
Parallel Computing 13 (1990)245-251
North-Holland

245

Short Communication

Graph search algorithms and maximum
bipartite matching algorithm
on the hypercube network model *

Jang-Ping SHEU
Department of Electrical Engineering, National Central University, Chungli, Taiwan, Republic of China

Nan-Ling KUO
Institute of Information Engineering, Tatung Institute of Technology, Taipei, Taiwan, Republic of China

Gen-Huey CHEN
Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan,
Republic of China

Received October 1988
Revised May 1989

Ahslraet. In this paper, we propose parallel algorithms for breadth-first search and depth-fn'st search on the
hypercube network model. In addition, a parallel algorithm based on the same model for finding maximum
matching in bipartite graphs is proposed.

Keywer~ Maximum matching, breadth-first search, depth-first search, bipartite graph, hypercube, parallel
algorithm. ""

1. Introduction

The parallel algorithms for graph search techniques such as breadth-first search (BFS) and
depth-first search (DFS) have been studied by several researchers [2,3,5,7]. In this paper, two
parallel search algorithms, one for BFS and the other for DFS, based on the hypercube network
model are proposed. In addition, we devise a parallel algorithm to find the maximum matching
in bipartite graphs. Both search technique~ have the lower bound of time complexity f~(n 2) for
sequential algorithms in the worst case, and the fast known sequential maximum bipartite
matching algorithm needs O(n 2"5) time [4], where n is the number of vertices in the graph. Our
parallel algorithms take O(n log n) time for the two graph search techniques and O(n 1"S log n)

* This work was partially supported by the National Science Council under Grant NSC76-0408-E008-06.

0167-8191/90/$3.50 O 1990, Elsevier Science Pubfishers B.V. 0qorth-Holland)

246 J..P. Sheu et al. / Graph search algorithms and maximum bipartite matching algorithms

for the maximum bipartite matching problem. Since the number of processors used is only
n/log n, all our algorithms achieve the optimal speedup.

In this paper, processors in hypercubes operate asynchronously, the only means of com-
munication and synchronization is message passing. In our algorithm~ some of the processors
perform just a few simple computations in parallel after receiving a message sent from anyone
of their neighbors. Thus, it is sufficient to account only for the number of messages passed
between near neighbors as the measure of time complexity.

2. Parallel BFS and DFS algorithms

In this section, we consider the search problems of a connected undirected graph G - (V, E)
on the hypercube network model. By adopting the 'near neighbor' method of the Prim-Dijkstra
algorithm for finding the minimum spanning tree [1,6], we develop a parallel BFS algorithm
and a parallel DFS one.

2.1. Breadth.first search algorithm

Given a root r, say vertex 0 for simplicity, we want to find a BFS tree rooted at r and
determine the order, denoted as BFS~, in which vertex i is visited by BFS. Without loss of
generality, let node (processor) i store a vertex labelled i. Additionally, the adjacent vector
ADJACElqCY~ of vertex i is also stored in node i. If (i, j) is an edge in E, ADJACENCY~[j]
- 1 ; otherwise, ADJACENCY~[j]- 0o. Associated with each vertex i are two labels, DIST~
and NEAR~, which hold the length of the shortest path from the root vertex to vertex i and the
nearest neighbor of vertex i which has been brought in the BFS tree, respectively.

For the sake of convenience, vertex 0 is selected as the first vertex of the partial-formed
spanning tree 7'. Within each iteration, an isolated vertex v is found and sent to node 0 if its
DISTo has the minimum value. Ties are resolved in favor of the vertex with the smallest vertex
number. After receiving such vertex v, node 0 joins the edge (v, NEARo) to T, and sends not
only the vertex number and DIST o value of vertex v but also the current BFS order to all other
nodes to adjust their DIST,, BFS~, and NEAR~ values if required, where i @ v. Only when the
first one of its neighbors, say vertex j, is selected to be included in T, an isolated vertex i
changes the values of its DIST~ and NEARi, to DISTj + 1 and j , respectively. After being
joined to T, the BFS order of vertex i is the 'current BFS order' receiving from node 0. Repeat
this process n - 1 times, and we finish the BFS algorithm. The formal algorithm is given in
algorithm PBFS_CUBE.

Step 2:

Step 3:

Step 4:

Step 5:

AI~riflm PBFS_CUBE
/ , For each hypercube node i do in parallel. • /
Step 1" Initially, node 0 set NEAR o ---oo, DISTo--0, BFS tree T - - ~ , and BFS o r d e r - I,

while other nodes set NEAR i - vertex 0, DIST~ - ADJACENC¥i[0], and BF$~ -- 0.
Find a vertex v with the minimum DIST o value (@ oo) among all remaining isolated
vertices; transmit it to node 0.
/ . For node 0 only. • /
Join (v, NEARv) to 7', increase BFS order by 1, and send v, current BFS order, and
DISTo to all other nodes.
/ * Action executed in node 1 to node n - 1. • /
If resident vertex i - v, then set BFSi - current BFS order else if ADJACENCY:iv] - 1
and DIST: - oo, then set NEAR~- v and DIST~- DIST o + 1.
If IT] ~ n - 1 goto Step 2.

J.-P. Sheu et al. / Graph search algorithms and maximum bipartite matching algorithms 247

In Algorithm PBFS_CUBE, the most time consuming operations are Step 2 and Step 3
within one iteration. At Step 2, all processors cooperate in finding an extremum among n
values each of which is stored in a different processor. This step can be implemented by
applying the recursive operations for finding extrema of Saad's algorithm [8], which takes
O(log n) time. On the other hand, the operation of broadcasting a message at Step 3 is done by
using Saad's Hypercube Broadcast algorithm in O(log n) time [9]. There are n - 1 iterations.
Thus, the P T - _ CUBE algorithm requires O(n log n) time.

Let us consider the situation when there are only p < n processors available. In such a
situation, n/p vertices with their adjacent vectors are assigned to a single processor and each
processor simulates the processes of n/p processors in the original algorithm PBFS_ CUBE. To
find out a vertex i with the minimum DIST~ value per iteration, each processor requires
O(n/p) time to locally compute the minimal value in its resident n/p vertices in parallel, and
then it takes O(log p) time to find the minimum value among these p minimal values. A
broadcasting operation also needs O(log p) time on a p-processor hypercube. Thus, the total
time complexity T(n) becomes

T(n) f f i (n- 1)O(n/p+ log p + log p)

ffi o (na/p + n log p).

If p - n/ log n, then

r (n) ffi O(n log n).

We see that the time complexity of PBFS_ CUBE remains O(n log n) even when using n/log n
processors.

2.2. Depth-first search algorithm

In the following, a parallel algorithm for determining the DFS tree of G - (V, E) and
deciding the order, denoted as DFS~, in which we scan vertex i by DFS is presented. The DFS
tree is a spanning tree in which the vertices are visited on a last-reached first-scanned basis.
That is, we always scan the most recently reached vertex i by searching for an unvisited vertex
j adjacent to i. It" no such j is available, the search returns to vertex u, from which i is reached.
Because of the 'last-reached first-scanned' property of the DFS problem, a work stack named
WSTACK is used in every node to hold the vertices during the searching process. Whenever a
vertex is visited, it is pushed into WSTACK of every node. A vertex which has not been
searched yet can be searched if it is adjacent to the top vertex in WSTACK. There may be
many isolated vertices satisfying this condition, but the one with the smallest vertex number is
selected. Every node pops its WSTACK when it can find no vertex to be search next. Node 0
will broadcast a 'POP' message to all other nodes if it does not receive a vertex to be joined to
the partial-formed DFS tree after it waited O(log n) time. Otherwise, it broadcasts the selected
vertex and the current DFS order. The formal algorithm is shown in algorithm PDFS_ CUBE.

Algorithm PDFS_CUBE
/ , For each hypercube node i do in parallel. • /
Step 1: Initially, node 0 set NEARo ffi co, DFS tree T ffi ~, and DFS order = 1. While other

nodes set DFS~ ffi 0 and if ADJACENCY~[0] ffi 1, then set NEAR~ ffi 0 else set NEAR~
- co. All nodes push 0 into the working stack WSTACK.

Step 2: Find a vertex v adjacent to the top element in WSTACK, i.e., NEAR~.- ID number of
the top vertex in WSTACK, among all isolated vertices and transmit it to node 0.

248 J..P. Sheu et at. / Graph search algorithms and maximum bipartite matching algorithms

St~.p 3 : / . For node 0 only. • /
3.1 A vertex v is not received after waiting O(log n) time: Pop top element off

WSTACK and broadcast ("POP").
3.2 A vertex v is received in time: Push v into WSTACK, joint (v, NEAR,) to T,

increase DFS order by 1, and broadcast message (v, current DFS order,]T I)-
Step 4: After receiving the broadcast message, each node i ¢ 0 executes one of the following

operations:
4.1 If receive ("POP"), then pop top element off WSTACK.
4.2 Otherwise, push v into WSTACK, and if i - v, then set DFS~ - current DFS order

else if ADJACENCY~[v]- 1 and DFS~- 0, then set N E A R ~ - v.
Step 5: If I TI ~ n - 1, then goto step 2.

The most time-consuming operations in Algorithm PDFS_CUBE are Step 2 and Step 3
within one iteration. Step 2 takes O(log n) time to find the isolated vertex which is adjacent to
the top element of WSTACK. At Step 3, an "POP" message occurs when there is a need for
backtracking. Therefore, the complexity of Algorithm PDFS_CUBE is also O(n log n) time
using n/log n processors.

3. Parallel maximum bipartite matching algorithm

Let G - (X u Y, E) be a bipartite graph, where X, Y are two disjoint vertex set and E is the
set of edges, each of which has one end in X and the other in Y. The number of vertices in G is
n. That is I X I + I Y I -- n. We refer to the vertices in X as boys and those in Y as girls in the
following discussion. A matching M in G is a subset of E such that no two edges in M share a
common vertex. A matching with the maximum cardinafity is called maximum matching. A
vertex v is matched relative to a matching M if it is incident to one edge in M and is
unmatched otherwise. An alternating path with respect to M is a simple path whose edges are
alternatively in M and E - M, and an augmenting path is defined as an alternating path
between two unmatched vertices. An augmenting path P is called a shortest path relative to M
if P has the smallest length among all the augmenting paths relative to M. Whenever we find
an augmenting path P relative to M, then by interchanging matched edges with unmatched
ones, we can get a new matching M ' with one more edge than M. Hopcroft and Karp [4]
showed that if the matching-augmentation is done through a maximal set of vertex-disjoint
shortest augmenting paths, a maximum bipartite matching can be obtained in O(n 2"5) time.
Their algorithm is outlined as follows.

Algoritlun Maximum _ Matching
Initial: Start with a null matching M.
Phase 1: Construct a layered graph G* relative to M.
Phase 2: Find a maximal set of paths S = { 1 ' ! , / '2 , . - . , Pt } in G* with the following two

properties:
1. Paths/'~, 1 ~< i ~< t, are all the shortest augmenting paths relative to M.
2. Any two paths P~ and Pj, i C j, are vertex-disjoint. If S ~ ~, then set M = M • / ' 1

P2 ~ " '" $ Pt and go to Phase 1; otherwise, halt.

Hopcroft and Karp claimed that the shortest augmenting paths in G relative to M were in
one-to-one correspondence with the directed paths in G*, which started from unmatched boys
and ended at unmatched girls. In the following, we show how to implement algorithm
Maximum_Matching on the hypercube network model.

J.-P. Sheu et al. / Grap h search algorithms and maximum bipartite matching algorithms 249

With each vertex, there exist two adjacent vectors, R_ADJACENCY and L_ADJACENCY.
Consider an edge (b i, gi) in E, where b~ ¢ X and gj ¢ Y. If this edge is matched, then
L_ADJACENCY[j] of bi and R_ADJACENCY[i] of gj are set to be 1; otherwise, R_AD-
JACENCY[j] of b~ and L_ADJACENCY[/] of gj are set to be 1. All other entries of both
vectors of b~ and gj are set to 0. The sizes of the two adjacc~lt vectors of b~ ¢ X are equal to the
number of vertices in Y, and those of gj ¢ Y are equal to the number of vertices in X. Assume
that each vertex with its own adjacent vectors is initially assigned to a different processor.
Every node stores the vertex number of the assigned vertex in VERTEX, and there exists an
extra indication bit in VERTEX to point out whether the resident vertex is matched or not.

Phase 1 can be parallelized by applying the parallel BFS algorithm in Section 2. At the
beginning, any vertex i is put in the first layer of G* and initialized with DIST~- 1 and
BFS~--0 if it is an unmatched boy; otherwise, it is set with DIST~- oo and BFS~- 0. During
the construction of G*, vertex i is said tobe in layer j of G* if '.'is DIST, - j . E~,¢h node i tans
in cooperation with other nodes to find the DIST~ value of its resident vertex i by applying the
BFS method. Note that the adjacent vector used in this phase is the L_ADJACENCY of every
vertex. An extra flag FIND is used in node 0 to denote whether an unmatched girl is reached.
If an unmatched girl is traversed and sent to node 0, node 0 set its flag FIND to be TRUE and
sends the relative BFS order to the unmatched girl node. But any other nodes do not alter the
states of their labels. When no vertex is available to be traversed during the execution of
PBFS_CUBE, node 0 issues a message to all other nodes to inform them of entering Phase 2 in
case that its flag FIND is TRUE. It means that the layered graph G* is already constructed.
However, if FIND is still FALSE, node 0 halts all processors. Since there is no unmatched girl
or unmatched boy, we cannot augment the matching M. Algorithm G'Constructing is to
implement this phase.

Algorithm G*eons tng t ing /* Applying BFS method to generate a layered graph G*. * /
/ . For each processor i do in parallel. • /
Step 1" If resident ver tex- unmatched boy, then set DIST~ ffi 1 and BFS~- 0; otherwise, set

DIST~- oo and BFS~- 0.
Step 2: Find a vertex v with the minimum DIST v value among all isolated vertices, and

transmit vertex v to node 0.
Step 3 : / * Action for node 0 only. • /

Node 0 executes one of the following operations:
3.1 A vertex v is not received after waiting O(log n) time:

If FIND ffi TRUE, then broadcast message ("enter Phase 2") else halt all processors.
3.2 A vertex v is received in time: If v is an unmatched girl, then set FIND ffi TRUE,

send BFS order increased by 1 to node v, and goto Step 2. Otherwise, increase BFS
order by 1, broadcast message (v, v's corresponding DISTv value, BFS order), and
goto Step 2.

Step 4 : / . Action executed in node 1 to node n - 1. • /
After receiving message from node 0, each node i ~ 0 executes one of the following
operations:
4.1 If receive message ("enter Phase 2"), then enter Phase 2.
4.2 If resident vertex i - v, then BFS~ - current BFS order and goto Step 2.
4.3 If resident vertex / ~ v and L_ADJACENCY~[v]- 1 and DIST~ - oo, then DIST~

- DISTo + 1 and goto Step 2.

The time needed to parallelize Phase I is dependent on the parallel BFS algorithm used, so it
requires O(n log n) time using n/log n processors. As for Phase 2, using the parallel DFS
algorithm described in the last section, we build a maximal set of vertex-disjoint augmenting

250 J.-P. Sheu et al. / Graph search algorithms and maximum bipartite matching algorithms

paths from G* in parallel. After finding such set of paths, we go to augment M. The formal
algorithm to implement Phase 2 is shown in Algorithm Max_Path_Set. Assume that there
exists a pseudo.vertex named S with an vertex number of n + 1. Initially, every node put
number n + 1 into its WSTACK. If its resident vertex is an unmatched girl in the last layer of
G*, then node i set its NEARi to the vertex number of vertex S; otherwise, set its NEAR~
equal to oo. All nodes whose BFS order values are not 0 r u n A l g o r i t ~ Max_Path_Set
concurrently and cooperatively. In Algorithm Max_Path_Set, the R_ADJACENCY of each
vertex is used at its adjacent vector. Assume that all the final results are recorded in node 0 to
augment the matching M. When a vertex v is found and sent to node 0, node 0 adds it to an
array ~ according to the following rules:

(1) v is an unmatched girl: add it to ~ initialized to be empty.
(2) v is an unmatched boy: if ~ is empty, then discard it; otherwise, after adding it to ~ ,

execute M ffi M $ ~ .
(3) v is a matched boy or girl: if ~ is empty, then discard it; otherwise, add it to ~ .
If the vertex traversed is an unmatched boy, node 0 applies the operations stated in rule (2),

clears ~ to be empty to store another path, and then broadcasts a message to let all nodes
whose resident vertices are not scanned yet return to their initial states. When node 0 does not
accept a vertex available to be searched after waiting O(log n) time, it broadcasts a 'pop'
message as did in Algorithm PDFS_CUBE. If the current top element of its WSTACK is
n + 1, it knows that all augmenting paths have been found. It broadcasts all matched edges to
every node to adjust its adjacent vectors and the state of its resident vertex as the matching M
has been augmented. Then each node goes back to Phase 1, and repeats the process of
augmenting M. However, if the matching M has not been changed, the whole process is
stopped and M is the maximum matching we want. The formal algorithm is shown as follows.

Algorithm Max _ P a t h _ Set
/ . For all nodes whose resident vertices are in G*, i.e., those nodes whose BFS order values
are not 0, do in parallel. • /
Step 1: Push n + 1 into WSTACK. If resident vertex i - unmatched girl, then set NEARi ffi n

+ 1; otherwise, set N E A R i - ao.
Step 2: Find a vertex v adjacent to top element in WSTACK of all isolated vertices and

transmit it to node 0.
Step 3 : / . Action for node 0 only. • /

Node 0 executes one of the two operations:
3.1 A vertex v is not received after waiting O (l o g n) time: Pop top vertex off

WSTACK and broadcast ("POP") in case of WSTACK ~ n + 1. Otherwise, if M
has been augmented, then broadcast (matched edges) else stop the whole process of
finding maximum bipartite matching.

3.2 A vertex v is received in time: Push v into WSTACK, add v to ~ according to the
three rules stated above, increases DFS order by 1, and then broadcast (v, current
DFS order).

Step 4 : / . Action executed in node 1 to node n - 1. • /
After receiving the message from node 0, each node i ~ 0 does one of the following
operations:
4.1 If receive ("POP"), then pop the top element off WSTACK and goto Step 2.
4.2 If receive the matched edges, then adjust its adjacent vectors and return to execute

algorithm G_* Constructing.
4.3 If v receive~4 is an unmatched boy and DFS~--0, then go to Step 1.
4.4 Push v received into WSTACK, and if resident vertex i - v, then set DFS~ - current

DFS order else if R_ADJACENCY~[v]- 1 and DFS~ = 0, then N E A R ~ - v. And
goto Step 2.

J.-P. Sheu et al. / Graph search algorithms and maximum bipartite matching algorithms 251

There are two main operations in Algorithm Max_Path_Set: DFS, in parallel, and the
action of broadcasting all matched edges. We know that Algorithm PDFS_CUBE takes
O(n log n) time using n/log n processors. On the other hand, there are at most n/2 matched
edges in an n-vertex graph, so, in the worst case, the broadcasting action takes O(n log p) time
on a p-processor hypercube. Thus, it needs O(n log n) time to perform Phase 2 while using
n/log n processors.

As we know, there are at most O(n °'s) iterations in Algorithm Maximum_Matching. Within
each iteration, it contains two phases of operation. These two phases both take O(n log n) time
using n/log n processors on the hypercube network model by applying the parallel search
algorithms in Section 2. Thus, it takes O(n log n) time using n/log n processors per iteration.
Therefore, the time complexity of Algorithm Maximum_ Matching on the hypercube network
model is O(n t's log n) time using n/log n processors. Note that, we are not counting the time
it would take to initially load the adjacent vectors of all vertices. It would need O(m) time,
where m is the number of edges in a graph, to download the adjacent vectors to the processors
in the hypercube.

References

[1] E.W. Dijkstra, A note on two problems in connection with graphs, Numer. Math. I (1959) 269-271.
[2] ILK. Ghosh and G.P. Bhattacharjee, A parallel search algorithm for directed acyclic graphs, Bit 24 (1984) 134-150.
[3] IlK. Ghosh and G.P. Bhattacharjee, Parallel breadth first search algorithms for trees and graphs, Internat. J.

Comput. ?,lath. 15 (1984) 255-268.
[4] J.E. Hopcroft and IlM. Karp, An O(n 2"s) algorithm for maximum matching in bipartite graphs, SIAM J. Comput.

2 (4) (1973) 354--364.
[5] T. Kim and K.-Y. Chwa, Parallel algorithms for a depth first search and a breadth first search, Internat. J. Comput.

Math. 19 (1986) 39-54.
[6] IlC. Prim, Shortest connection networks and some generalizations, Bell System Tech. J. 36 (1957)
[7] E. Reghbati and D.G. Comeil, Parallel computations in graph theory, SIAM J. Comput. 2 (2) (1978) 230-237.
[8] Y. Saad and M.H. Schultz, Topological properties of hypercubes, Research Report YALEU/.DCS/RR-389 Yale

University, 1985.
[9] Y. Saad and M.H. Schultz, Data communication in hypercubes, Research Report YALEU/DCS/RR-428 Yale

University, 1985.

