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Abstract—Matrix factorization techniques have been frequently applied in information retrieval, computer vision and pattern recog-
nition. Among them, Non-negative Matrix Factorization (NMF) has received considerable attention due to its psychological and
physiological interpretation of naturally occurring data whose representation may be parts-based in the human brain. On the other hand,
from the geometric perspective, the data is usually sampled from a low dimensional manifold embedded in a high dimensional ambient
space. One hopes then to find a compact representation which uncovers the hidden semantics and simultaneously respects the intrinsic
geometric structure. In this paper, we propose a novel algorithm, called Graph Regularized Non-negative Matrix Factorization (GNMF),
for this purpose. In GNMF, an affinity graph is constructed to encode the geometrical information, and we seek a matrix factorization
which respects the graph structure. Our empirical study shows encouraging results of the proposed algorithm in comparison to the
state-of-the-art algorithms on real world problems.

Index Terms—Non-negative Matrix Factorization, Graph Laplacian, Manifold Regularization, Clustering.
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1 INTRODUCTION

The techniques for matrix factorization have become
popular in recent years for data representation. In many
problems in information retrieval, computer vision and
pattern recognition, the input data matrix is of very
high dimension. This makes learning from example infea-
sible [15]. One hopes then to find two or more lower
dimensional matrices whose product provides a good
approximation to the original one. The canonical matrix
factorization techniques include LU-decomposition, QR-
decomposition, Vector Quantization, and Singular Value
Decomposition (SVD).

SVD is one of the most frequently used matrix factor-
ization techniques. A singular value decomposition of
an M ×N matrix X has the following form:

X = UΣVT ,

where U is an M ×M orthogonal matrix, V is an N ×N
orthogonal matrix, and Σ is an M ×N diagonal matrix
with Σij = 0 if i 6= j and Σii ≥ 0. The quantities Σii are
called the singular values of X, and the columns of U and
V are called left and right singular vectors, respectively.
By removing those singular vectors corresponding to
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sufficiently small singular values, we get a low-rank
approximation to the original matrix. This approxima-
tion is optimal in terms of the reconstruction error and
thus optimal for data representation when Euclidean
structure is concerned. For this reason, SVD has been
applied to various real world applications, such as face
recognition (Eigenface, [40]) and document representation
(Latent Semantic Indexing, [11]).

Previous studies have shown that there is psycho-
logical and physiological evidence for parts-based rep-
resentation in the human brain [34], [41], [31]. The
Non-negative Matrix Factorization (NMF) algorithm is
proposed to learn the parts of objects like human faces
and text documents [33], [26]. NMF aims to find two
non-negative matrices whose product provides a good
approximation to the original matrix. The non-negative
constraints lead to a parts-based representation because
they allow only additive, not subtractive, combinations.
NMF has been shown to be superior to SVD in face
recognition [29] and document clustering [42]. It is opti-
mal for learning the parts of objects.

Recently, various researchers (see [39], [35], [1], [36],
[2]) have considered the case when the data is drawn
from sampling a probability distribution that has sup-
port on or near to a submanifold of the ambient space.
Here, a d-dimensional submanifold of a Euclidean space
R

M is a subsetMd ⊂ R
M which locally looks like a flat d-

dimensional Euclidean space [28]. In order to detect the
underlying manifold structure, many manifold learning
algorithms have been proposed, such as Locally Linear
Embedding (LLE) [35], ISOMAP [39], and Laplacian
Eigenmap [1]. All these algorithms use the so-called
locally invariant idea [18], i.e., the nearby points are



2

likely to have similar embeddings. It has been shown
that learning performance can be significantly enhanced
if the geometrical structure is exploited and the local
invariance is considered.

Motivated by recent progress in matrix factorization
and manifold learning [2], [5], [6], [7], in this paper
we propose a novel algorithm, called Graph regularized
Non-negative Matrix Factorization (GNMF), which ex-
plicitly considers the local invariance. We encode the ge-
ometrical information of the data space by constructing
a nearest neighbor graph. Our goal is to find a parts-
based representation space in which two data points are
sufficiently close to each other if they are connected in
the graph. To achieve this, we design a new matrix fac-
torization objective function and incorporate the graph
structure into it. We also develop an optimization scheme
to solve the objective function based on iterative updates
of the two factor matrices. This leads to a new parts-
based data representation which respects the geometrical
structure of the data space. The convergence proof of our
optimization scheme is provided.

It is worthwhile to highlight several aspects of the
proposed approach here:

1) While the standard NMF fits the data in a Euclidean
space, our algorithm exploits the intrinsic geometry
of the data distribution and incorporates it as an ad-
ditional regularization term. Hence, our algorithm
is particularly applicable when the data is sampled
from a submanifold which is embedded in high
dimensional ambient space.

2) Our algorithm constructs a nearest neighbor graph
to model the manifold structure. The weight matrix
of the graph is highly sparse. Therefore, the multi-
plicative update rules for GNMF are very efficient.
By preserving the graph structure, our algorithm
can have more discriminating power than the stan-
dard NMF algorithm.

3) Recent studies [17], [13] show that NMF is closely
related to Probabilistic Latent Semantic Analysis
(PLSA) [21]. The latter is one of the most popular
topic modeling algorithms. Specifically, NMF with
KL-divergence formulation is equivalent to PLSA
[13]. From this viewpoint, the proposed GNMF ap-
proach also provides a principled way for incorpo-
rating the geometrical structure into topic modeling.

4) The proposed framework is a general one that can
leverage the power of both NMF and graph Lapla-
cian regularization. Besides the nearest neighbor in-
formation, other knowledge (e.g., label information,
social network structure) about the data can also be
used to construct the graph. This naturally leads to
other extensions (e.g., semi-supervised NMF).

The rest of the paper is organized as follows: in Section
2, we give a brief review of NMF. Section 3 introduces
our algorithm and provides a convergence proof of our
optimization scheme. Extensive experimental results on
clustering are presented in Section 4. Finally, we provide

some concluding remarks and suggestions for future
work in Section 5.

2 A BRIEF REVIEW OF NMF
Non-negative Matrix Factorization (NMF) [26] is a ma-
trix factorization algorithm that focuses on the analysis
of data matrices whose elements are nonnegative.

Given a data matrix X = [x1, · · · , xN ] ∈ R
M×N , each

column of X is a sample vector. NMF aims to find
two non-negative matrices U = [uik] ∈ R

M×K and
V = [vjk] ∈ R

N×K whose product can well approximate
the original matrix X.

X ≈ UVT .

There are two commonly used cost functions that
quantifies the quality of the approximation. The first
one is the square of the Euclidean distance between
two matrices (the square of the Frobenius norm of two
matrices difference) [33]:

O1 = ‖X−UVT ‖2 =
∑

i,j

(

xij −
K
∑

k=1

uikvjk

)2

. (1)

The second one is the “divergence” between two matri-
ces [27]:

O2 = D(X||UVT ) =
∑

i,j

(

xij log
xij
yij
− xij + yij

)

(2)

where Y = [yij ] = UVT . This cost function is referred
to as “divergence” of X from Y instead of “distance”
between X and Y because it is not symmetric. In other
words, D(X||Y) 6= D(Y||X). It reduces to the Kullback-
Leibler divergence, or relative entropy, when

∑

ij xij =
∑

ij yij = 1, so that X and Y can be regarded as
normalized probability distributions. We will refer O1 as
F-norm formulation and O2 as divergence formulation
in the rest of the paper.

Although the objective function O1 in Eq. (1) and
O2 in Eq. (2) are convex in U only or V only, they
are not convex in both variables together. Therefore it
is unrealistic to expect an algorithm to find the global
minimum of O1 (or, O2). Lee & Seung [27] presented two
iterative update algorithms. The algorithm minimizing
the objective function O1 in Eq. (1) is as follows:

uik ← uik

(

XV
)

ik
(

UVT V
)

ik

, vjk ← vjk

(

XT U
)

jk
(

VUT U
)

jk

The algorithm minimizing the objective function O2 in
Eq. (2) is:

uik ← uik

∑

j (xijvjk/
∑

k uikvjk)
∑

j vjk

vjk ← vjk

∑

i (xijuik/
∑

k uikvjk)
∑

i uik

It is proved that the above two algorithms will find local
minima of the objective functions O1 and O2 [27].
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In reality, we have K ≪ M and K ≪ N . Thus, NMF
essentially tries to find a compressed approximation of
the original data matrix. We can view this approximation
column by column as

xj ≈

K
∑

k=1

ukvjk (3)

where uk is the k-th column vector of U. Thus, each
data vector xj is approximated by a linear combination
of the columns of U, weighted by the components of V.
Therefore U can be regarded as containing a basis that
is optimized for the linear approximation of the data in
X. Let zTj denote the j-th row of V, zj = [vj1, · · · , vjk]

T .
zj can be regarded as the new representation of the j-
th data point with respect to the new basis U. Since
relatively few basis vectors are used to represent many
data vectors, a good approximation can only be achieved
if the basis vectors discover structure that is latent in the
data [27].

The non-negative constraints on U and V only allow
additive combinations among different bases. This is the
most significant difference between NMF and the other
matrix factorization methods, e.g., SVD. Unlike SVD, no
subtractions can occur in NMF. For this reason, it is
believed that NMF can learn a parts-based representation
[26]. The advantages of this parts-based representation
have been observed in many real world problems such
as face analysis [29], document clustering [42] and DNA
gene expression analysis [3].

3 GRAPH REGULARIZED NON-NEGATIVE MA-
TRIX FACTORIZATION

By using the non-negative constraints, NMF can learn
a parts-based representation. However, NMF performs
this learning in the Euclidean space. It fails to discover
the intrinsic geometrical and discriminating structure
of the data space, which is essential to the real-world
applications. In this section, we introduce our Graph
regularized Non-negative Matrix Factorization (GNMF) al-
gorithm which avoids this limitation by incorporating a
geometrically based regularizer.

3.1 NMF with Manifold Regularization

Recall that NMF tries to find a set of basis vectors
that can be used to best approximate the data. One
might further hope that the basis vectors can respect
the intrinsic Riemannian structure, rather than ambient
Euclidean structure. A natural assumption here could
be that if two data points xj , xl are close in the intrinsic
geometry of the data distribution, then zj and zl, the
representations of this two points with respect to the
new basis, are also close to each other. This assumption
is usually referred to as local invariance assumption [1],
[19], [7], which plays an essential role in the development
of various kinds of algorithms including dimensionality

reduction algorithms [1] and semi-supervised learning
algorithms [2], [46], [45].

Recent studies in spectral graph theory [9] and mani-
fold learning theory [1] have demonstrated that the local
geometric structure can be effectively modeled through
a nearest neighbor graph on a scatter of data points.
Consider a graph with N vertices where each vertex
corresponds to a data point. For each data point xj ,
we find its p nearest neighbors and put edges between
xj and its neighbors. There are many choices to define
the weight matrix W on the graph. Three of the most
commonly used are as follows:

1) 0-1 weighting. Wjl = 1 if and only if nodes j and
l are connected by an edge. This is the simplest
weighting method and is very easy to compute.

2) Heat kernel weighting. If nodes j and l are con-
nected, put

Wjl = e−
‖xj−xl‖

2

σ

Heat kernel has an intrinsic connection to the
Laplace Beltrami operator on differentiable func-
tions on a manifold [1].

3) Dot-product weighting. If nodes j and l are con-
nected, put

Wjl = xT
j xl

Note that, if x is normalized to 1, the dot product
of two vectors is equivalent to the cosine similarity
of the two vectors.

The Wjl is used to measure the closeness of two points
xj and xl. The different similarity measures are suitable
for different situations. For example, the cosine similar-
ity (Dot-product weighting) is very popular in the IR
community (for processing documents). While for image
data, the heat kernel weight may be a better choice. Since
Wjl in our paper is only for measuring the closeness, we
do not treat the different weighting schemes separately.

The low dimensional representation of xj with respect
to the new basis is zj = [vj1, · · · , vjk]

T . Again, we can
use either Euclidean distance

d(zj , zl) = ‖zj − zl‖
2

or divergence

D(zj ||zl) =

K
∑

k=1

(

vjk log
vjk
vlk
− vjk + vlk

)

,

to measure the “dissimilarity” between the low dimen-
sional representations of two data points with respect to
the new basis.

With the above defined weight matrix W, we can use
the following two terms to measure the smoothness of
the low dimensional representation.

R2 =
1

2

N
∑

j,l=1

(

D(zj ||zl) +D(zl||zj)
)

Wjl

=
1

2

N
∑

j,l=1

K
∑

k=1

(

vjk log
vjk
vlk

+ vlk log
vlk
vjk

)

Wjl.

(4)
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and

R1 =
1

2

N
∑

j,l=1

‖zj − zl‖
2Wjl

=

N
∑

j=1

zT
j zjDjj −

N
∑

j,l=1

zTj zlWjl

= Tr(VT DV)− Tr(VT WV) = Tr(VT LV),

(5)

where Tr(·) denotes the trace of a matrix and D is a
diagonal matrix whose entries are column (or row, since
W is symmetric) sums of W, Djj =

∑

l Wjl. L = D−W,
which is called graph Laplacian [9].

By minimizing R1 (or, R2), we expect that if two data
points xj and xl are close (i.e. Wjl is big), zj and zl are
also close to each other. Combining this geometrically
based regularizer with the original NMF objective func-
tion leads to our Graph regularized Non-negative Matrix
Factorization (GNMF).

Given a data matrix X = [xij ] ∈ R
M×N , Our GNMF

aims to find two non-negative matrices U = [uik] ∈
R

M×K and V = [vjk] ∈ R
N×K . Similar to NMF, we can

also use two “distance” measures here. If the Euclidean
distance is used, GNMF minimizes the objective function
as follows:

O1 = ‖X−UVT ‖2 + λTr(VT LV). (6)

If the divergence is used, GNMF minimizes

O2 =

M
∑

i=1

N
∑

j=1

(

xij log
xij

∑K

k=1 uikvjk
− xij +

K
∑

k=1

uikvjk
)

+
λ

2

N
∑

j=1

N
∑

l=1

K
∑

k=1

(

vjk log
vjk
vlk

+ vlk log
vlk
vjk

)

Wjl

(7)

Where the regularization parameter λ ≥ 0 controls the
smoothness of the new representation.

3.2 Updating Rules Minimizing Eq. (6)

The objective function O1 and O2 of GNMF in Eq. (6)
and Eq. (7) are not convex in both U and V together.
Therefore it is unrealistic to expect an algorithm to find
the global minima. In the following, we introduce two
iterative algorithms which can achieve local minima.

We first discuss how to minimize the objective func-
tion O1, which can be rewritten as:

O1 = Tr
(

(X−UVT )(X−UVT )T
)

+ λTr(VT LV)

= Tr
(

XXT
)

− 2Tr
(

XVUT
)

+Tr
(

UVT VUT
)

+ λTr(VT LV)

(8)

where the second equality applies the matrix properties
Tr(AB) = Tr(BA) and Tr(A) = Tr(AT ). Let ψik and
φjk be the Lagrange multiplier for constraint uik ≥ 0
and vjk ≥ 0 respectively, and Ψ = [ψik], Φ = [φjk], the
Lagrange L is

L = Tr
(

XXT
)

− 2Tr
(

XVUT
)

+Tr
(

UVT VUT
)

+ λTr(VT LV) + Tr(ΨUT ) + Tr(ΦVT )
(9)

The partial derivatives of L with respect to U and V are:

∂L

∂U
= −2XV + 2UVT V +Ψ (10)

∂L

∂V
= −2XT U + 2VUT U + 2λLV +Φ (11)

Using the KKT conditions ψikuik = 0 and φjkvjk = 0, we
get the following equations for uik and vjk:

−
(

XV
)

ik
uik +

(

UVT V
)

ik
uik = 0 (12)

−
(

XT U
)

jk
vjk +

(

VUT U
)

jk
vjk + λ

(

LV
)

jk
vjk = 0 (13)

These equations lead to the following updating rules:

uik ← uik

(

XV
)

ik
(

UVT V
)

ik

(14)

vjk ← vjk

(

XT U + λWV
)

jk
(

VUT U + λDV
)

jk

(15)

Regarding these two updating rules, we have the
following theorem:

Theorem 1: The objective function O1 in Eq. (6) is
nonincreasing under the updating rules in Eq. (14) and
(15).

Please see the Appendix for a detailed proof for the
above theorem. Our proof essentially follows the idea
in the proof of Lee and Seung’s paper [27] for the
original NMF. Recent studies [8], [30] show that Lee and
Seung’s multiplicative algorithm [27] cannot guarantee
the convergence to a stationary point. Particularly, Lin
[30] suggests minor modifications on Lee and Seung’s
algorithm which can converge. Our updating rules in
Eq. (14) and (15) are essentially similar to the updating
rules for NMF and therefore Lin’s modifications can also
be applied.

When λ = 0, it is easy to check that the updating rules
in Eq. (14) and (15) reduce to the updating rules of the
original NMF.

For the objective function of NMF, it is easy to check
that if U and V are the solution, then, UD, VD−1 will
also form a solution for any positive diagonal matrix
D. To eliminate this uncertainty, in practice people will
further require that the Euclidean length of each column
vector in matrix U (or V) is 1 [42]. The matrix V (or
U) will be adjusted accordingly so that UVT does not
change. This can be achieved by:

uik ←
uik

√

∑

i u
2
ik

, vjk ← vjk

√

∑

i

u2ik (16)

Our GNMF also adopts this strategy. After the mul-
tiplicative updating procedure converges, we set the
Euclidean length of each column vector in matrix U to 1
and adjust the matrix V so that UVT does not change.
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3.3 Connection to Gradient Descent Method

Another general algorithm for minimizing the objective
function of GNMF in Eq. (6) is gradient descent [25].
For our problem, gradient descent leads to the following
additive update rules:

uik ← uik + ηik
∂O1

∂uik
, vjk ← vjk + δjk

∂O1

∂vjk
(17)

The ηik and δjk are usually referred as step size param-
eters. As long as ηik and δjk are sufficiently small, the
above updates should reduce O1 unless U and V are at
a stationary point.

Generally speaking, it is relatively difficult to set these
step size parameters while still maintaining the non-
negativity of uik and vjk. However, with the special
form of the partial derivatives, we can use some tricks
to set the step size parameters automatically. Let ηik =
−uik/2

(

UVT V
)

ik
, we have

uik + ηik
∂O1

∂uik
= uik −

uik

2
(

UVT V
)

ik

∂O1

∂uik

= uik −
uik

2
(

UVT V
)

ik

(

−2
(

XV
)

ik
+ 2
(

UVT V
)

ik

)

= uik

(

XV
)

ik
(

UVT V
)

ik

(18)

Similarly, let δjk = −vjk/2
(

VUT U + λDV
)

jk
, we have

vjk + δjk
∂O1

∂vjk
= vjk −

vjk

2
(

VUT U + λDV
)

jk

∂O1

∂vjk

= vjk −
vjk

2
(

VUT U + λDV
)

jk

(

− 2
(

XT U
)

jk

+ 2
(

VUT U
)

jk
+ 2λ

(

LV
)

jk

)

= vjk

(

XT U + λWV
)

jk
(

VUT U + λDV
)

jk

(19)

Now it is clear that the multiplicative updating rules
in Eq. (14) and Eq. (15) are special cases of gradient
descent with an automatic step parameter selection.
The advantage of multiplicative updating rules is the
guarantee of non-negativity of U and V. Theorem 1 also
guarantees that the multiplicative updating rules in Eq.
(14) and (15) converge to a local optimum.

3.4 Updating Rules Minimizing Eq. (7)

For the divergence formulation of GNMF, we also have
two updating rules which can achieve a local minimum
of Eq. (7).

uik ← uik

∑

j (xijvjk/
∑

k uikvjk)
∑

j vjk
(20)

vk ←

(

∑

i

uikI + λL

)

−1

















v1k
∑

i

(

xi1uik/
∑

k
uikv1k

)

v2k
∑

i

(

xi2uik/
∑

k
uikv2k

)

...

vNk

∑

i

(

xiNuik/
∑

k
uikvNk

)

















,

(21)

where vk is the k-th column of V and I is an N × N
identity matrix.

Similarly, we have the following theorem:
Theorem 2: The objective function O2 in Eq. (7) is non-

increasing with the updating rules in Eq. (20) and (21).
The objective function is invariant under these updates
if and only if U and V are at a stationary point.

Please see the Appendix for a detailed proof. The
updating rules in this subsection (minimizing the di-
vergence formulation of Eq. (7)) are different from the
updating rules in Section 3.2 (minimizing the F-norm
formulation). For the divergence formulation of NMF,
previous studies [16] successfully analyzed the conver-
gence property of the multiplicative algorithm [27] from
EM algorithm’s maximum likelihood point of view. Such
analysis is also valid in the GNMF case.

When λ = 0, it is easy to check that the updating
rules in (20) and (21) reduce to the updating rules of the
original NMF.

3.5 Computational Complexity Analysis

In this subsection, we discuss the extra computational
cost of our proposed algorithm in comparison to stan-
dard NMF. Specifically, we provide the computational
complexity analysis of GNMF for both F-Norm and KL-
Divergence formulations.

The common way to express the complexity of one
algorithm is using big O notation [10]. However, this is
not precise enough to differentiate between the complex-
ities of GNMF and NMF. Thus, we count the arithmetic
operations for each algorithm.

Based on the updating rules, it is not hard to count the
arithmetic operations of each iteration in NMF. We sum-
marize the result in Table 1. For GNMF, it is important
to note that W is a sparse matrix. If we use a p-nearest
neighbor graph, the average nonzero elements on each
row of W is p. Thus, we only need NpK flam (a floating-
point addition and multiplication) to compute WV. We
also summarize the arithmetic operations for GNMF in
Table 1.

The updating rule (Eq. 21) in GNMF with the di-
vergence formulation involves inverting a large matrix
∑

i uikI + λL. In reality, there is no need to actually
compute the inversion. We only need to solve the linear
equations system as follows:

(

∑

i

uikI + λL

)

vk =

















v1k
∑

i

(

xi1uik/
∑

k uikv1k

)

v2k
∑

i

(

xi2uik/
∑

k uikv2k

)

...

vNk

∑

i

(

xiNuik/
∑

k uikvNk

)
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TABLE 1
Computational operation counts for each iteration in NMF and GNMF

F-norm formulation
fladd flmlt fldiv overall

NMF 2MNK + 2(M +N)K2 2MNK + 2(M +N)K2 + (M +N)K (M +N)K O(MNK)

GNMF
2MNK + 2(M +N)K2 2MNK + 2(M +N)K2 + (M +N)K

(M +N)K O(MNK)
+N(p+ 3)K +N(p+ 1)K

Divergence formulation
fladd flmlt fldiv overall

NMF 4MNK + (M +N)K 4MNK + (M +N)K 2MN + (M +N)K O(MNK)

GNMF
4MNK + (M + 2N)K 4MNK + (M +N)K

2MN +MK O
(

(

M+q(p+4)
)

NK
)

+q(p+ 4)NK +Np+ q(p+ 4)NK

fladd: a floating-point addition flmlt: a floating-point multiplication fldiv: a floating-point division
N : the number of sample points M : the number of features K: the number of factors
p: the number of nearest neighbors q: the number of iterations in CG

Since matrix
∑

i uikI+λL is symmetric, positive-definite
and sparse, we can use the iterative algorithm Conju-
gate Gradient (CG) [20] to solve this linear system of
equations very efficiently. In each iteration, CG needs
to compute the matrix-vector products in the form of
(
∑

i uikI+λL)p. The remaining work load of CG in each
iteration is 4N flam. Thus, the time cost of CG in each
iteration is pN + 4N . If CG stops after q iterations, the
total time cost is q(p+4)N . CG converges very fast, usu-
ally within 20 iterations. Since we need to solve K linear
equations systems, the total time cost is q(p+ 4)NK.

Besides the multiplicative updates, GNMF also needs
O(N2M) to construct the p-nearest neighbor graph. Sup-
pose the multiplicative updates stops after t iterations,
the overall cost for NMF (both formulations) is

O(tMNK). (22)

The overall cost for GNMF with F-norm formulation is

O(tMNK +N2M) (23)

and the cost for GNMF with divergence formulation is

O
(

t
(

M + q(p+ 4)
)

NK +N2M
)

. (24)

4 EXPERIMENTAL RESULTS

Previous studies show that NMF is very powerful for
clustering, especially in the document clustering and
image clustering tasks [42], [37]. It can achieve similar
or better performance than most of the state-of-the-
art clustering algorithms, including the popular spectral
clustering methods [32], [42].

Assume that a document corpus is comprised of K
clusters each of which corresponds to a coherent topic.
To accurately cluster the given document corpus, it is
ideal to project the documents into a K-dimensional
semantic space in which each axis corresponds to a
particular topic [42]. In this semantic space, each doc-
ument can be represented as a linear combination of
the K topics. Because it is more natural to consider
each document as an additive rather than a subtractive
mixture of the underlying topics, the combination coef-
ficients should all take non-negative values [42]. These

TABLE 2
Statistics of the three data sets

dataset size (N ) dimensionality (M ) # of classes (K)
COIL20 1440 1024 20

PIE 2856 1024 68
TDT2 9394 36771 30

values can be used to decide the cluster membership.
In appearance-based visual analysis, an image may be
also associated with some hidden parts. For example,
a face image can be thought of as a combination of
nose, mouth, eyes, etc. It is also reasonable to require
the combination coefficients to be non-negative. This is
the main motivation of applying NMF on document and
image clustering. In this section, we also evaluate our
GNMF algorithm on document and image clustering
problems.

For the purpose of reproducibility, we provide the
code and data sets at:
http://www.zjucadcg.cn/dengcai/Data/GNMF.html

4.1 Data Sets

Three data sets are used in the experiment. Two of them
are image data sets and the third one is a document
corpus. The important statistics of these data sets are
summarized below (see also Table 2):

• The first data set is COIL20 image library, which
contains 32×32 gray scale images of 20 objects
viewed from varying angles.

• The second data set is the CMU PIE face database,
which contains 32×32 gray scale face images of 68
persons. Each person has 42 facial images under
different light and illumination conditions.

• The third data set is the NIST Topic Detection and
Tracking (TDT2) corpus. The TDT2 corpus consists
of data collected during the first half of 1998 and
taken from 6 sources, including 2 newswires (APW,
NYT), 2 radio programs (VOA, PRI) and 2 television
programs (CNN, ABC). It consists of 11201 on-topic
documents which are classified into 96 semantic
categories. In this experiment, those documents ap-
pearing in two or more categories were removed,

http://www.zjucadcg.cn/dengcai/Data/GNMF.html
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TABLE 3
Clustering performance on COIL20

K
Accuracy (%) Normalized Mutual Information (%)

Kmeans PCA NCut NMF GNMF Kmeans PCA NCut NMF GNMF
4 83.0±15.2 83.1±15.0 89.4±11.1 81.0±14.2 93.5±10.1 74.6±18.3 74.4±18.2 83.4±15.1 71.8±18.4 90.9±12.7
6 74.5±10.3 75.5±12.2 83.6±11.3 74.3±10.1 92.4±6.1 73.2±11.4 73.1±12.1 80.9±11.6 71.9±11.6 91.1±5.6
8 68.6±5.7 70.4±9.3 79.1±7.7 69.3±8.6 84.0±9.6 71.8±6.8 72.8±8.3 79.1±6.6 71.0±7.4 89.0±6.5
10 69.6±8.0 70.8±7.2 79.4±7.6 69.4±7.6 84.4±4.9 75.0±6.2 75.1±5.2 81.3±6.0 73.9±5.7 89.2±3.3
12 65.0±6.8 64.3±4.6 74.9±5.5 69.0±6.3 81.0±8.3 73.1±5.6 72.5±4.6 78.6±5.1 73.3±5.5 88.0±4.9
14 64.0±4.9 67.3±6.2 71.5±5.6 67.6±5.6 79.2±5.2 73.3±4.2 74.9±4.9 78.1±3.8 73.8±4.6 87.3±3.0
16 64.0±4.9 64.1±4.9 70.7±4.1 66.0±6.0 76.8±4.1 74.6±3.1 74.5±2.7 78.0±2.8 73.4±4.2 86.5±2.0
18 62.7±4.7 62.3±4.3 67.2±4.1 62.8±3.7 76.0±3.0 73.7±2.6 73.9±2.5 76.3±3.0 72.4±2.4 85.8±1.8
20 63.7 64.3 69.6 60.5 75.3 73.4 74.5 77.0 72.5 87.5

Avg. 68.3 69.1 76.2 68.9 82.5 73.6 74.0 79.2 72.7 88.4

TABLE 4
Clustering performance on PIE

K
Accuracy (%) Normalized Mutual Information (%)

Kmeans PCA NCut NMF GNMF Kmeans PCA NCut NMF GNMF
10 29.0±3.7 29.8±3.3 82.5±8.6 57.8±6.3 80.3±8.7 34.8±4.1 35.8±3.9 88.0±5.2 66.2±4.0 86.1±5.5
20 27.9±2.2 27.7±2.4 75.9±4.4 62.0±3.5 79.5±5.2 44.9±2.4 44.7±2.8 84.8±2.4 77.2±1.7 88.0±2.8
30 26.1±1.3 26.5±1.7 74.4±3.6 63.3±3.7 78.9±4.5 48.4±1.8 48.8±1.5 84.3±1.2 80.4±1.1 89.1±1.6
40 25.4±1.4 25.6±1.6 70.4±2.9 63.7±2.4 77.1±3.2 50.9±1.7 50.9±1.8 82.3±1.2 82.0±1.1 88.6±1.2
50 25.0±0.8 24.6±1.0 68.2±2.2 65.2±2.9 75.7±3.0 52.6±0.8 51.9±1.3 81.6±1.0 83.4±0.9 88.8±1.1
60 24.2±0.8 24.6±0.7 67.7±2.1 65.1±1.4 74.6±2.7 53.0±1.0 53.4±0.9 80.9±0.6 84.1±0.5 88.7±0.9
68 23.9 25.0 65.9 66.2 75.4 55.1 54.7 80.3 85.8 88.6

Avg 25.9 26.3 73.6 63.3 77.4 48.5 48.6 83.6 79.9 88.3

TABLE 5
Clustering performance on TDT2

K
Accuracy (%) Normalized Mutual Information (%)

Kmeans SVD NCut NMF GNMF Kmeans SVD NCut NMF GNMF
5 80.8±17.5 82.7±16.0 96.4±0.7 95.5±10.2 98.5±2.8 78.1±19.0 76.8±20.3 93.1±3.9 92.7±14.0 94.2±8.9
10 68.5±15.3 68.2±13.6 88.2±10.8 83.6±12.2 91.4±7.6 73.1±13.5 69.2±14.0 83.4±11.1 82.4±11.9 85.6±9.2
15 64.9±8.7 65.3±7.2 82.1±11.2 79.9±11.7 93.4±2.7 74.0±7.9 71.8±8.9 81.1±9.8 82.0±9.2 88.0±5.7
20 63.9±4.2 63.4±5.5 79.0±8.1 76.3±5.6 91.2±2.6 75.7±4.5 71.5±5.6 78.9±6.3 80.6±4.5 85.9±4.1
25 61.5±4.3 60.8±4.0 74.3±4.8 75.0±4.5 88.6±2.1 74.6±2.4 70.9±2.3 77.1±2.7 79.0±2.5 83.9±2.6
30 61.2 65.9 71.2 71.9 88.6 74.7 74.7 76.5 77.4 83.7

Avg. 66.8 67.7 81.9 80.4 92.0 75.0 72.5 81.7 82.4 86.9

and only the largest 30 categories were kept, thus
leaving us with 9,394 documents in total.

4.2 Compared Algorithms

To demonstrate how the clustering performance can be
improved by our method, we compare the following five
popular clustering algorithms:

• Canonical Kmeans clustering method (Kmeans in
short).

• Kmeans clustering in the Principle Component sub-
space (PCA in short). Principle Component Anal-
ysis (PCA) [24] is one of the most well known
unsupervised dimensionality reduction algorithms.
It is expected that the cluster structure will be more
explicit in the principle component subspace. Math-
ematically, PCA is equivalent to performing SVD on
the centered data matrix. On the TDT2 data set, we
simply use SVD instead of PCA because the cen-
tered data matrix is too large to be fit into memory.
Actually, SVD has been very successfully used for
document representation (Latent Semantic Indexing,

[11]). Interestingly, Zha et al. [44] has shown that
Kmeans clustering in the SVD subspace has a close
connection to Average Association [38], which is a
popular spectral clustering algorithm. They showed
that if the inner product is used to measure the
similarity and construct the graph, Kmeans after
SVD is equivalent to average association.

• Normalized Cut [38], one of the typical spectral
clustering algorithms (NCut in short).

• Nonnegative Matrix Factorization based clustering
(NMF in short). We use the F-norm formulation
and implement a normalized cut weighted version
of NMF as suggested in [42]. We provide a brief
description of normalized cut weighted version of
NMF and GNMF in Appendix C. Please refer to [42]
for more details.

• Graph regularized Nonnegative Matrix Factoriza-
tion (GNMF in short) with F-norm formulation,
which is the new algorithm proposed in this paper.
We use the 0-1 weighting scheme for constructing
the p-nearest neighbor graph for its simplicity. The
number of nearest neighbors p is set to 5 and
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Fig. 1. The performance of GNMF vs. parameter λ. The GNMF is stable with respect to the parameter λ. It achieves
consistently good performance when λ varies from 10 to 1000.
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Fig. 2. The performance of GNMF decreases as the p increases.

the regularization parameter λ is set to 100. The
parameter selection and weighting scheme selection
will be discussed in the later section.

Among these five algorithms, NMF and GNMF can learn
a parts-based representation because they allow only ad-
ditive, not subtractive, combinations. NCut and GNMF
are the two approaches which consider the intrinsic
geometrical structure of the data.

The clustering result is evaluated by comparing the
obtained label of each sample with the label provided
by the data set. Two metrics, the accuracy (AC) and the
normalized mutual information metric (NMI) are used
to measure the clustering performance. Please see [4] for
the detailed definitions of these two metrics.

4.3 Clustering Results

Tables 3, 4 and 5 show the clustering results on the
COIL20, PIE and TDT2 data sets, respectively. In order to
randomize the experiments, we conduct the evaluations
with different cluster numbers. For each given cluster
number K, 20 test runs were conducted on different
randomly chosen clusters (except the case when the
entire data set is used). The mean and standard error
of the performance are reported in the tables.

These experiments reveal a number of interesting
points:

• The non-negative matrix factorization based meth-
ods, both NMF and GNMF, outperform the PCA
(SVD) method, which suggests the superiority of
parts-based representation idea in discovering the
hidden factors.

• Both NCut and GNMF consider the geometrical
structure of the data and achieve better performance
than the other three algorithms. This suggests the
importance of the geometrical structure in learning
the hidden factors.

• Regardless of the data sets, our GNMF always
results in the best performance. This shows that
by leveraging the power of both the parts-based
representation and graph Laplacian regularization,
GNMF can learn a better compact representation.

4.4 Parameters Selection

Our GNMF model has two essential parameters: the
number of nearest neighbors p and the regularization
parameter λ. Figure 1 and Figure 2 show how the aver-
age performance of GNMF varies with the parameters λ
and p, respectively.
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Fig. 3. The performance of GNMF vs. the parameter
λ with different weighting schemes (dot-product vs. 0-1
weighting) on TDT2 data set.
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Fig. 4. The performance of GNMF vs. the parameter
λ with different weighting schemes (heat kernel vs. 0-1
weighting) on COIL20 data set.

As we can see, the performance of GNMF is very
stable with respect to the parameter λ. GNMF achieves
consistently good performance when λ varies from 10 to
1000 on all three data sets.

As we have described, GNMF uses a p-nearest graph
to capture the local geometric structure of the data dis-
tribution. The success of GNMF relies on the assumption
that two neighboring data points share the same label.
Obviously this assumption is more likely to fail as p
increases. This is the reason why the performance of
GNMF decreases as p increases, as shown in Figure 2.

4.5 Weighting Scheme Selection

There are many choices on how to define the weight
matrix W on the p-nearest neighbor graph. Three most
popular ones are 0-1 weighting, heat kernel weighting
and dot-product weighting. In our previous experiment,
we use 0-1 weighting for its simplicity. Given a point
x, 0-1 weighting treats its p nearest neighbors equally
important. However in many cases, it is necessary to
differentiate these p neighbors, especially when p is large.
In this case, one can use heat kernel weighting or dot-
product weighting.

For text analysis tasks, the document vectors usually
have been normalized to unit. In this case, the dot-

product of two document vectors becomes their cosine
similarity, which is a widely used similarity measure
for document in information retrieval community. Thus,
it is very natural to use dot-product weighting for
text data. Similar to 0-1 weighting, there is also no
parameter for dot-product weighting. Figure 3 shows
the performance of GNMF as a function of the number
of nearest neighbors p for both dot-product and 0-1
weighting schemes on TDT2 data set. It is clear that dot-
product weighting performs better than 0-1 weighting,
especially when p is large. For dot-product weighting,
the performance of GNMF remains reasonably good as
p increases to 23. Whereas the performance of GNMF
decreases dramatically for 0-1 weighting as p increases
(when larger than 9).

For image data, a reasonable weighting scheme is heat
kernel weighting. Figure 4 shows the performance of
GNMF as a function of the number of nearest neighbors
p for heat kernel and 0-1 weighting schemes on COIL20
data set. We can see that heat kernel weighting is also
superior than 0-1 weighting, especially when p is large.
However, there is a parameter σ in heat kernel weighting
which is very crucial to the performance. Automatically
selecting σ in heat kernel weighting is a challenging
problem and has received a lot of interest in recent stud-
ies. A more detailed analysis of this subject is beyond the
scope of this paper. Interested readers can refer to [43]
for more details.

4.6 Convergence Study

The updating rules for minimizing the objective function
of GNMF are essentially iterative. We have proved that
these rules are convergent. Here we investigate how fast
these rules can converge.

Figure 5 shows the convergence curves of both NMF
and GNMF on all the three data sets. For each figure,
the y-axis is the value of objective function and the x-
axis denotes the iteration number. We can see that the
multiplicative update rules for both GNMF and NMF
converge very fast, usually within 100 iterations.

4.7 Sparseness Study

NMF only allows additive combinations between the
basis vectors and it is believed that this property enables
NMF to learn a parts-based representation [26]. Recent
studies show that NMF does not always result in parts-
based representations [22], [23]. Several researchers ad-
dressed this problem by incorporating the sparseness
constraints on U and/or V [23]. In this subsection, we
investigate the sparseness of the basis vectors learned in
GNMF.

Figure 6 and 7 shows the basis vectors learned by
NMF and GNMF in the COIL20 and PIE data sets
respectively. Each basis vector has dimensionality 1024
and has unit norm. We plot these basis vectors as 32×32
gray scale images. It is clear to see that the basis vectors
learned by GNMF are sparser than those learned by
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Fig. 5. Convergence curve of NMF and GNMF

NMF. This result suggests that GNMF can learn a better
parts-based representation than NMF.

5 CONCLUSIONS AND FUTURE WORK

We have presented a novel method for matrix factor-
ization, called Graph regularized Non-negative Matrix
Factorization (GNMF). GNMF models the data space
as a submanifold embedded in the ambient space and
performs the non-negative matrix factorization on this
manifold. As a result, GNMF can have more discrim-
inating power than the ordinary NMF approach which
only considers the Euclidean structure of the data. Exper-
imental results on document and image clustering show
that GNMF provides a better representation in the sense
of semantic structure.

Several questions remain to be investigated in our
future work:

1) There is a parameter λ which controls the smooth-
ness of our GNMF model. GNMF boils down to
original NMF when λ = 0. Thus, a suitable value of
λ is critical to our algorithm. It remains unclear how
to do model selection theoretically and efficiently.

(a) Basis vectors (column vectors
of U) learned by NMF

(b) Basis vectors (column vectors
of U) learned by GNMF

Fig. 6. Basis vectors learned from the COIL20 data set.

(a) Basis vectors (column vectors
of U) learned by NMF

(b) Basis vectors (column vectors
of U) learned by GNMF

Fig. 7. Basis vectors learned from the PIE data set.

2) NMF is an optimization of convex cone structure
[14]. Instead of preserving the locality of close points
in a Euclidean manner, preserving the locality of an-
gle similarity might fit more to the NMF framework.
This suggests another way to extend NMF.

3) Our convergence proofs essentially follows the idea
in the proofs of Lee and Seung’s paper [27] for the
original NMF. For the F-norm formulation, Lin [30]
shows that Lee and Seung’s multiplicative algorithm
cannot guarantee the convergence to a stationary
point and suggests minor modifications on Lee and
Seung’s algorithm which can converge. Our updat-
ing rules in Eq. (14) and (15) are essentially similar
to the updating rules for NMF. It is interesting to
apply Lin’s idea to GNMF approach.
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APPENDIX A (PROOFS OF THEOREM 1):

The objective function O1 of GNMF in Eq. (6) is certainly
bounded from below by zero. To prove Theorem 1,
we need to show that O1 is non-increasing under the
updating steps in Eq. (14) and (15). Since the second
term of O1 is only related to V, we have exactly the
same update formula for U in GNMF as in the original
NMF. Thus, we can use the convergence proof of NMF
to show that O1 is nonincreasing under the update step
in Eq. (14). Please see [27] for details.

Now we only need to prove that O1 is non-increasing
under the updating step in Eq. (15). We will follow the
similar procedure described in [27]. Our proof will make
use of an auxiliary function similar to that used in the
Expectation-Maximization algorithm [12]. We begin with
the definition of the auxiliary function.

Definition G(v, v′) is an auxiliary function for F (v) if the
conditions

G(v, v′) ≥ F (v), G(v, v) = F (v)

are satisfied.

The auxiliary function is very useful because of the
following lemma.

Lemma 3: If G is an auxiliary function of F , then F is
non-increasing under the update

v(t+1) = argmin
v

G(v, v(t)) (25)

Proof:

F (v(t+1)) ≤ G(v(t+1), v(t)) ≤ G(v(t), v(t)) = F (v(t))

Now we will show that the update step for V in
Eq. (15) is exactly the update in Eq. (25) with a proper
auxiliary function.

We rewrite the objective function O1 of GNMF in Eq.
(6) as follows

O1 = ‖X−UVT ‖2 + λTr(VT LV)

=

M
∑

i=1

N
∑

j=1

(xij −

K
∑

k=1

uikvjk)
2 + λ

K
∑

k=1

N
∑

j=1

N
∑

l=1

vjkLjlvlk

(26)

Considering any element vab in V, we use Fab to denote
the part of O1 which is only relevant to vab. It is easy to
check that

F ′

ab =

(

∂O1

∂V

)

ab

=
(

−2XT U + 2VUT U + 2λLV
)

ab
(27)

F ′′

ab = 2
(

UT U
)

bb
+ 2λLaa (28)

Since our update is essentially element-wise, it is suffi-
cient to show that each Fab is nonincreasing under the
update step of Eq. (15).

Lemma 4: Function

G(v, v
(t)
ab ) =Fab(v

(t)
ab ) + F ′

ab(v
(t)
ab )(v − v

(t)
ab )

+

(

VUT U
)

ab
+ λ

(

DV)ab

v
(t)
ab

(v − v
(t)
ab )

2
(29)

is an auxiliary function for Fab, the part of O1 which is
only relevant to vab.

Proof: Since G(v, v) = Fab(v) is obvious, we need

only show that G(v, v
(t)
ab ) ≥ Fab(v). To do this, we

compare the Taylor series expansion of Fab(v)

Fab(v) =Fab(v
(t)
ab ) + F ′

ab(v
(t)
ab )(v − v

(t)
ab )

+
[(

UT U
)

bb
+ λLaa

]

(v − v
(t)
ab )

2
(30)

with Eq. (29) to find that G(v, v
(t)
ab ) ≥ Fab(v) is equivalent

to
(

VUT U
)

ab
+ λ

(

DV)ab

v
(t)
ab

≥
(

UT U
)

bb
+ λLaa. (31)

We have

(

VUT U
)

ab
=

k
∑

l=1

v
(t)
al

(

UT U
)

lb
≥ v

(t)
ab

(

UT U
)

bb
(32)

and

λ
(

DV
)

ab
= λ

M
∑

j=1

Dajv
(t)
jb ≥ λDaav

(t)
ab

≥ λ
(

D−W
)

aa
v
(t)
ab = λLaav

(t)
ab

.

(33)

Thus, Eq. (31) holds and G(v, v
(t)
ab ) ≥ Fab(v).

We can now demonstrate the convergence of Theorem 1:

Proof of Theorem 1: Replacing G(v, v
(t)
ab ) in Eq. (25) by

Eq. (29) results in the update rule:

v
(t+1)
ab = v

(t)
ab − v

(t)
ab

F ′

ab(v
(t)
ab )

2
(

VUT U
)

ab
+ 2λ

(

DV
)

ab

= v
(t)
ab

(

XT U + λWV
)

ab
(

VUT U + λDV
)

ab

(34)

Since Eq. (29) is an auxiliary function, Fab is nonincreas-
ing under this update rule.

APPENDIX B (PROOFS OF THEOREM 2):
Similarly, the second term of O2 in Eq. (7) is only
related to V, we have exactly the same update formula
for U in GNMF as the original NMF. Thus, we can
use the convergence proof of NMF to show that O2 is
nonincreasing under the update step in Eq. (20). Please
see [27] for details.

Now we will show that the update step for V in
Eq. (21) is exactly the update in Eq. (25) with a proper
auxiliary function.
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Lemma 5: Function

G(V,V(t))

=
∑

i,j

(

xij log xij − xij +

K
∑

k=1

uikvjk

)

−
∑

i,j,k

(

xij
uikv

(t)
jk

∑

k uikv
(t)
jk

(

log uikvjk − log
uikv

(t)
jk

∑

k uikv
(t)
jk

)

)

+
λ

2

∑

j,l,k

(

vjk log
vjk
vlk

+ vlk log
vlk
vjk

)

Wjl

is an auxiliary function for the objective function of
GNMF in Eq. (7)

F (V) =
∑

i,j

(

xij log
xij

∑

k uikvjk
− xij +

∑

k

uikvjk

)

+
λ

2

∑

j,l,k

(

vjk log
vjk
vlk

+ vlk log
vlk
vjk

)

Wjl

Proof: It is straightforward to verify that G(V,V) =
F (V). To show that G(V,V(t)) ≥ F (V), we use convexity
of the log function to derive the inequality

− log

(

K
∑

k=1

uikvjk

)

≤ −

K
∑

k=1

(

αk log
uikvjk
αk

)

which holds for all nonnegative αk that sum to unity.
Setting

αk =
uikv

(t)
jk

∑K
k=1 uikv

(t)
jk

,

we obtain

− log

(

∑

k

uikvjk

)

≤

−
∑

k

(

uikv
(t)
jk

∑

k uikv
(t)
jk

(

log uikvjk − log
uikv

(t)
jk

∑

k uikv
(t)
jk

))

.

From this inequality it follows that G(V,V(t)) ≥ F (V).

Theorem 2 then follows from the application of Lemma
5:

Proof of Theorem 2: The minimum of G(V,V(t)) with
respect to V is determined by setting the gradient to zero:

M
∑

i=1

uik−

M
∑

i=1

xij
uikv

(t)
jk

∑

k uikv
(t)
jk

1

vjk

+
λ

2

N
∑

l=1

(

log
vjk
vlk

+ 1−
vlk
vjk

)

Wjl = 0,

1 ≤ j ≤ N, 1 ≤ k ≤ K

(35)

Because of the log term, it is really hard to solve the
above system of equations. Let us recall the motivation of
the regularization term. We hope that if two data points
xj and xr are close (i.e. Wjr is big), zj) will be close to zr

and vjs/vrs will be approximately 1. Thus, we can use
the following approximation:

log(x) ≈ 1−
1

x
, x→ 1.

The above approximation is based on the first order
expansion of Taylor series of the log function. With this
approximation, the equations in Eq. (35) can be written
as

M
∑

i=1

uik−
M
∑

i=1

xij
uikv

(t)
jk

∑

k uikv
(t)
jk

1

vjk

+
λ

vjk

N
∑

l=1

(vjk − vlk)Wjl = 0,

1 ≤ j ≤ N, 1 ≤ k ≤ K

(36)

Let D denote a diagonal matrix whose entries are column
(or row, since W is symmetric) sums of W, Djj =

∑

l Wjl.
Define L = D − W. Let vk denote the k-th column
of V, vk = [v1k, · · · , vNk]

T . It is easy to verify that
∑

l (vjl − vlk)Wjl equals to the j-th element of vector
Lvk.

The system of equations in Eq. (36) can be rewritten
as

∑

i

uikIvk + λLvk =











v
(t)
1k

∑

i

(

xi1uik/
∑

k uikv
(t)
1k

)

...

v
(t)
Nk

∑

i

(

xiNuik/
∑

k uikv
(t)
Nk

)











,

1 ≤ k ≤ K.

Thus, the update rule of Eq. (25) takes the form

v
(t+1)
k =

(

∑

i

uikI + λL
)

−1











v
(t)
1k

∑

i

(

xi1uik/
∑

k
uikv

(t)
1k

)

...

v
(t)
Nk

∑

i

(

xiNuik/
∑

k
uikv

(t)
Nk

)











,

1 ≤ k ≤ K.

Since G is an auxiliary function, F is nonincreasing
under this update.

APPENDIX C (WEIGHTED NMF AND GNMF)

In this appendix, we provide a brief description of
normalized cut weighted NMF which is first introduced
by Xu et al. [42]. Let zTj be j-th row vector of V, the
objective function of NMF can be written as:

O =

N
∑

j=1

(

xj −Uzj
)T (

xj −Uzj
)

,

which is the summation of the reconstruction errors
over all the data points, and each data point is equally
weighted. If each data point has weight γj , the objective
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function of weighted NMF can be written as:

O′ =

N
∑

j=1

γj
(

xj −Uzj
)T (

xj −Uzj
)

=Tr
(

(

X−UVT
)

Γ
(

X−UVT
)T
)

=Tr
(

(

XΓ1/2 −UVTΓ1/2
)(

XΓ1/2 −UVTΓ1/2
)T
)

=Tr
(

(

X′ −UV′T
)T (

X′ −UV′T
)

)

where Γ is the diagonal matrix consists of γj , V′ = Γ1/2V
and X′ = XΓ1/2. Notice that the above equation has the
same form as Eq. (1) in Section 2 (the objective function
of NMF), so the same algorithm for NMF can be used to
find the solution of this weighted NMF problem. In [42],
Xu et al. calculate D = diag(XT Xe), where e is a vector
of all ones. They use D−1 as the weight and named
this approach as normalized cut weighted NMF (NMF-
NCW). The experimental results [42] have demonstrated
the effectiveness of this weighted approach on document
clustering.

Similarly, we can also introduce this weighting scheme
into our GNMF approach. The objective function of
weighted GNMF is:

O′ =

N
∑

j=1

γj
(

xj −Uzj

)T (
xj −Uzj

)

+ λTr(VT LV)

=Tr
(

(

X−UVT
)

Γ
(

X−UVT
)T
)

+ λTr(VT LV)

=Tr
(

(

XΓ1/2 −UVTΓ1/2
)(

XΓ1/2 −UVTΓ1/2
)T
)

+ λTr(VT LV)

=Tr
(

(

X′ −UV′T
)T (

X′ −UV′T
)

)

+ λTr(V′T L′V′)

where Γ, V′, X′ are defined as before and L′ =
Γ−1/2LΓ−1/2. Notice that the above equation has the
same form as Eq. (8) in Section 3.2, so the same algorithm
for GNMF can be used to find the solution of weighted
GNMF problem.
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