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ABSTRACT
When processing massive data sets, a core task is to construct syn-
opsesof the data. To be useful, a synopsis data structure should be
easy to construct while also yielding good approximations of the
relevant properties of the data set. A particularly useful class of
synopses aresketches, i.e., those based on linear projections of the
data. These are applicable in many models including variouspar-
allel, stream, and compressed sensing settings. A rich bodyof an-
alytic and empirical work exists for sketching numerical data such
as the frequencies of a set of entities. Our work investigates graph
sketchingwhere the graphs of interest encode the relationships be-
tween these entities. The main challenge is to capture this richer
structure and build the necessary synopses with only linearmea-
surements.

In this paper we consider properties of graphs including thesize
of the cuts, the distances between nodes, and the prevalenceof
dense sub-graphs. Our main result is a sketch-based sparsifier con-
struction: we show that̃O(nǫ−2) random linear projections of a
graph onn nodes suffice to(1 + ǫ) approximateall cut values.
Similarly, we show thatO(ǫ−2) linear projections suffice for (addi-
tively) approximating the fraction of induced sub-graphs that match
a given pattern such as a small clique. Finally, for distanceestima-
tion we present sketch-based spanner constructions. In this last
result the sketches are adaptive, i.e., the linear projections are per-
formed in a small number of batches where each projection may
be chosen dependent on the outcome of earlier sketches. All of
the above results immediately give rise to data stream algorithms
that also apply to dynamic graph streams where edges are bothin-
serted and deleted. The non-adaptive sketches, such as those for
sparsification and subgraphs, give us single-pass algorithms for dis-
tributed data streams with insertion and deletions. The adaptive
sketches can be used to analyze MapReduce algorithms that use a
small number of rounds.
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1. INTRODUCTION
When processing massive data sets, a core task is to construct

synopsesof the data. To be useful, a synopsis data structure should
be easy to construct while also yielding good approximations of
the relevant properties of the data set. A particularly useful class
of synopses aresketches, i.e., those based on linear projections
of the data. These are applicable in many settings includingvar-
ious parallel, stream, and compressed sensing models. There is
a large body of work on sketching numerical data, e.g., finding
heavy hitters and quantiles [10, 13]; estimating norms and support
sizes [32, 33]; and constructing histograms and low-dimensional
approximations [11, 26]. See Cormode [12] for a survey. In this
paper, we design and analyze sketches for graph data.

Massive graphs arise in any application where there is data about
both basic entities and the relationships between these entities, e.g.,
web-pages and hyperlinks between web-pages, IP addresses and
flows between addresses, people and their friendships. Properties
of interest include the distances between nodes of the graph, nat-
ural partitions and the size of cuts, and the prevalence of dense
sub-graphs. Applicable synopses for these properties includespan-
ners and sparsifisers. These are sparse (weighted) subgraphs of
the original graph from which properties of the original graph can
be approximated. Both spanners and sparsifiers have been studied
extensively [8, 22, 34]. Our work addresses the problem of con-
structing these synopses for massive graphs. Specifically,we show
how to construct such synopses given only linear projections of the
input graph.

Sketching is naturally connected to dimensionality reduction. For
example, the classic tug-of-war sketch of Alon, Mattias, and Szegedy
[5] is closely related to the Johnson-Lindenstrauss lemma for ℓ2
metric embedding [29]. Our results can similarly be viewed as a
form of linear dimensionality reduction for graphs. For example,
a graph onn nodes is essentially anO(n2) dimensional object.
However, our sparsification result shows that it is possibleto lin-
early project the graph into aO(ǫ−2 · n · polylog n) dimensional
sketch space such that the size of every cut in the graph can still be
approximated up to a(1 + ǫ) factor from the sketch of the graph.



1.1 Applications of Sketches
One of the main motivations for our work was to design algo-

rithms for processingdynamic graph streams. A dynamic graph
stream consists of a sequence of updates to a graph, i.e., edges
are added and removed. The goal is to compute properties of this
evolving graph without storing the entire graph. Sketches are im-
mediately applicable for this task since the linearity of the sketch
ensures that the sketch is updatable with edge deletions canceling
out previously insertions. One proviso is that linear measurements
required in the sketch can themselves be implicitly stored in small
space and constructed when required. The sketches we designhave
this property.

Our sketches are also applicable in the distributed stream model
[15] where the stream is partitioned over multiple locations and
communication between the sites should be minimized. Againthis
follows because the linearity of the sketches ensures that by adding
together the sketches of the partial streams, we get the sketch of
the entire stream. More generally, sketches can be applied in any
situation where the data is partitioned between different locations,
e.g., data partitioned between reducer nodes in a MapReducejob
or between different data centers.

1.2 Related Work
There exists a growing body on processing graph streams. In this

setting, an algorithm is presented with a stream ofm edges onn
nodes and the goal is to compute properties of the resulting graph
given only sequential access to the stream and limited memory. The
majority of work considers thesemi-streamingmodel in which the
algorithm is permittedO(n polylog n) memory [19, 38]. Recent
results include algorithms for constructing graph sparsifiers [1,35],
spanners [16, 20], matchings [2, 3, 18, 36, 41], and countingsmall
subgraphs such as triangles [6,9,30]. This includes both single-pass
algorithms and algorithms that take multiple pass over the data. See
McGregor [37] for an overview.

This paper builds upon our earlier work [4] in which we estab-
lished the first results for processing dynamic graph in the semi-
streaming model. In the previous paper we presented sketch-based
algorithms for testing if a graph was connected,k-connected, bi-
partite, and for finding minimum spanning trees and sparsifiers.
We also consider sparsifiers in this paper (in addition to estimat-
ing shortest path distances and the frequency of various subgraphs)
however our earlier results required sketches that were adaptive and
the resulting semi-streaming algorithm used multiple passes. In this
paper we present a single-pass sparsification algorithm. Noprevi-
ous work on distance estimation addresses the case of edges being
both inserted and deleted. The space/accuracy trade-off ofour new
algorithm for counting small subgraphs matches that of the state-
of-the-art result for counting triangles in the insert-only case [9].

This paper also uses several techniques which are standard in
streaming such as hierarchical sampling [23, 28],ℓ0 sampling [21,
31] and sparse recovery [24].

1.3 Our Results and Roadmap
We start in Section 2 with some preliminary definitions and lem-

mas. In the following three sections we present our results.

1. Sparsifiers:Our main result is a sketch-based sparsifier con-
struction: we show thatO(ǫ−2n polylog n) random linear
projections of a graph onn nodes suffice to1 + ǫ approxi-
mateall cut values including the minimum cut. This leads to
a one-pass semi-streaming algorithm that constructs a graph
sparsifier in the presence of both edge insertions and dele-
tions. This result improves upon the previous algorithm that

requiredO(log n) passes [4]. These results are presented in
Section 3.

2. Subgraphs:We show thatO(ǫ−2) linear projections suffice
for approximating the fraction of non-empty sub-graphs that
match a given pattern up to anǫ additive term. This leads
to aÕ(ǫ−2)-space, single-pass algorithm for dynamic graph
streams. In the special case of estimating the number of trian-
gles, the space used by our algorithm matches that required
for the state-of-the-art result in the insert-only data stream
model [9]. We present this result in Section 4.

3. Spanners:In our final section, we consider adaptive sketches.
We say that a sketches scheme isr-adaptive if the linear mea-
surements are performed inr batches where measurements
performed in a given batch may depend on the outcome of
measurements performed in previous batches. We first show
that a simple adaptation of an existing non-streaming algo-
rithm gives rise to ak-adaptive sketch that uses̃O(n1+1/k)
linear measurements that can be used to approximate every
graph distance up to a factor of2k− 1. This naturally yields
a k-pass,Õ(n1+1/k)-space algorithm. The main result of
this section is our second algorithm in which we reduce the
adaptivity/passes tolog k at the expense of increasing the ap-
proximation factor toklog2 5− 1. We present these results in
Section 5.

2. PRELIMINARIES

2.1 Model Definitions
We start with the basic model definitions of a dynamic graph

stream, sketches, and linear measurements.

DEFINITION 1 (DYNAMIC GRAPH STREAM). A streamS =
〈a1, . . . , at〉 whereak ∈ [n]× [n]×{−1, 1} defines a multi-graph
graphG = (V, E) whereV = [n] and the multiplicity of an edge
(i, j) equals

A(i, j) = |{k : ak = (i, j, +)}| − |{k : ak = (i, j,−)}| .
We assume that the edge multiplicity is non-negative and that the
graph has no self-loops.

DEFINITION 2 (LINEAR MEASUREMENTS ANDSKETCHES).
A linear measurementof a graph is defined by a set of coefficients
c(i, j) for 1 ≤ i < j ≤ n. Given a multi-graphG = (V, E) where
edge(i, j) has multiplicityA(i, j), the evaluation of this measure-
ment is

P

1≤i<j≤n c(i, j)A(i, j). A sketchis a collection of linear
measurements. Anr-adaptive sketching scheme is a sequences ofr
sketches where the linear measurements performed in therth sketch
may be chosen based on the outcomes of earlier sketches.

2.2 Graph Definitions and Notation
We denote the shortest path distance between two nodesu, v in

graphG = (V, E) by dG(u, v). We denote the minimum cut ofG
by λ(G). Foru, v ∈ V , let λu,v(G) denote the minimumu-v cut
in G. Finally, letλA(G) denote the capacity of the cut(A, V \A).

DEFINITION 3 (SPANNERS). Given a graphG = (V, E), we
say that a subgraphH = (V, E′) is anα-spanner forG if

∀u, v ∈ V, dG(u, v) ≤ dH(u, v) ≤ α · dG(u, v) .

DEFINITION 4 (SPARSIFICATION). Given a graphG = (V, E),
we say that a weighted subgraphH = (V, E′, w) is anǫ-sparsification
for G if

∀A ⊂ V, (1− ǫ)λA(G) ≤ λA(H) ≤ (1 + ǫ)λA(G) .



2.3 Algorithmic Preliminaries
An important technique used throughout this paper isℓ0-sampling

[14, 21, 31]. Consider a turnstile streamS = 〈s1, . . . , st〉 where
eachsi ∈ (ui, ∆i) ∈ [n]×R and the aggregate vectorx ∈ R

n de-
fined by this stream, i.e.,xi =

P

j:uj=i ∆i. A δ-errorℓ0-sampler
for x 6= 0 returnsFAIL with probability at mostδ and otherwise
returns(i, xi) wherei is drawn uniformly at random from

support(x) = {i : xi 6= 0} .

The next lemma is due to Jowhari et al. [31].

THEOREM 2.1 (ℓ0-SAMPLING). There exists a sketch-based
algorithm that performsℓ0 sampling usingO(log2 n log δ−1) space
assuming access to a fully independent random hash function.

While our final results will not make any assumptions about fully
independent hash functions, it will be useful to state the previous
results under this assumption and only address the assumption once
the we have constructed the full algorithm. Another useful result
will be that we can efficiently recoverx exactly ifx is sparse.

THEOREM 2.2 (SPARSERECOVERY). There exists a sketch-
based algorithm,k-RECOVERY, that recoversx exactly with high
probability if x has at mostk non-zero entries and outputsFAIL
otherwise. The algorithm usesO(k log n) space assuming access
to a fully independent random hash function.

In our previous paper [4], we presented an algorithm that tests
k-connectivity of a graph. In addition to testingk-connectivity, the
algorithm returns a “witness” which will be useful in Section 3.

THEOREM 2.3 (EDGE CONNECTIVITY). There exists a sketch-
based algorithmk-EDGECONNECTthat returns a subgraphH with
O(kn) edges such thate ∈ H if e belongs to a cut of sizek or less
in the input graph. Assuming access to a fully independent random
hash function, the algorithm runs inO(kn log2 n) space.

3. SPARSIFICATION
In this section we design a linear sketch for graph sparsification.

This yields a single-pass, semi-streaming algorithm for processing
dynamic graphs.

Many sparsification algorithms are based on independently sam-
pling edges based on their connectivity properties [8, 22, 34]. In
particular, we will make use of the following recent result.

THEOREM 3.1 (FUNG ET AL. [22]). Given an undirected un-
weighted graphG, let λe be the size of the minimumu-v cut for
each edgee = (u, v). If we sample each edgee with probability

pe ≥ min{253λ−1
e ǫ−2 log2 n, 1}

and assign weight1/pe to sampled edges, then the resulting graph
is anǫ-sparsification ofG with high probability.

The challenges in performing such sampling in a dynamic graph
stream are numerous. Even sampling a random edge is non-trivial
since the selected edge may be subsequently removed from the
graph. We solve this problem using random hash functions to en-
sure a consistent sampling process. However, there are two major
complications that we need to overcome if we want our algorithm
to run in a single pass and use small space.

• First, the sampling probability of an edge can be computed
only after analyzing the entire graph stream. Unfortunately,
at this point it is too late to actually sample the edges. To

overcome this we develop an approach that will allow us to
simultaneously sample edges and estimate sample properties.
We present a basic version of our technique in Section 3.2.
We then bootstrap the process to develop a more efficient
construction in Section 3.3.

• Second, the random hash function being used for the con-
sistent hashing needs to be stored inÕ(n) space. However,
such a random hash function cannot guarantee the full in-
dependence between random variables which is required for
Lemma 3.1 and Theorem 3.1. We will use Nisan’s pseudo-
random generator [39] which produces a random bits that
are indistinguishable to an algorithm that uses a small space,
along the same lines as Indyk [27]. In the next three sections,
we will assume a random oracle that facilitates full indepen-
dence. In Section 3.4, we remove this assumption and detail
the application of Nisan’s pseudorandom generator.

3.1 Warm-up: Minimum Cut
To warm up, we start with a one-pass semi-streaming algorithm,

M INCUT, for the minimum cut problem. This will introduce some
the ideas used in the subsequent sections on sparsification.The
algorithm is based on Karger’s Uniform Sampling Lemma [34].

LEMMA 3.1 (UNIFORM SAMPLING). Given an undirected un-
weighted graphG, let λ be the minimum cut value. If we sample
each edge with probability

p ≥ min{6λ−1ǫ−2 log n, 1}

and assign weight1/p to sampled edges, then the resulting graph
is anǫ-sparsification ofG with high probability.

See Fig. 1 for our Minimum Cut Algorithm. The algorithm gen-
erates a sequence of graphsG = G0 ⊇ G1 ⊇ G2 ⊇ . . . where
Gi is formed by independently removing each edge inGi−1 with
probability1/2. Simultaneously we usek-EDGECONNECTto con-
struct a sequence of graphsH0, H1, H2, . . . whereHi contains all
edges inGi that participate in a cut of sizek or less. The idea is
that if i is not too large,λ(G) can be approximated viaλ(Gi) and
if λ(Gi) ≤ k thenλ(Gi) can be calculated fromHi.

THEOREM 3.2. Assuming access to fully independent random
hash functions, there exists a single-pass,O(ǫ−2n log4 n)-space
algorithm that(1 + ǫ)-approximates the minimum cut in the dy-
namic graph stream model.

PROOF. If a cut inGi has less thank edges that cross the cut, the
witness contains all such edges. On the other hand, if a cut value
is larger thank, the witness contains at leastk edges that cross the
cut. Therefore, ifGi is notk-edge-connected, we can correctly find
a minimum cut inGi using the corresponding witness.

Let λ(G) be the minimum cut size ofG and let

i∗ =

—

log max



1,
λǫ2

6 log n

ff�

.

For i ≤ i∗, the edge weights inGi are all2i and thereforeGi

approximates all the cut values inG w.h.p. by Lemma 3.1. There-
fore, if M INCUT returns a minimum cut fromGi with i ≤ i∗, the
returned cut is a(1 + ǫ)-approximation.

By Chernoff bound, the number of edges inGi∗ that crosses
the minimum cut ofG is O(ǫ−2 log n) ≤ k with high probabil-
ity. Hence, MINCUT terminates ati ≤ i∗ and returns a(1 + ǫ)-
approximation minimum cut with high probability.



Algorithm M INCUT

1. Fori ∈ {1, . . . , 2 log n}, let hi : E → {0, 1} be a uniform hash function.

2. Fori ∈ {0, 1, . . . , 2 log n},

(a) LetGi be the subgraph ofG containing edgese such that
Q

j≤i hj(e) = 1.

(b) LetHi ← k-EDGECONNECT(Gi) for k = O(ǫ−2 log n)

3. Return2jλ(Hj) wherej = min{i : λ(Hi) < k}

Figure 1: Minimum Cut Algorithm. Steps 1 and 2 are performed together in a single pass. Step 3 is performed in post-processing.

Algorithm SIMPLE-SPARSIFICATION

1. Fori ∈ {1, . . . , 2 log n}, let hi : E → {0, 1} be a uniform hash function.

2. Fori ∈ {0, 1, . . . , 2 log n},

(a) LetGi be the subgraph ofG containing edgese such that
Q

j≤i hj(e) = 1.

(b) LetHi ← k-EDGECONNECT(Gi) for k = O(ǫ−2 log2 n).

3. For each edgee = (u, v), find j = min{i : λe(Hi) < k}. If e ∈ Hj , adde to the sparsifier with weight2j .

Figure 2: Simple Sparsification Algorithm. Steps 1 and 2 are performed in a single pass. Step 3 is performed in post-processing.

3.2 A Simple Sparsification
See Fig. 2 for a simple Sparsification Algorithm. The algorithm

extends the Min-Cut Algorithm by taking into account the connec-
tivity of different edges.

LEMMA 3.2. Assuming access to fully independent random hash
functions,SIMPLE-SPARSIFICATION usesO(ǫ−2n log5 n) space
and the number of edges in the sparsification isO(ǫ−2n log3 n).

PROOF. Each of theO(log n) instance ofk-EDGECONNECT

runs inO(kn log2 n) space. Hence, the total space used by the
algorithm isO(ǫ−2n log5 n). Since the total number of edges re-
turned isO(kn log n), the number of edges in the sparsification is
also bounded byO(ǫ−2n log3 n).

As mentioned earlier, the analysis of our sparsification result
uses a modification of Theorem 3.1 that arises from the fact that
we will not be able to independently sample each edge. The proof
of Theorem 3.1 is based on the following version of the Chernoff
bound.

LEMMA 3.3 (FUNG ET AL. [22]). Consider any subsetC of
edges of unweighted edges, where each edgee ∈ C is sampled
independently with probabilitype for somepe ∈ (0, 1] and given
weight1/pe if selected in the sample. Let the random variableXe

denote the weight of edgese in the sample; ife is not selected, then
Xe = 0. Then, for anyp ≤ pe for all edgese, anyǫ ∈ (0, 1], and
anyN ≥ |C|, the following bound holds:

P

"˛

˛

˛

˛

˛

X

e∈C

Xe − |C|
˛

˛

˛

˛

˛

≥ ǫN

#

< 2 exp(−0.38ǫ2pN) .

We will need to prove an analogous lemma for our sampling
procedure. Consider the SIMPLE-SPARSIFICATION algorithm as
a sampling process that determines the edge weight in the spar-
sification. Initially, the edge weights are all1. For each round
i = 1, 2, . . . if an edgee is notk-connected inGi−1, we freeze the

edge weight. For an edgese that is not frozen, we sample the edge
with probability1/2. If the edge is sampled, we double the edge
weight and otherwise, we assign weight0 to the edge.

DEFINITION 5. Let Xe,i be random variables that represent
the edge weight ofe at roundi and letXe be the final edge weight
of e. Letpe = min

˘

253λ−1
e ǫ−2 log2 n, 1

¯

whereλe is the edge-
connectivity ofe and letp′

e = min {4pe, 1}. Let Be be the event
that the edge weight ofe is not frozen until round⌊log 1/p′

e⌋ and
let BC = ∪e∈CBe for a setC of edges.

In the above process, freezing an edge weight at roundi is equiv-
alent to sampling an edge with probability1/2i−1. We will use
Azuma’s inequality, which is an exponentially decaying tail in-
equality for dependent random process, instead of Lemma 3.3.

LEMMA 3.4 (AZUMA’ S INEQUALITY). A sequence of random
variablesX1, X2, X3, . . . is calleda martingaleif for all i ≥ 1,

E [Xi+1|Xi] = Xi.

If |Xi+1 −Xi| ≤ ci almost surely for alli, then

P [|Xn −X1| ≥ t] < 2 exp(−t2/2
X

i

c2
i ).

We prove the following lemma which is identical to Theorem 3.3
if no bad eventBe occurs.

LEMMA 3.5. Let C be a set of edges. For anyp ≤ pe for all
e ∈ C and anyN ≥ |C|, we have

P

"

¬BC and

˛

˛

˛

˛

˛

X

e∈C

Xe − |C|
˛

˛

˛

˛

˛

≥ ǫN

#

< 2 exp(−0.38ǫ2pN) .

PROOF. Suppose that we sample edges one by one and letYi,j

be the total weight of edges inC afterj steps at roundi. If Yi,0 ≥
|C|+ ǫN for anyi, we stop the sampling process.



Algorithm SPARSIFICATION

1. Using SIMPLE-SPARSIFICATION, construct a(1± 1/2)-sparsificationH .

2. Fori ∈ {1, . . . , 2 log n}, let hi : E → {0, 1} be a uniform hash function.

3. Fori ∈ {0, 1, . . . , 2 log n},

(a) LetGi be the subgraph ofG containing edgese such that
Q

j≤i hj(e) = 1.

(b) For eachu ∈ V , computek-RECOVERY(xu,i) for k = O(ǫ−2 log2 n) wherexu,i ∈ {−1, 0, 1}(
V
2) with entries

x
u,i[v, w] =

8

>

<

>

:

1 if u = v and(v, w) ∈ Gi

−1 if u = w and(v, w) ∈ Gi

0 otherwise

. (1)

4. LetT = (V, ET , w) be the Gomory-Hu tree ofH and for each edgee ∈ ET ,

(a) LetC be the cut induced bye and letw(e) be the weight of the cut.

(b) Let j =
¨

log(max{w(e)ǫ2/ log n, 1})
˝

.

(c) k-RECOVERY(
P

u∈A x
u,j) returns all the edges inGj that crossC with high probability.

(d) Lete = (u, v) be a returned edge andf be the minimum weight edge in theu-v path in the Gomory-Hu tree. Iff
inducesC, includee to the graph sparsification with edge weight2j .

Figure 3: Better Sparsification Algorithm. Steps 1-3 are performed in a single pass. Step 4 is performed in post-processing.

For each step in roundi, we change the edge weight from2i−1

to either2i or 0 with equal probability. The expectation of the
edge weight is2i−1 and therefore,E [Yi,j |Yi,j−1] = Yi,j−1. In
addition, there are at most|C|+ǫN

2i−1 random variablesYi,j at roundi
since otherwise,Yi,0 has to be greater than|C|+ǫN and we would
have stopped the sampling process. So

X

i′<i

X

j

|Yi′,j − Yi′,j−1|2 ≤
X

i′<i

|C|+ ǫN

2i′−1
22(i′−1)

=
X

i′<i

2i′−1(|C|+ ǫN) ≤ 2i+1N .

Now the following inequality follows from Azuma’s inequality.

P [|Yi,0 − |C|| ≥ ǫN ] < 2 exp

„

− ǫ2N

2i+2

«

Let i = ⌊log max{1/(4p), 1}⌋. If BC does not occur,Yi,0 =
P

e∈C Xe. From the definition ofi, i = 0 or 2−(i+2) ≥ 0.38p.
If i = 0, obviouslyYi,0 = |C|. If 2−(i+2) ≥ 0.38p, we get the
desired result:P [|Yi,0 − |C|| ≥ ǫN ] < 2 exp(−0.38ǫ2pN).

THEOREM 3.3. Assuming access to fully independent random
hash functions, there exists a single-pass,O(ǫ−2n log5 n)-space
(1+ǫ)-sparsification algorithm in the dynamic graph stream model.

PROOF. By replacing Theorem 3.3 by Lemma 3.5, we can con-
clude that SPARSIFICATIONproduces a sparse graph that approxi-
mates every cut with high probability or for some edgee, Be oc-
curs. Consider an edgee = (u, v) and some minimumu-v cut of
cut valueλe. For i = ⌊log 1/p′

e⌋, the expected number of edges
in this cut is smaller thank/2 (assuming that we use a sufficiently
large constant to decidek). By the Chernoff bound,e is not k-
connected inGi with high probability. By union bound,Be do
not occur for alle with high probability and we obtain the desired
result.

3.3 A Better Sparsification
In this section we present a more efficient implementation of

SIMPLE-SPARSIFICATION. See Fig. 3. The idea is to first con-
struct a less accurate “rough" sparsifier that we can use to estimate
the connectivity of an edge. Then, rather than constructingall the
Hi graphs viak-EDGECONNECT, we can use the more efficient
sparse-recovery algorithmk-RECOVERY in combination with the
Gomory-Hu data structure.

1. Rough-Sparsification:We construct a(1±1/2)-sparsification
using the algorithm in the previous section. The goal is to
compute the sampling probability of edges upto a constant
factor.

2. Final-Sparsification: For each edgee = (u, v), we find
a O(1)-approximate minimumu-v cut Ce using the rough
sparsification. Based on the cut value ofCe, we compute a
sampling probabilitype of e. Let ie = ⌊log 1/pe⌋. We find
all edges inGie that crossCe. If e ∈ Gie , assign weight2ie

to e and otherwise, assign weight0 to e.

It is important to note that dividing the process into two steps is
conceptual and that both steps are performed in a single passover
the stream.

We next discuss finding the cutCe for eache. Note that the col-
lection ofCe has to be efficiently computable and stored in a small
space. Fortunately, Gomory-Hu tree [25] is such a data structure,
and it can be computed efficiently [40].

DEFINITION 6. A treeT is aGomory-Hu treeof graphG if for
every pair of verticesu andv in G, the minimum edge weight along
theu-v path inT is equal to the cut value of the minimumu-v cut.

Each edge in the Gomory-Hu tree induces a cut. It is a well-
known fact that the cut value of such a cut is equal to the weight of
the corresponding edge.



The method for finding the edges across a cut (line 4c) is based
an ideas developed in our previous paper [4]. The definition of xu,i

in Eq. 1 ensures that for any cut(A, V \A),

support(
X

u∈A

x
u,i) = EGi

(A) ,

whereEGi
(A) is the set of edges inGi that cross the cut. Because

k-RECOVERY is a linear sketch, to findEGi
(A) (on the assump-

tion there are at mostk edges crossing the cuts) it suffices to have
computedk-RECOVERY(xu,i) because

P

u∈A k-RECOVERY(xu,i)= k-RECOVERY(
P

u∈A x
u,i) .

THEOREM 3.4. Assuming access to fully independent random
hash functions, there exists a single-pass,O(n(log5 n+ǫ−2 log4 n))-
spaceǫ-sparsification algorithm in the dynamic graph stream model.

PROOF. The algorithm can be implemented in one pass. The
sparse-recovery sketches do not require any knowledge of the Gomory-
Hu tree and thus can be constructed in parallel with the roughspar-
sification. The rest of the algorithm is performed in post-processing.

The space required to construct a(1 ± 1/2)-sparsification is
O(n log5 n). The space required for each sampler isO(k log n)
which isO(ǫ−2 log3 n). Since there aren such samplers perGi,
the total space required for the samplers isO(ǫ−2n log4 n). We
obtain the desired space bound by summing up both terms.

3.4 Derandomization
In this section, we prove that we can replace the uniform random

hash function with Nisan’s pseudorandom generator [39]. This can
be viewed as a limited independence style analysis, howeverthis
construction yields the basic result cleanly. Nisan’s pseudorandom
generator has the following property.

THEOREM 3.5 (NISAN [39]). Any randomized algorithm that
runs inS space and using one way access toR random bits may be
converted to an algorithm that usesO(S log R) random bits and
runs inO(S log R) space using a pseudorandom generator.

A pseudorandom generator is different from a hash function that
only one-way read is allowed. If a random bit has been read, it
cannot be read again. So Theorem 3.5 does not apply to the graph
sparsification algorithm as it is. Instead, we rearrange theinput
data so that the algorithm read each random bit only once. The
argument was used first in Indyk [27].

Assume that the data stream is sorted, i.e., insertion and dele-
tion operations of the same edge appear consecutively. For each
edge, we generate necessary random bits (which areO(polylog n)
in number) and remember them until all the operations on the edge
are read. In this way, we read each random bit only once and theal-
gorithm still runs inS = Õ(n) space andR is at most polynomial
in n. We apply Theorem 3.5 to the algorithm with the sorted input
stream. The graph sparsification algorithm (with the pseudorandom
generator) succeeds with high probability.

Now note that because the algorithm is sketch-based, the algo-
rithm’s behavior does not change even if we change the order of the
data stream. Therefore, the algorithm succeeds with high probabil-
ity. The same argument also applies to the minimum cut algorithm.
We have the following theorems.

THEOREM 3.6 (VARIANT OF THEOREM3.2). There exists a
single-pass,O(ǫ−2n log5 n)-space algorithm that(1+ǫ)-approximates
the minimum cut in the dynamic graph stream model.

THEOREM 3.7 (VARIANT OF THEOREM3.4). There exists a
single-pass,O(n(log6 n + ǫ−2 log5 n))-spaceǫ-sparsification al-
gorithm in the dynamic graph stream model.

3.5 Sparsifying a Weighted Graph

LEMMA 3.6. LetC be a set of edges such that edge weights are
in [1, L]. For anyp ≤ pe for all e ∈ C and anyN ≥ |C|, we have

P

"

¬BC and

˛

˛

˛

˛

˛

X

e∈C

Xe −
X

e∈C

we

˛

˛

˛

˛

˛

≥ ǫNL

#

< 2 exp(−0.38ǫ2pN)

Lemma 3.6 is a variant of Lemma 3.5 where we have a weighted
graph with edge weights in[1, L] rather than an unweighted graph.
The proof of Lemma 3.6 is identical to Lemma 3.5. Lemma 3.6
implies that by increasing sampling probability of edges byfactorL
(or equivalently, increasingk by factorL), we have a sparsification
algorithm for a weighted graph with edge weights in[1, L]. This
increases the space requirement and the number of edges in the
graph sparsification.

LEMMA 3.7. There is a semi-streaming sparsification algorithm
that runs in a single pass,O(nL(log6 n + ǫ−2 log5 n)) space, and
polynomial time in the dynamic graph stream model where edge
weights are in[1, L].

For graphs with polynomial edge weights, we will partition the
input graph intoO(log n) subgraphs where edge weights are in
range[1, 2), [2, 4), . . .. We construct a graph sparsification for each
subgraph and merge the graph sparsifications. The merged graph is
a graph sparsification for the input graph. Summarizing, we have
the following theorem:

THEOREM 3.8. There is a semi-streaming sparsification algo-
rithm that runs in a single pass,O(n(log7 n + ǫ−2 log6 n)) space,
and polynomial time in the dynamic graph stream model where
edge weights areO(poly n).

4. SMALL SUBGRAPHS
In this section, we present sketches for estimating the number

of subgraphs of a graphG that are isomorphic to a given pattern
graphH with k nodes. Specifically we are interested in estimating
the fraction of non-empty induced subgraphs that matchH . We
denote this quantity by

γH(G) :=
Number of induced subgraphs inG isomorphic toH
Number of non-empty subgraphs inG of order|H | .

Our result is as follows:

THEOREM 4.1. For a given order-k graph H and an order-n
graph G determined by a dynamic graph stream, it is possible to
approximateγH(G) up to an additiveǫ term with probability1− δ

usingÕ(ǫ−2 log δ−1) space.

We assumek is a small constant. In the case whenH is a trian-
gle, i.e., a size-3 clique, the above result matches the parameters of
the best known1 algorithm for the insert-only case [9].

The algorithm uses a simple extension ofℓ0 sampling. Given a
vectorx = (x1, x2, . . . , xn), the goal ofℓ0 sampling is to return
a pair(i, xi) for an i that is chosen uniformly from{i : xi 6= 0},
1Note that Buriol et al. [9] state their result in terms of approx-
imating the number of trianglesT3 up to a(1 + ǫ) factor with
Õ(ǫ−2(T1 + T2 + T3)/T3) space but the result can equivalently
be stated as an additiveǫ approximation toT3/(nm) using the fact
thatT1 + T2 + T3 = Θ(mn). Note thatnm is an upper bound on
the number of non-empty induced subgraphs of size3.
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Figure 4: Linearly Encoding Small Subgraphs. See text for description.

i.e., the support set ofx. For our application we will consider a
a × b binary matrixX with columnsx1, . . . , xb and the goal is to
return(i, xi) wherei is chosen uniformly from{i : xi 6= 0}, i.e.,
we’re picking a column ofX uniformly from the set of non-zero
columns.

This can easily be achieved with the machinery ofℓ0 sampling.
To do this, we encode the binary matrixX as a vector

squash(X) ∈ {0, 1, 2, . . . , 2a−1}b .

Specifically, adding 1 to the(i, j)th entry of X corresponds to
adding2i to thej entry of squash(X). Then performingℓ0 sam-
pling of squash(X) returns the encoding of a column picked uni-
formly from the set of all non-zero columns.

The application to finding small subgraphs is as follows. Fora
graphG, define the matrixXG ∈ {0, 1}a×b wherea =

`

k
2

´

and
b =

`

n
k

´

. The columns ofXG correspond to size-k subsets of the
nodes ofG and the entries in the column encode the set of edges in
the induced subgraph on the size-k subset.

See Fig. 4 for an example wheren = 5 andk = 3. The first
column ofX corresponds to the subset of nodes{1, 2, 3} and the
top entry is 1 because the graphG has an edge between node 1 and
2. The non-zero entries insquash(XG) correspond to the num-
ber to the number non-empty induced subgraphs ofG. In the case
of triangles, the entries equal to7 correspond to the induced sub-
graphs which are triangles. More generally, the pattern graph H
will correspond to multiple valuesAH since each we are interested
in induced subgraphs that are isomorphic toH are there may be
multiple isomorphisms. Therefore, estimatingγH(G) is equivalent
to estimating the fraction of non-zero entries that are inAH . By an
application of the Chernoff bound, this can be estimated up to an
additiveǫ usingO(ǫ−2 log δ−1) samples from the non-zero entries,
i.e.,ℓ0-samples fromsquash(XG).

5. SPANNERS
In this section, we consider the problem of approximating graph

distances via the construction of graph spanners. Several papers
have investigated spanner construction in an insertion-only graph
stream [7, 17, 20]. The best result constructs a(2k − 1)-spanner
usingO(n1+1/k) space in a single pass and it is known that this
accuracy/space tradeoff is optimal. All these algorithms are based
on growing shallow trees from a set of randomly-selected nodes.
Unfortunately, this emulating this process is hard in the dynamic
graph setting if we only are permitted one pass over the data.

However, if we may take multiple passes over the stream, it is
straight-forward to emulate these algorithms via theℓ0-sampling
and sparse-recovery primitives from Section 2. For example, the
Baswana-Sen construction [7] leads to anO(k)-pass(2k − 1)-
spanner construction usingO(n1+1/k) space in a dynamic graph
streams. Their construction operates as follows:

• Part 1: Growing Trees. This part consists ofk − 1 phases

where at the end of phasei we have constructed a set of
rooted vertex-disjoint treesTi[v] wherev is the root of the
tree and the set of roots is going to be denoted bySi. Each
Ti[v] will have the property that the distance between a leaf
andv is at mosti. At the end of phasei there may be many
vertices that are not in a tree.

– First phase:Pick each vertex with probabilityn−1/k.
Call the selected verticesS1. We will start growing
trees around the selected vertices where the selected
vertices will be the roots of their respective trees. Specif-
ically, if vertexu is adjacent to a selected vertexv add
(u, v) to the treeT1[v]. If u is adjacent to multiple se-
lected vertex, add(u, v) to one of the trees arbitrarily.
If a vertexu is not adjacent to any selected vertex, we
remember the set of incident edgesL(u).

– i-th phase:ConstructSi from Si−1 by sampling each
vertex with probabilityn−1/k. For eachv ∈ Si ini-
tialize Ti[v] = Ti−1[v]. If u is adjacent to a vertexw
in some treeTi[v] add(u, w) to Ti[v]. If u is adjacent
to multiple trees, just addu to one of the trees (doesn’t
matter which). Again if a vertex is not adjacent to any
selected tree, then remember the set of incident edges
L(u) where you only store one edge to vertices in the
sameTi−1 tree.

• Part 2: Final Clean Up. Once we have definedTk−1[v] for
v ∈ Sk−1 (and deleted all vertices not in these trees) letV ′

be the set of vertices in theTk−1 trees. For eachu ∈ V ′

add a single edge to a vertex in someTk−1[v] if such an edge
exists.

See [7] for a proof of correctness. Note that each phase requires
selectingO(n1/k) edges incident on each node and this can be per-
formed via either sparse recovery ofℓ0 sampling.

5.1 Pass-Efficient Recursive Contraction
The above application of the Baswana-Sen construction gavean

optimum trade-off between spacẽO(n1+1/k) and approximation
2k − 1, but usedO(k) passes which is less desirable. For exam-
ple, to achieve a semi-streaming space bound, the number of passes
will need to beΩ(log n/ log log n). While this is interesting, it is
natural to ask whether we can produce a spanner in fewer passes.
In what follows, we answer the question in the affirmative andpro-
vide an algorithm that useslog k passes at the expense of a worse
approximation factor.

The idea behind the pass reduction is as follows. In the Baswana-
Sen algorithm we were growing regions of small diameter (at var-
ious granularities) and in each pass we are growing the radius at
most one. Thus the growth of the regions is slow. Moreover in
each of these steps we are usingO(n) space (if the graph is dense).



Yet the space allowed for the vertex is̃O(n1/k) and we expect the
extra space to matter precisely when the graphs are dense! But if
we are growing BFS trees, the extra edges are simply not useful.
We will therefore relax the BFS constraint — this will allow us to
grow the regions faster. The algorithm RECURSECONNECT is as
follows.

1. The algorithm proceeds in phases which correspond to passes
over the stream. In passi, we construct a graph̃Gi which
corresponds to a contraction of the graphG = G̃0; that is,
subsets of vertices of theG have been merged into super-
vertices. This process will proceed recursively and we will
maintain the invariant

|G̃i| ≤ n1−(2i−1)/k .

After log k passes we have a graph of size
√

n and we can
remember the connectivity between every pair of vertices in
O(n) space. We next describe how to constructG̃i+1 from
G̃i.

2. For each vertex iñGi we samplen2i/k distinct neighbors.2

To do this, for each vertex iñGi, we independently partition
the vertex set ofG̃i into Õ(n2i/k) subsets, and use anℓ0-
sampler for each partition. This can be achieved inÕ(n1/k)

space per vertex and in totalÕ(n1+1/k) space, using the hy-

potheses|G̃i| ≤ n1−(2i−1)/k. Using sparse recovery we can

also find all vertices iñGi whose degree is at mostn2i/k.

3. The set of sampled edges iñGi gives us a graphHi. We now
choose a clustering ofHi where the centers of the clusters
are denoted byCi. Consider the subsetSi of vertices ofHi

which have degree at leastn2i/k. We will ensure thatCi is
a maximal subset ofSi which is independent inH2

i . This
is a standard construction used for the approximatek-center
problem: We start from the setC0

i being an arbitrary ver-
tex in Hi. We repeatedly augmentCj

i to Cj+1
i by adding

vertices which are (i) at distance at least3 (as measured in
number of hops inHi) from each vertex inCj

i . and (ii) have

degree at leastn2i/k. Denote the finalCj
i , when we cannot

add any more vertices, asCi. Observe that

|Ci| ≤ |G̃i|/n2i/k ≤ n1−(2(i+1)−1)/k .

4. For each vertexp ∈ Ci all neighbors ofp in Hi are assigned

to p. For each vertexq with degree at leastn2i/k in G̃i, if it
is not chosen inCi, we have a centerp in Ci within 2 hops
of q in Hi; thenq is assigned top as well.

5. We now collapse all the vertices assigned top ∈ Ci into a
single vertex and these|Ci| vertices definẽGi+1.

We now analyze the approximation guarantee of the above algo-
rithm.

LEMMA 5.1. The distance between any pair of adjacent nodes
u, v ∈ G is at mostklog2 5 − 1.

PROOF. Define the maximum distance between anyu, v which
are in the same collapsed set iñGi asai. Note thata1 ≤ 4 since
the clusteringC1 has radius2, and therefore any collapsed pair are
at a distance at most4. Fori > 1 observe thatai+1 ≤ 5ai + 4 and
the result follows.
2Note that nodes inG̃i are subsets of the original vertex set.
Vertices p, q in G̃i are neighbors inG̃i if there exists an edge
(u, v) ∈ G such thatu ∈ p andv ∈ q .

THEOREM 5.1. RECURSECONNECTconstructs a(klog2 5−1)-
spanner inlog k passes and̃O(n1+1/k) space.
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