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Abstract—The modern applications like social networks and
sensors networks are increasingly used in the recent years.
These applications can be represented as a weighted graph
using irregular structure. Unfortunately, we cannot apply the
techniques of the traditional signal processing on those graphs.
In this paper, graph spread spectrum watermarking is proposed
for networked sensor data authentication. Firstly, the graph
spectrum is computed based on the eigenvector decomposition
of the graph Laplacian. Then, graph Fourier coefficients are
obtained by projecting the graph signals onto the basis functions
which are the eigenvectors of the graph Laplacian. Finally, the
watermark bits are embedded in the graph spectral coefficients
using a watermark strength parameter varied according to the
eigenvector number. We have considered two scenarios: blind and
non-blind watermarking. The experimental results show that the
proposed methods are robust, high capacity and result in low
distortion in data. The proposed algorithms are robust to many
types of attacks: noise, data modification, data deletion, rounding
and down-sampling.

I. INTRODUCTION

Recent years have seen a growth of using various sensors

to sense and measure various data. As these sensors are

located at arbitrary locations, without following a Cartesian

grid, the data recorded using a network of sensors can be

represented in a graph, with vertices (nodes) representing the

locations of sensors. The connectivity between nodes can be

defined by considering the relationship among sensors. In this

paper we are concerned with protection and authentication

of such data captured via a network of sensors. However,

there have been limited works on this aspect of addressing

irregular graph structures.The most common approaches for

protecting graph-type are: adding extra edges between a set

of pairs of nodes, which have different colours based on the

binary message; Maximal Independent Set (MIS) based on

choosing one or more set(s) from the original graph such that

the set is independent [1]; inserting new nodes to the original

graph and connect them depending on the binary message [2]

and hiding a sub-graph which is generated from a watermark

[3]. Since these works are based on vertex domain, they are

not robust to data processing, noise removal or geometrical

attacks, such as, adding new nodes, edges or sub-graphs. In

addition, these methods are not secure, if the original graph

is available the watermark can be detected by comparing the

two graph topologies. Finally, the embedding capacity is very

small due to the embedding process is depended on the graph

topology, not the correlation of its data.

On the other hand, spread spectrum watermarking has

proven to be very successful in image protection, mainly due

to advances in signal transforms, such as, the Discrete Cosine

Transform (DCT) and the Discrete Wavelet Transform (DWT)

[4].

However, such transforms are not applicable for graph data,

where the nodes are spread at arbitrary locations, as opposed

to uniform sampling grid in images and other signals. In

this paper, we propose a new spread spectrum watermark-

ing methodology for graph data by exploiting the spectral

decomposition of graph data. In this work, we exploit the

recent advances in graph signal processing on graph spectral

decomposition of the graph Laplacian matrix, which captures

the connectivity of the nodes. [5], [6]. The resulting basis func-

tions are stable and invariant to the geometric changes. Also,

the embedding algorithms are dependent on some parameters

which can be considered as a secret key, leading to more

secured watermarking algorithms. Moreover, the embedding

capacity is bigger than the existing methods because most of

the graph nodes are used to hide the watermark on the spectral

domain. The main contributions of the proposed work are:

1) The first work on graph spread spectrum watermark

hiding.

2) Propose novel blind and non-blind watermarking for

networked sensor data.

3) Using unfixed (graph connectivity adapted) basis func-

tions for watermark hiding.

The rest of the paper is organized as follows: Section II

provides a brief introduction to the related work. Section III

presents the proposed method, followed by the results and

discussions are presented in section IV. Finally, the conclusions

are presented in section V.

II. RELATED WORK

This section includes two parts: watermarking on sensor

networks and watermarking on graph domain for mesh data.

A. Watermarking of sensor data

Watermarking is a lightweight approach which is used to

provide protection and authentication for sensor data. The

first watermarking system in sensor networks was proposed



by Fang et al. [7] for copyright ownership by hiding the

authorship signatures in the sensor data during network pro-

cessing. However, it can be used with limited applications.

Similar work was suggested by Koushanfar et al. [8] to hide

the watermark during the data acquisition process, it is robust

against signature removal and desynchronization. Sion et al.

[9] proposed watermarking algorithm based on least significant

bits to protect the data stream owners and the authorized users.

Similar works were proposed by Kamel et al. [10].

B. Watermarking on graph domain

Most of the watermarking methods on a graph are related

to mesh. The main idea is to hide the watermark bits on

the mesh coordinates or mesh coefficients. In mesh data

watermarking, the watermark has been embedded on the mesh

coordinates have been projected on to the eigenvectors of

Laplacian matrix of the mesh connectivities [11]. However, it

requires a high computational cost (O(N3)) and it is sensitive

to any modification in the connectivity of the mesh. In another

work [12], a blind hiding method has been proposed for

mesh data, by reorganising these projected coordinates. This

method causes a visual distortion of the mesh (graph topology)

and has a limited robustness. Similar works based on the

manifold harmonics in [13], [14] for meshes. These methods

used eigen decomposition of Lapalacian matrix of mesh graphs

and applied them onto the node coordinates, as opposed to

considering the spread spectrum hiding methods for the data

recorded at these mesh nodes.

III. THE PROPOSED GRAPH SPREAD SPECTRUM

WATERMARKING

The graph spectral theory is an important aspect of the graph

theory, which is related with the eigenvalues and eigenvectors.

Eigenvalues and eigenvectors are the most significant invariant

vectors of the graph spectral decomposition. The main goal

of the spectral graph theory is to conclude the structure and

principal attributes of the graph using its spectrum. Our pro-

posed watermarking framework starts with the graph spectral

decomposition, which we call the Graph Fourier Transform

(GFT). Then we analyses the spectral coefficients to propose

a new embedding process, followed by the inverse GFT to

reconstruct the watermarked graph data. We consider two

watermarking scenarios: blind and non-blind. The watermark

extraction algorithm starts with the GFT followed by the

extraction process and authentication. The non-blind scenario

uses the original graph for extracting the watermark. The

embedding and extraction framework is shown in Fig. 1.

A. Graph Preliminaries

Let G be undirected graph without self-loops and multiple

links between nodes. It can be represented as G = (V,E,W ),
where V represents graph nodes with N length, |V | = N <
∞ , E represents the edges, i.e., the connection between the

nodes and W is a weight matrix, which gives the weights for

Fig. 1: The block diagram of the proposed watermarking

framework.

each node. The adjacency matrix A of a graph G is defined

as:

A =

{

Wi,j , if there is an edge between vi and vj ,

0 , otherwise .
(1)

Graph signals can be represented as a vector f =
[f(1), f(2), ..., f(N)], such as f : V → R. The non-

normalized Laplacian L can be given as:

L = D −A, (2)

where D is a diagonal matrix of vertex degree, which repre-

sents the sum of weights of all links connected to a given

vertex. The Laplacian matrix is symmetric and it has real

and non-negative eigenvalues λℓ with associated real and

orthonormal eigenvectors uℓ. The decomposition of eigenvalue

of non-normalized Laplacian matrix such that

L = UΛU t =

N
∑

i=1

λiuiu
t
i (3)

where u1, u2, ..., uN are the eigenvectors corresponding to

eigenvalues {0 ≤ λ1 ≤ λ2... ≤ λN}.

B. Graph Fourier Transform

The classical Fourier transform on R can be given as:

F (w) =< eiwx, f >=

∫

R

f(x)e−iwxdx. (4)

It can be expanded in terms of eigenvectors of the Laplacian

graph by projecting the graph signal f onto the eigenvec-

tors u in R2 which are the basis functions. The Laplacian

eigenvectors give interpretation similar to classical Fourier

transform in terms of providing a harmonic analysis of graph

signals. The classical Fourier has fixed basis functions, while

the Fourier graph has unfixed basis functions, which depend

on the connectivity between the graph nodes and the Graph

Laplacian type. Fig. 2 shows the basis functions of an example

path graph with 8 nodes. It is important to mention that

the first eigenvector is a constant vector and depends on the

number of graph nodes, which is equal to 1/
√
N for all

graph types, which is similar to the DC component of the

conventional transforms. The Graph Fourier Transform (GFT)
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Fig. 2: The basis functions of path graph.

can be computed as in the following equation:

f̂(λℓ) = 〈uℓ, f〉 =
N
∑

i=1

f(i)uℓ(i). (5)

The inverse Graph Fourier Transform can be defined as the

following:

f(i) =
N−1
∑

ℓ=0

f̂(λℓ)u
t
ℓ(i). (6)

The Graph Fourier transform satisfies the Parseval’s theorem,

which means the sum of the square graph signals is equal to

the sum of the square graph Fourier coefficients as follows:

||f ||2ℓ =

N
∑

i=1

|f(i)|2 =

N−1
∑

ℓ=0

|f̂(λℓ)|2 = ||f̂ ||2ℓ (7)

Most of the energies are in the first half of the coefficients

(1 : N/2) which represents the low frequency corresponding

to smaller eigenvalues while the high frequency coefficients

are associated to the larger eigenvalues [5].

C. Non-Blind Watermarking

Magnitude based multiplicative watermarking widely forms

as the basis for non-blind watermarking [15] [16]. We embed

the watermark in to the graph Fourier coefficients f̂ as follows:

f̂w = f̂(1 + wα), (8)

where α is the watermark strength and w is the watermark

value computed as w = bM , where the binary watermark bit,

b = {0, 1} and M is the length of watermark sequence. In

order to provide a balance between the robustness and error

distortion in the spectral coefficients, α can be adapted to the

increasing frequency. Our experiments suggest by choosing

αl ∝ l, where l is the eigenvector number is a good approach

to achieve this balance. For the simulations shown in this

paper, we group, eigenvalues into 3 groups: low, mid, and high

frequencies. Each frequency group uses a different α value as

αlow < αmid < αhigh, respectively for low, mid and high

frequencies.

In the extraction process, the watermark bits b̂ extracted as

shown as follows:

b̂ =

{

1, if ŵ ≥ M/2,

0, if ŵ < M/2,
(9)

where

ŵ =
f̂w/f̂ − 1

α
. (10)
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Fig. 3: 12 types of graphs. a: Air foil. b: David sensor network.

c: Cube. d: Swiss-roll. e: Community. f: 2D-grid. g: Torus. h:

Spiral. i: Sphere. j: Sensor. k: Minnesota. l: Bunny.

D. Blind Watermarking

The graph Fourier coefficients f̂ are modified as given in

the following equation:

f̂w = f̂ + c, (11)

where f̂w is the watermarked graph Fourier coefficient and c
is the watermark parameter which is computed as follows:

c =

{

β/2 − s , if b = 0

3β/2 − s , if b = 1 , where β > 0
(12)

where β is a watermark strength parameter and s =
mode(f̂ , 2β) [17]. The watermark strength parameter plays

an important role to balance the watermarking robustness and

distortion. In this case also, for the simulations shown in this

paper, we group, eigenvalues into 3 groups: low, mid, and high

frequencies and βlow < βmid < βhigh, respectively for low,

mid and high frequencies.

In the extraction process, the watermark is extracted from

the watermarked coefficients as shown in the following equa-

tion:

b̂ =

{

0 , if 0 ≤ p ≤ β

1 , if β ≤ p ≤ 2β ,
(13)

where p = mode(f̂w, 2β).

E. Authentication Process

The extracted watermark is authenticated by comparing the

Hamming Distance(D).

IV. RESULTS AND DISCUSSION

The methods are tested on a set of 12 types of graphs (as

shown in Fig. 3) and 2 watermark types: set of 5 binary logos

(as shown in Fig. 4) and pseudo-random binary sequences.

The performance of watermarking is investigated in terms of

error distortion, robustness and capacity.

A. Experimental Results

Comprehensive experiments are performed to evaluate the

robustness and error distortion of the proposed methods.

The experiments are divided into two parts: non-blind and

blind experiments. Fig. 5 shows Sensor and Airfoil graphs

before and after embedding the watermark using the proposed

methods.
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Fig. 4: 5 binary watermark logos. a: ieee. b: logo-inverse. c:

medicine. d: logo-university. e: arrow.

TABLE I: PSNR of various graphs (non-blind)

Graph type No.watermark bits PSNR (dB)

Community(256 nodes) 125 41.54

Cube(300 nodes) 150 44.47

Sphere(300 nodes) 150 40.29

Torus (320) 160 42.47

David-sensor(500 nodes) 250 41.76

Bunny(2503 nodes) 1250 41.02

Minnesota(2642 nodes) 1300 46.78

Sensor(3240 nodes) 1600 42.48

Spiral(3240 nodes) 1600 41.39

Swiss-roll(3200 nodes) 1600 41.15

2dgrid(3249 nodes) 1600 47.57

Air foil(4253) 2000 47.94

A.1. Non-blind Watermarking Experiments

To investigate the effect of many factors on the proposed

method performance such as: increasing the number of graph

nodes, graph type, watermark type, dynamic range of graph

signals and various attacks, the sensor graph with 3240 nodes

and dynamic range [1, 28] is used to hide the binary watermark

bits. For all experiments, the watermark strengths αlow = 0,

αmid = 0.01 and αhigh = 0.1 were used. Table I shows

the embedding error distortion for pseudo-random binary se-

quence with different number of bits is embedded in different

graphs. It can be seen that the graph type has affect on the

watermarking performance in spite of using the same number

of nodes. For example, cube has the same number of nodes

as the sphere but it has a higher PSNR value. This is mainly

due to the different connectivities present in various graphs.

Another factor is dynamic range of the graph signals. The

sensor graph with N nodes and 3 dynamic ranges: [1, 24]
,[1, 28] and [1, 212] are used to hide the pseudo random binary

sequence with length M = N/2. The results (Table II) show

that the best performance of the proposed method when the

graph signals are in dynamic range [1, 212]. This is mainly

due to the modified value due to embedded watermark in low

dynamic range data is large compared to the upper value of

the dynamic range.

Also, to show the effect of using different types of binary

watermark logos, 5 binary logos are embedded in the Sensor

graph with dynamic range of graph signals [1, 28]. Table III

shows the proposed method yields the best performance when

the logo-Inverse is used because it has more zeros which

means the modified coefficients are less than the other logos.

Also, the watermark type affect the watermarking perfor-

mance, for example, if the watermark is pseudo random

binary sequence, the better performance is achieved when

the sequence has more zeros compared to other watermark

TABLE II: PSNR of watermarked Sensor graph using 3
dynamic ranges of graph signals (non-blind)

Dynamic range PSNR(dB)

[1, 24] 48.29

[1, 28] 51.40

[1, 212] 57.59

TABLE III: PSNR of sensor graph using different watermark

logos (non-blind)

No.Sensor nodes Binary logo PSNR (dB)

3240 ieee(40× 40) 42.22

10000 arrow(70× 74) 40.77

10000 medicine(77× 76) 41.21

8100 logo-university(64× 64) 41.23

8100 logo-inverse(64× 64) 43.88

TABLE IV: PSNR of watermarked Air foil using different

frequencies (non-blind)

Frequency bands PSNR(dB)

Low frequency coefficients 42.89

Middle frequency coefficients 44.41

High frequency coefficients 47.14

TABLE V: PSNR of watermarked sensor using different

watermark strength parameter β (blind)

β PSNR(dB)

1 53.58

2 47.70

3 44.10

4 41.60

sequences.

The most important factor is the embedding frequency band

which is used to hide the watermark bits. Table IV shows the

best performance of watermarking when the high frequency

coefficients are used because the distortion in these coefficients

is low compared to the low frequency band coefficients, due to

most of the graph energy is in the low frequency components.

A.2. Blind Watermarking Experiments

To investigate the effect of the watermark strength parameter

on the performance of the watermarking method. The binary

watermark logo ieee is embedded in the middle and high

frequency coefficients of the sensor with (3240) nodes and

dynamic range signals [1, 28] using various watermark strength

values β. As shown in Table V, the proposed method yields the

best performance when β = 1. Therefore, for all experiments,

the watermark strengths βlow = 0, βmid = 1 and βhigh = 2.

Another experiment is to show the effect of using different

dynamic ranges of graph signals on the performance of the

watermarking. Table VI shows that the proposed method
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Fig. 5: Sensor and Airfoil graphs after applied the proposed method. a: original graphs. b: watermarked graphs.

TABLE VI: PSNR of Sensor graph using 3 dynamic ranges

of graph signals (blind)

Dynamic range PSNR(dB)

[1, 24] 27.78

[1, 28] 52.80

[1, 212] 76.63

Delete nodes Data 

modification

Rounding Downsampling

Non-blind

Blind

Fig. 6: Extracted watermark after various attacks.

achieves the best performance when the graph signals are in

the range [1, 212].
To evaluate the robustness of the proposed methods, various

attacks, such as, adding random noise with σ = 0.2, rounding,

data modification, nodes deletion and down-sampling were

considered. Fig.6 shows the watermark after various attacks.

Blind algorithm shows more robustness to noise and rounding

compared to the non-blind algorithm

V. CONCLUSIONS

In this paper, we have proposed graph spread spectrum

watermarking for authentication of networked sensor data.

The proposed method represents the sensor data as a graph

and explores its connectivity to derive the Laplacian matrix

whose eigenvectors are used as the transform basis to define

the graph Fourier transform. Then the properties of these

coefficients are explored to hide the watermark. We have

considered both blind and non-blind watermarking scenarios.

In order to balance the distortion and robustness performance,

we have varied the watermarking strength parameter according

to the increasing eigenvector number. We have evaluated the

embedding performance for various graph data, comprising

of graph structures, number of nodes, dynamic ranges of the

data, various watermark types and the watermark strength

parameters. The results show that the watermark can be

survived after various attacks: noise, data modification, data

deletion, rounding and down-sampling.
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