
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2019) 10:879–895

https://doi.org/10.1007/s13042-017-0766-5

ORIGINAL ARTICLE

Graph‑regularized multi‑view semantic subspace learning

Jinye Peng1 · Peng Luo1 · Ziyu Guan1 · Jianping Fan2

Received: 18 September 2017 / Accepted: 5 December 2017 / Published online: 20 December 2017

© The Author(s) 2017. This article is an open access publication

Abstract

Many real-world datasets are represented by multiple features or modalities which often provide compatible and complemen-

tary information to each other. In order to obtain a good data representation that synthesizes multiple features, researchers

have proposed different multi-view subspace learning algorithms. Although label information has been exploited for guid-

ing multi-view subspace learning, previous approaches did not well capture the underlying semantic structure in data. In

this paper, we propose a new multi-view subspace learning algorithm called multi-view semantic learning (MvSL). MvSL

learns a nonnegative latent space and tries to capture the semantic structure of data by a novel graph embedding framework,

where an affinity graph characterizing intra-class compactness and a penalty graph characterizing inter-class separability

are generally defined. The intuition is to let intra-class items be near each other while keeping inter-class items away from

each other in the learned common subspace across multiple views. We explore three specific definitions of the graphs and

compare them analytically and empirically. To properly assess nearest neighbors in the multi-view context, we develop a

multiple kernel learning method for obtaining an optimal kernel combination from multiple features. In addition, we encour-

age each latent dimension to be associated with a subset of views via sparseness constraints. In this way, MvSL is able to

capture flexible conceptual patterns hidden in multi-view features. Experiments on three real-world datasets demonstrate

the effectiveness of MvSL.

Keywords Multi-view learning · Nonnegative matrix factorization · Graph embedding · Multiple kernel learning ·

Structured sparsity

1 Introduction

In many real-world data analytic problems, instances (items)

are often described with multiple modalities or views. It

becomes natural to integrate multi-view information to

obtain a more robust representation, rather than relying on

a single view. A good integration of multi-view features

can lead to a more comprehensive description of the data

items, which could improve performance of many related

applications.

An active area of multi-view learning is multi-view latent

subspace learning, which aims to obtain a compact latent

representation by taking advantage of inherent structures and

relations across multiple views. A pioneering technique in

this area is canonical correlation analysis (CCA) [1], which

tries to learn the joint projections of two views so that the

correlation between them is maximized. Recently, a lot of

techniques have been applied to multi-view subspace learn-

ing, such as matrix factorization [2–5], graphical models [6,

7], Gaussian processes [8, 9] and spectral embedding [10],

low rank representation [11], sparse coding [12].

Among the many techniques, matrix factorization meth-

ods have received more and more attention as fundamental

tools for latent representation (subspace) learning. A use-

ful representation acquired by matrix factorization typi-

cally makes latent structures in the data explicit (through

the basis vectors), and usually reduces the dimensionality

 * Peng Luo

 luopengpeng@gmail.com

 Jinye Peng

 pjy@nwu.edu.cn

 Ziyu Guan

 ziyuguan@nwu.edu.cn

 Jianping Fan

 jfan@uncc.edu

1 College of Information and Technology, Northwest

University of China, Xi’an 710127, China

2 Department of Computer Science, University of North

Carolina at Charlotte, Charlotte, NC 28223, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-017-0766-5&domain=pdf

880 International Journal of Machine Learning and Cybernetics (2019) 10:879–895

1 3

of input views, so that further analysis can be effectively

and efficiently carried out (with encoding vectors). Among

different matrix factorization methods, nonnegative matrix

factorization (NMF) [13] is an attractive one due to its theo-

retical interpretation and desired performance. NMF aims to

find two nonnegative matrices, a basis matrix and an encod-

ing matrix, whose product provides a good approximation

to the original matrix. It tries to formulate a feasible model

for learning object parts, which is closely relevant to human

perception mechanism. Recently, variants of NMF have been

proposed for multi-view subspace learning [4, 5, 14].

Labeled data has been incorporated into multi-view rep-

resentation learning. In terms of the style of incorporating

label information, existing supervised or semi-supervised

multi-view representation learning methods can be divided

into three categories: (1) large-margin based methods [6,

9, 15]. This kind of methods uses the large-margin princi-

ple to maximize the margin between instances of different

classes, but ignores the intra-class semantic structures. (2)

Fisher discriminant analysis based methods [16–19]. Fish-

er’s discriminant analysis is widely used in feature learning,

which employs the famous Fisher criterion to minimize the

within-class scatter while maximize the between-class scat-

ter. However, Fisher’s discriminant analysis based methods

are optimal only in cases where the data of each class fol-

lows Gaussian distribution. In reality, this assumption is too

restrictive since real world datasets often exhibit complex

non-Gaussian distributions [20, 21]. (3) Methods that recon-

struct the label indicator matrix through multiplying the

encoding matrix by a weight matrix [14, 22]. These meth-

ods intrinsically impose implicit relationship constraints

on encodings of labeled items. Nevertheless, such indirect

constraints could be insufficient for capturing the semantic

relationships between data items.

In this paper, we propose a new multi-view subspace

learning algorithm called multi-view semantic learning

(MvSL), to better capture the semantic structure of multi-

view data. MvSL is a nonnegative factorization method

which jointly factorizes data matrices of different views.

In MvSL, each view is factorized into a basis matrix and

a common encoding matrix which is shared by multiple

views. We regularize the encoding matrix by a general graph

embedding framework: we construct an affinity graph char-

acterizing the intra-class compactness and a penalty graph

characterizing the inter-class separability. The general idea

is to let intra-class items be near each other while keeping

inter-class items away from each other in the learned com-

mon subspace across multiple views.

It is worthy to highlight several aspects of the new

method here:

1. We investigate three specific definitions of the graphs.

The first one, simple graph embedding (SGE), simply

assigns equal affinity/penalty weights to each pair of

intra-class/inter-class items. The second one, dubbed

as local discriminant graph embedding (LDGE), only

imposes affinity constraints in local neighborhood of a

class and penalizes nearest inter-class items. In contrast

with the Fisher criterion, LDGE does not make Gaussian

assumption for data and could better capture the com-

plex distribution of real-world data [21]. We further add

manifold information in the affinity graph of LDGE to

derive the third definition: transductive graph embed-

ding (TGE). A sub-challenge in LDGE and TGE is how

to identify nearest neighbors in the multi-view context.

To this end, we develop a new multiple kernel learning

algorithm to find the optimal kernel combination for

multi-view features. The algorithm tries to let the kernel

combination optimally preserve the semantic relations

among labeled items.

2. Features coming from the same view are likely to have

the same sparsity pattern in their low-dimensional rep-

resentation [23, 24]. In order to promote group spar-

sity in the basic matrix, we propose to incorporate a

�1,2 norm regularizer on the basis matrices to encour-

age basis matrix to be column-sparseness [2]. Since �1,2

norm regularizer encourages the sum of each column’s

�
2
 norm to be minimized, some columns of matrix will

be zero-valued. In this way, each latent dimension has

the flexibility to be only associated with a subset of each

views, thus enhancing the expressive power of the model

and avoiding the high computational burden.

3. To solve MvSL, we develop a block coordinate descent

[25] optimization algorithm.

For empirical evaluation, three real-world multi-view data-

sets are employed. The encouraging results of MvSL are

achieved in comparison with the state-of-the-art algorithms.

2 Related work

In this section, we will briefly review research fields that are

directly related to our work, namely, label exploitation in

multi-view subspace learning, nonnegative matrix factoriza-

tion and graph embedding.

2.1 Label exploitation in multi‑view subspace
learning

General speaking, multi-view subspace learning methods

could be divided into two categories: methods that do not

use label information (i.e. unsupervised) and those using

label information (semi-supervised or supervised). Unsuper-

vised multi-view subspace learning methods, such as CCA

[1], co-training [26] and their variants [27–30], only use the

881International Journal of Machine Learning and Cybernetics (2019) 10:879–895

1 3

multiple features information of the data items for learn-

ing. Due to ignoring the label information, the performance

of unsupervised multi-view subspace learning has much

room to promote. In order to utilize the label information,

(semi-) supervised multi-view subspace learning algorithms

were developed. According to different ways to use label

information, these algorithms could be divided into three

categories: (1) algorithms exploiting the large-margin prin-

ciple, (2) algorithms that make use of Fisher’s discriminant

analysis technique, and (3) algorithms that reconstruct the

label indicator matrix.

The large-margin principle is successfully used in SVM.

In multi-view case, Chen et al. [6, 15] integrate the large-

margin idea into Markov network for multiple features,

which jointly maximizes data likelihood and minimizes a

prediction loss on the labeled data. Xu et al. [9] propose

a large-margin Gaussian process approach for discovering

discriminative latent subspace shared by multi-view data.

However, the latent spaces learned by this kind of methods

ignore the intra-class semantic structures of the data.

Fisher’s discriminant analysis has been employed in

multi-view subspace learning. In [16], Diethe et al. propose

two view Fisher’s discriminant analysis which tries to cap-

ture the correlation between two views in an CCA style.

They then extend it to the multi-view setting by convex for-

mulation and also propose a sparse version [18]. Chen and

Sun propose a different multi-view Fisher’s discriminant

analysis which minimizes the prediction error of each view’s

output and takes fisher terms as constraints [17]. They also

design a new solution for the multi-class case by using hier-

archical clustering. Rather than learning a discriminative

score, Kan et al. aim to learn a common subspace shared by

multiple views in which within-class/between-class varia-

tions are minimized/maximized (i.e. the Fisher criterion)

[19]. However, the Fisher criterion is optimal only in cases

where the data of each class is approximately distributed as

Gaussian. This assumption is too restricted since data often

exhibit complex non-Gaussian distributions [20, 21].

The third category is to reconstruct the label indicator

matrix through multiplying the encoding matrix by a weight

matrix [14, 22]. Each column of the label indicator matrix

stores the 1-of-C coding for an item’s label information (C

denotes the number of classes). The weight matrix acts as

a set of C linear regression models in the learned subspace

(i.e. the encoding matrix) for label prediction. A regression

model forces items with the corresponding label to reside

on its positive hyperplane while letting other-class items

reside on the negative hyperplane, where “positive/negative”

means the regression output equals 1/0. This can be viewed

as imposing implicit relationship constraints on encodings

of labeled items. However, this scheme cannot well capture

the semantic relationships between data items. For example,

two items with the same label could be far away from each

other in the learned subspace as long as they both reside on

the positive hyperplane of the class.

To sum up, there is still lack of effective methods for

learning a common latent subspace which well captures the

semantic structures in multi-view data. Our MvSL is differ-

ent from the above works in that we devise a general graph

embedding framework to address this problem. The frame-

work imposes direct relationship constraints on (labeled)

data items in the target subspace and we explore graph defi-

nitions which can characterize non-Gaussian distributions

in real world data.

2.2 NMF and multi‑view extensions

NMF is an effective subspace learning method to capture

the underlying structure of the data in the parts-based low

dimensional representation space. It accords with the cog-

nitive process of human brain from the psychological and

physiological studies [13, 31, 32]. Here we briefly review

NMF. In this paper, vectors and matrices are denoted by

lowercase boldface letters and uppercase boldface letters

respectively. For a matrix � , we denote its (i, j)-th element

by Xij . The i-th element of a vector � is denoted by b
i
 . Given

an input nonnegative data matrix � ∈ ℝ
M×N

+
 where each col-

umn represents a data item and each row represents a feature.

NMF aims to find two nonnegative matrices � ∈ ℝ
M×K

+
 and

� ∈ ℝ
K×N

+
 whose product can well approximate the original

data matrix:

K < min(M, N) denotes the desired reduced dimensionality,

and to facilitate discussion, we call � the basis matrix and �

the encoding matrix.

It is known that the objective function above is not convex

in � and � together, so it is unrealistic to expect an algo-

rithm to find the global minimum. Lee and Seung [13] pre-

sented multiplicative update rules to find the locally optimal

solution as follows:

In recent years, many variants of the basic NMF model

have been proposed. In the multi-view context, researchers

have extended NMF to better leverage multi-view informa-

tion. Liu et al. develop a multi-view NMF method named

multiNMF for data clustering [5], where a unified encod-

ing matrix is learned across different views. Kalayeh et al.

propose an approach based on multi-view NMF for image

annotation [4]. It treats tags and visual features of images

� ≈ ��.

Ut+1

ik
= Ut

ik

(�(�t)T)ik

(�t�t(�t)T)ik

V t+1

kj
= V t

kj

((�t+1)T�)kj

((�t+1)T�t+1�t)kj

.

882 International Journal of Machine Learning and Cybernetics (2019) 10:879–895

1 3

as different views. Given an image i to be annotated, it first

finds k nearest neighbors of i from images with tags, by aver-

aging distances calculated by multiple visual features. Then

it adopts a similar scheme as MultiNMF to factorize these

nearest neighbors and uses the learned basis vectors to gen-

erate encoding for i. Based on the encoding, i’s tag vector is

predicted. In [33], the graph regularized NMF (GNMF) [20]

is extended to the multi-view setting. Although this work

considers using graphs to regularize the learned encoding

space, it only constrains affinity relationships and does not

incorporate label information to learn semantic structures.

Some semi-supervised multi-view NMF methods have been

proposed [14, 22, 34]. However, [14] and [22] are based

on label indicator matrix reconstruction, while [34] adopts

simple graph definitions similar to our SGE. None of these

works develop a complete graph embedding framework in

the multi-view NMF context for capturing semantic relation-

ships between items.

2.3 Graph embedding

Yan et al. formulate popular dimensionality reduction

methods in a general graph embedding framework [21].

After that, the idea of graph embedding has been widely

applied. For example, a number of works [20, 35, 36] have

exploited graph embedding as regularization of NMF. Shi

et al. [37] propose an adaptive graph embedding method

which customizes the neighborhood size of each item when

constructing graphs. Nevertheless, these works only con-

sider single-view data. When multiple features exist, it is not

known how to well assess nearest neighbors, which is a key

component for graph embedding. Although [38] proposes a

graph embedding approach for multi-view face recognition,

it learns a graph embedding model for each view separately.

This would easily amplify the inconsistency between differ-

ent views. Moreover, it only gives a solution for two views

and generalization to multiple views is not a trivial task.

Our work is different from the above ones in that we design

a general graph embedding framework for learning a unified

semantic subspace from partially labeled multi-view data,

with a multiple kernel learning solution for nearest neighbor

assessment.

3 Multi‑view semantic learning

In this section, we present the multi-view semantic learning

(MvSL) algorithm for latent representation learning from par-

tially labeled multi-view data. As illustrated in Fig. 1, we first

obtain various features to construct the set of data matrices

{�(v)}H

v=1
 where �(v) ∈ ℝ

M
v
×N

+ , M
v
 denotes the dimensionality

of view v, H denotes the number of views and N is the total

number of items. The data matrices are then factorized into

basis matrices {�(v)}H

v=1
 and the low-dimensional consensus

encoding matrix � . We regularize � by an affinity graph Ga

and a penalty graph Gp . Nodes in the dotted circles are labeled.

The edges in Ga/Gp mean pairwise affinity/separation con-

straints (dotted edges connect nodes in local neighborhoods).

The graph embedding framework is general and various graph

definitions can be adopted. Figure 1 shows an instantiation of

Transductive Graph Embedding which will be presented in

Sect. 4. Note that in Fig. 1 fully white elements in the matrices

mean their values are 0. By imposing a structured sparseness

constraint on each basis matrix �v , some basis vectors could

Fig. 1 An illustration of the

work flow of the proposed

approach. Fully White color in

the matrices means value 0

883International Journal of Machine Learning and Cybernetics (2019) 10:879–895

1 3

be zeroed-out so that a latent dimension in the encoding space

can be associated with just a few views. This is flexible and

enhances the expressive power of the model. For example, in

Fig. 1, the second column of �(1) and the third column of �(2)

are zero columns, which means the second latent dimension is

not associated with view 1 and the third is independent of view

2. Next, we discuss the design of each component of MvSL,

and formulate the whole optimization problem in the end.

3.1 Multi‑view NMF

The consensus principle is the fundamental principle in multi-

view learning [39–41]. MvSL jointly factorizes {�(v)}H

v=1
 into

different basis matrices {�(v)}H

v=1
 and a consensus encoding

matrix � [2, 4, 5]:

In this way, each item is forced to have the same encod-

ing under different views and the basis matrices of different

views are coupled together through � . However, the stand-

ard unsupervised NMF fails to guarantee that the learned

latent space captures the semantic structures of the data. In

what follows, we present the graph embedding regulariza-

tion on the encoding matrix �.

3.2 Graph embedding framework

The graph embedding framework defines two graphs for

regularization. The affinity graph Ga = {�,�
a} is an undi-

rected weighted graph with item set � as its vertex set, and

�
a
∈ ℝ

N×N as its weighted adjacency matrix which char-

acterizes the intra-class compactness. The penalty graph

Gp = {�,�
p} characterizes inter-class separability, where �p

denotes the weighted adjacency matrix for penalty relation-

ships. The graph embedding objectives are defined as follows:

where tr(⋅) denotes the trace of a matrix, N is the number of

items and �a
= �

a
−�

a is the graph Laplacian matrix for

G
a with the (i, i)-th element of the diagonal matrix �a equals

∑N

j=1
Wa

ij
 (�p is for Gp). Generally speaking, Eq. (2) means

items belonging to the same class should be near each other

(1)
min

{�(v)}H
v=1

,�

1

2

H�

v=1

‖�(v) − �
(v)
�‖2

F

s.t. U
(v)

ik
≥ 0, Vkj ≥ 0, ∀i, j, k, v.

(2)min
�

1

2

N�

i=1

N�

j=1

Wa
ij
‖�i − �j‖2

2
= min

�

1

2
tr[��a(�)

T
],

(3)max
�

1

2

N�

i=1

N�

j=1

W
p

ij
‖�i − �j‖2

2
= max

�

1

2
tr[��p(�)

T
],

in the learned latent space, while Eq. (3) tries to keep items

from different classes as distant as possible. However, only

with the nonnegative constraints Eq. (3) would diverge. Note

that there is an arbitrary scaling factor in solutions to prob-

lem (1): for any invertible K × K matrix � , we have

�(v)� = (�(v)�)(�−1�) . It means for any solution

⟨{�(v)}H

v=1
,�⟩ of (1), we can always find a proper � such that

⟨{�(v)�}H

v=1
,�−1�⟩ is an equivalent solution and all ele-

ments of �−1� are within [0, 1]. Therefore, without loss of

generality, we add the constraints {Vkj ≤ 1,∀k, j} on �.

The graph embedding framework can be instantiated by

a specification of Ga and Gp , or more concretely, �a and

�
p . Any graph definitions which can capture data seman-

tic structures could be used. In Sect. 4, we explore three

different specifications and analyze their advantages and

drawbacks. We will also present the multiple kernel learn-

ing method for nearest neighbor assessment therein.

3.3 Sparseness constraint

Since similarities among data items within a group may

share the same sparsity pattern, a structured sparseness regu-

larizer is added to the objective function to encourage some

basis column vectors in �(v) to become 0 [42]. This makes

view v independent of the latent dimensions which corre-

spond to these zeros-valued basis vectors. By employing

�1,q norm regularization, the interpretation of latent factors

could be improved. In this work, we choose q = 2 . �1,2 norm

of matrix � is defined as:

3.4 Objective function of MvSL

By synthesizing the above objectives, the optimization prob-

lem of MvSL is formulated as:

4 Graph embedding for multi‑view semantic
learning

We discuss three instantiations of the graph embedding

framework for capturing the semantic structures of multi-

view data, namely, Simple graph embedding (SGE), local

discriminant graph embedding (LDGE) and transductive

(4)‖�‖1,2 =

K�

k=1

‖�
k
‖2,

(5)

min
{�(v)}H

v=1
,�

1

2

H�

v=1

‖�(v) − �
(v)
�‖2

F
+ �

H�

v=1

‖�(v)‖1,2

+
�

2
{tr[��a

�
T] − tr[��p

�
T]}

s.t. U
(v)

ik
≥ 0, 1 ≥ Vkj ≥ 0, ∀i, j, k, v.

884 International Journal of Machine Learning and Cybernetics (2019) 10:879–895

1 3

graph embedding (TGE). The former two construct the affin-

ity graph and the penalty graph in labeled items while TGE

also takes unlabeled data into regularization.

4.1 Simple graph embedding

We first present a simple instantiation called SGE which

treats all the labeled items equally. Since we only consider

labeled items in SGE and LDGE, some additional notations

are defined as follows. Let �l
∈ ℝ

K×N
l

 , the first N l columns

of � , be the latent representation of the N l labeled items

and �u
∈ ℝ

K×N
u

 be the latent representation of the remain-

ing Nu unlabeled items (i.e. � = [�l
�

u] and N l
+ N

u
= N).

We denote the affinity graph and the penalty graph as Gal and

Gpl , respectively, where Gal = {�l
,�

al} and Gpl = {�l
,�

pl} .

The N l
× N

l weighted adjacency matrices �al and �pl are

defined as

where yi denotes the label of item i, N l
yi
 is the total number

of items with label yi . SGE imposes affinity/separation con-

straints on all pairs of intra-/inter-class items, so the affinity/

separation weights are normalized to balance the influence

of different classes and the influence of affinity/separation

constraints. Apparently, SGE is a coarse definition and items

coming from the same and different class are equally valued

in the affinity graph and the penalty graph, respectively. In

the next, we will present two fine instantiations of graph

embedding which characterize semantic structures in local

neighborhoods.

4.2 Local discriminant graph embedding

The idea of local discriminant embedding has been well

exploited and shown to achieve good data representation [21,

43, 44]. For LDGE, the entries in the weighted adjacency

matrices �al and �pl are defined as [21]

where N
+

ka
(i) indicates the index set of the ka nearest

neighbors of item i in the same class, and Nkp(y) is a set

of item pairs that are the kp nearest pairs among the set

(6)Wal
ij
=

{

1

N l
yi

−
1

N l
, if yi = yj

0, otherwise
,

(7)W
pl

ij
=

{

1

N l
, if yi ≠ yj

0, otherwise
,

(8)Wal
ij
=

{

1, if i ∈ N+

ka
(j) or j ∈ N+

ka
(i)

0, otherwise
,

(9)W
pl

ij
=

{

1, if (i, j) ∈ Nkp(yi) or (j, i) ∈ Nkp(yj)

0, otherwise
,

{(i, j), i ∈ �y, j ∉ �y} where �
y
 is the set of items with class

label y.

In LDGE, the affinity graph describes local affinity struc-

ture around each item and each item is connected to its N
ka

nearest neighbors of the same class. The penalty graph

describes the unfavored similarities relationship of inter-

class marginal items and the marginal item pairs of different

classes are connected.

Using the above two instantiations of graph embedding,

the supervised graph-preserving criteria can be written as

follows:

4.3 Transductive graph embedding

LDGE only uses label information to capture the local

semantic structure for the data but ignores the large amount

of unlabel items. The local geometric information in unla-

beled data has been shown to be useful for data representa-

tion learning [20]. Therefore, in TGE we use both labeled

items �l
∈ ℝ

K×N
l

 and unlabeled items �u
∈ ℝ

K×N
u

 to define

the weighted adjacency matrices �a and �p as follow [45]

where � is a real weight which is greater than 1, and N
ka
(i)

denotes the index set of the ka nearest neighbors of item i.

TGE simultaneously utilizes the partial label information

and manifold learning theory to construct the affinity graph.

The combination of local semantic structures and local geo-

metric structures could lead to a better data representation.

4.3.1 Comparison of SGE, LDGE and TGE

It is well accepted that data itmes from the same class may

have intra-class diversity and those from different classes

may share inter-class similarity. SGE ignores intra-class

diversity and inter-class similarity in that it imposes the

same affinity/penalty constraints on every intra-class pairs

and inter-class pairs, respectively. Squeezing intra-class

(10)min
�l

1

2

N l�

i=1

N l�

j=1

�
al
ij
‖�l

i
− �

l
j
‖2

2
= min

�l

1

2
tr[�l

�
a(�l)T],

(11)max
�l

1

2

N l�

i=1

N l�

j=1

�
pl

ij
‖�l

i
− �

l
j
‖2

2
= max

�l

1

2
tr[�l

�
p(�l)T].

(12)

Wa
ij
=

⎧
⎪
⎨
⎪
⎩

�, if i ∈ N+

ka
(j) or j ∈ N+

ka
(i)

1, if (i or j ∈ �
u) and (i ∈ Nka(j) or j ∈ Nka(i))

0, otherwise

,

(13)W
p

ij
=

{

�, if (i, j) ∈ Nkp(yi) or (j, i) ∈ Nkp(yj)

0, otherwise
,

885International Journal of Machine Learning and Cybernetics (2019) 10:879–895

1 3

variance may trouble the encoding learning since our pro-

jective function (defined implicity by the basis matrix) has

limited expressiveness power. Imposing the same penalty on

all pairs of items between two classes could make the objec-

tive function insensitive to important pairs on the margin

between the two classes. However, the merit of SGE is that

it is simple and efficient, i.e. no nearest neighbor compu-

tation. In comparison with SGE, LDGE only require item

pairs in local neighborhoods to be regularized, thus avoiding

the issues mentioned above. On the basis of LDGE, TGE

further takes full advantage of the whole dataset with mani-

fold constraints. While SGE and LDGE only exploit labeled

data, TGE also incorporates unlabeled data by adding affin-

ity constraints in local neighborhoods of all the data items.

In this way, the semantic information can be transferred from

labeled data to unlabeled data so that a better semantic rep-

resentation could be learned. Nevertheless, both LDGE and

TGE need nearest neighbor finding (in the labeled data and

the whole dataset respectively). Their time costs are much

higher than that of SGE. Hereafter, we refer to MvSL with

the three graph embedding instantiations, SGE, LDGE and

TGE, as MvSL-S, MvSL-L and MvSL-T, respectively.

The remaining question is how to estimate nearest neigh-

bors, which is a routine function for constructing Ga and Gp

in LDGE and TGE. Since real-life datasets are diverse and

noisy, single-view features may not be sufficient to charac-

terize the affinity relations among items. Hence, in the next

subsection we propose to use multiple features for assessing

the similarity between data items.

4.4 Multiple kernel learning

We develop a novel multiple kernel learning (MKL) [46, 47]

method for estimating nearest neighbors, where each kernel

function corresponds to a view. A kernel function measures

the similarity between items in terms of one view. We use

�v(i, j) to denote the kernel value between items i and j in

terms of view v. To make all kernel functions comparable,

we normalize each kernel function into [0, 1] as follows:

To obtain a comprehensive kernel function, we linearly com-

bine multiple kernels as follow:

where ��� = [�1,… , �
H
]T is the weight vector to be learned.

This combined kernel function can lead to better estima-

tion of similarity among items than any single kernel. For

(14)�v(i, j) ←
�v(i, j)

√

�v(i, i)�v(j, j)
.

(15)�(i, j,���) =

H
∑

v=1

�v�v(i, j),

H
∑

v=1

�v = 1, �v ≥ 0,

example, only relying on color information could not handel

images of concept “zebra” well since the background may

change arbitrarily, while adding texture information can bet-

ter characterize zebra images.

Then we need to design the criterion for learning ��� . Since

our goal is to model the semantic relations among items,

the learned kernel function should be accommodated to the

semantic structure among classes. We define an ideal kernel

to encode the semantic structure:

where yi denotes the label of item i. For each pair of items,

we require its combined kernel function value to conform

to the corresponding ideal kernel value. This leads to the

following least square loss

Summing l(i, j,���) over all pairs of labeled items, we could get

the optimization objective. However, in reality we would get

imbalanced classes: the numbers of labeled items for differ-

ent classes can be quite different. The item pairs contributed

by classes with much larger number of items will dominate

the overall loss. In order to tackle this issue, we normalize

the contribution of each pair of classes (including same-

class pairs) by its number of item pairs. This is equivalent

to multiplying each l(i, j,���) by a weight tij which is defined

as follows

where n
i
 denotes the number of items belonging to the

class with label yi . Therefore, the overall loss becomes
∑

i,j tijl(i, j,���) . To prevent overfitting, a L
2
 regularization

term is added for ��� . The final optimization problem is for-

mulated as

where � is a regularization tradeoff parameter. The optimiza-

tion problem of (19) is a classical quadratic programming

problem which can be solved efficiently using any convex

programming software. When ��� is obtained, we could assess

the similarity relationship between labeled items in terms of

multi-view features according to (15). Then, according to

(16)�ideal(i, j) =

{

1, if yi = yj

0, otherwise
,

(17)l(i, j,���) = (�(i, j,���) −�ideal(i, j))2

(18)�ij =

⎧
⎪
⎨
⎪
⎩

1

n2

i

, if yi = yj

1

2ninj

, otherwise
,

(19)

min
���

N l�

i,j=1

tijl(i, j,���) + �‖���‖2

2

s.t.

H�

v=1

�v = 1, �v ≥ 0

886 International Journal of Machine Learning and Cybernetics (2019) 10:879–895

1 3

Eqs. (12) and (13) we can construct the weighted adjacency

matrix �a and �p , respectively.

Algorithm 1: Optimization of MvSL

Data: {X(v)}H

v=1,α, β

Result: {U(v)}H

v=1,V

1 begin

2 Randomly initialize U
(v)
ik ≥ 0, 1 ≥ Vkj ≥ 0, ∀i, j, k, v.

3 repeat

4 Optimize problem (5) with respect to {U(v)}H
v=1 while keeping V fixed.

5 Optimize problem (5) with respect to V while keeping {U(v)}H
v=1 fixed.

6 until convergence or max no. iterations reached

7 end

5 Optimization

In this section, we will discuss how to optimize (5). When �

is fixed, (5) is convex in {�(v)}H

v=1
 , and vice versa. Thus, we

adopt a block coordinate descent method [25] which optimizes

one block of variables while fixing the other block, as shown

in Algorithm 1. For the convenience of description, we define

5.1 Optimizing {�(v)}H
v=1

When � is fixed, �(1),… ,�(H) are independent with one

another. Since the way of optimization is the same, we con-

centrate on an arbitrary view and use � and � to denote the

data matrix and the basis matrix for the view respectively. The

optimization problem involving � can be formulated as

Two parts of �(�) are both convex functions. The first part

of �(�) is differentiable and its gradient is Lipschitz continu-

ous. Hence, we propose an optimization algorithm based

on the composite gradient mapping technique proposed for

solving composite objective functions [48]. The core idea is

to minimize the auxiliary function and adjust the candidate

of the Lipschitz constant of the first part of �(�) iteratively.

In this way, we could decrease the objective function effec-

tively. Suppose f (�) =
1

2
‖� − ��‖2

F
 and �t be the value of

(20)

{(�(1)
,… ,�

(H)
,�)}

=
1

2

H�

v=1

‖�(v) − �
(v)
�‖2

F
+ �

H�

v=1

‖�(v)‖1,2

+
�

2
{tr[��a(�)T] − tr[��p(�)T]}

(21)
min
�

�(�) ∶=
1

2
‖� − ��‖2

F
+ �‖�‖1,2

s.t. U
ik
≥ 0, ∀i, k.

� in the t-th iteration. In our work, the auxiliary function of

(21) is formulated as

where L is the Lipschitz constant to be estimated, Lf , of f (⋅) ,

and ∇f (�t) is the gradient of f (⋅) at �t:

We could find the candidate for �t+1 which is denoted as

T
L
(�t) by minimizing m

L
(�t

;�) with the nonnegative

constraints:

We develop a linear time solver for (24). At first, we rewrite

m
L
(�t

;�) as follows:

The optimization problem (24) becomes

It is easy to see that (25) can be transformed as independ-

ent optimization subproblem for different columns of � .

Let � be an arbitrary column of � and � be the column of

(�t −
1

L
∇f (�t)) at the same index. The subproblem for this

column can be written as

This problem is proved [49] that it can be handled without

the nonnegativity constraints. Let [⋅]+ denote the element-

wise projection operator to nonnegative numbers. So (26)

can be transformed into

(22)

mL(�
t
;�) = f (�t) + tr

�
∇f (�t)T (� − �

t)
�

+
L

2
‖� − �

t‖2

F
+ �‖�‖1,2,

(23)∇f (�t) = �
t
��

T − ��
T
.

(24)T
L
(�t) = arg min

Uik≥0,∀i,k
m

L
(�t;�)

mL(�
t
;�)

=
L

2
‖� − �

t‖2

F
+ tr

�
∇f (�t)T�

�
+ �‖�‖1,2 + f (�t)

=
L

2

�
‖� − �

t‖2

F
+

2

L
tr
�
∇f (�t)T�

�
+

1

L2
‖∇f (�t)‖2

F

�

+ �‖�‖1,2 + f (�t) −
1

2L
‖∇f (�t)‖2

F

=
L

2
‖� − �

t +
1

L
∇f (�t)‖2

F
+ �‖�‖1,2 + const.

(25)
min
�

L

2
‖� − �

t +
1

L
∇f (�t)‖2

F
+ �‖�‖1,2

s.t. Uik ≥ 0, ∀i, k.

(26)
min
�

1

2
‖� − �‖2

2
+

�

L
‖�‖2

s.t. u
i
≥ 0, ∀i.

(27)min
�

1

2
‖� − [�]+‖

2

2
+

�

L
‖�‖

2
.

887International Journal of Machine Learning and Cybernetics (2019) 10:879–895

1 3

This transformation is important since (27) can be solved via

Fenchel duality [50, 51] as follows.

Define � as the dual variable. We have:

which is equivalent to the following problem

Moreover, � satisfies the relation � = [�]+ − � . Thus, by

solving (28) we can easily obtain a solution for (27). Appar-

ently (28) can be solved simply by normalization.

5.2 Optimizing �

When {�(v)}H

v=1
 are fixed, the subproblem for � can be writ-

ten as

(29) is a bounded non-negative quadratic programming

problem for � . Sha et al. [52] developed a general multi-

plicative optimization scheme for this type of problems.

Inspired by [52], we propose a multiplicative update algo-

rithm for optimizing �.

At first, we rewrite the first term of �(�) as:

Fo r c o nve n i e n c e , l e t � =
∑H

v=1
(�(v))T�(v) a n d

� =
∑H

v=1
(�(v))T�(v) . Equation (29) can be transformed into

min
�

�
1

2
‖� − [�]+‖2

2
+

�

L
‖�‖2

�

= min
�

max
�

�
�

T ([�]+ − �) −
1

2
‖�‖2

2
+

�

L
‖�‖2

�

= max
�

min
�

�
−�T

� +
�

L
‖�‖2 + �

T [�]+ −
1

2
‖�‖2

2

�

= max
�

�
�

T [�]+ −
1

2
‖�‖2

2
s.t.‖�‖2 ≤

�

L

�
,

(28)min
�

1

2
‖� − [�]+‖

2

2
s.t.‖�‖

2
≤

�

L
.

(29)

min
�

�(�) ∶=

�
1

2

H�

v=1

‖�(v) − �
(v)
�‖2

F

+
�

2
{tr[��a

�
T] − tr[��p

�
T]}

�

s.t. 1 ≥ Vkj ≥ 0, ∀j, k.

1

2

H�

v=1

‖�(v) − �
(v)
�‖2

F

=
1

2

H�

v=1

tr[�T (�(v))T�(v)
�]

− 2tr[�T (�(v))T�(v)] + const.

The second term is linear term for � . We only need to focus

on the quadratic terms which can be represented as follows

where �j and �̄
k
 represent the j-th column vector and k-th row

vector of � , respectively. Each summand in Eqs. (31) and

(32) is a quadratic function of a vector variable. Therefore,

we can obtain upper bounds for these summands:

where we let �t denote the value of � in the t-th iteration of

the update algorithm and �t
j
 , �̄t

k
 represent its j-th column vec-

tor and k-th row vector, respectively. Gathering the bounds

for all the summands, we have the auxiliary function for

(�):

(30)

min
�

1

2
tr[�T��] − tr[�T�]

+
�

2
{tr[��a�T] − tr[��p�T]}

s.t.1 ≥ Vkj ≥ 0, ∀j, k.

(31)
1

2
tr[�T

��] =
1

2

N
∑

j=1

�j
T
��j,

(32)

�

2
{tr[��a

�
T] − tr[��p

�
T]}

=
�

2

K
∑

k=1

{�̄T
k
(�a +�

p)�̄k − �̄
T
k
(�p +�

a)�̄k},

(�j)
T
��j ≤

K
∑

k=1

(��t
j
)k

V t
kj

(Vkj)
2,

(�̄k)
T (�a +�

p)�̄k ≤

N
∑

j=1

((�a +�
p)�̄t

k
)j

V t
kj

(Vkj)
2,

− (�̄k)
T (�p +�

a)�̄k

≤ −
∑

i,j

(�p +�
a)ijV

t
ki

V t
kj

(

1 + log
VkiVkj

V t
ki

V t
kj

)

,

(33)

(�t;�)

=
1

2

N
∑

j=1

K
∑

k=1

(��t
j
)k + �((�a +�

p)�̄t
k
)j

V t
kj

(Vkj)
2

−
�

2

K
∑

k=1

∑

i,j

(�p +�
a)ijV

t
ki

V t
kj

(

1 + log
VkiVkj

V t
ki

V t
kj

)

−

N
∑

j=1

K
∑

k=1

QkjVkj.

888 International Journal of Machine Learning and Cybernetics (2019) 10:879–895

1 3

The estimate of � in the (t + 1)-th iteration is then computed

as

Differentiating (�t
;�) with respect to each Vkj , we have

Setting �(�t;�)∕�Vkj = 0 , we get the update rule for �

I t i s n o t d i f f i c u l t t o f i n d o u t

(�t+1) ≤ (�t;�t+1) ≤ (�t;�t) = (�t) . Therefore, the

update rule for � monotonically decreases Eq. (5).

5.3 Optimizing MvSL‑S and MvSL‑L

It is obvious that MvSL-S and MvSL-L have the same objec-

tive function, which can be formulated as:

It is easy to see that the update rule of � in (39) is the same

as that in (5) and the update rule of �l in (39) is the same as

� in (5). We will optimize �u in (39) as follow.

Similarly, the auxiliary function for u(�u) can be derived

(34)�
t+1 = arg min

�

(�t;�).

�(�t
;�)

�Vkj

=
(��t

j
)k + �((�a +�

p)�̄t
k
)j

V t
kj

Vkj

−
�((�p +�

a)�̄t
k
)j

Vkj

V t
kj
− Qkj

(35)V t+1

kj
= min

⎧⎪⎨⎪⎩
1, V t

kj

−Bkj +

�
B2

kj
+ 4AkjCkj

2Akj

⎫
⎪⎬⎪⎭

,

(36)Akj = (��t
j
)k + �((�a +�

p)�̄t
k
)j,

(37)Bkj = −Qkj,

(38)Ckj = �((�p +�
a)�̄t

k
)j.

(39)

min
{�(v)}H

v=1
,�

1

2

H�

v=1

‖�(v) − �
(v)
�‖2

F
+ �

H�

v=1

‖�(v)‖1,2

+
�

2
{tr[�l

�
a(�l)T] − tr[�l

�
p(�l)T]}

s.t. U
(v)

ik
≥ 0, 1 ≥ Vkj ≥ 0, ∀i, j, k, v.

(40)

u(�u,t
;�

u) =
1

2

Nu

∑

j=1

K
∑

k=1

(��
u,t

j
)k

V
u,t

kj

(Vu
kj
)2 −

Nu

∑

j=1

K
∑

k=1

Qu
kj

Vu
kj

and the update rule can be obtained by setting the partial

derivatives to 0:

Algorithm 2: Composite Gradient Mapping

Input: ηu > 1, ηd > 1: scaling parameters for L

1 begin

2 Initialize U0
ik ≥ 0, ∀i, k, and L0 : 0 < L0 ≤ Lf .

3 t = 0

4 repeat

5 repeat

6 L = Lt

7 Optimize (24) to get TL(Ut)

8 if φ(TL(Ut)) > mL(Ut; TL(Ut)) then

9 L = Lηu

10 end

11 until φ(TL(Ut)) ≤ mL(Ut; TL(Ut))

12 Ut+1 = TL(Ut)

13 Lt+1 = max(L0, L/ηd)

14 t = t + 1

15 until convergence

16 end

5.4 Computational complexity

The major space cost of MvCL is due to the matrices

{�(v)}H

v=1
 , � , �a and �p , which is O(K(

∑H

v=1
M

v
+ N) + 2N

2) .

Nearest neighbor graph needs O(N2
∑H

v=1
M

v
) to construct.

The time complexity of main algorithm consists of two

parts, corresponding to the subproblems for {�(v)}H

v=1
 and �

respectively. For optimizing each �(v) , we need to run Algo-

rithm 2. The core step is the optimization of (24), which

requires solving (26) for each column of �(v) . The cost of

solving (26) for a column of �(v) is O(M
v
) , so the total cost

of solving (24) is O(M
v
K) . In the outer loop of Algorithm 2

we also need to compute ∇f (�) (O(M
v
K

2) if we pre-compute

��
T and �(v)

�
T). Assume we run T iterations of the outer

loop of Algorithm 2, and the total number of iterations of

the inner loop is upper bounded by 2(T + 1) + log2

Lf

L0

 [48].

T h e m a j o r c o s t fo r o p t i m i z i n g �
(v) i s

O(MvK(2(T + 1) + log
2

Lf

L
0

) + TMvK2) . Regarding � , let N be

the number of items. In each iteration, we need to compute

three matrices for � (Eqs. (36)–(38)): � (O(NK
2 + N

2
K)), �

(O(NK)) and � (O(N2
K)). Combining these pieces and the

costs of Eqs.(35) together, the major cost for optimizing �

is O(T �(NK + NK
2 + N

2
K)) , where T ′ is the number of itera-

tions. The comparison of time complexity between different

algorithms is described in Table 1.

(41)V
u,t+1

kj
= min

{
1, V

u,t

kj

Qu
kj
− |Qu

kj
|

2(��
u,t

j
)k

}

889International Journal of Machine Learning and Cybernetics (2019) 10:879–895

1 3

6 Experiment

In this section, we conduct the experiments on two real-

world data sets to validate the effectiveness of the proposed

algorithm MvSL.

6.1 Data set

We use three real-world datasets to evaluate the proposed

factorization method.

The first dataset came from the Reuters Multilingual

collection [53]. Totally 111,740 Reuters news documents

comprised the test collection, which were written in five

different languages (English, French, German, Spanish and

Italian). Documents belonging to more than one of the six

categories were assigned to the smallest category. Each

document was translated into the other four languages

and represented as a bag of words using a TFIDF-based

weighting scheme. We randomly choosed 1800 documents,

with 300 for each category. For each document, we took

English, Italian and Spanish translations as the first, sec-

ond and third views respectively.

The second dataset came from Microsoft Research

Asia Internet Multimedia Dataset 2.0 (MSRA-MM 2.0)

[54]. MSRA-MM 2.0 consists of 1011738 images that

were collected from 1165 query concepts in Microsoft

Bing Search. Each concept has approximately 500–1000

images. For each image, its relevance to the corresponding

query was labeled with 3 levels: very relevant, relevant

and irrelevant. 7 feature types were extracted for each

image. We choosed 25 query concepts from the Animal,

Object and Scene branches, and then randomly selected

200 images from each concept while removing irrelevant

images. We selected 4 type features as 4 different views:

64D HSV color histogram, 144D color correlogram, 75D

edge distribution histogram and 128D wavelet texture.

The third dataset was constructed from ImageNet [55], an

image dataset organized according to the WordNet hierarchy.

Currently, there are more than 100,000 synsets in WordNet

are indexed and each synset included more than 500 images

on average. We randomly select 50 leaf synsets in the hier-

archy as categories and randomly choosed 200 images from

each candidate synset. Three different features of this dataset

were 64D HSV histogram, 1000D bag of SIFT visual words,

and 512D GIST descriptors. The statistics of these datasets

are summarized in Table 2.

6.2 Evaluation methodology

To validate the performance of our method, we compare the

proposed MvSL with the following baselines:

• NMF [13].

• Feature concatenation (ConcatNMF): This method con-

structs new data matrix by concatenating the features

of all the views and then applies NMF to the new data

matrix.

• Multi-view NMF (MultiNMF): MultiNMF [5] is an

unsupervised multi-view NMF algorithm.

• Semi-supervised Unified Latent Factor method (SULF):

SULF [14] is a semi-supervised multi-view nonnegative

factorization method which factorizes partial label infor-

mation as a constraint on �l.

• Graph regularized NMF (GNMF): GNMF [20] is a

graph regularized version of NMF. We spread it to the

multi-view case and constructed the affinity graph for

approximating data manifolds with the within-class affin-

Table 1 Comparison of time

complexity
Graph construction Main algorithm

MvSL-S NULL
O

(

MvK

(

2(T + 1) + log
2

Lf

L
0

)

+ TMvK2

)

+ O(T �(NK + NK2 + (N l)2K))

MvSL-L O((N l)
2 ∑H

v=1
M

v
)

O

(

MvK

(

2(T + 1) + log
2

Lf

L
0

)

+ TMvK2

)

+ O(T �(NK + NK2 + (N l)2K))

MvSL-T O(N2
∑H

v=1
M

v
)

O

(

MvK

(

2(T + 1) + log
2

Lf

L
0

)

+ TMvK2

)

+ O(T �(NK + NK2 + N2K))

Table 2 Statistics of the datasets

Dataset Size # of categories Dimensionality of views

Reuters 1800 6 21,531/15,506/11,547

MM2.0 5000 25 64/144/75/128

imgNet 10,000 50 64/1000/512

890 International Journal of Machine Learning and Cybernetics (2019) 10:879–895

1 3

ity graph defined in Eq. (8) to make it a semi-supervised

method on multi-view data.

• Multi-view NMF with fisher discriminant analysis

(MvFisher): MvFisher is a semi-supervised multi-view

learning method. Firstly, MvFisher factorized mult-view

data by Eq. (1), and then used fisher’s discriminant analy-

sis with partially labeled latent subspace (i.e. �l).

Since the large-margin based multi-view learning methods

ignore the intra-class semantic structures of the data, the latent

subspace learned by this kind of methods will acquire inferior

representation compared with MvFisher and MvSL. It is to

see that the first three are unsupervised methods while the last

three are semi-supervised methods.

We evaluated the seven factorization methods by classifica-

tion and clustering. For three datasets, we varied the percent-

age of training items from 10 to 50%. We generated five ran-

dom train-test splits and run each method on each split three

times. The averaged performance and standard deviation were

reported. In case the method has parameters, we tuned the

parameters on a separate random split. The dimensionalities

of the latent space were empirically set to 50, 100 and 150, for

Reuters, MM2.0 and imageNet respectively.

We exploited the learned latent representations of different

methods for classification and clustering. For classification, the

training items were imported to a kNN classifier (k = 9). For

clustering, k-means was used as the clustering method. Due

to semi-supervised methods exploiting the label information

of training data, we just applied clustering on test items for

fairness. accuracy and normalized mutual information (NMI)

are adppted to evaluate clustering performance, whose defini-

tions are as follows:

where �(x, y) is the indicator function that �(x, y) = 1 if x = y

and �(x, y) = 0 otherwise. map(ri) is the permutation map-

ping function that maps cluster label r
i
 to the equivalent

cluster label from the data corpus. The best mapping can be

obtained by the Kuhn-Munkres algorithm [56]. H(C) and

H(C†) denotes the entropy of cluster set C and C† respec-

tively. And MI(C, C
†) is the mutual information between

C and C†:

where p(ci) represents the probability that a randomly

selected item from all testing items belongs to cluster c
i
 , and

p(ci, c
†

j
) stands for the joint probability that any arbitrarily

selected item is in c
i
 and c†

j
 simultaneously.

6.3 Experiment results

Tables 3, 4 and 5 show the classification performance of

different factorization methods on MM2.0, Reuters and

imageNet, respectively. As we can see, multi-view learn-

ing methods outperform single view learning methods and

semi-supervised methods outperform unsupervised methods.

On the other hand, directly constrained multi-view learning

(42)Accuracy =

∑n

i=1
�(si, map(ri))

n
,

(43)NMI(C, C
†) =

MI(C, C
†)

max(H(C), H(C†))
,

(44)MI(C, C†) =
∑

ci∈C,c
†

j
∈C†

p(ci, c
†

j
) log2

p(ci, c
†

j
)

p(ci)p(c
†

j
)
.

Table 3 Classification performance of different factorization methods on the Reuters dataset (accuracy ± std. dev., %)

Labeled % NMF-b ConcatNMF MultiNMF SULF GNMF MvFisher MvSL-S MvSL-L MvSL-T

10 61.55 ± 1.08 63.04 ± 1.67 63.69 ± 1.52 67.93 ± 1.92 68.93 ± 1.77 68.58 ± 1.15 69.67 ± 1.64 70.56 ± 1.21 71.67 ± 1.32

20 65.71 ± 1.37 66.09 ± 1.08 67.42 ± 1.97 68.40 ± 1.64 70.59 ± 1.65 70.80 ± 1.31 71.56 ± 1.32 72.67 ± 1.02 73.56 ± 1.28

30 67.30 ± 0.27 68.40 ± 1.91 69.16 ± 1.52 70.05 ± 1.48 71.80 ± 1.24 72.95 ± 1.46 73.28 ± 1.23 74.78 ± 1.34 75.67 ± 1.36

40 68.41 ± 1.96 69.81 ± 1.96 70.28 ± 1.83 71.86 ± 1.38 72.23 ± 1.54 74.11 ± 0.95 74.24 ± 1.52 75.87 ± 1.26 76.22 ± 1.20

50 70.44 ± 1.72 70.75 ± 2.03 71.81 ± 1.47 72.78 ± 1.44 73.78 ± 1.75 75.98 ± 0.87 76.80 ± 0.57 77.33 ± 0.79 78.56 ± 0.63

Table 4 Classification performance of different factorization methods on the MM2.0 dataset (accuracy ± std dev, %)

Labeled % NMF-b ConcatNMF MultiNMF SULF GNMF MvFisher MvSL-S MvSL-L MvSL-T

10 24.56 ± 0.98 27.41 ± 0.83 26.26 ± 0.95 27.47 ± 1.03 28.03 ± 1.17 28.15 ± 0.84 29.76 ± 0.89 30.92 ± 0.44 31.52 ± 0.58

20 25.37 ± 0.85 31.24 ± 0.93 30.39 ± 1.12 30.94 ± 1.25 31.55 ± 1.14 31.67 ± 1.31 32.96 ± 1.04 33.83 ± 1.52 34.12 ± 1.27

30 26.09 ± 0.71 32.47 ± 0.80 31.85 ± 0.87 33.13 ± 0.87 34.15 ± 0.51 33.92 ± 1.52 34.36 ± 0.73 35.80 ± 0.68 36.16 ± 0.67

40 28.03 ± 0.46 34.25 ± 0.71 33.48 ± 0.65 34.94 ± 0.65 35.26 ± 0.97 35.75 ± 0.85 36.20 ± 0.56 37.12 ± 0.73 37.68 ± 0.43

50 28.06 ± 0.28 35.08 ± 0.48 34.33 ± 0.56 36.32 ± 0.56 37.28 ± 0.48 37.33 ± 0.72 37.48 ± 0.52 38.16 ± 0.65 38.62 ± 0.41

891International Journal of Machine Learning and Cybernetics (2019) 10:879–895

1 3

methods (MvSL) have an advantage over the implicitly

constrained ones. The detailed observations are revealed as

follows.

• Semi-supervised algorithms are superior to unsupervised

algorithms in general, which denoted that using label

information could obtain better discriminative structures

in the latent spaces.

• Multi-view algorithms are more preferable for multi-view

data. This is in accord with the results of previous multi-

view learning work.

• MvSL, MvFisher and GNMF show superior performance

over SULF. SULF models partial label information as a

factorization constraint on �l
, which can be viewed as

indirect affinity constraints on encoding of within-class

items. On the contrary, the graph embedding terms in

MvSL, MvFisher and GNMF impose direct affinity con-

straints on item encodings and therefore could be favor

to learn more explicit semantic structures in the learned

latent spaces.

• MvFisher shows superior performance over GNMF.

MvFisher takes into account both the variance between

the classes and the variance within the classes , but

GNMF ignores the variance between the classes. So

MvFisher could lead to a better semantic structures in

the learned latent spaces.

• MvSL methods outperform other algorithms under all

cases. On the one hand, MvSL methods do not need the

datasets obey gaussian distribution; on the other hand,

MvSL methods utilize the partial label information to

construct a graph embedding framework, which encour-

aged items of the same category to be near with each

other and kept items belonging to different categories as

distant as possible in the latent subspace. What’s more,

MvSL methods allow each latent dimension in the latent

subspace to be correlative with a subset of views by

imposing �1,2-norm on each basis �(v) . Therefore, MvSL

methods can learn flexible latent factor sharing among

multi-view data.

• The performance of MvSL-T is better than that of MvSL-

L and MvSL-S. The reason is that MvSL-T exploits not

only label information but also unlabel information via

a graph embedding framework. These properties could

help MvSL-T to learn a clearer semantic latent space. We

performed F-test for 5 × 2 cross-validation with signifi-

cance level 0.05. The results indicated that MvSL was

significantly superior over all the baselines, MvSL-T was

superior than MvSL-L and MvSL-L was superior than

MvSL-S.

• The clustering results are shown in Figs. 2 and 3,

for Reuters and MM2.0 respectively. The observations

were very similar to those for the classification results.

According to F-test with significance level 0.05, we

found MvSL outperformed the baseline methods under

all cases, MvSL-T was superior than MvSL-L and

MvSL-L was superior than MvSL-S.

In Table 6, we compare MvSL to related methods with

important properties.

Table 5 Classification performance of different factorization methods on the imageNet dataset (accuracy ± std dev, %)

Labeled % NMF-b ConcatNMF MultiNMF SULF GNMF MvFisher MvSL-S MvSL-L MvSL-T

10 12.90 ± 0.98 17.15 ± 0.83 16.37 ± 0.95 19.95 ± 1.03 21.59 ± 0.81 20.79 ± 0.45 20.40 ± 0.30 21.12 ± 0.37 21.24 ± 0.73

20 14.54 ± 0.85 20.03 ± 0.93 20.29 ± 1.12 22.55 ± 1.25 24.61 ± 0.48 25.06 ± 0.89 25.73 ± 0.49 25.90 ± 0.59 26.33 ± 1.45

30 15.93 ± 0.71 22.07 ± 0.80 22.31 ± 0.87 23.79 ± 0.87 25.72 ± 0.86 26.26 ± 0.46 27.81 ± 0.62 28.23 ± 0.45 28.51 ± 0.47

40 17.21 ± 0.46 23.28 ± 0.71 23.79 ± 0.65 24.37 ± 0.65 26.72 ± 0.75 27.11 ± 0.43 29.15 ± 0.71 29.24 ± 0.71 30.86 ± 0.58

50 18.08 ± 0.28 24.32 ± 0.48 24.59 ± 0.56 25.29 ± 0.56 27.41 ± 1.04 28.33 ± 0.53 30.76 ± 0.93 31.04 ± 0.96 31.80 ± 0.46

1 2 3 4 5
0.2

0.4

0.6

0.8

1

Percentage of Labeled Data (%)

A
c
c
u
ra

c
y

NMF−b ConcatNMF MultiNMF SULF GNMF MvFisher MvSL−S MvSL−L MvSL−T

(a)

1 2 3 4 5
0

0.2

0.4

0.6

Percentage of Labeled Data (%)

N
M

I
NMF−b ConcatNMF MultiNMF SULF GNMF MvFisher MvSL−S MvSL−L MvSL−T

(b)

Fig. 2 Clustering performance of different methods on Reuters. Error

bars represent standard deviations

892 International Journal of Machine Learning and Cybernetics (2019) 10:879–895

1 3

6.4 Parameter sensitive analysis

There are two essential parameters in new methods. � con-

trols the importance of the semi-supervised part of MvSL,

while � measures the sparsity degree of the basis matri-

ces. We study their influence on MvSL’s performance by

changing one parameter while keeping the other parameter

constant.

The results are shown in Figs. 4 and 5 for Reuters and

MM2.0 respectively. It is easy to see that the general behav-

ior of the two parameters was the same: when increasing the

parameter from 0, the performance curves went up firstly and

then went down. This denotes that when assigned appropri-

ate weights, the sparseness and semi-supervised constraints

really promote to learn a better latent subspace. On the one

hand, the models performance was not very sensitive to the

value of � . MvSL achieved its best performance when �

was in [15, 25] and [10, 20] for Reuters and MM2.0 respec-

tively. On the other hand, � ’s impact in Reuters seemed to be

weaker than its impact in image datasets. The reason may be

that in Reuters � prevailed the performance boost (as shown

in Fig. 4a). Based observations, we set � = 15 , � = 0.02 for

other experiments. As to real number � in (12), we found

that when � = 2 experiments have well performance.

1 2 3 4 5
0.2

0.25

0.3

0.35

0.4

Percentage of Labeled Data (%)

A
c
c
u

ra
c
y

NMF−b ConcatNMF MultiNMF SULF GNMF MvFisher MvSL−S MvSL−L MvSL−T

(a)

1 2 3 4 5
0.2

0.25

0.3

0.35

Percentage of Labeled Data (%)

N
M

I

NMF−b ConcatNMF MultiNMF SULF GNMF MvFisher MvSL−S MvSL−L MvSL−T

(b)

Fig. 3 Clustering performance of different methods on MM2.0. Error

bars represent standard deviations

Table 6 Comparison between MvSL and related works

NMF-b ConcatNMF MultiNMF SULF GNMF MvFisher MvSL-S MvSL-L MvSL-T

Feature learning
√ √ √ √ √ √ √ √ √

Locality
√ √ √

Discriminability
√ √ √ √ √

Sparseness
√ √ √

Transductivity
√

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

α

P
e

rf
o

rm
a

n
c
e

Classification Accuracy
Clustering Accuracy
NMI

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06

0.4

0.5

0.6

0.7

0.8

β

P
e

rf
o

rm
a

n
c
e

Classification Accuracy
Clustering Accuracy
NMI

(b)

Fig. 4 Influence of different parameter settings on the performance of MvSL in the Reuters dataset: a varying � while setting � = 0.02 , b vary-

ing � while setting � = 15

893International Journal of Machine Learning and Cybernetics (2019) 10:879–895

1 3

As we described, MvSL uses ka nearest neighbor graph

and kp nearest neighbor graph to character the intra-class

and inter-class relationship, respectively. The affinity graph

of MvSL relies on how the assumption that two neighbor-

ing items share the same label. Obviously this assumption

is more likely to fail as ka increases. The observations of kp

was very similar to ka. This is the reason why the perfor-

mance of MvSL decreases as ka or kp increases, as shown

in Fig. 6.

7 Conclusion

In this paper, we have proposed a novel nonnegative latent

representation learning algorithm, called Multi-view

semantic learning (MvSL), for representation learning

with multi-view data. MvSL efficiently learns a latent sub-

space embedded in multiple views based on non-negative

matrix factorization. A graph embedding framework was

constructed by both partial label information and unlabel

information, which encouraged items came from same cat-

egory to be near with each other and kept items belonging

to various categories as distant as possible. What’s more,

a novel multiple kernel learning method effectively esti-

mated the items pair similarity among multi-view data,

which further extended graph embedding framework.

Another property of MvSL was that it encourages each

latent dimension of learned latent subspace only to be

associated with a subset of views by imposing �1,2-norm

on each basis �(v) . Therefore, MvSL is able to learn a more

meaningful latent subspace shared across the views. An

efficient multiplicative-based iterative algorithm is devel-

oped to solve the proposed optimization problem. We used

three real-world datasets to evaluate the empirical per-

formance of MvSL. Experimental results indicated that

MvSL was effective and outperformed baseline methods.

Acknowledgements This research was supported by the National High-

tech R&D Program of China (863 Program) (No. 2014AA015201),

National Natural Science Foundation of China (Nos. 61373118,

0 10 20 30 40 50 60

0.3

0.32

0.34

0.36

0.38

0.4

α

P
e

rf
o

rm
a

n
c
e

Classification Accuracy
Clustering Accuracy
NMI

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

β

P
e

rf
o

rm
a

n
c
e

Classification Accuracy
Clustering Accuracy
NMI

(b)

Fig. 5 Influence of different parameter settings on the performance of MvSL in the MM2.0 dataset: a varying � while setting � = 0.02 , b vary-

ing � while setting � = 15

1 2 3 4 5 6 7 8 9
0.2

0.4

0.6

0.8

1

Ka

A
c
c
u
ra

c
y

MM2.0

Reuters

(a)

1 2 3 4 5 6 7 8 9
0.2

0.4

0.6

0.8

1

Kp

A
c
c
u
ra

c
y

MM2.0

Reuters

(b)

Fig. 6 The performance of MvSL decreases as ka and kp increases: a varying ka while setting kp = 3 , b varying kp while setting ka = 5

894 International Journal of Machine Learning and Cybernetics (2019) 10:879–895

1 3

61672409), the Major Basic Research Project of Shaanxi Province

(Grant No. 2017ZDJC-31), Changjiang Scholars and Innovative

Research Team in University of Ministry of Education of China (Grant

No. IRT-17R87), and the Science and Technology Plan Program in

Shaanxi Province of China (Grant No. 2017KJXX-80).

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecom-

mons.org/licenses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided you give appropriate

credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

References

 1. Hotelling H (1936) Relations between two sets of variates. Biom-

etrika 28(3/4):321–377

 2. Jia Y, Salzmann M, Darrell T (2010) Factorized latent spaces with

structured sparsity. In: Advances in neural information processing

systems, pp 982–990

 3. Han Y, Wu F, Tao D, Shao J, Zhuang Y, Jiang J (2012) Sparse

unsupervised dimensionality reduction for multiple view data.

IEEE Trans Circuits Syst Video Technol 22(10):1485–1496

 4. Kalayeh M, Idrees H, Shah M (2014) Nmf-knn: image annotation

using weighted multi-view non-negative matrix factorization. In:

Proceedings of the IEEE conference on computer vision and pat-

tern recognition, pp 184–191

 5. Liu J, Wang C, Gao J, Han J (2013) Multi-view clustering via joint

nonnegative matrix factorization. Proc SDM 13:252–260

 6. Chen N, Zhu J, Xing EP (2010) Predictive subspace learning for

multi-view data: a large margin approach. In: Advances in neural

information processing systems, pp 361–369

 7. Hong C, Yu J, You J, Chen X, Tao D (2015) Multi-view ensemble

manifold regularization for 3D object recognition. Inf Sci Int J

320(C):395–405

 8. Shon A, Grochow K, Hertzmann A, Rao RP (2005) Learning

shared latent structure for image synthesis and robotic imita-

tion. In: Advances in neural information processing systems, pp

1233–1240

 9. Xu C, Tao D, Li Y, Xu C (2015) Large-margin multi-view gauss-

ian process. Multimed Syst 21(2):147–157

 10. Xia T, Tao D, Mei T, Zhang Y (2010) Multiview spectral

embedding. IEEE Trans Syst Man Cybern Part B Cybern

40(6):1438–1446

 11. Tao D, Hong C, Yu J, Wan J, Wang M (2015) Multimodal deep

autoencoder for human pose recovery. IEEE Trans Image Process

Publ IEEE Signal Process Soc 24(12):5659

 12. Hong C, Yu J, Tao D, Wang M (2015) Image-based three-dimen-

sional human pose recovery by multiview locality-sensitive sparse

retrieval. IEEE Trans Ind Electron 62(6):3742–3751

 13. Lee DD, Seung HS (1999) Learning the parts of objects by non-

negative matrix factorization. Nature 401(6755):788–791

 14. Jiang Y, Liu J, Li Z, Lu H (2014) Semi-supervised unified

latent factor learning with multi-view data. Mach Vis Appl

25(7):1635–1645

 15. Chen N, Zhu J, Sun F, Xing EP (2012) Large-margin predictive

latent subspace learning for multiview data analysis. Pattern Anal

Mach Intell IEEE Trans 34(12):2365–2378

 16. Diethe T, Hardoon DR, Shawe-Taylor J (2008) Multiview fisher

discriminant analysis. In: NIPS workshop on learning from mul-

tiple sources

 17. Chen Q, Sun S (2009) Hierarchical multi-view fisher discriminant

analysis In: Neural Information processing. Springer, pp 289–298

 18. Diethe T, Hardoon DR, Shawe-Taylor J (2010) Constructing non-

linear discriminants from multiple data views. In: Machine learn-

ing and knowledge discovery in databases. Springer, pp 328–343

 19. Kan M, Shan S, Zhang H, Lao S, Chen X (2012) Multi-view dis-

criminant analysis In: Computer vision—ECCV 2012. Springer,

pp 808–821

 20. Cai D, He X, Han J, Huang TS (2011) Graph regularized non-

negative matrix factorization for data representation. IEEE Trans

Pattern Anal Mach Intell 33(8):1548–1560

 21. Yan S, Xu D, Zhang B, Zhang H-J, Yang Q, Lin S (2007) Graph

embedding and extensions: a general framework for dimensional-

ity reduction. Pattern Anal Mach Intell IEEE Trans 29(1):40–51

 22. Liu J, Jiang Y, Li Z, Zhou Z-H, Lu H (2015) Partially shared latent

factor learning with multiview data. IEEE Trans Neural Netw

Learn Syst 26(6):1233–1246

 23. Huang J, Zhang T (2010) The benefit of group sparsity. Ann Stat

38(4):1978–2004

 24. Yuan M, Lin Y (2006) Model selection and estimation in regres-

sion with grouped variables. J R Stat Soc 68(1):49–67

 25. Lin C-J (2007) Projected gradient methods for nonnegative matrix

factorization. Neural Comput 19(10):2756–2779

 26. Blum A, Mitchell T (1998) Combining labeled and unlabeled data

with co-training. In: Proceedings of the eleventh annual confer-

ence on computational learning theory, pp 92–100

 27. Rupnik J, Shawe-Taylor J (2010) Multi-view canonical correla-

tion analysis. In: Conference on data mining and data warehouses

(SiKDD 2010), pp 1–4

 28. Yuan Y-H, Sun Q-S, Zhou Q, Xia D-S (2011) A novel multiset

integrated canonical correlation analysis framework and its appli-

cation in feature fusion. Pattern Recognit 44(5):1031–1040

 29. Kumar A, Rai P, Daume H (2011) Co-regularized multi-view

spectral clustering. In: Advances in neural information process-

ing systems, pp 1413–1421

 30. Balcan M-F, Blum A, Yang K (2004) Co-training and expansion:

Towards bridging theory and practice. In: Advances in neural

information processing systems, pp 89–96

 31. Chen W-S, Zhao Y, Pan B, Chen B (2016) Supervised kernel non-

negative matrix factorization for face recognition. Neurocomput-

ing 205:165–181

 32. Lu Z-M, Li B, Ji Q-G, Tan Z-F, Zhang Y (2015) Robust video

identification approach based on local non-negative matrix fac-

torization. AEU Int J Electron Commun 69(1):82–89

 33. Hidru D, Goldenberg A (2014) EquiNMF: graph regularized

multiview nonnegative matrix factorization. arXiv preprint

arXiv:1409.4018

 34. Guan Z, Zhang L, Peng J, Fan J (2015) Multi-view concept

learning for data representation. IEEE Trans Knowl Data Eng

27(11):3016–3028

 35. Yang J, Yang S, Fu Y, Li X, Huang T (2008) Non-negative graph

embedding. In: IEEE conference on computer vision and pattern

recognition, CVPR 2008. IEEE, pp 1–8

 36. Zhang H, Zha Z-J, Yang Y, Yan S, Chua T-S (2014) Robust

(semi) nonnegative graph embedding. IEEE Trans Image Process

23(7):2996–3012

 37. Shi J, Jiang Z, Feng H (2014) Adaptive graph embedding discri-

minant projections. Neural Process Lett 40(3):211–226

 38. Guo Y, Ding X, Xue J-H (2015) Milda: a graph embedding

approach to multi-view face recognition. Neurocomputing

151:1255–1261

 39. Xu C, Tao D, Xu C (2013) A survey on multi-view learning. arXiv

preprint arXiv:1304.5634

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1409.4018
http://arxiv.org/abs/1304.5634

895International Journal of Machine Learning and Cybernetics (2019) 10:879–895

1 3

 40. Peng C, Gao X, Wang N et al (2016) Multiple representations-

based face sketch-photo synthesis. IEEE Trans Neural Netw Learn

Syst 27(11): 2201–2215

 41. Luo Y, Tao D, Ramamohanarao K, Xu C (2015) Tensor canonical

correlation analysis for multi-view dimension reduction. Knowl

Data Eng IEEE Trans 27(11):3111–3124

 42. Kim J, Monteiro RDC, Park H (2012) Group sparsity in nonnega-

tive matrix factorization. In: SDM

 43. Chen H-T, Chang H-W, Liu T-L (2005) Local discriminant embed-

ding and its variants. In: IEEE computer society conference on

computer vision and pattern recognition, vol 2. IEEE, pp 846–853

 44. Zhang H, Zha Z-J, Yan S, Wang M, Chua T-S (2012) Robust non-

negative graph embedding: towards noisy data, unreliable graphs,

and noisy labels. In: CVPR. IEEE, pp 2464–2471

 45. Ramamurthy KN, Thiagarajan JJ, Sattigeri P, Spanias A (2012)

Learning dictionaries with graph embedding constraints. In: 2012

conference record of the forty sixth Asilomar conference on sig-

nals, systems and computers (ASILOMAR). IEEE, pp 1974–1978

 46. Shawe-Taylor N, Kandola A (2002) On kernel target alignment.

Adv Neural Inf Process Syst 14:367

 47. He J, Chang S-F, Xie L (2008) Fast kernel learning for spatial

pyramid matching. In: IEEE conference on computer vision and

pattern recognition, CVPR 2008. IEEE, pp 1–7

 48. Nesterov Y (2013) Gradient methods for minimizing composite

functions. Math Progr 140(1):125–161

 49. Kim J, Monteiro R, Park H (2012) Group sparsity in nonnegative

matrix factorization. In: SDM, SIAM, pp 851–862

 50. Bach F, Jenatton R, Mairal J et al (2011) Convex optimization with

sparsity-inducing norms. Optim Mach Learn 5:19–53

 51. Borwein JM, Lewis AS (2010) Convex analysis and nonlinear

optimization: theory and examples. Springer Science & Business

Media, New York

 52. Sha F, Lin Y, Saul LK, Lee DD (2007) Multiplicative updates

for nonnegative quadratic programming. Neural Comput

19(8):2004–2031

 53. Amini M, Usunier N, Goutte C (2009) Learning from multiple

partially observed views-an application to multilingual text cat-

egorization. In: Advances in neural information processing sys-

tems, pp 28–36

 54. Li H, Wang M, Hua X-S (2009) Msra-mm 2.0: a large-scale web

multimedia dataset In: IEEE international conference on data min-

ing workshops. IEEE, pp 164–169

 55. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Ima-

genet: a large-scale hierarchical image database In: IEEE confer-

ence on computer vision and pattern recognition, CVPR 2009.

IEEE, pp 248–255

 56. Lovasz L, Plummer MD (1986) Matching theory. North Holland,

Amsterdam

	Graph-regularized multi-view semantic subspace learning
	Abstract
	1 Introduction
	2 Related work
	2.1 Label exploitation in multi-view subspace learning
	2.2 NMF and multi-view extensions
	2.3 Graph embedding

	3 Multi-view semantic learning
	3.1 Multi-view NMF
	3.2 Graph embedding framework
	3.3 Sparseness constraint
	3.4 Objective function of MvSL

	4 Graph embedding for multi-view semantic learning
	4.1 Simple graph embedding
	4.2 Local discriminant graph embedding
	4.3 Transductive graph embedding
	4.3.1 Comparison of SGE, LDGE and TGE

	4.4 Multiple kernel learning

	5 Optimization
	5.1 Optimizing
	5.2 Optimizing
	5.3 Optimizing MvSL-S and MvSL-L
	5.4 Computational complexity

	6 Experiment
	6.1 Data set
	6.2 Evaluation methodology
	6.3 Experiment results
	6.4 Parameter sensitive analysis

	7 Conclusion
	Acknowledgements
	References

