−|E| ∑

edge Z3-colourings of G

2# S31# S20# S1(−1)# S0 ,

where

S0 = {±111} ∪ ±011, S1 = ±012 ∪ ±100, S2 = ±112, S3 = {000}.

We finish this section by considering some specific cases of the vertex weight ρL for

L ⊂ Zk, L ∩ (−L) = ∅. For (l0, l1, l2) ∈ Z3
k we have

tρL((l0, l1, l2)) =
∑

l∈L

jl(l0−l1) − j−l(l0−l1) + jl(l1−l2) − j−l(l1−l2) + jl(l2−l0) − j−l(l2−l0)

We define the difference multiset of a given triple ℓ = (l0, l1, l2) ∈ Z3
k to be the multiset

{d0, d1, d2} := {l0 − l1, l1 − l2, l2 − l0}. Then

tρL(ℓ) = 2i
∑

l∈L

sin(
2πld0

k
) + sin(

2πld1

k
) + sin(

2πld2

k
).

We use the fact that d0 + d1 + d2 ≡ 0 mod k and the identity sin 2x + sin 2y + sin 2z =

−4 sinx sin y sin z when x + y + z is a multiple of 2π to rewrite the equation for tρL as

follows:

tρL(ℓ) = −8i
∑

l∈L

sin(
πld0

k
) sin(

πld1

k
) sin(

πld2

k
).

In particular, tρL(ℓ) = 0 if ℓ is not proper, tρL(−ℓ) = −tρL(ℓ), and if ℓ′ is a cyclic

permutation of ℓ or if ℓ′ ∈ ℓ then tρL(ℓ′) = tρL(ℓ). In other words, for two proper triples

ℓ, ℓ′ ∈ Z3
k which have the same difference multiset {d0, d1, d2} we have tρL(ℓ) = tρL(ℓ′).

It will be useful to have names for the following subsets of the proper triples in Z3
k ,

where Zk has the linear order 0 < 1 < · · · < k − 1:

“clockwise” = {(l0, l1, l2) ∈ Z3
k proper : even # inversions in (0, 1, 2) 7→ (l0, l1, l2)},

“anticlockwise” = {(l0, l1, l2) ∈ Z3
k proper : odd # inversions in (0, 1, 2) 7→ (l0, l1, l2)}.
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An alternative interpretation for these two sets is obtained by taking the elements

of Zk as beads of a necklace with the order 0 < 1 < 2 · · · < k − 1 clockwise around the

necklace. The clockwise triples (l0, l1, l2) have the property that l0, l1, l2 are in a clockwise

sense around the necklace when taken in the order (l0, l1, l2) and the anticlockwise triples

are in the reverse sense.

If we do not distinguish the clockwise/anticlockwise pair of difference multisets {d0, d1, d2},
{−d0,−d1,−d2}, the number of distinct difference multisets for proper triples in Z3

k is the

number of free necklaces (bracelets) on k beads with three black beads and k − 3 white

beads. The black beads represent the colours chosen to form a colour triple in Z3
k , and

the difference multisets describe the spacing of these black beads around the necklace. By

Polya counting (see e.g. [1]), the number of free necklaces using 3 black beads and k − 3

white beads is given by ⌊k2/12⌋ if 3 6 | k and ⌈k2/12⌉ if 3 | k. Thus the set of k(k−1)(k−2)

proper triples of Z3
k is partitioned into ⌊k2/12⌋ (or ⌈k2/12⌉) classes according to its differ-

ence multisets, and these classes are further divided into two subsets of equal size by the

distinction between clockwise and anticlockwise rotational sense.For k = 3, 4 and 5 there

are respectively 1, 1 and 2 difference multisets modulo clockwise/anticlockwise. In par-

ticular, for k = 3 and 4 we have only the distinction between clockwise and anticlockwise

proper triples.

Taking k = 3 and Matiyasevich’s vertex weight ρ = ρ1, whose transform is given by

tρV = (−3)|E|ρV , the first equation of Lemma 6.3.2 yields Theorem 5.3.5:

(−1)|E|E	(G; 1) = #{Even proper edge 3-colourings of G}−#{Odd proper edge 3-colourings of G},

and when G is a plane cubic graph we have E	(G; 1) = P (L(G); 3) = E(G; 1). This

implies that E	(G;x) = E(G;x) when G is a plane cubic graph.

For k = 4, the proper triples (l0, l1, l2) ∈ Z3
4 fall into two types, according as the

difference multiset {l0− l1, l1− l2, l2− l0} equals {−1,−1, 2} (the clockwise proper triples)

or {1, 1,−2} (the anticlockwise proper triples). We have

sin(
−π
4

) sin(
−π
4

) sin(
π

2
) =

1

2

so that

tρ1 = −4i(αclockwise − αanticlockwise).

By Lemma 6.3.2 we deduce the following:

Theorem 6.3.4 Let G be a cubic graph embedded on an orientable surface S. Then

E	(G; 1) = (−4)|V |−|E|(# {Even proper edge Z4-colourings of G}−# {Odd proper edge Z4-colourings of G}),
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where a proper edge Z4-colouring of G is even or odd according as the number of vertices

whose incident colours appear in a clockwise order relative to the cyclic order (0 1 2 3)

of Z4 is even or odd.

In particular, for a plane cubic graph G with line graph L(G),

P (L(G); 3) = (−4)|V |−|E|(#{Even proper edge Z4-colourings of G}−#{Odd proper edge Z4-colourings of G} ).

For k = 5 there are two types of proper colourings of a vertex to distinguish in addition

to the clockwise or anticlockwise sense of the three colours. The four possible difference

multisets of a proper triple in Z3
5 are1

{−1,−1, 2}, {1, 1,−2}, {−1,−2,−2}, {1, 2, 2},

where a difference multiset and its negative (corresponding respectively to 15 clockwise

and 15 anticlockwise proper triples in Z3
5 ) have been paired together. We will call proper

triples in Z3
5 whose difference multiset is one of {−1,−2,−2}, {1, 2, 2} “nonconsecutive”.

Proper triples whose difference multiset is one of {−1,−1, 2}, {1, 1,−2} are called “con-

secutive” since the three colours in such a triple are consecutive elements of Z5.

Then

tρ1(ℓ) =





−2i( 2 sin(2π
5 ) − sin(4π

5 ) ) ℓ consecutive clockwise,

2i( 2 sin(2π
5 ) − sin(4π

5 ) ) ℓ consecutive anticlockwise,

−2i( sin(2π
5 ) + 2 sin(4π

5 ) ) ℓ nonconsecutive clockwise,

2i( sin(2π
5 ) + 2 sin(4π

5 ) ) ℓ nonconsecutive anticlockwise.

We have

sin(
4π

5
) =

√
10 − 2

√
5

4
, sin(

2π

5
) =

√
10 + 2

√
5

4
= φ sin(

4π

5
),

where φ = 1+
√

5
2 . By Lemma 6.3.2,

E	(G; 1) = (ρV1 · αE
null)(Z

H
5 ) =

= 5−|E|(
−2i

√
10 − 2

√
5

4
)|V | ∑

proper edge Z5-colourings

(2φ−1)#consecutive(φ+2)#nonconsecutive(−1)#anticlockwise

= (−1)|E|(

√
10 − 2

√
5

10
)|V | ∑

proper edge Z5-colourings

(−1)#anticlockwiseφ#nonconsecutive,

1The differences are taken modulo 5 and we take Z5 = {0,±1,±2} rather than Z5 = {0, 1, 2, 3, 4}.
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since 2φ− 1 =
√

5 and φ+ 2 =
√

5φ. With |V | even,

(

√
10 − 2

√
5

10
)|V | = (

1

5
√

5φ
)|V |/2,

and using |E| = 3
2 |V | we finally obtain the first statement of Theorem 6.3.5 below.

The transform of ρ2 = α
(0,2,−2)

− α
(0,−2,2)

is computed as for ρ1 except that the

difference multisets of proper triples

{−1,−1, 2}, {1, 1,−2}, {−1,−2,−2}, {1, 2, 2},

are now multiplied by 2 to obtain respectively

{−2,−2,−1}, {2, 2, 1}, {−2, 1, 1}, {2,−1,−1}.

After calculations for tρ2 similar to those carried out for tρ1, Lemma 6.2.1 yields the

second statement of Theorem 6.3.5 below.

We use the following terminology in Theorems 6.3.5 and 6.3.7 and their corollaries.

A vertex of G is “anticlockwise” in a given proper edge Z5-colouring of G if its three

incident edges have colours which appear in a reverse order relative to the clockwise order

0 < 1 < 2 < 3 < 4 of Z5 and a vertex is “nonconsecutive” in a given proper edge

Z5-colouring if its incident colours are nonconsecutive elements of Z5.

Theorem 6.3.5 For a cubic graph G embedded on an orientable surface,

E	(G; 1) = (
√

5)−|E|(1 − φ)|E|/3
∑

proper edge Z5-colourings of G

(−1)#anticlockwiseφ#nonconsecutive,

where φ = 1+
√

5
2 . Also,

E	(G; 1) = (
√

5)−|E|(−φ)|E|/3
∑

proper edge Z5-colourings of G

(−1)#anticlockwise(1 − φ)#nonconsecutive.

The two equations of Theorem 6.3.5 can be combined so that summations are over

integer-weighted proper edge Z5-colourings. For integer n, we denote by L(n) the nth

Lucas number L(n) = φn + (−φ)−n, the integer sequence 2, 1, 3, 4, 7, 11, 18, 29, . . ., whose

terms are defined by L(0) = 2, L(1) = 1 and the recurrence L(n+ 1) = L(n) + L(n− 1).

Likewise, we define F (n) to be the nth Fibonacci number defined by F (0) = 0, F (1) =

1, F (n+ 1) = F (n) + F (n− 1), or
√

5F (n) = φn − (−φ)−n.

By Theorem 6.3.5, and using |V |/2 = |E|/3, 1 − φ = −φ−1,

(−1)|E|(
√

5)|E|(φ|V | ± 1)E	(G; 1)
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= φ|V |/2
∑

proper edge Z5-colourings

(−1)#anticlockwise(φ# nonconsecutive ± (1 − φ)# nonconsecutive).

Then

(−1)|E|(
√

5)|E|(φ|E|/3 ± φ−|E|/3)E	(G; 1)

=
∑

proper edge Z5-colourings

(−1)#anticlockwise(φ# nonconsecutive ± (−φ)−# nonconsecutive).

By considering separately the cases |E| even and |E| odd and using the definition of

the Lucas and Fibonnaci sequences, we obtain the following summations over integer-

weighted proper edge 5-colourings:

Corollary 6.3.6 Let G be a cubic graph embedded on an orientable surface. Then

E	(G; 1) =
1

5
|E|
2 L( |E|

3 )

∑

proper edge Z5-colourings of G

(−1)#anticlockwiseL(#nonconsecutive)

=
1

5
|E|
2 F ( |E|

3 )

∑

proper edge Z5-colourings of G

(−1)#anticlockwiseF (#nonconsecutive)

if |E| is even, and

E	(G; 1) = − 1

5
|E|+1

2 F ( |E|
3 )

∑

proper edge Z5-colourings of G

(−1)#anticlockwiseL(#nonconsecutive)

= − 1

5
|E|−1

2 L( |E|
3 )

∑

proper edge Z5-colourings of G

(−1)#anticlockwiseF (#nonconsecutive)

if |E| is odd.

By entirely similar calculations we find that for k = 5 and ρ{1,2} in Lemma 6.3.2 we

have the following expressions for E	(G; 2):

Theorem 6.3.7 Let G be a cubic graph embedded on an orientable surface. Then

E	(G; 2) = (
√

5)−|E|(−φ)|E| ∑

proper edge Z5-colourings of G

(−1)#anticlockwise(φ−3)#nonconsecutive,

where φ = 1+
√

5
2 . Also,

E	(G; 2) = (
√

5)−|E|(−φ)−|E| ∑

proper edge Z5-colourings of G

(−1)#anticlockwise(−φ3)#nonconsecutive.

Similarly, we can combine the equations of Theorem 6.3.7 to obtain a sum over integer-

weighted proper edge 5-colourings of G.
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Corollary 6.3.8 Let G be a cubic graph embedded on an orientable surface. Then

E	(G; 2) =
1

5
|E|
2 L(|E|)

∑

proper edge Z5-colourings of G

(−1)#anticlockwise+#nonconsecutiveL(3#nonconsecutive)

=
1

5
|E|
2 F (|E|)

∑

proper edge Z5-colourings of G

(−1)#anticlockwise+#nonconsecutiveF (3#nonconsecutive)

if |E| is even, and

E	(G; 2) = − 1

5
|E|+1

2 F (|E|)

∑

proper edge Z5-colourings of G

(−1)#anticlockwise+#nonconsecutiveL(3#nonconsecutive)

= − 1

5
|E|−1

2 L(|E|)

∑

proper edge Z5-colourings of G

(−1)#anticlockwise+#nonconsecutiveF (3#nonconsecutive)

if |E| is odd.

Both Theorem 6.3.5 and 6.3.7 give expressions for E	(G; 1) and E	(G; 2) in terms of

two different evaluations of the polynomial Q(G;x) defined by 2

Q(G;x) =: Q(x) =
∑

proper edge Z5-colourings of G

(−1)#anticlockwisex#nonconsecutive.

We conclude this chapter by showing that Q(G;x) satisfies an identity which makes one

of the equations in each of Theorem 6.3.5 and 6.3.7 redundant.

For a given cubic graph G embedded on an orientable surface, we write

Q(G;x) =
∑

0≤n≤|V |
qnx

n,

where qn = qn(G) is given by

qn = #{proper edge 5-colourings of G : #anticlockwise ≡ 0 mod 2, # nonconsecutive = n}

−#{proper edge 5-colourings of G : #anticlockwise ≡ 1 mod 2, # nonconsecutive = n}.

Then, for example, the first equation of Corollary 6.3.6 and the first equation of

Corollary 6.3.8 say that when |E| is even we have

5
|E|
2 L(

|E|
3

) E	(G; 1) =
∑

0≤n≤|V |
qnL(n),

2For G = I3 the graph with three parallel edges Q(I3; x) = −30(1 + x2). After some computer-aided
calculations, Q(K4; x) = 30(3 − 4x + 12x2 + 4x3 + 3x4), Q(K2 × K3; x) = −150(2 − 6x + 15x2 + 15x4 +
6x5 + 2x6), and Q(K3,3; x) = 0.
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and

5
|E|
2 L(|E|) E	(G; 2) =

∑

0≤n≤|V |
(−1)nqnL(3n).

The equations in Theorem 6.3.5 and Theorem 6.3.7 are

E	(G; 1) = (
√

5)−|E|(1 − φ)|E|/3Q(φ) = (
√

5)−|E|(−φ)|E|/3Q(1 − φ),

and

E	(G; 2) = (
√

5)−|E|(−φ)|E|Q(φ−3) = (
√

5)−|E|(−φ)−|E|Q(−φ3),

where φ = 1+
√

5
2 is the golden ratio. Therefore, with 2|E| = 3|V | for a cubic graph

G = (V,E) and 1 − φ = −φ−1,

Q(φ) = φ|V |Q(−φ−1), Q(−φ3) = (φ3)|V |Q(φ−3).

We will show that the equation Q(x) = x|V |Q(−x−1) is in fact an identity for x 6= 0.

Since |V | is even, we have, for x 6= 0,

x|V |Q(−x−1) = (−x)|V |Q(−x−1) =
∑

proper edge Z5-colourings of G

(−1)#anticlockwise(−x)#consecutive.

Thus, the equation Q(x) = x|V |Q(−x−1) is equivalent to the equation

∑

0≤n≤|V |
qnx

n =
∑

0≤n≤|V |
(−1)|V |−nqnx

|V |−n

=
∑

0≤n≤|V |
(−1)nq|V |−nx

n.

Theorem 6.3.9 Let G be a cubic graph embedded on an orientable surface and the poly-

nomial Q(G;x) and its coefficients qn(G) as defined previously. Then,

Q(G;x) = x|V |Q(G;−x−1).

Equivalently, for 0 ≤ n ≤ |V |,

q|V |−n(G) = (−1)nqn(G).

Proof. We will prove first statement, which says that

∑

proper edge Z5-colourings of G

(−1)#anticlockwisex#nonconsecutive
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=
∑

proper edge Z5-colourings of G

(−1)#anticlockwise(−x)#consecutive.

To do this we will use the definitions of nonconsecutive and anticlockwise in terms of

the difference multiset of a proper triple.

Given a proper triple ℓ = (l0, l1, l2) ∈ Z3
5 with difference multiset {l0 − l1, l1 − l2, l2 −

l0} = {d0, d1, d2}, we recall that ℓ is nonconsecutive if and only if {d0, d1, d2} is either

{−1,−2,−2} or {1, 2, 2} and that ℓ is anticlockwise if and only if {d0, d1, d2} is either

{1, 1,−2} or {1, 2, 2}. Equivalently, ℓ is nonconsecutive if and only if the product d0d1d2

belongs to {−1,+1} and anticlockwise if and only if d0d1d2 ∈ {−1,−2}.
For a given proper edge Z5-colouring of G, we write #{−1,−2} for the number of ver-

tices whose incident edges in clockwise order are coloured with a proper triple (l0, l1, l2) ∈
Z3

5 such that the product of differences (l0− l1)(l1− l2)(l2− l0) belongs to {−1,−2}. Thus

#{−1,−2} = # anticlockwise. A similar meaning is given to #{−1,+1} = # nonconsecutive

and #{−2,+2} = # consecutive.

For fixed m (mod 2) and 0 ≤ n ≤ |V |, we will establish a bijection between the set

{proper edge Z5-colourings of G : #{−1,−2} ≡ mmod 2, #{−1,+1} = n}

and the set

{proper edge Z5-colourings of G : #{−1,−2}+#{−2,+2} ≡ mmod 2, #{−1,+1} = |V |−n}.

This is equivalent to showing that the contributions of (−1)mxn to the sum defining

Q(G;x) are equal in number to the contributions of (−1)mxn to x|V |Q(G;−x−1), for we

have #{−2,+2} = |V | − #{−1,+1},
∑

proper edge Z5-colourings of G

(−1)#anticlockwisex#nonconsecutive =
∑

proper edge Z5-colourings

(−1)#{−1,−2}x#{−1,+1},

and ∑

proper edge Z5-colourings of G

(−1)#anticlockwise(−x)#consecutive

=
∑

proper edge Z5-colourings of G

(−1)#{−1,−2}+#{−2,+2}x#{−2,+2}.

We use the bijection λ 7→ −2λ on the set of proper edge Z5-colourings of G, considering

its effect on the triple of colours of the edges incident with any given vertex of G. If a

given vertex of G is incident with edges of colours (l0, l1, l2) in clockwise order, then the

map λ 7→ −2λ changes this triple of colours to the triple (−2l0,−2l1,−2l2). The product

(l0 − l1)(l1 − l2)(l2 − l0) is multiplied by −23 = 2 (mod 5) in order to obtain the product

(2l0 − 2l1)(2l1 − 2l2)(2l2 − 2l0).
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We observe that #{−1,−2} + #{−2,+2} ≡ #{−1, 2} mod 2, since the element −2

is double-counted. Multiplying the elements in {−1, 2} by 2 gives the set {−1,−2},
and multiplying the elements in {−2,+2} by 2 gives the set {−1,+1}. Thus the map

λ 7→ −2λ provides the bijection we wished to establish between the set of proper edge

Z5-colourings of G with the property that both #{−1,−2}+#{−2,+2} ≡ mmod 2 and

#{−1,+1} = |V | − n and the set of proper edge Z5-colourings of G with the property

that both #{−1,−2} ≡ mmod 2 and #{−1,+1} = n. �
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Chapter 7

Conclusion

In this concluding section we indicate in general terms some possible directions for future

work and highlight a few of the many questions which arise from the results of Chapters

2-6.

We begin with the following:

Problem 1 Give combinatorial proofs of theorems obtained by the discrete Fourier

transform such as those in Chapter 6.

We use “combinatorial proof” in a similar sense to Stanley [57, §1.1] as meaning a

bijective proof or, more vaguely, any proof more explanatory of the reasons why theorems

obtained by use of the discrete Fourier transform are true. For example, Tarsi’s proof of

his Theorem 1.2 in [62] would count as combinatorial.

The classical discrete Fourier transform fits into a more general theory of group char-

acters (see [24, appendix] for a succinct introduction). A character of an arbitrary group is

a homomorphism from the group into the multiplicative group C
× of the field of complex

numbers. When the group is finite and Abelian, it is a standard theorem that the char-

acters of A form a group isomorphic to A itself. The character used by the usual discrete

Fourier transform is the homomorphism χ : Zk → C
× from the additive group Zk into the

multiplicative group C
× defined for eachm ∈ Zk by χ(m) = e2πim/k. The other characters

of the cyclic additive group Zk are given by χl : Zk → C
×, χl(m) = χ(lm) = e2πilm/k.

In Chapter 6, by taking the weight ρl instead of ρ1 we effectively changed the character

χ to χl. The (usual) discrete Fourier transform of ρl relative to the character χ is then

the discrete Fourier transform of ρ1 relative to the character χl.

Although we imposed a linear order on Zk in Chapters 3 and 5, it is the cyclic structure

of the additive group of Zk which relates it to the local cyclic rotation at each vertex in

a surface embedding of a graph. In particular, for a cubic graph G with half-edge set

H, a half-edge Z3-colouring of G which is proper on each block of the partition V of H

by vertices defines a local rotation at each vertex v according to the rotational sense in

123
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which the cyclic order of colours appear in H(v).

The number of proper vertex k-colourings of a graph is independent of any structure

put on the k colours. However, for any Abelian group A of order k we can represent the

set of proper vertex k-colourings as a set of half-edge A-colourings with the property that

each block of V is monochrome and each block of E is proper.

Problem 2 What happens when we define weights on half-edge A-colourings for dif-

ferent Abelian groups A of the same order? For different Abelian groups A, do the group

characters of A yield expressions for the number of proper vertex |A|-colourings of a graph

with different combinatorial interpretations?

The transitions of Jaeger [36] defined for a 4-regular graph G suggest using the group

Z2 × Z2 to colour the half-edges of G rather than Z4, the latter more suitable when we

are interested in the local vertex rotations in an orientable embedding of G. The “white”,

“black” and “crossing” transitions of Jaeger are each invariant under a group of actions

isomorphic to Z2 × Z2 and not the cyclic group Z4.

Problem 3 Develop the similarities between Jaeger’s transitions and weight functions

[36] and the vertex weights of Chapter 3 on the set of half-edge colourings.

It may also be interesting to use characters of such non-Abelian groups as S3, the group

of symmetries of the triangle, for example when colouring the half-edges of a cubic graph

G embedded in a surface. Rotational symmetries of the three half-edges at a vertex of G

preserve the topology of the surface in which G is embedded while reflections correspond

to “twisting” a pair of edges and changes the embedding of G. This approach is also

suggested by the topological treatment of cubic graphs in [17] and the interpretation of

the Matiyasevich polynomial as a knot invariant in [21].

Theorems 5.4.3 and 5.4.5 imply that the correlation Pr(Equivalent | Same Parity) −
Pr(Equivalent) and the probability Pr(Equivalent) are both Tutte-Grothendieck invari-

ants if k = 3, that is, they satisfy a recursive deletion-contraction formula (see [68] for

definitions). However, for k ≥ 5 it is easily checked by using the results of §5.2 that this

correlation and probability are not Tutte-Grothendieck invariants.

For k = 2, the indegree minus the outdegree of a vertex in any orientation of a graph

is always equal to the degree. However, by considering just the indegree modulo 2 the

methods used to prove Theorems 5.4.3 and 5.4.5 indicate that the following problem has

an interesting answer. We pose it as a problem since, in the spirit of Problem 1, we are

more interested explaining the answers to this and similar problems.

Problem 4 What are the probability Pr(Equivalent) and the correlation Pr(Equivalent |
Same Parity)−Pr(Equivalent) when we induce vertex 4-colourings by taking the indegree

minus the outdegree modulo 4? Equivalently, what happens when we induce vertex 2-

colourings by taking the indegree modulo 2?
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[24] A. Fröhlich and M. Taylor, Algebraic Number Theory, Cambridge University Press,

1991.

[25] M. R. Garey and D. S. Johnson, Computers and Intractibility, W.H. Freeman, 1979.

[26] A. J. Goodall and D.J.A. Welsh, On the parity of colourings and flows, J. Combin.

Theory Ser. B. 84 (2002), 364-365.

[27] A. J. Goodall, The Tutte polynomial modulo a prime, Adv. Appl. Math. 32 (2004),

293-298.



BIBLIOGRAPHY 127
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