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Abstract—This theoretical paper aims to provide a proba-
bilistic framework for graph signal processing. By modeling
signals on graphs as Gaussian Markov Random Fields, we
present numerous important aspects of graph signal processing,
including graph construction, graph transform, graph downsam-
pling, graph prediction, and graph-based regularization, from a
probabilistic point of view. As examples, we discuss a number of
methods for constructing graphs based on statistics from input
data sets; we show that the graph transform is the optimal linear
transform to decorrelate the signal; we describe the optimality
of the Kron reduction for graph downsampling in a probabilistic
sense; and we derive the optimal predictive transform coding
scheme applicable to both motion prediction and intra predictive
coding.

Index Terms—Graph signal processing, Gaussian Markov ran-
dom field, graph transform, predictive graph transform, graph
sampling, graph-based regularization

I. INTRODUCTION

Historically, Digital Signal Processing (DSP) deals mostly
with signals that exist in a continuous domain, and are
then sampled to obtain a corresponding digital representation,
which is then processed. Because these signals are, typically,
acquired by a system with that exact and only purpose, the
sampling grids are generally uniform. Thus, it is only natural
that the bulk of signal processing research targets uniform
grids. More recently, however, with the ever increasing reach
of signal processing techniques, significant attention is being
placed on signals that are either intrinsically digital (e.g.,
social signals, zip codes), or are sampled by a process that
does not follow a regular sampling pattern. As such, many of
the traditional DSP tools do not apply, thus creating a need
for new tools. Graph Signal Processing (GSP), or processing
signals that live on a graph (instead of on a regular sampling
grid), has received a lot of attention as a promising research
direction [30]. It essentially allows for a generalized “sampling
grid” (the graph), and deals with the signal as samples on the
graph nodes.

Many existing GSP works in recent literature attempt to
bring the rich set of familiar and useful tools from DSP to
graphs. For instance, graph spectral analysis is considered
the counterpart of Fourier analysis in DSP, and thus well-
known operations such as translation, convolution, modulation
and filtering can be equivalently defined on the graph. These
tools allow us to process graph signals in ways familiar to
DSP researchers, and are thus invaluable to many real-world
applications.
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On the other hand, historically graphs are also often the
basis for probabilistic modeling. For example, graphical mod-
els such as Hidden Markov Models (HMM) have been widely
used in speech signal processing [25] and bioinformatics [12].
Bayesian models on graphs are widely used to compute like-
lihoods or posterior probabilities for many pattern recognition
problems [2]. Markov random fields have played an important
role in image processing [20].

Nevertheless, the two research camps on graph signal pro-
cessing do not often intersect with each other. We observe DSP
researchers setting up graphs in an ad-hoc manner based on in-
tuition, and Bayesians unaware of the powerful interpretations
their probabilistic models can provide to signal processing. In
this paper, we try to bridge that gap by providing a clear proba-
bilistic explanation of some important topics in GSP, including
graph construction, the graph transform, graph downsampling,
graph prediction, and graph-based regularization. We believe
that bridging this gap is the primary contribution of this paper,
and that it helps to put the nascent field of GSP on a more
solid foundation.

We start by reviewing the concept of a Gaussian Markov
Random Field (GMRF) in Section II, and establishing a
correspondence with a signal sitting on the graph nodes. That
allows us to give graphs, including their nodes and the weights
between nodes, a clear probabilistic interpretation. The anal-
ysis covers graphs with self-loops, which ensures a proper
Gaussian distribution. With such a probabilistic interpretation
in mind, we discuss how to construct a graph from a data
set in Section III, and present three possible approaches:
data-driven, intuitive model-based, and model-constrained data
driven approaches. We further extend the correspondence, and
show in Section IV that the well-known Graph Transform
[29] is the optimal decorrelating transform of a signal obeying
our GMRF model. Such a relationship leads to the important
proof that a 2D discrete cosine transform (DCT) is one of the
optimal linear transforms for a particular GMRF construction
for graphs on a 2D regular grid, which has implications for
image/video coding. In Section V, we discuss graph down-
sampling, and show that the well-known Kron reduction [11]
is just a marginalization of the GMRF model. Furthermore,
we study graph prediction in Section VI, and draw important
conclusions on the optimal scheme for predictive transform
coding, which gives new insights to both motion estimation
and intra predictive coding. In Section VII, we show the
probabilistic interpretation of regularization in GSP, which is
essentially a prior probability model for the given application.
Finally, conclusions are given in Section VIII.
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II. THE GAUSSIAN MARKOV RANDOM FIELD MODEL

A. The Gaussian Markov Random Field

We first introduce the concept of a GMRF model [27]. A
GMRF is a restrictive multivariate Gaussian distribution that
satisfies additional conditional independence assumptions. We
often use a bi-directed graph [13] G = (V, E) to represent the
conditional independence assumptions, where V represents the
set of nodes in the graph, and E represents the set of edges.

Formally, a random vector x = (x1, · · · , xn)
T is called

a GMRF with respect to the bi-directed graph G = (V =
{1, · · · , n}, E) with mean vector µ and a symmetric precision
matrix Q > 0 (positive definite), if and only if its density has
the form [27]:

p(x) = (2π)−
n
2 |Q| 12 exp

(
− 1

2
(x− µ)TQ(x− µ)

)
, (1)

and Qij ̸= 0 ⇔ {i, j} ∈ E for all i ̸= j. (2)

From the above definition, it is clear that a GMRF x
is a multivariate Gaussian distribution with mean vector µ
whose covariance matrix Σ is the inverse of Q. A property
of the precision matrix is that its elements have conditional
interpretations [27]:

E(xi|x−i) = µi −
1

Qii

∑
j:j∼i

Qij(xj − µj), (3)

Prec(xi|x−i) = Qii, (4)

Corr(xi, xj |x−ij) = − Qij√
QiiQjj

, i ̸= j, (5)

where x−i represents all elements in x except xi; j : j ∼ i
represents all nodes j that are neighbors of i in the graph. The
diagonal elements of Q are the conditional precisions of xi

given all other elements; while the off-diagonal elements, with
a proper scaling, provide information about the conditional
correlation between xi and xj given all other variables.

B. Equivalence of Weighted Graphs to GMRFs

Graph signal processing [30] begins with a weighted bi-
directed graph ⟨G,W⟩ = ⟨(V, E),W⟩, where V is a of nodes,
E is a set of edges, and W is a symmetric non-negative matrix
of weights such that

Wij > 0 if {i, j} ∈ E and Wij = 0 otherwise. (6)

In this section, we show that there is a one-to-one mapping
from the set of symmetric non-negative weight matrices W
satisfying (6) to the set of symmetric positive semi-definite
precision matrices Q satisfying (2). This one-to-one mapping
will establish the equivalence between the weighted bi-directed
graphs used in graph signal processing to GMRFs.

Let us start with a GMRF model in the form of Eq. (1).
Assume the signal is zero-mean, thus µ = 0. We may construct
a bi-directed graph G = (V = {1, · · · , n}, E), where each
element of the random vector will form a node in the graph.
When i ̸= j, an edge between node i and j is created if
and only if Qij ̸= 0. In addition, we will add some self
loops (edges that connect nodes to themselves) to the graph,
as shown in Fig. 1. (Often a graph with self-loops is called
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Fig. 1. Mapping between a precision matrix and a bi-directed graph that
contains self-loops.

a pseudograph, while a graph without self-loops is called a
simple graph.)

We now define a mapping from n×n matrices Q to n×n
matrices W. Specifically, let

Wij = −Qij , for all i ̸= j (7)

and

Wii =
n∑

j=1

Qij , for all i. (8)

An example of this weighting for a three-node graph is given
in Fig. 1.

A reverse mapping can be defined similarly. Specifically,

Q̂ij = −Wij , for all i ̸= j (9)

and

Q̂ii =
n∑

j=1

Wijfor all i. (10)

It is easy to verify that Q = Q̂: clearly Qij = −Wij = Q̂ij

for all i ̸= j, and Qii = Wii −
∑

j ̸=i Qij =
∑

j Wij = Q̂ii

for all i. Hence, the mapping is invertible and puts the set of
n×n matrices Q in 1-1 correspondence with the set of n×n
matrices W.

Next consider the subset of matrices W that are symmetric
and non-negative, satisfying (6). We now show that when such
a matrix W is mapped to a matrix Q̂ via (9) and (10), the
resulting matrix Q̂ is positive semi-definite. To see that, index
the edges E by e ∈ {1, . . . , |E|} and denote the eth edge by
{ie, je}, where ie ≤ je are the vertices connected by edge e.
Then construct the |E| × |V| matrix R whose eth row rTe =
[Rei] is given for ie < je by

Rei =


√
Wieje if i = ie

−
√
Wieje if i = je

0 otherwise
(11)

and for ie = je by

Rei =

{ √
Wieie if i = ie

0 otherwise
. (12)

Note that this construction is possible only if W is non-
negative. Now it is clear that

RTR =
∑
e

rTe re (13)
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is the sum of symmetric n × n matrices Qe = rTe re, where
for e such that ie < je,

Qe
ij =


Wieje if i = ie and j = ie
−Wieje if i = ie and j = je
−Wieje if i = je and j = ie
Wieje if i = je and j = je
0 otherwise

(14)

and for e such that ie = je,

Qe
ij =

{
Wieie if i = ie and j = ie
0 otherwise (15)

Thus it can be seen from (9) and (10) that RTR = Q̂, whence
Q̂ must be positive semi-definite since xTRTRx = ||Rx||2 ≥
0 or alternatively

xT Q̂x =
∑
e

xTQex (16)

=
∑
i

Wiix
2
i +

∑
i<j

Wij(xi − xj)
2 ≥ 0 (17)

for any vector x. Hence we have shown that if W is non-
negative then Q̂ is positive semi-definite.

In light of the 1-1 correspondence between W and Q (= Q̂),
this proves that there is an injective mapping from the set of
symmetric non-negative weight matrices W satisfying (6) to
the set of symmetric positive semi-definite precision matrices
Q satisfying (2).

In general positive semi-definiteness of Q is required (as
opposed to positive definiteness), since in general there are
non-negative weight matrices W satisfying (6) corresponding
to singular precision matrices Q satisfying (2). In particular,
if W has no self-loops, i.e., if Wii = 0 for all i, then it
can be seen from (8) that all rows of Q sum to zero, hence
Q is rank-deficient. We will show in Section II-D that the
converse is also true: if W has at least one self-loop in every
connected component, i.e., if Wii > 0 for any i in every
connected component, then the precision matrix has full rank.
(This can also be proved from a different direction using [11,
Lemma 3.1].) Thus in fact we can prove that there is a 1-1
correspondence between symmetric positive definite precision
matrices Q that satisfy (2) and non-negative weight matrices
W that both satisfy (6) and are sufficiently loopy: Wii > 0
for at least one i in each connected component of G.

In summary, each weighted bi-directed graph ⟨G,W⟩ used
in graph signal processing corresponds uniquely to a zero-
mean intrinsic GMRF with respect to G. An intrinsic GMRF,
as defined in the next section, is a generalization of a GMRF
whose precision matrix may not be invertible. We need this
generalization, since in many applications, the underlying
graph contains no self-loops.

C. The Intrinsic Gaussian Markov Random Field

In this section, we define the intrinsic GMRF (IGMRF).
Let Q be an n × n symmetric positive semi-definite matrix
with rank n − k, which may be less than n. A vector

x = (x1, · · · , xn)
T is an intrinsic GMRF of order k ≥ 0

with parameters (µ,Q) if it has density

p(x) = (2π)−
n−k

2 (|Q|∗) 1
2 exp

(
− 1

2
(x− µ)TQ(x− µ)

)
,

(18)
where |·|∗ denotes the generalized determinant (the product of
the non-zero eigenvalues). An intrinsic GRMF of order k > 0
is also known as an improper GMRF of rank n− k.

For an improper GMRF, the density (18) is not integrable
with respect to Lebesgue measure. Nevertheless, the density
(18) well-defines a measure P (X) =

∫
X
p(x)dx on all Borel

sets X in the sigma-algebra σ(Rn) on Rn. This measure is
the product of a Gaussian probability measure and Lebesgue
measure. To see this, diagonalize Q = VΛVT as

Q =
[
V1 V2

] [ Λ1 0
0 0

] [
VT

1

VT
2

]
= V1Λ1V

T
1 , (19)

where V is an orthonormal matrix whose columns are eigen-
vectors of Q, Λ is the diagonal matrix of corresponding non-
negative eigenvalues (without loss of generality sorted from
highest to lowest), and Λ1 is the submatrix of the n−k positive
eigenvalues. Then with the change of variables

u = VTx, (20)

we have

x = Vu =
[
V1 V2

] [ u1

u2

]
= V1u1 +V2u2. (21)

Now assuming the transformed set U = VTX is a “rectangle”
U = U1 × U2 in the new coordinate system, where Ui is is a
measurable set in the column space of Vi, i = 1, 2, we have

P (X)

=

∫
X

p(x)dx (22)

= det(V)

∫
VTX

p(Vu)du (23)

=

∫
U1×U2

(2π)−
n−k

2 (|Q|∗) 1
2 (24)

exp
(
− 1

2
(u−VTµ)TVTQV(u−VTµ)

)
du

=

∫
U2

du2 ×
∫
U1

(2π)−
n−k

2 (|Q|∗) 1
2 (25)

exp
(
− 1

2
(u1 −VT

1 µ)
TVT

1 QV1(u1 −VT
1 µ)

)
du1.

This measure on rectangles extends to a measure on arbitrary
measurable sets X ∈ σ(R) by the usual technique of approach-
ing X from below by a sequence of unions of rectangles and
taking limits [15].

Thus we see that the measure of an improper GMRF of rank
n − k with parameters (µ,Q) is the product of 1) a proper
Gaussian measure on Rn−k with mean VT

1 µ and precision
Λ1 = VT

1 QV1, and 2) an improper Lebesgue measure on
Rk. Moreover, it can be seen from (21) that an improper
GMRF x is the sum of a Gaussian random vector V1u1 and
an indeterminate (non-random, unknown) vector V2u2. The
former lies in span(V1) = range(Q), the subspace spanned
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by the columns of V1, while the latter lies in the orthogonal
subspace span(V2) = nullspace(Q).

Since the indeterminate vector lies in span(V2), it can be
killed by any linear combination Ax where the columns of AT

are orthogonal to span(V2) (or equivalently, lie in span(V1)),
in which case AV2 = 0 and so

Ax = AV1u1 +AV2u2 = AV1u1. (26)

Moreover, as a linear combination of the Gaussian random
variables u1, Ax is also Gaussian with mean AV1V

T
1 µ and

covariance AV1Λ
−1
1 VT

1 A
T .

As a special case, if nullspace(Q) = span(V2) = {α1},
i.e., is the space spanned by the vector of all ones, then
any n-vector a whose elements sum to zero is perpendicular
to nullspace(Q), and hence the linear combination aTx is
Gaussian. In particular, any difference of elements in x, say
xi − xj , and any linear combination of such differences, and
any collection of such combinations, such as Qx or Qkx,
is Gaussian. In the next section we show that this case is
canonical.

D. IGMRF of First Order

In this section, we show that the IGMRF of first order is
canonical, and we derive further results for this special case.

To see that the IGMRF of first order is canonical, observe
from spectral graph theory [6, Lemma 1.7(iv)] that if G is
loopless, then the rank k of nullspace(Q) is equal to the
number of connected components of G. This implies on the
one hand, if G is connected then k = 1, corresponding to an
IGMRF of first order (i.e., the rank of Q is n − 1). On the
other hand, if G is not connected then it can be decomposed
into k connected components, corresponding to a collection of
k independent IGMRFs each of first order. In this sense the
IGMRF of first order is canonical; IGMRFs of greater order
need not be considered.

We henceforth consider only the case where G is connected.
Our results extend in the obvious way when G is a collection
of connected components.

When G is connected and loopless, the null space of Q
consists of the 1-dimensional subspace spanned by the vector
of all ones. (This is the case examined at the end of the last
section.) To see this, note from (8) and Fig. 1 that for G to be
loopless (i.e., for it weight matrix to satisfy Wii = 0 for all
i) a necessary (and incidentally sufficient) condition is that all
rows of Q must sum to zero:∑

j

Qij = 0, for all i. (27)

Also, note from the aforementioned spectral graph result that
for G to be connected, we must have k = 1. Together these
imply that (27) is the one and only way that Q can be deficient
in rank. Hence the null space of Q consists precisely of the
vectors spanned by the vector 1 of all ones.

We now show that the IGMRF of first order has the special
property that its conditional distributions are proper GMRFs.
To be precise, let x = [x1;x2] be an IGMRF of first order with
density p(x) as in (18). (Here and in the sequel for readability

we use the MATLAB notation [x1;x2] = [xT
1 ,x

T
2 ]

T .) We
show that for any a,

p(x1|x2 = a) =
p([x1;a])∫
p([x1;a])dx1

(28)

is the density of a proper GMRF as required in (1). It suffices
to show that p([x1;a]) is integrable, for if it is, then clearly
(28) has a quadratic form as required in (1). But p([x1;a]) is
integrable if and only if p([x1;0]) is integrable, since one is a
non-zero multiple of the other. And p([x1;0]) is integrable if
and only if the subspace {[x1;0]} is contained entirely within
range(Q), since otherwise there would exist a non-zero vector
v = [x1;0] in nullspace(Q) for which p(αv) is constant for
all α.) Finally {[x1;0]} is indeed contained entirely within
range(Q), since nullspace(Q) is spanned by the vector of
all ones. Hence we have shown that the conditional density
(28) is the density of a proper GMRF, and that the conditional
distribution of an IGMRF of first order is the distribution of
a proper GMRF.

At this point, it is worth observing the connection between
self-loops and conditioning. From (17) it can be seen that
an IGMRF x = (x1, . . . , xn) with one or more self-loops is
equivalent to an augmented IGMRF x̄ = (x1, . . . , xn, xn+1)
without self-loops, where W̄i,n+1 = Wii for i = 1, . . . , n
and xn+1 is pinned to zero. This is the reason that an IGMRF
with at least one self-loop per connected component is a proper
GMRF: each connected component is equivalent to an IGMRF
of first order conditioned on one of its variables being equal
to zero.

As a consequence of conditioning turning an IGMRF of first
order into a proper GMRF, the conditional means, conditional
precision matrices, and conditional covariance matrices of an
IGMRF of first order are all well-defined as in (3)-(5).

An alternative way to see this is the following. Given any
IGMRF, model the indeterminate vector V2u2 as Gaussian,
where the k-dimensional vector u2 is Gaussian with mean
VT

2 µ and precision Λ2 = ϵIk. Here Ik denotes the k × k
identity matrix, and ϵ > 0 is small. This turns the IGMRF with
parameters (µ,Q) into an ordinary GMRF with parameters
(µ,Qϵ), where

Qϵ =
[
V1 V2

] [ Λ1 0
0 ϵIk

] [
VT

1

VT
2

]
(29)

= V1Λ1V
T
1 + ϵV2V

T
2 . (30)

In the case of an IGMRF x of first order where V2 is the
column vector of all ones, we have that ϵV2V

T
2 is the n× n

matrix of all ϵs. Hence Qϵ = Q+ ϵ and (3)-(5) become

E(xi|x−i) = µi −
1

(Qii + ϵ)

∑
j:j∼i

(Qij + ϵ)(xj − µj), (31)

Prec(xi|x−i) = (Qii + ϵ), (32)

Corr(xi, xj |x−ij) = − (Qij + ϵ)√
(Qii + ϵ)(Qjj + ϵ)

, i ̸= j. (33)

In the limit as ϵ → 0, these approach (3)-(5). That is, (3)-(5)
hold even for the IGMRF x, where Q is singular. In particular,
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when µ = 0, note that

E(xi|x−i) = − 1

Qii

∑
j:j∼i

Qijxj . (34)

Since −
∑

j:j∼i Qij

Qii
= 1 due to Eq. (27), the conditional mean

of xi is simply a weighted average of its neighbors. Such
“local” behavior is desirable in many applications, as we will
explain later.

IGMRFs of first order are closely related to a widely used
model known as the first-order random walk. Furthermore,
IGMRFs with higher orders can be defined similarly, and can
be associated with higher order random walks on the graph.
Interested readers are referred to [27] for more explanation of
the relationship between the probabilistic models.

In the following sections, we will abuse terms and use
GMRFs to refer to both proper and improper GMRFs. It
shall be kept in mind that when a GMRF is improper, if
necessary, with care, its properties may be interpreted as limits
of properties of sequences of proper GMRFs.

III. GRAPH CONSTRUCTION

In any graph signal processing applications, the first and
utmost important task is to construct the graph for the signal.
This is, however, a non-trivial task. In the following, we
examine numerous schemes to construct the signal graph with
data statistics or heuristic models.

A. The Data-Driven Approach

Assume we are given a large number of observations from
a high dimensional signal. Our goal is to construct a graph,
including both its topology and edge weights, such that the
graph can represent the signal in a principled manner. To
this end, let us denote the high dimensional signal as a
random vector x = (x1, · · · , xn)

T . Following Section II, we
may model the signal’s statistical distribution as a Gaussian
Markov Random Field. The mean and covariance matrix of
the GMRF can be easily estimated via sample mean and
sample covariance of the observed examples. After removing
the mean, the remaining signal can be fully described by
its covariance matrix. According to Section II-B, if we take
the inverse of the covariance matrix and obtain the precision
matrix, we can construct a unique graph with or without self-
loops to describe the signal.

While the above data-driven approach would be the most
accurate if we have plenty of observations, it has some short-
comings. First, since the precision matrix is computed from
the sample covariance matrix, most likely it is a full matrix
consisting of few, if any, zero entries. Such highly connected
graphs are usually inconvenient to analyze. (See [23], [22],
and the references therein for approaches to learning sparse
precision matrices.) Second, when the signal’s dimensionality
is high, estimating an accurate covariance matrix requires a
lot of data in order to be statistically valid. Unfortunately, for
many real world applications, data collection is expensive, and
difficult to conduct.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2

3 4

1 2 n…

(a)

(b) (c)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(d)

Fig. 2. A few intuitive graph models for 1D and 2D images. (a) 1D chain
model, (b-c) simple 2D models for a 2×2 and a 4×4 block, where each pixel
is only connected with its direct neighbors, (d) a more complex 2D model.

B. Intuitive Model-Based Approach

For certain types of signals such as 1D and 2D images,
one can often construct the graph in an intuitive manner.
For instance, in Fig. 2 (a)(b)(c), each pixel of the image is
represented by a node in the graph. When weights (often unity)
are assigned to edges in the graph, the graph corresponds to
a GMRF, whose precision matrix is given as follows. Let the
weights between two connected nodes i and j be Wij = Wji,
and define

L = D−W, (35)

where W is the weight matrix, and D = diag(d1, · · · , dn) is
a diagonal degree matrix, where

di = 2Wii +
∑
j:j ̸=i

Wij . (36)

The matrix L is often referred as the (loopy) graph Laplacian
matrix, and it is a difference operator. Using (9) and (10) in
Section II-B, it can be verified that L = Q̂: clearly, Lij =
−Wij for all i ̸= j, and Lii =

∑
j Wij = Q̂ii for all i. Hence

if L is positive semi-definite, then we may simply use the
Laplacian matrix as the precision matrix,

Q = L, (37)

which is consistent with the bijective mapping between the
graph and the corresponding GMRF model. Such a GMRF
model is sometimes called a Laplacian GMRF model. The
Laplacian GMRF model has been widely adopted in the liter-
ature, such as in image reconstruction [19], texture modeling
and discrimination [4], [8], image segmentation [17], etc.

If x is a signal on the graph, then its graph Laplacian
quadratic form

xTLx =
∑
i

Wiix
2
i +

∑
i

∑
j:j∼i

Wij(xi − xj)
2 (38)

is often used as a measure for the signal’s global smooth-
ness [6]. The eigenvector matrix of the graph Laplacian is
known as the graph Fourier transform, which can be used to
define different notions of smoothness on the graph, leading to
various applications for graph filter design and analysis [30].

Another popular option to define a difference operator on
a graph is the normalized graph Laplacian. The normalized
graph Laplacian is defined as:

L̃ = D− 1
2LD− 1

2 . (39)

The eigenvalues of the normalized graph Laplacian has the
nice property that they are contained between the interval
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[0, 2]. According to [6], the advantage of the normalized graph
Laplacian definition is its consistency with the eigenvalues in
spectral geometry and in stochastic processes. Many results
which were only known for regular graphs can be generalized
to all graphs.

One may also form a GMRF model using the normalized
graph Laplacian:

Q̃ = L̃. (40)

Compared with the regular Laplacian GMRF in (37), we
can observe that the conditional correlation between any two
nodes remains unchanged (Eq. (5)). However, the conditional
precision of each element has been normalized to unity. Since
the resultant GMRF model can be inversely mapped to an
infinite number of graphs with the same normalized graph
Laplacian, the above mapping is not bijective.

C. Model-Constrained Data-Driven Approach

Using heuristic-based graph models is a convenient way for
graph signal processing. Usually a node in the graph will be
connected with limited number of neighbors; thus the final
precision matrix is sparse. However, except for a few widely
tested signals (such as images), it is difficult to predict how
much error we are introducing by heuristically connecting
nodes and assigning weights. Ideally, the model-based and
data-driven approaches should be combined in order to achieve
better performance.

Formally, given a zero-mean multi-dimensional random
vector x = (x1, · · · , xn)

T and a set of independently-drawn
observations {x1, · · · ,xM}, our goal is to find the precision
matrix Q̂ that maximizes the posterior,

Q̂ = argmax
Q

p(Q|x1, · · · ,xM )

= argmax
Q

p(Q)
M∏

m=1

p(xm|Q). (41)

Since we model the signal using GMRF models, the likelihood
term p(xm|Q) can be easily written

p(xm|Q) = (2π)−
n
2 |Q| 12 exp

(
− 1

2
xT
mQxm

)
. (42)

The prior, p(Q), encodes our knowledge about the target
model, which is imposed artificially to encourage certain
structure in the resultant graph.

The knowledge, certainly, is application dependent. It could
be as simple as an impulse like prior that enforces all graph
edge weights to have values 0 or 1 depending on the edge
strength between pixels (based on the current image block),
which was used in [29] without considering a probabilis-
tic framework explicitly. A more sophisticated example that
adopts the above probabilistic framework is the recent work
by Dong et al. [10], and we refer the readers to their paper
for more details.

IV. THE GRAPH TRANSFORM

A. The Graph Transform

For a random signal residing on a graph, its elements are
often highly correlated. A popular signal processing tool is

to decorrelate the elements, making them easy to analyze or
process. Let us decorrelate such a random graph signal x. To
begin, let us assume that x is a zero-mean, (proper) GMRF,
with covariance matrix Σ = Q−1, where Q is the precision
matrix. The linear transform that decorrelates x is thus the
Karhunen-Loève transform (KLT) ΦT , where the columns of
Φ are the eigenvectors of Σ. That is,

ΣΦ = ΦΓ, (43)

where Γ = diag(γ1, · · · , γn) is the diagonal matrix of eigen-
values of Σ. Since

QΦ = Σ−1Φ = (ΦΓΦT )−1Φ = ΦΓ−1 = ΦΛ, (44)

Φ is also the eigenvector matrix of Q, and the eigenvalues of
Q are the inverses of the eigenvalues of Σ.

In the event that x = V1u1+V2u2 is an (improper) IGMRF
with precision matrix Q as in Section II-C, it can be seen that
the transpose of the eigenvector matrix of Q, ΦT = [V1,V2],
“decorrelates” x into components u1 and u2, where u1 is a
vector of independent Gaussian random variables and u2 is an
indeterminate vector.

Therefore, whether x is a zero-mean GMRF or IGMRF with
precision matrix Q, the transpose of the eigenvector matrix of
the precision matrix is a decorrelating transform. Since it is
defined on a graph, we call it the Graph Transform. It can
be shown that the various notions of optimality of the KLT
extend naturally to the graph transform.

B. Graph Transform on Laplacian GMRF and Filtering

For signals that follow the Laplacian GMRF model, it is
clear that the above defined graph transform is identical to
the well-known graph Fourier transform. Therefore, the graph
Fourier transform decorrelates the Laplacian GMRF signal.

Given a graph signal’s Fourier transform, various operators
can be defined on the signal, such as filtering, translation,
modulation, dilation, etc. [30]. For example, let x be a zero-
mean, Laplacian GMRF. The standard definition of filtering
involves projecting the input signal with the Fourier transform
matrix, applying a spectral filter, and then applying an inverse
Fourier transform:

xf = ΦHΦTx, (45)

where xf is the filtered signal, and H = diag(h1, · · · , hn) is
the filter matrix. Since x is Gaussian, and H and Φ are both
linear transforms, the filtered signal is also Gaussian, with
covariance matrix

Σf = Exfx
T
f = (ΦHΦT )Σ(ΦHΦT ) (46)

= (ΦHΦT )ΦΓΦT (ΦHΦT ) = ΦΓfΦ
T (47)

and precision matrix

Qf = Σ−1
f = ΦΓ−1

f ΦT = ΦΛfΦ
T , (48)

where Γf = HΓH = diag(h2
1γ1, · · · , h2

nγn) and Λf =
H−1ΛH−1 = diag(λ1/h

2
1, · · · , λn/h

2
n). It can be seen that

the filter operation essentially scales the multivariate Gaussian
signal x along its principal axes by h1, · · · , hn, effectively
changing the correlations and precisions of the elements of x.
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In the event that x is an (improper) IGMRF, then it can be
seen from the density (18) and a change of variables analogous
to (22)–(25) that once again, Qf = ΦΛfΦ

T .
Hence, provided with an arbitrary precision matrix Q (not

necessarily derived from the graph Laplacian), filtering can be
defined based on its own graph transform. From the probabilis-
tic viewpoint of GMRF models, filtering on the graph signal
is nothing but finding its principal axes and stretching them
according to the needs of the applications. It shall be noted
that filtering does not change the graph transform matrix ΦT

of Q.

C. Graph Transform and DCT

The graph transform is a signal-dependent transform, since
it depends on the statistics of the signal, in particular, the pre-
cision matrix Q. Nevertheless, for a certain family of signals,
such as images on a 1D or 2D grid, researchers have applied
data-independent GMRF models for various applications with
great success [18][19][4][17]. In the following, we use a sim-
ple Laplacian GMRF model as the representation of 1D or 2D
images, subsequently revealing the close relationship between
graph transform and one of the most popular transforms for
image processing: the discrete cosine transform (DCT).

Given a 1D or 2D image signal on a regular lattice graph
G (Fig. 2(a)(b)(c)), let us define a weight matrix with Wij =
Wji = 1 if nodes i and j are immediate neighbors connected
by an edge. Otherwise, Wij = Wji = 0. Following the steps
in Section III-B, we can easily define a Laplacian GMRF on
the graph. It turns out that for the 1D signal graph as shown
in Fig. 2(a), the above GMRF model is equivalent to a first
order autoregressive signal model. The eigenvector matrix of
the Laplacian matrix L has been shown to be identical to DCT
(more specifically, DCT-2) [31], which is consistent with the
conclusion in [7], where Clarke proved the optimality of the
1D DCT for an autoregressive signal model.

When the graph signal lies on a 2D lattice graph as Fig. 2(b)
and (c), the Laplacian matrix L still has rank n− 1, but it has
duplicated eigenvalues. This means that we have an infinite
number of optimal linear transforms that can fully decorrelate
the signal. In our previous work [33], we showed that the 2D
DCT is an eigenvector matrix for L, and is thus one of these
optimal linear transforms. In other words, although the 2D
DCT is generally viewed simply as a computationally efficient
extension of the 1D DCT into 2D, it is actually optimal for
a very reasonable signal model: the Laplacian GMRF on the
2D lattice graph where the conditional mean of a pixel is the
arithmetic mean of its four closest neighbors. This confirms
the successful application of the 2D DCT in typical image
coding algorithms such as JPEG.

D. Other Graph Transform Applications

The graph transform has received a lot of attention recently
in various data compression tasks. For instance, a transform
design referred to as an edge adaptive transform (EAT) was
recently proposed in depth map coding [29], where a graph
is defined on image blocks, and the correlation across depth
edges in the graph is set to 0. The authors applied the

eigenvector matrix of the Laplacian matrix L as the transform
for the signal. Although they did not model the depth signal
with a probabilistic model, our analysis above shows that
an implicit Laplacian GMRF model was assumed on the
depth data, and the EAT is indeed the optimal transform to
decorrelate the signal under that assumption.

For less regular graph signals, the work in [34] applied
graph transform on the compression of point cloud attributes,
such as color and normal. There the weights between neigh-
boring points are defined according to the distances between
them. Still the graph Laplacian matrix is used as the precision
matrix, and the corresponding graph transform demonstrated
great performance against existing methods.

V. GRAPH DOWNSAMPLING

Many multi-resolution signal processing schemes on graphs
require successively generating coarser versions of the original
graph and preserving properties of the original graph as much
as possible. While there are many different algorithms that
have been developed for graph coarsening [26], below we
present a coarsening scheme from a probabilistic viewpoint.

Consider a random vector x = (x1, · · · , xn) on a graph
G = (V = {1, · · · , n}, E) that follows a (proper) GMRF model
with mean µ and precision matrix Q. In order to coarsen the
graph, we plan to remove k nodes from the graph, reducing
the input random vector’s dimensionality from n to n − k.
Note here we only consider the case where the remaining
nodes are a subset of the original node set, which is often
referred as graph downsampling. We have two main questions
to address: how to choose the best k nodes such that we
preserve as much information as possible, and once the k
nodes are removed, how to construct the new graph such that
it reflects the relationship between the remaining nodes?

A. Graph Reconstruction after Downsampling

We start by answering the second question, which is more
straightforward. Knowing the k nodes to be eliminated, with-
out loss of generality, we assume they are the last k elements
of the input vector x. Let x1 = (x1, · · · , xn−k)

T be the nodes
to be kept, and x2 = (xn−k+1, · · · , xn)

T be the nodes to be
removed. We may partition the mean vector µ as

µ =

(
µ1

µ2

)
, (49)

and the covariance matrix Σ and precision matrix Q as

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,Q = Σ−1 =

(
Q11 Q12

Q21 Q22

)
, (50)

where µ1 is the mean of x1, and µ2 is the mean of x2.
By removing the x2 elements from x, we are left with a
marginalized GMRF signal x1, with mean µ1 and covariance
matrix Σ11. Letting Q1 represent the precision matrix of x1,
we have Q1 = Σ−1

11 and hence

Q1 = Q11 −Q12Q
−1
22 Q21, (51)

which can be easily derived based on block matrix inversion.
Q22 is guaranteed to be invertible because Q is invertible and
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is therefore positive definite. Therefore, the graph downsam-
pling operation involves removing the k unwanted nodes from
the graph, and reconnect all nodes based on the conditional
correlation specified in Q1. Namely, if the entry at (i, j) for
Q1 is non-zero, an edge shall be created on the downsampled
graph connecting nodes i and j.

In the event that x is an (improper) IGMRF with a single
connected component, it can be shown that Q22 is still
invertible and hence (51) remains well-defined [11, Lemma
2.1(i)].

It turns out that the above graph downsampling process is
known in the literature as the Kron reduction of a graph [11],
which was originally derived from electrical networks. It is
ubiquitous in classic circuit theory and many other disciplines
such as sparse matrix algorithms, multi-grid solvers, finite-
element analysis, etc. Our derivation above demonstrates that
the Kron reduction has a simple yet profound probabilistic
grounding, in particular for graph signal processing if the
graph signals are modeled with GMRF models.

B. Progressive Graph Downsampling

The Kron reduction can be applied iteratively (one node by
one node) to downsample the graph in a progressive manner.
From the previous discussion, it is clear that if in the end only
n − k nodes are kept, the order of Kron reduction for the k
eliminated nodes does not matter, since in the end we always
reach the marginalized GMRF distribution of x1. However,
if we were only told to remove k nodes from the graph, it
remains unclear which k nodes shall be chosen in order to be
optimal.

From a probabilistic viewpoint, we define the information
loss by downsampling the original graph signal x to x1 as the
entropy difference between x and x1. Since the distribution of
x is fixed, we select x1 such that it will have the maximum
differential entropy, which can be computed as:

x̂1 = argmax
x1

H(x1) = argmax
x1

1

2
log

(2πe)n−k

|Q1|
, (52)

where log is base 2 and the unit of entropy H(x1) is in bits. It
can be shown that selecting x1 according to this criterion in the
same as finding the x1 that maximizes the mutual information
with x. Admittedly, an exhaustive search of the maximum of
the remaining signal’s entropy is still very expensive and NP-
hard. In that regard, we refer the readers to [26][30] for more
practical algorithms for graph downsampling.

VI. GRAPH PREDICTION

A. Prediction on the Graph

Consider a possibly improper IGMRF x = (x1, · · · , xn,
xn+1, · · · , xm)T with parameters (µ,Q), and assume that
among the elements of x, x1 = (x1, · · · , xn)

T is unknown,
and x2 = (xn+1, · · · , xm)T is known. As we have shown in
Section II-D, the distribution of x1 conditioned on x2 is a
proper GMRF. Specifically, it can be shown (see, e.g., [27])
that if µ and Q) are correspondingly partitioned

µ =

(
µ1

µ2

)
,Q =

(
Q11 Q12

Q21 Q22

)
, (53)

Reference block Current block

Fig. 3. An illustrative example for motion prediction. A 3D graph can be
defined on the pixels to represent an example GMRF model.

then x1|x2 is a proper GMRF with mean µx1|x2
and precision

matrix Qx1|x2
, where

µx1|x2
= µ1 −Q−1

11 Q12(x2 − µ2), (54)
Qx1|x2

= Q11. (55)

Again, it can be shown that if x is an IGMRF with a single
connected component, then Q11 is invertible [11, Lemma
2.1(i)].

B. Graph Signal Interpolation

The graph prediction theory described above can be directly
applied in graph signal interpolation. Given a graph and its
associated weights, we first model the graph signal as a
GMRF following Section II-A. We can then easily estimate
the missing elements on the graph using (54), since it would
represent the conditional mean of the missing elements.

C. Predictive Graph Transform

Graph prediction can also be very insightful in determining
the best strategy for predictive transform coding. From Eq.(54)
and (55), it is clear that in order to optimally decorrelate
the variable x1 given x2, we can first subtract the condi-
tional mean µx1|x2

from x1, and then apply the eigenvector
matrix of Q11 to transform the signal for further process-
ing/compression. Such a procedure is optimal because x1|x2

is a GMRF, and we can reuse all the derivation on graph
transform presented in Section IV. We term this the Predictive
Graph Transform (PGT).

In the following, we discuss the application of PGT in
motion prediction and intra-frame predictive coding. In both
cases, we assume a generic GMRF model of the image is
given during the analysis.

D. Motion Prediction

In motion prediction, a reference block is found through
various motion estimation approaches, and is used to predict
the block that is currently being encoded. Assume the two
blocks are zero mean, and follow GMRF models described
by precision matrix Qref and Qc, respectively. To this end,
let us construct a GMRF model in 3D, as shown in Fig. 3.
If we assume all “prediction” edges have weight one (since
the reference block should be very similar to the current block
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Fig. 4. An illustrative example for intra-frame prediction. The 4× 4 image
block will be predicted by the shaded known pixels on the top and left. The
right figure is a typical graph defined on the image.

due to motion search), the precision matrix of the 3D GMRF
model can be written

Q =

(
Q11 −I
−I Q22

)
, (56)

where I is an identity matrix, and

Q11 = Qc + I,Q22 = Qref + I. (57)

Based on the derivation in Section VI-A, we may predict the
current block x1 as

µx1|x2
= Q−1

11 x2, (58)

and then apply the eigenvector matrix of Q11 to decorrelate
the signal.

The above analysis has interesting implications. For motion
prediction, instead of directly copying the pixels from the
reference block to the current block, Eq. (58) suggests that the
optimal scheme is to first apply a filter on x2 before copying.
In addition, since any orthogonal basis is an eigenvector matrix
of the identity matrix I, it can be shown that Q11 will share the
same set of eigenvectors as Qc. Hence the optimal transform
for the residue remains the same as when no motion prediction
is performed.

For the special case that Qc = L, since the Laplacian is
essentially a high pass filter, Q−1

11 will be a low-pass filter.
Therefore, one should blur the reference block and then copy
it to the current block. Furthermore, from the analysis in
Section IV-C, we can conclude that the 2D DCT transform
is still optimal for encoding the prediction residual.

E. Intra Predictive Coding

In modern video codecs, the intra frames will also be
predicted from neighboring known pixels to enhance coding
efficiency. Again we may form a simple graph for the 2D
block including the neighboring pixels, as shown in Fig. 4.
Following Section VI-A, for a zero mean image, the optimal
prediction would be:

µx1|x2
= −Q−1

11 Q12x2, (59)

where x1 is the list of pixels to be encoded, and x2 is the list
of known neighbors. The optimal transform is the eigenvector
matrix of Q11.

Noted that the optimal prediction for intra-frame predictive
coding is related to both Q11 and Q12. That is, how the
unknown pixels are correlated to themselves, and how they are
correlated to the known pixels. In general the 2D DCT is no

longer the eigenvector matrix for Q11 due to the connections
between x1 and x2. Similar to the previous works [32], [16],
[28], our analysis calls for different schemes of intra-prediction
and transform coding. On the other hand, our derivation is
rather general, and not limited to separable or first order signal
models.

If we consider the special case that Q = L, both Q−1
11 Q12

and the eigenvector matrix of Q11 can be pre-computed. In
practice, however, the neighboring known pixels may suggest
a better GMRF model, and it could certainly be adopted to
improve the coding efficiency.

VII. REGULARIZATION

When graph signals are analyzed, it is important to impose
constraints or regularization such as smoothness with respect
to the graph structure. A popular global smoothness measure
is the p-Dirichlet form of the graph signal, defined as:

Sp(x) :=
1

p

[∑
i

∑
j:j∼i

Wij(xi − xj)
2
] p

2

. (60)

When p = 1, S1(x) is the total variation of the signal with
respect to the graph. When p = 2, we have:

S2(x) =
∑
i

∑
j:j∼i

Wij(xi − xj)
2 = xTLx, (61)

which is the graph Laplacian quadratic form mentioned in
Section III-B.

In graph signal processing applications, a typical goal is
to find an estimate of the signal on the graph, such that a
certain cost function is minimized, subject to the smoothness
constraint or regularization. That is, we solve:

x̂ = argmin
x

f(x) + λSp(x), (62)

where λ is a Lagrange multiplier. The above minimization
problem can have probabilistic interpretations. For instance,
when the main target function f(x) is the least square error
between estimation and observation, it can be interpreted as the
log likelihood of x under a Gaussian noise observation model.
Similarly, the regularization term Sp(x) can be considered as
the (logarithm of) prior distribution of x. It is immediately
obvious that when the graph Laplacian quadratic form S2(x)
is used for regularization, the prior distribution corresponds
to a Laplacian GMRF model, with the Lagrange multiplier λ
being a scale factor that defines the precision matrix Q as the
λ-multiple of the graph Laplacian matrix.

It shall be noted that any regularization can be considered
as imposing an implicit prior probability distribution of the
unknown graph signal x. We single out S2(x) because it is one
of the most widely used and it is equivalent to having a GMRF
model over the unknown graph signal [21][14][9]. When p ̸=
1, the prior distribution is no longer Gaussian, but rather a
generalized Gaussian distribution [5], or generalized GMRF
(GGMRF) distribution in our context. Generalized Gaussian
distribution has been shown to be a good model for natural
images, and is thus also widely used in the literature [3][24][1].
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VIII. CONCLUSION

In this paper, we proposed to use the Intrinsic Gaussian
Markov Random Field as the underlying probabilistic model
for graph signal processing. Such an approach allows us to
draw a few important conclusions that were not obvious in the
literature, such as the optimality of the graph transform and
2D DCT, the probabilistic implication of the Kron reduction,
the optimal predictive transform coding, etc. We believe our
analysis provides a novel angle to analyzing graph signal
processing, and may inspire more important works in the
future.

In the end, we shall point out that GMRF, after all, is a
Gaussian distribution model for the signal, and may not be
applicable to all real-world applications. Under circumstances
where GMRF is not an ideal model, more sophisticated models
could be used. As a researcher working in the field, one shall
truly understand the probabilistic implications of the GSP
algorithm he/she adopts, and make adaptations as necessary
to better solve real-world problems.
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