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Abstract We provide formulas for the moments of the real and complex noncentral
Wishart distributions of general degrees. The obtained formulas for the real and com-
plex cases are described in terms of the undirected and directed graphs, respectively.
By considering degenerate cases, we give explicit formulas for the moments of bivari-
ate chi-square distributions and 2×2 Wishart distributions by enumerating the graphs.
Noting that the Laguerre polynomials can be considered to be moments of a noncen-
tral chi-square distributions formally, we demonstrate a combinatorial interpretation
of the coefficients of the Laguerre polynomials.

Keywords Kibble’s bivariate gamma distribution · Laguerre polynomial ·
Noncentral Stirling number of the first kind

1 Introduction

For t = 1, . . . , ν, let Xt = (xti )1≤i≤p be a p-dimensional random column vector
distributed independently according to the normal distribution Np(μt , �) with mean
vector μt = (μti )1≤i≤p and covariance matrix � = (σi j )1≤i, j≤p. We define the (real)
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646 S. Kuriki, Y. Numata

noncentral Wishart distribution Wp(ν,�,�) by the distribution of a p × p symmetric
random matrix

W = (wi j )1≤i, j≤p, wi j =
ν∑

t=1

xti xt j , (1)

where

� = (δi j )1≤i, j≤p, δi j =
ν∑

t=1

μtiμt j

is the mean square matrix. The distribution of W depends on μt ’s through � because
its moment generating function is

E
[
etr(�W )

] = det(I − 2��)−
ν
2 etr(I−2��)−1��, (2)

where � is a p × p symmetric parameter matrix (Muirhead 1982).
Note that � = 0 if and only if μt = 0 for all t . The Wishart distribution with � = 0

is referred to as the central Wishart distribution Wp(ν,�). Conventionally, the triplet
(ν,�,�) with � = �−1� is used for describing the noncentral Wishart distribution
rather than (ν,�,�). The matrix � is called the noncentrality matrix. In our paper,
we adopt the triplet (ν,�,�) for simplicity in describing theorems.

For t = 1, . . . , ν, let

(
Xt

Yt

)
be a 2p-dimensional random column vector distrib-

uted independently according to the normal distribution with mean vector

(
ξt

ηt

)
and

covariance matrix

(
A − B
B A

)
, where A and B are p × p symmetric and skew-

symmetric matrices, respectively. The distribution of a complex-valued random vec-
tor Zt = (zti )1≤i≤p = Xt + √−1Yt is referred to as the complex normal distribution
C Np(μt , �) with mean μt = (μti )1≤i≤p = ξt + √−1ηt and covariance matrix
� = (σi j )1≤i, j≤p = 2(A + √−1B). Actually, � is a “covariance” in the sense of

σi j = E[(zti − μti )(zt j − μt j )].
Here, the overline denotes the complex conjugate. From the complex random vec-
tors Zt , we define the complex noncentral Wishart distribution CWp(ν,�,�) as the
distribution of a p × p Hermitian random matrix

W = (wi j )1≤i, j≤p, wi j =
ν∑

t=1

zti zt j , (3)

where

� = (δi j )1≤i, j≤p, δi j =
ν∑

t=1

μtiμt j
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Moments of noncentral Wishart distributions 647

is the mean square parameter matrix. As in the real case, the distribution of W depends
on μt ’s through � since its moment generating function is

E
[
etr(�W )

] = det(I − ��)−νetr(I−��)−1��, (4)

where � is a p × p Hermitian parameter matrix. See Goodman (1963) for the central
case.

The primary purpose of this paper is to obtain expressions for the moments E[wab

wcd · · · we f ] of the real and complex noncentral Wishart distributions in terms of
graphs, where a, b, c, d, . . . , e, f ∈ {1, . . . , p} are arbitrary indices.

Considering the cases where the mean vectors μt and the covariance matrix � take
particular values, we will obtain several identities of moments of some distributions
associated with the Wishart distributions. We shall see that the derivations are reduced
to enumerating graphs of various types. This is the secondary purpose of our paper.

The Wishart distribution originates with a paper by Wishart (1928) around 80 years
ago. Since then, it is considered to be a fundamental distribution not only in mathe-
matical statistics but also in other fields such as random matrices theory and signal
processing (e.g., Bai 1999; Maiwald and Kraus 2000). Despite this, the structure of
moments of the Wishart distributions is still an active research topic. In the central case,
Lu and Richards (2001), Graczyk et al. (2003, 2005) provided formulas for moments
of the real and complex Wishart distributions. These studies are based on expansions of
the moment generating functions of the central Wishart distributions det(I −2��)− ν

2 .
The graph presentations of moments have also been discussed in these studies. Prior
to these studies, it was known that terms in the expansion of det(I − Y )−α around
Y = 0 have some combinatorial structures (e.g., Vere-Jones 1988), which are closely
related to the problem of Wishart moment. More recently, Letac and Massam (2008)
provided a method to calculate moments of the noncentral Wishart distribution by
combining expansions of the moment generating function det(I − 2��)− ν

2 and the
“noncentral part” etr(I−2��)−1�� in (2).

The outline of this paper is as follows. In Sect. 2, we treat the real noncentral
Wishart matrices. Formulas for the general terms of moments of the Wishart distri-
butions are given in terms of undirected graphs. This is an extension of Takemura
(1991), who treated the central case. Then, by letting the mean vectors μt and the
covariance matrix � have particular kinds of structures, we obtain explicit formulas
for moments of the noncentral chi-square distribution, Kibble’s (1941) bivariate chi-
square (gamma) distribution, and the 2 × 2 central Wishart distribution with � = I .
Noting a formal correspondence between the moments of the noncentral chi-square
distributions and the Laguerre polynomials, we will show that the coefficients of the
Laguerre polynomials have a combinatorial interpretation.

In Sect. 3, we treat the case of the noncentral complex Wishart matrices. Major
parts of discussions are parallel to the real case. One remarkable difference is that
moments in the complex case are not described in terms of undirected graphs but
directed graphs.
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648 S. Kuriki, Y. Numata

2 Moments of the real noncentral Wishart distribution

2.1 A graph presentation

In this subsection, we provide a graph presentation formula for moments of the real
noncentral Wishart distributions of general degrees. Our results are generalizations of
Theorem 4.3 of Takemura (1991) where the central real Wishart matrices are treated.
Our basic tool is the following formula for moments of Gaussian random vectors. This
is just a moment-cumulant relation in the Gaussian case. For the proof, see McCullagh
(1987). In the central case μ = 0, this is sometimes referred to as the Wick formula.

Lemma 1 (Moment of the real normal distribution) Let X = (xi ) be a Gaussian
random vector with mean μ = (μi ), and covariance matrix � = (σi j ). Then,

E[x1x2 · · · xn] =
∑

σi1i2 · · · σi2m−1i2m μi2m+1 · · · μin ,

where the summation is taken over all partitions of n indices {1, 2, . . . , n} into
unordered m pairs and n − 2m singletons

(i1, i2), . . . , (i2m−1, i2m), (i2m+1), . . . , (in).

Remark 1 Although Lemma 1 just states an expression for E[x1x2 · · · xn], it indeed
gives general forms of the moments E[xa xb · · · xc] by considering a degenerate case.
For example, we have E[x1x2

2 ] = E[x̃1 x̃2 x̃3], where
⎛

⎝
x̃1
x̃2
x̃3

⎞

⎠ ∼ N3

⎛

⎝

⎛

⎝
μ1
μ2
μ2

⎞

⎠,

⎛

⎝
σ11 σ12 σ12
σ21 σ22 σ22
σ21 σ22 σ22

⎞

⎠

⎞

⎠.

Throughout the paper, we will use this degeneracy argument many times.

Let Xt = (xti ) (t = 1, . . . , ν) be independent Gaussian random vectors with mean
μt and covariance matrix �. Let W = (wi j ) be a Wishart matrix made of Xt ’s as
in (1). In the following, we give a formula for the moment E[wabwcd · · ·we f ] with
a, b, c, d, . . . , e, f arbitrary indices. By applying the degeneracy argument again, we
can restrict our attention to the moment E[w12w34 · · ·w2n−1,2n] without loss of gener-
ality. For example E[w11w

2
12] = E[w̃12w̃34w̃56], where (w̃i j ) ∼ W6(ν, (σ̃i j ), (δ̃i j )),

(σ̃i j , δ̃i j ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(σ11, δ11), i, j ∈ {1, 2, 3, 5},
(σ12, δ12), i ∈ {1, 2, 3, 5}, j ∈ {4, 6},
(σ21, δ21), i ∈ {4, 6}, j ∈ {1, 2, 3, 5},
(σ22, δ22), i, j ∈ {4, 6}.

Let V = {1, 2, . . . , 2n−1, 2n} be the set of indices appearing in the argument of the
expectation E[w12 · · · w2n−1,2n]. In the following, we consider an undirected graph
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Moments of noncentral Wishart distributions 649

whose vertices are the elements of V . First consider an undirected graph G0 = (V, E0)

with the edges

E0 = {(1, 2), . . . , (2n − 1, 2n)}.

For each partition of {1, 2, . . . , 2n − 1, 2n} into m pairs and 2n − 2m singletons,

(i1, i2), . . . , (i2m−1, i2m), (i2m+1), . . . , (i2n), (5)

we define a set of undirected edges

E = {(i1, i2), . . . , (i2m−1, i2m)}.

By adding the edges of E to G0, we have a graph

G = (V, E0 ∪ E). (6)

Each connected component of G is classified as a “cycle” (a path without terminals)
and a “chain” (a path with two terminals). For the partition (5), the number of chains
is n − m. The number of cycles of G is denoted by len(G). Note that len(G) ≤ m. Let
( j1, j2), . . . , ( j2n−2m−1, j2n−2m) be pairs of two terminal vertices of n − m chains of
G, and let

Ě = {( j1, j2), . . . , ( j2n−2m−1, j2n−2m)}.

Using these notations, the general form for the moments is given below.

Theorem 1 (Moment of the real noncentral Wishart distribution) Let (wi j ) ∼ W (ν,

(σi j ), (δi j )). Then,

E[w12 · · ·w2n−1,2n] =
∑

E

νlen(G)σ Eδ Ě , (7)

where

σ E =
∏

(i,i ′)∈E

σi i ′ = σi1i2 · · · σi2m−1i2m ,

δ Ě =
∏

( j, j ′)∈Ě

δ j j ′ = δ j1 j2 · · · δ j2n−2m−1 j2n−2m .

The summation
∑

E is taken over all partitions of {1, 2, . . . , 2n} of the form (5).

Example 1 Consider the evaluation of the moment E[w12w34w56]. Then, V = {1, 2,

3, 4, 5, 6} and E0 = {(1, 2), (3, 4), (5, 6)}. There are 76 partitions of V into pairs
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and singletons. Figure 1 is the graph G = (V, E0 ∪ E) for E = {(1, 6), (2, 5)}
(Ě = {(3, 4)}). Summing up 76 possibilities, we have the following:

E[w12w34w56] = ν3σ12σ34σ56 + ν2σ23σ14σ56[6] + νσ23σ45σ16[8]
+ν2σ12σ34δ56[3] + νσ23σ14δ56[6] + νσ12σ45δ36[12]
+σ23σ45δ16[24] + νσ12δ34δ56[3] + σ23δ14δ56[12]
+δ12δ34δ56.

Here, [n] means that there are n terms of similar form.

Proof For i = 1, . . . , n, let e(i) = [(i + 1)/2] (the integer part of (i + 1)/2). Noting
that wi j = ∑ν

t=1 xti xt j , and from Lemma 1, we have

E[w12 · · · w2n−1,2n]

=
ν∑

t1=1

· · ·
ν∑

tn=1

E[xt1,1xt1,2 · · · xtn ,2n−1xtn ,2n]

=
∑

t1

· · ·
∑

tn

E[xte(1),1xte(2),2 · · · xte(2n−1),2n−1xte(2n),2n]

=
∑

E

∑

t1

· · ·
∑

tn

Cov(xte(i1),i1 , xte(i2),i2) · · · Cov(xte(i2m−1),i2m−1 , xte(i2m ),i2m )

×E[xte(i2m+1),i2m+1 ] · · · E[xte(i2n ),i2n ]. (8)

Since {i1, . . . , in} = V , the indices i1, . . . , in can be divided into connected compo-
nents of the graph G. Let { j1, . . . , j2k} be a set of vertices of a connected component.
Then, as we already pointed out, it forms either a chain

( j1, j2), ( j2, j3), . . . , ( j2k−2, j2k−1), ( j2k−1, j2k),

or a cycle

( j1, j2), ( j2, j3), . . . , ( j2k−1, j2k), ( j2k, j1),

Fig. 1 Graph G = (V, E0 ∪ E) (E0 solid line, E dotted line) presenting the term ν1σ16σ25δ34 (n = 6,
m = 2, len(G) = 1)
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Moments of noncentral Wishart distributions 651

and in both cases

( j1, j2), ( j3, j4), . . . , ( j2k−1, j2k) ∈ E0.

Since the running indices t1, . . . , tn correspond to n edges of E0, and e( j1) = e( j2),
e( j3) = e( j4), . . . , e( j2k−1) = e( j2k), the argument of the summation

∑
E in (8) is

written as a product of terms of the form

∑

t1

· · ·
∑

tk

E[xt1, j1 ]Cov(xt1, j2 , xt2, j3) · · ·

×Cov(xtk−1, j2k−2 , xtk , j2k−1)E[xtk , j2k ] (9)

in the chain case, or

∑

t1

· · ·
∑

tk

Cov(xt1, j2 , xt2, j3) · · ·

× Cov(xtk−1, j2k−2 , xtk , j2k−1)Cov(xtk , j2k , xt1, j1) (10)

in the cycle case. Here, we used a reindexing

t1 := te( j1) = te( j2), . . . , tk := te( j2k−1) = te( j2k ).

Noting that Cov(xsi , xt j ) = 1{s=t}σi j and
∑ν

t=1 E[xti ]E[xt j ] = δi j , we see that
(9) = σ j2 j3 · · · σ j2k−2 j2k−1δ j2k j1 and (10) = νσ j2 j3 · · · σ j2k−2, j2k−1σ j2k j1 . This com-
pletes the proof. �	

2.2 Enumeration of undirected graphs

In this subsection, we will enumerate the graphs G = (V, E0 ∪ E) defined in (6) under
the condition that the number l = len(G) of cycles and the number m of edges of E
are given. Let fl,m,n be the number of such graphs.

Consider a degenerate noncentral Wishart matrix W = (wi j ) such that σi j ≡ 1
and δi j ≡ δ. This happens when every component of Xt making up W takes the same
value with probability one. Accordingly, all elements of W take the same value w,
say, with probability one. In this setting, (7) in Theorem 1 is reduced to a moment
formula for the distribution of w, the noncentral chi-square distribution χ2

ν (δ) with
ν degrees of freedom and the noncentrality parameter δ. Using the coefficient fl,m,n ,
the nth moment of w is given as follows.

E[wn] =
n∑

m=0

∑

l≥0

νl fl,m,nδn−m . (11)

The coefficient fl,m,n satisfies the following recurrence formula.
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Lemma 2

fl,m,n = 2(2n − m − 1) fl,m−1,n−1

+ fl−1,m−1,n−1 + fl,m,n−1, (12)

with boundary conditions

fl,0,n =
{

1 (l = 0),

0 (l ≥ 1)
for n ≥ 1, (13)

and

fl,1,1 =
{

0 (l = 0),

1 (l = 1).
(14)

Proof In the following, we sometimes refer to an edge from E0 as a “solid line” edge
and an edge from E as a “dashed line” edge as shown in Fig. 1.

The connected components of G are classified as cycles and chains. In each cycle,
the number of solid line edges is equal to the number of dashed line edges. In each
chain, the number of solid line edges is one more than the number of dashed line edges.
Thus, the number of connected chains is n − m, the difference between the number of
solid line edges and the number of dashed line edges.

Consider a graph G ′ made by removing two vertices 2n − 1 and 2n, and all (solid
line and dashed line) edges connecting to these two vertices. Note that the (solid line)
edge (2n − 1, 2n) is deleted.

One of the following will meet: The edge (2n − 1, 2n) is contained in (i) a cycle
with four or more edges, or a chain with three or more edges (the edges (a, b), (c, d),
(i, j), or (k, l) in Fig. 2); (ii) a cycle with two edges ((e, f ) in Fig. 2); (iii) a chain
consisting of a edge ((g, h) in Fig. 2).

Case (i). In the graph G ′ made by removing two vertices 2n − 1 and 2n, and
all connected edges, there are n − 1 solid line edges. Since one dashed line edge is
removed together, there are m−1 dashed line edges. The number of chains still remains
(n − 1) − (m − 1) = n − m. To the graph G ′, consider adding the edge (2n − 1, 2n)

again. There are n − 1 + (n − m) = 2n − m − 1 places where (2n − 1, 2n) can be
inserted, and considering the direction of the inserted edge, there are 2(2n − m − 1)

ways in which the insertion can be done. By this operation, the number of dashed
lines increases by 1, whereas the number of cycles is invariant. The contribution of
the number of graphs made by this operation to fl,m,n is

2(2n − m − 1) fl,m−1,n−1.

Case (ii). Consider adding the edge (2n − 1, 2n) to the graph G ′ again to make a
cycle with the edge (2n − 1, 2n) and a dashed line edge. By this operation, both the
number of dashed lines and the number of cycles increases by 1. The contribution of
the number of graphs made by this operation to fl,m,n is
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Moments of noncentral Wishart distributions 653

Fig. 2 A figure for the proof of Lemma 2

fl−1,m−1,n−1.

Case (iii). Consider adding the edge (2n − 1, 2n) to the graph G ′ again to make
a chain consisting of one edge (2n − 1, 2n). By this operation, both the number of
dashed lines and the number of cycles are invariant. The contribution of the number
of graphs made by this operation to fl,m,n is

fl,m,n−1.

Summing up the three cases (i), (ii), and (iii), we obtain the recurrence formula
(12). �	
Theorem 2 The generating function of fl,m,n with respect to the number l of cycles
is given by

m,n(ν) =
∑

l≥0

νl fl,m,n =
(

n

m

) m∏

i=1

(ν + 2(n − i)) (0 ≤ m ≤ n, n ≥ 1). (15)

Here, we use a convention
∏0

i=1 = 1.

Proof Noting that f−1,m,n = 0, the generating function m,n(ν) = ∑
l≥0 νl fl,m,n

has to satisfy

m,n = 2(2n − m − 1)m−1,n−1 + νm−1,n−1 + m,n−1. (16)

To solve the recurrence formula (16), consider the boundary conditions. From (13),
we have

0,n(ν) = 1 (n ≥ 1). (17)

Moreover, from (14), we have

1,1(ν) = ν.
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Furthermore, since n,n−1 = 0,

n,n = 2(n − 1)n−1,n−1 + νn−1,n−1 = (ν + 2n − 2)n−1,n−1

= · · · =
n∏

i=1

(ν + 2(n − i)) (n ≥ 1). (18)

The recurrence formula (16) combined with the boundary conditions (17) and (18)
determines m,n for all m and n.

In the following, we see that m,n(ν) in (15) is actually the solution for the recur-
rence formula (16). The boundary conditions (17) and (18) are satisfied. We only have
to make sure that (15) really satisfies (16). Indeed,

m,n − m,n−1 =
(

n

m

) m∏

i=1

(ν + 2n − 2i) −
(

n − 1

m

) m∏

i=1

(ν + 2n − 2 − 2i)

=
(

n − 1

m − 1

)
1

m

m−1∏

i=1

(ν + 2n − 2 − 2i)

×{n(ν + 2n − 2) − (n − m)(ν + 2n − 2 − 2m)}
= 2(2n − m − 1)m−1,n−1 + νm−1,n−1.

�	
Corollary 1

m,n(1) =
(

n

m

)
(2n − 1)(2n − 3) · · · (2n − 2m + 1) =

(
2n

2m

)
(2m − 1)!!

is the number of undirected graphs G, and

m,n(0) =
(

n

m

)
(2n − 2)(2n − 4) · · · (2n − 2m)

= 2m n!(n − 1)!
m! (n − m)!(n − m − 1)!

is the number of undirected graphs G without cycles.

Remark 2 Nonnegative integers sn(m, l) defined by a generating function

m∑

l=0

νl sn(m, l) =
m∏

i=1

(ν + n − i) (19)

are called the noncentral Stirling numbers of the first kind (Koutras 1982). Since

∑

ν≥0

νl fl,m,n =
(

n

m

)
2m

m∏

i=1

(ν/2 + n − i) =
(

n

m

)
2m

∑

l≥0

(ν/2)l sn(m, l),
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Moments of noncentral Wishart distributions 655

we have

fl,m,n =
(

n

m

)
2m−l sn(m, l).

2.3 Moments of the noncentral chi-square distribution and the Laguerre polynomial

As stated in the beginning of the previous subsection, the moment of the noncentral
chi-square distribution is described with the coefficient fl,m,n .

In view of (11) and Theorem 2, the nth moment of w ∼ χ2
ν (δ), the noncentral

chi-square distribution with ν degrees of freedom and the noncentrality parameter δ,
is written as

E[wn] =
n∑

m=0

∑

l≥0

νl fl,m,nδn−m

=
n∑

m=0

m,n(ν)δn−m

=
n∑

m=0

(
n

m

) m∏

i=1

(ν + 2(n − i))δn−m . (20)

This is a well-known expression for the moment of noncentral chi-square distribution
(e.g., Johnson et al. 1995).

Remark 3 Koutras (1982) pointed out that moments of some noncentral distributions
are described with the noncentral Stirling numbers of the first kind.

The moment generating function of the noncentral chi-square distribution χ2
ν (δ) is

(1 − 2t)−ν/2eδt (1−2t)−1
.

This can be obtained by letting � = t , � = 1, � = δ with (2).
The Laguerre polynomials, the orthogonal polynomial systems on (0,∞) with

respect to the gamma weight functions, are defined as

L(ν)
n (x) = 2n dn

dσ n
f (ν)(x; σ)

∣∣∣σ=1

/
f (ν)(x; 1) (ν > 0) ,

where

f (ν)(x; σ) = xν/2−1σ−ν/2e−x/(2σ)
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(e.g., Morris 1982). From this definition, we immediately get the generating function
of the Laguerre polynomial as

∞∑

n=0

(−1)n tn

n! L(ν)
n (x) = (1 − 2t)−ν/2e−(x/2)((1−2t)−1−1),

which has formal coincidence with the moment generating function of the chi-square
distribution with ν degrees of freedom and the noncentrality parameter −x . Therefore,
we have an expression for the Laguerre polynomials

L(ν)
n (x) = (−1)n

n∑

m=0

∑

ν≥0

νl fl,m,n(−x)n−m

= (−1)n
n∑

m=0

(
n

m

) m∏

i=1

(ν + 2(n − i))(−x)n−m .

This gives a combinatorial interpretation for the coefficients of the Laguerre
polynomials.

This type of combinatorial interpretation for Hermite polynomials is widely known.
Applying a degenerate multivariate distribution N ((μi ), (σi j )) with μi ≡ μ, σi j ≡ σ 2

to Lemma 1, we see that the nth moment of the normal distribution X ∼ N (μ, σ 2) is

E[Xn] =
[n/2]∑

m=0

am,nσ 2mμn−2m,

where

am,n =
(

n

2m

)
(2m − 1)!! = n!

(n − 2m)! 2m m!

is the number of partitions of an n-member set into (unordered) m pairs and n − 2m
singletons. The Hermite polynomials are defined by

Hn(x) = (−1)n dn

dxn
e−x2/2

/
e−x2/2 .

The generating function of Hn(x) is

∞∑

n=0

tn

n! Hn(x) = e−(x−t)2/2
/

e−x2/2 = ext−t2/2 ,

which coincides with the moment generating function eμt+σ 2t2/2 of the normal dis-
tribution N (μ, σ 2) with μ and σ 2 replaced by x and −1, respectively. Therefore, the
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nth Hermite polynomial is the n moment of the normal distribution N (x,−1) for-
mally (McCullagh 1987; Kuriki and Takemura 1996; Withers and Nadarajah 2006),
and hence

Hn(x) =
[n/2]∑

m=0

am,n (−1)m xn−2m .

2.4 Moments of bivariate chi-square distribution

In this subsection, we give an explicit expression for the moment of bivariate chi-square
distributions as the second application of the graph presentations for the moments of
the noncentral Wishart distribution.

There are several proposals for defining bivariate chi-square (gamma) distribu-
tions. The distribution we will discuss here is that given by Kibble’s (1941). Kibble’s
bivariate chi-square distribution is defined as the distribution of the diagonal elements
(w11, w22) of a 2 × 2 central Wishart distribution (wi j ) ∼ W2(ν,�) with

� =
(

1 ρ

ρ 1

)
.

Substituting � = diag(t11, t22) and � = 0 into (2), we have the moment generating
function

E[et11w11+t22w22 ] = det

(
1 − 2t11 −2ρt11
−2ρt22 1 − 2t22

)−ν/2

= (1 − 2t11 − 2t22 + 4t11t22 − 4ρ2t11t22)
−ν/2. (21)

The next theorem gives an expression for the moments of general degrees
E[wb

11w
c
22]. We evaluate this as the moment

E[w̃12 · · · w̃2b−1,2bw̃2b+1,2b+2w̃2(b+c)−1,2(b+c)],

where (w̃i j ) ∼ W2(b+c)(ν, (σi j )) with

σi j =
{

1 (i, j ≤ 2b or i, j ≥ 2b + 1),

ρ (otherwise).

Theorem 3 (Moment of the bivariate chi-square distribution) Let b and c be
nonnegative integers. Then,

E[wb
11w

c
22] =

min(b,c)∑

a=0

ρ2a 2a b! c!
(b − a)! (c − a)! a!

a∏

i=1

(ν + 2(a − i))

×
b−a∏

i=1

(ν + 2(b − i))
c−a∏

i=1

(ν + 2(c − i)).
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Remark 4 Nadarajah and Kotz (2006) derived an expression for E[wb
11w

c
22] including

the Jacobi polynomials. Their derivation is a use of a series of identities of special
functions, which are totally different from our combinatorial proof given below.

Proof Assume that b ≤ c without loss of generality. Let G0 = (V1 ∪ V1, E1 ∪ E2) be
a union of two undirected graphs (Vi , Ei ) (i = 1, 2), where

V1 = {1, 2, . . . , 2b − 1, 2b}, E1 = {(1, 2), . . . , (2b − 1, 2b)}

and

V2 = {2b + 1, 2b + 2, . . . , 2(b + c) − 1, 2(b + c)},

E2 = {(2b + 1, 2b + 2), . . . , (2(b + c) − 1, 2(b + c))}.

By forming b + c pairs from 2(b + c) vertices of V = V1 ∪ V2, we add b + c
edges joining two vertices of each pair to the graph G0 to make G. Let hl,a,b,c be the
number of resulting graphs G such that the number of cycles is l and the number of
edges joining an element of V1 and an element of V2 (the number of pairs consisting
of an element of V1 and an element of V2) is 2a. Then, the moment that we want to
evaluate is represented as

∑

l,a

νlρ2ahl,a,b,c.

We divide the process of adding b + c edges into three steps below (Fig. 3).
Step (i). Choose 2c − 2a from the 2c vertices of V2, and form c − a pairs from the

2c − 2a vertices. Add c − a edges joining two vertices of each pair to the graph G0.
The number of resulting graphs having l ′ cycles is

fl ′,c−a,c.

Note that 2a vertices not chosen are the terminal vertices of a chains.
Step (ii). Form b pairs from the 2b vertices of V1, and add b edges joining two

vertices of each pair. The number of resulting graphs having l ′′ cycles is

fl ′′,b,b.

Step (iii). Choose a edges from the b edges added in step (ii), and make “cuts” at
the middle of each edge, and have the a chains generated in step (i) fit in at the a cut
points. Note that this operation does not alter the number of cycles. Since the a chains
have directions, the number of ways to perform this operation is

2a × b!
(b − a)! .
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Fig. 3 Figures for the proof of Theorem 3 (Left steps (i), (ii), right step (iii); open circles vertex of V1,
filled circles vertex of V2)

Summing up (i), (ii), and (iii), we get

hl,a,b,c = 2a b!
(b − a)!

∑

l ′+l ′′=l

fl ′,c−a,c fl ′′,b,b.

Therefore,

∑

l,a

νlρ2ahl,a,b,c =
∑

a

ρ2a 2a b!
(b − a)!

∑

l ′
νl ′ fl ′,c−a,c

∑

l ′′
νl ′′ fl ′′,b,b

=
∑

a

ρ2a 2a b!
(b − a)!

(
c

c − a

) c−a∏

i=1

(ν + 2(c − i))
b∏

i=1

(ν + 2(b − i)).

�	

2.5 Moments of a 2 × 2 real Wishart distribution

As the third example, we give an explicit expression for the moments of a 2×2 central
Wishart distribution with the parameter � = I . Let (wi j ) ∼ W2(ν, I ). Substituting

� =
(

t11 t12/2
t12/2 t22

)
and � = 0 into (2), we have the moment generating function

E[et12w12+t11w11+t22w22 ] = det

(
1 − 2t11 −t12

−t12 1 − 2t22

)−ν/2

= (1 − 2t11 − 2t22 + 4t11t22 − t2
12)

−ν/2. (22)

We first show that

E[wa
12w

b
11w

c
22] = 0 for a odd.

Let Xt be Gaussian random vectors making up the Wishart matrix. Since E[Xt ] = 0,
the distribution of Xt is invariant under the change of the sign of the first coordinate.
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On the other hand, this change causes (w12, w11, w22) → (−w12, w11, w22). This
implies that

E[wa
12w

b
11w

c
22] = E[(−w12)

awb
11w

c
22]

= (−1)a E[wa
12w

b
11w

c
22].

Unless a is even, the left- and right-hand sides become 0.
In the following, we will derive the moment E[w2a

12wb
11w

c
22], where a, b, and c are

nonnegative integers. Although some methods to calculate this quantity are already
known (e.g., Remark 5), we demonstrate that our combinatoric approach does get the
same results.

Let

V 0
1 = {1, 3, . . . , 4a − 1}, V +

1 = {4a + 1, 4a + 2, . . . , 4a + 2b},

and

V 0
2 = {2, 4, . . . , 4a}, V +

2 = {4a + 2b + 1, 4a + 2b + 2, . . . , 4a + 2b + 2c}.

Then,

E[w2a
12wb

11w
c
22] = E[w̃12w̃34 · · · w̃4a+2b+2c−1,4a+2b+2c],

where (w̃i j ) ∼ W4a+2b+2c(ν, (σi j )) with

σi j =
{

1 (i, j ∈ V +
1 , or i, j ∈ V +

2 , or i ∈ V 0
1 , j ∈ V 0

2 , or i ∈ V 0
2 , j ∈ V 0

1 ),

0 (otherwise).

Theorem 4 (Moment of the 2 × 2 real Wishart distribution) Let a, b, and c be
nonnegative integers. Then,

E[w2a
12wb

11w
c
22] = (2a − 1)!!

a∏

i=1

(ν + 2(a − i))

×
b∏

i=1

(ν + 2(a + b − i))
c∏

i=1

(ν + 2(a + c − i)).

Proof Let V1 = V 0
1 ∪ V +

1 and V2 = V 0
2 ∪ V +

2 . First, define an undirected graph
G0 = (V, E0) with 4a + 2b + 2c vertices V = V1 ∪ V2 and 2a + b + c edges

E0 = {(1, 2), (3, 4), . . . , (4a + 2b + 2c − 1, 4a + 2b + 2c)}.

Then, consider the addition of additional 2a + b + c edges to the graph G0 to make G
such that no edges joining V1 and V2 are added. Let hl,a,b,c be the number of resulting
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Fig. 4 Figures for the proof of Theorem 4 (left steps (i), (ii), right step (iii); open square vertex of V 0
1 ,

open circles vertex of V +
1 , filled square vertex of V 0

2 , filled circles vertex of V +
2 )

graphs G such that G has l cycles. Then,

E[w2a
12wb

11w
c
22] =

∑

l≥0

νl hl,a,b,c.

We divide the process of adding 2a + b + c edges to G0 into three steps (i), (ii),
and (iii) below (Fig. 4).

Step (i). Let 0 ≤ a′ ≤ min(a, c). Choose 2c − 2a′ elements from the 2c vertices of
V +

2 , and form c − a′ pairs from them. Add c − a′ edges defined by the c − a′ pairs to
the graph G0. According to this operation, a′ chains are newly generated. The number
of graphs with l ′ cycles is

fl ′,c−a′,c.

Step (ii). Form a pairs from the 2a vertices of V 0
2 . The number of ways in which

this pairing can be done is

(2a − 1)!! = (2a)!
2aa! .

Choose a′ pairs from the a pairs, and assign each pair to each of the a′ chains gen-
erated in step (i). Connect a vertex of the pair to one terminal vertex of the chain
using a new edge, and connect the other vertex of the pair to the other terminal vertex
of the chain using another (new) edge. (Add 2a′ edges in total.) The number of the
correspondences is

2a(2a − 2) · · · (2a − 2a′) = 2a′
a!

(a − a′)! .

For the remaining a − a′ pairs, connect two vertices of each pair using a new edge.
(Add a − a′ edges in total.)

The number of edges added in steps (i) and (ii) is (c −a′)+2a′ + (a −a′) = a + c.
The number of cycles is l ′.
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In steps (i) and (ii), summing the number of ways for 0 ≤ a′ ≤ min(a, c) yields

el ′,c,a =
min(a,c)∑

a′=0

fl ′,c−a′,c × (2a − 1)!! × 2a′
a!

(a − a′)! .

The coefficient el ′,c,a can be combinatorially interpreted as follows: let G2 = (V2, E2)

with E2 = {(4a + 2b + 1, 4a + 2b + 2), . . . , (4a + 2b + 2c − 1, 4a + 2b + 2c)} be an
undirected graph, and add a +c edges by forming a +c pairs from the 2a +2c vertices
V2. Then, a chains are newly generated. el ′,c,a is the number of resulting graphs having
l ′ cycles, and the terminal vertices of the a chains are elements of V 0

2 .
Step (iii). For all 2a + 2b vertices of V1, form a + b pairs and connect the vertices

of each pair with a new edge. (Add a + b edges in total.) According to step (ii), the
2a vertices of V1 have already been divided into a pairs, and the vertices of each pair
have been connected with an edge. In step (iii), the number of graphs adding new l ′′
cycles is fl ′′,a+b,a+b.

Summarizing (i), (ii), and (iii), we get

hl,a,b,c =
∑

l ′+l ′′=l

el ′,c,a fl ′′,a+b,a+b,

and hence,

∑

l≥0

νl hl,a,b,c =
∑

l ′≥0

νl ′el ′,c,a
∑

l ′′≥0

νl ′′ fl ′′,a+b,a+b. (23)

For a nonnegative integer n, write

(
a

n

)
= a(a − 1) · · · (a − n + 1)

n! .

Then, the generating function of the coefficient el ′,c,a with respect to the number of
cycles l ′ is

∑

l ′≥0

νl ′el ′,c,a = (2a − 1)!!
min(a,c)∑

a′=0

∑

l ′≥0

νl ′ fl ′,c−a′,c
2a′

a!
(a − a′)!

= (2a − 1)!!
min(a,c)∑

a′=0

(
c

c − a′

) c−a′∏

i=1

(ν + 2(c − i))
2a′

a!
(a − a′)!

= (2a − 1)!!
min(a,c)∑

a′=0

(
c

c − a′

)
2c−a′

(
ν/2 + c − 1

c − a′

)
(c − a′)! 2a′

a!
(a − a′)!

= (2a − 1)!! 2cc!
min(a,c)∑

a′=0

(
a

a′

)(
ν/2 + c − 1

c − a′

)
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= (2a − 1)!! 2cc!
(

ν/2 + a + c − 1

c

)

= (2a − 1)!!
c∏

i=1

(ν + 2(a + c − i)).

The fifth equality above is known as a convolution identity for two binomial coeffi-
cients. Substituting this into (23) completes the proof. �	
Remark 5 Theorem 4 can also be shown by the following geometric consideration.

Let Xt =
(

xt1
xt2

)
be Gaussian random vectors making up the 2 × 2 Wishart matrix

(wi j ) ∼ W2(ν, I ). Write X(i) = (x1i , . . . , xνi )
′ (i = 1, 2), where ′ denotes the matrix

transposition. Since theν-dimensional distribution of X(i) is invariant under the orthog-

onal transformation preserving the norm ‖X(i)‖ =
√

X ′
(i) X(i), four quantities ‖X(i)‖,

X(i)/‖X(i)‖ for i = 1, 2 are independently distributed. Thus,

E[w2a
12wb

11w
c
22] = E

[
(X ′

(1) X(2))
2a‖X(1)‖2b‖X(2)‖2c

]

= E
[
r2a

]
E

[
‖X(1)‖2(a+b)

]
E

[
‖X(2)‖2(a+c)

]
,

where r = X ′
(1) X(2)/(‖X(1)‖‖X(2)‖). This calculation can be completed by noting

that ‖X(i)‖2 ∼ χ2
ν and r2 ∼ B

( 1
2 , ν−1

2

)
, the beta distribution.

3 Moments of the noncentral complex Wishart distribution

3.1 Preliminaries on the complex normal distribution

In this section, we will deal with the complex noncentral Wishart matrices. Major
parts of the discussion are parallel to the real case. One remarkable difference is that
the moments in the complex case are described in terms of directed graphs, whereas
those in the real cases are described in terms of undirected graphs.

We begin by summarizing some preliminaries on the complex normal distribu-
tion and the complex Wishart distribution. Let Z = (zi ) be a complex conjugate of
Z = (zi ). The following lemma is a complex version of Lemma 1.

Lemma 3 (Moment of the complex normal distribution) Let Z = (zi ) ∼ C N (μ,�),
and let i = n + i , i = 1, . . . , n′. Then,

E[z1 · · · znz1 · · · zn′ ] =
∑

σi1 j1 · · · σim jm μim+1 · · ·μin μ jm+1 · · ·μ jn′ ,

where the summation is over possible pairing {(i1, j1), (i2, j2), . . . (im, jm)} such that

{i1, . . . , im} ⊂ {1, 2, . . . , n} and { j1, . . . , jm} ⊂ {1, . . . , n′}
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(i.e., matching). The other indices are

{im+1, . . . , in} = {1, . . . , n} \ {i1, . . . , ik},
{ jm+1, . . . , jn′ } = {1, . . . , n′} \ { j1, . . . , jk}.

Proof Write Z = X + √−1Y , μ = ξ + √−1η, � = 2(A + √−1B). Let θ = (θi ),
ϕ = (ϕi ) be parameter column vectors. Because of

(
X
Y

)
∼ N

((
ξ

η

)
,

(
A −B
B A

))
,

and

(
Z
Z

)
= J

(
X
Y

)
, J =

(
I

√−1I
I −√−1I

)
,

the moment generating function of (Z , Z) is obtained as

E[exp{θ ′Z + ϕ′Z}] = exp

{(
θ ′ ϕ′) J

(
ξ

η

)
+ 1

2

(
θ ′ ϕ′) J

(
A −B
B A

)
J ′

(
θ

ϕ

)}

= exp

{(
θ ′ ϕ′)

(
μ

μ

)
+ 1

2

(
θ ′ ϕ′)

(
0 �

� 0

) (
θ

ϕ

)}

= exp

{
θ ′μ + ϕ′μ + 1

2
(θ ′�ϕ + ϕ′�θ)

}

= exp{θ ′μ + ϕ′μ + θ ′�ϕ}.

From this, we have the joint cumulants of (Z , Z) as

Cum(z1, . . . , zn, z1, . . . , zn′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ1 (n = 1, n′ = 0),

μ1 (n = 0, n′ = 1),

σ11 (n = 1, n′ = 1),

0 (otherwise).

Lemma 3 is the moment-cumulant relation for this particular cumulants. �	

3.2 A graph presentation

Let Zt = (zti ) (t = 1, . . . , ν) be independent complex Gaussian random vectors
with mean μt and covariance matrix �. A complex Wishart matrix W = (wi j ) is
constructed from Zt as given in (3). In this subsection, we give a formula for the
moment E[wabwcd · · · we f ] with a, b, c, d, . . . , e, f arbitrary indices. By consider-
ing the degenerate case again, without loss of generality, we only have to treat the
moment E[w11w22 · · ·wnn] with i = n + i , i = 1, . . . , n.
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Let V = {1, 2, . . . , n} be the set of indices appearing in the expectation that we
want to evaluate. In the following, we consider a directed graph whose vertices are
the elements of V . Choose a subset V1 of V such that its cardinality is |V1| = m, and
consider an injection π : V1 → V . The map π defines a set of directed pairs

E = {(i, π(i)) | i ∈ V1}.

We regard the pair (V, E) as a directed graph G, where V is the set of vertices,
and E is the set of directed edges. Note that E and the pair (V1, π) have one-to-one
correspondence.

As in the undirected case, for a given G, every connected component is classified
as a “cycle” (a directed path without terminals) and a “chain” (a directed path with
a starting terminal and an ending terminal). For the map π , the number of chains is
n − m, where n = |V |, m = |V1|. The number of cycles of G is denoted by len(G).
Note that len(G) ≤ m. Let ( j1, k1), . . . , ( jn−m, kn−m) ∈ V × V be directed pairs of
ending and starting terminal vertices of n − m chains of G, and let

Ě = {( j1, k1), . . . , ( jn−m, kn−m)}.

Using the notations above, we give the general form for the moments as follows.

Theorem 5 (Moment of the complex noncentral Wishart distribution) Let (wi j ) ∼
CW (ν, (σi j ), (δi j )), and let i = i + n, i = 1, . . . , n. Then,

E[w11 · · · wnn] =
∑

E

νlen(G)σ Eδ Ě , (24)

where

σ E =
∏

(i,i ′)∈E

σi i ′ = σi1π(i1)
· · · σimπ(im),

δ Ě =
∏

( j, j ′)∈Ě

δ j j ′ = δ j1 j ′1
· · · δ jn−m j ′n−m

.

The summation
∑

E is taken over all possibilities of V1 = {i1, . . . , im} ⊂ {1, . . . , n},
and injections π : V1 → V .

Example 2 Consider the evaluation of the moment E[w11w22w33]. Then, V =
{1, 2, 3}. There are 34 injections from subsets V1 ⊂ V to V . Figure 5 is the graph
G = (V, E) for E = {(1, 1), (2, 3)} (Ě = {(3, 2)}). Summing up 34 possibilities, we
have the following:

E[w11w22w33] = ν3σ11σ22σ33 + ν2σ12σ21σ33[3] + νσ12σ23σ31[2]
+ν2σ11σ22δ33[3]+νσ12σ21δ33[3]+νσ11σ23δ32[6] + σ12σ23δ31[6]
+νσ11δ22δ33[3] + σ12δ21δ33[6]
+δ11δ22δ33.
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Fig. 5 Directed graph G = (V, E) presenting the term ν1σ11σ23δ32 (n = 3, m = 2, len(G) = 1)

Here, [n] means that there are n terms of similar form.

Proof Note that wi j = ∑ν
t=1 zti zt j . In view of Lemma 3, we have

E[w11 · · · wnn]

=
ν∑

t1=1

· · ·
ν∑

tn=1

E[zt1,1zt1,1
· · · ztn ,nztn ,n]

=
∑

E

∑

t1

· · ·
∑

tn

Cum(zti1 ,i1 , ztπ(i1),π(i1)
) · · · Cum(ztim ,im , ztπ(im ),π(im ))

×E[ztim+1 ,im+1 ] · · · E[ztin ,in ]E[zti ′m+1
,i ′m+1

] · · · E[zti ′n ,i ′n ], (25)

where V1 = {i1, . . . , im},

{im+1, . . . , in} = V \ V1, {i ′m+1, . . . , i ′n} = V \ π(V1).

Since {i1, . . . , in} = V , the indices i1, . . . , in can be divided into connected compo-
nents of the graph G. A connected component having vertices j1, . . . , jk forms either
a directed chain

( j1, j2), ( j2, j3), . . . , ( jk−2, jk−1), ( jk−1, jk)

or a directed cycle

( j1, j2), ( j2, j3), . . . , ( jk−1, jk), ( jk, j1),

where π( ji ) = ji+1 (and π( jk) = j1 in the cycle case). Since the running n indices
t1, . . . , tn correspond to n vertices of V , the argument of the summation

∑
E in (25)

is a product of terms of the form

∑

t j1

∑

t j2

· · ·
∑

t jk

E[zt j1 , j1
]Cum(zt j1 , j1 , zt j2 , j2

)Cum(zt j2 , j2 , zt j3 , j3
) · · ·

× Cum(zt jk−1 , jk−1 , zt jk , jk )E[zt jk , jk ] (26)
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in the chain case, or

∑

t j1

∑

t j2

· · ·
∑

t jk

Cum(zt j1 , j1 , zt j2 , j2
)Cum(zt j2 , j2 , zt j3 , j3

) · · ·

× Cum(zt jk−1 , jk−1 , zt jk , jk
)Cum(zt jk , jk , zt j1 , j1

) (27)

in the cycle case. Noting that

Cum(zsi , zt j ) = Cov(zsi , zt j ) = 1{s=t}σi j

and
∑ν

t=1 E[zti ]E[zt j ] = δi j , we see that (26) = σ j1 j2
σ j2 j3

· · · σ jk−1 jk
δ jk j1

and
(27) = νσ j1 j2

σ j2 j3
· · · σ jk−1 jk

σ jk j1
. This completes the proof. �	

3.3 Enumeration of directed graphs

In this subsection, we evaluate the number of directed graphs appearing in the expres-
sion (24) for the moments of the complex Wishart distribution.

Let V = {1, . . . , n}. Let V1 be a subset of V such that |V1| = m. Let π be an
injection V1 → V . As explained in the previous subsection, we can define a directed
graph G = (V, E) with E = {(i, π(i)) | i ∈ V1}. The connected components of G
are either a directed cycle or a directed chain (the length may be 0). Note that the
number of chains is n − m. Let gl,m,n be the number of such graphs having l cycles.
The coefficient gl,m,n satisfies the following recurrence formula.

Lemma 4

gl,m,n = gl−1,m−1,n−1 + gl,m,n−1 + (2n − m − 1)gl,m−1,n−1 (28)

with boundary conditions

gl,0,n =
{

1 (l = 0),

0 (l ≥ 1)
for n ≥ 1, (29)

and

gl,1,1 =
{

0 (l = 0),

1 (l = 1).
(30)

Proof We consider removing the vertex n and the adjacent edges from the graph G.
There are three types of status about adjacent edges.

Case (i). π(n) = n. In this case, the vertex n is contained in a cycle with length
1. Removing the vertex n and the edge (n, π(n)) yields a graph whose values of l, m
and n are one less than those of G. This corresponds to the first term in the right-hand
side of (28).
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Case (ii). Neither π(n) nor π−1(n) exists. In this case, the vertex n is an isolated
vertex. Removing the vertex n yields a graph whose l and m are invariant and n are
one less than that of G. This corresponds to the second term in the right-hand side of
(28).

Case (iii). Otherwise. In this case, the vertex n is contained in a cycle with length
more than or equal to 2, or contained in a chain with length more than or equal
to 1. Remove the vertex n and one edge adjacent to the vertex n. This manipula-
tion yields a graph whose l is invariant, and whose m and n are one less than those
of G. Conversely, when we rebuild the graph G from this smaller graph, there are
(n − 1) + {(n − 1) − (m − 1)} = 2n − m − 1 places where the vertex n and one edge
can be inserted. This corresponds to the third term in the right-hand side of (28). �	
Theorem 6 The generating function of the coefficient gl,m,n with respect to the cycle
number l,

�m,n(ν) =
∑

l≥0

νl gl,m,n,

is given by

�m,n(ν) =
(

n

m

) m∏

i=1

(ν + n − i) (0 ≤ m ≤ n, n ≥ 1). (31)

Here, we use a convention
∏0

i=1 = 1.

Proof Because g−1,m,n = 0, we see

�m,n = ν�m−1,n−1 + �m,n−1 + (2n − m − 1)�m−1,n−1. (32)

The boundary conditions �0,n = 1 (n ≥ 1) due to (29) and �1,1 = ν due to (30)
satisfy (31). In addition, since �n,n−1 = 0,

�n,n = (ν + n − 1)�n−1,n−1 = · · · =
n∏

i=1

(ν + n − i) (n ≥ 1).

Hence, it is sufficient to ensure that (31) satisfies (32). Indeed, we have

�m,n − �m,n−1 =
(

n

m

) m∏

i=1

(ν + n − i) −
(

n − 1

m

) m∏

i=1

(ν + n − 1 − i)

=
(

n − 1

m − 1

)
1

m

m−1∏

i=1

(ν + n − 1 − i)

×{n(ν + n − 1) − (n − m)(ν + n − 1 − m)}
= (2n − m − 1)�m−1,n−1 + ν�m−1,n−1.

�	
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Remark 6 Comparing (31) with (19) in Remark 2, we have

gl,m,n =
(

n

m

)
sn(m, l),

where sn(m, l) is the noncentral Stirling numbers of the first kind. In particular, gl,n,n =
sn(n, l) is the Stirling numbers of the first kind. Let V = {1, . . . , n} and let π : V → V
(bijection). It is well-known that the Stirling number of the first kind sn(n, l) is the
number of directed graphs (V, E), E = {(i, π(i)) | i ∈ V } having l cycles (Stanley
(2000)).

Corollary 2

�m,n(1) =
(

n

m

)
n(n − 1) · · · (n − m + 1) =

(
n

m

)2

m!

is the number of directed graphs G, and

�m,n(0) =
(

n

m

)
(n − 1)(n − 2) · · · (n − m)

= n!(n − 1)!
m! (n − m)!(n − m − 1)!

is the number of directed graphs G without cycles.

3.4 Degenerate cases

3.4.1 The noncentral chi-square distribution

As in the real case, we can obtain several identities for moments by assuming that the
parameters � and � have particular kinds of structures. First, we consider the case
where � = (σi j ), σi j ≡ 2, and � = (δi j ), δi j ≡ δ. Then, every element of W has
the same value w, say, with probability one, and the distribution of w is the noncen-
tral chi-square distribution χ2

2ν(δ) with 2ν degrees of freedom and the noncentrality
parameter δ. The nth moment of w ∼ χ2

2ν(δ) is

E[wn] = E[w11 · · · wnn]

=
n∑

m=0

∑

l≥0

νl gl,m,n2mδn−m =
n∑

m=0

�m,n(ν)2mδn−m

=
n∑

m=0

(
n

m

) m∏

i=1

(ν + n − i)2mδn−m =
n∑

m=0

(
n

m

) m∏

i=1

(2ν + 2(n − i))δn−m .

This coincides with the formula (20) obtained from the real Wishart distribution.
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3.4.2 Moments of a bivariate chi-square distribution associated with the complex
Wishart distribution

Let (wi j ) ∼ CW2(ν,�) be a 2 × 2 central complex Wishart matrix. We consider a
particular structure of the parameter:

� = 2

(
1 ρ

ρ 1

)
, ρ ∈ C.

The diagonal elements (w11, w22) are distributed according to a sort of bivariate chi-
square distribution, since the marginal distribution of w11 and w22 are the chi-square
distribution χ2

2ν and they are correlated. At a glance, (w11, w22) has a different dis-
tribution from Kibble’s distribution since it has a different origin. However, from (4),
the moment generating function is

E[et11w11+t22w22 ] = det

(
1 − 2t11 −2ρt11
−2ρt22 1 − 2t22

)−ν

= (1 − 2t11 − 2t22 + 4t11t22 − 4ρρt11t22)
−ν,

which is equal to the moment generating function (21) of Kibble’s bivariate chi-square
distribution with ν and ρ replaced by 2ν and

√
ρρ, respectively.

3.4.3 Moments of a 2 × 2 complex Wishart distribution

Consider a 2 × 2 complex Wishart matrix (wi j ) ∼ CW2(ν, I ). We first show that

E[wa
12w

a′
21w

b
11w

c
22] = 0 if a �= a′.

Let Zt be complex Gaussian random variables from which the Wishart matrix W is
constructed. Since E[Zt ] = 0, its distribution is invariant when the first element of Zt

is multiplied by
√−1. On the other hand, this manipulation causes

(
w11 w12
w21 w22

)
→

(
w11

√−1w12

−√−1w21 w22

)
.

Therefore,

E[wa
12w

a′
21w

b
11w

c
22] = E[(√−1w12)

a(−√−1w21)
a′

wb
11w

c
22]

= √−1
a−a′

E[wa
12w

a′
21w

b
11w

c
22].

The left- and right-hand sides become 0 unless a = a′.
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Substituting � = (ti j )
′ and � = 0 into (4), we obtain the moment generating

function

E[et12w12+t21w21+t11w11+t22w22 ] = det

(
1 − t11 −t12
−t21 1 − t22

)−ν

= (1 − t11 − t22 + t11t22 − t12t21)
−ν . (33)

Let

φν(u, v, w) = (1 − u − v + uv − w)−ν, φ(k)
ν (u, v, w) =

(
∂

∂w

)k

φν(u, v, w).

Then,

(33) = φν(t11, t22, t12t21) =
∑

k≥0

(t12t21)
k

k! φ(k)
ν (t11, t22, 0).

On the other hand, the moment generating function of the 2×2 real Wishart distribution
is rewritten as

(22) = φν/2(2t11, 2t22, t2
12) =

∑

k≥0

t2k
12

k! φ
(k)
ν/2(2t11, 2t22, 0).

Comparing the two functions, we can immediately obtain the moments of the 2 × 2
complex Wishart distribution from the results for the real case in Theorem 4.

Theorem 7 (Moment of the 2 × 2 complex Wishart distribution) Let a, b, and c be
nonnegative integers. Then,

E[wb
11(w12w21)

awc
22] = a!

a∏

i=1

(ν + a − i)
b∏

i=1

(ν + a + b − i)
c∏

i=1

(ν + a + c − i).
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