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GRAPH SPECTRAL TECHNIQUES IN COMPUTER

SCIENCES

Branko Arsić, Dragoš Cvetković, Slobodan K. Simić, Milan Škarić

We give a survey of graph spectral techniques used in computer sciences.

The survey consists of a description of particular topics from the theory

of graph spectra independently of the areas of Computer science in which

they are used. We have described the applications of some important graph

eigenvalues (spectral radius, algebraic connectivity, the least eigenvalue etc.),

eigenvectors (principal eigenvector, Fiedler eigenvector and other), spectral

reconstruction problems, spectra of random graphs, Hoffman polynomial, in-

tegral graphs etc. However, for each described spectral technique we indicate

the fields in which it is used (e.g. in modelling and searching Internet, in

computer vision, pattern recognition, data mining, multiprocessor systems,

statistical databases, and in several other areas). We present some novel

mathematical results (related to clustering and the Hoffman polynomial) as

well.

1. INTRODUCTION

In this paper we shall give a survey of parts of the theory of graph spectra
which are useful in computer sciences.

Spectral graph theory is a mathematical theory in which linear algebra and
graph theory meet. For any graph matrix M we can build a spectral graph theory
in which graphs are studied by means of eigenvalues of the matrix M. This theory
is called M -theory. In order to avoid confusion, to any notion in this theory a
prefix M - could be added (e.g., M -eigenvalues). Frequently used graph matrices
are the adjacency matrix A, the Laplacian L = D − A and the signless Laplacian
Q = D + A, where D is a diagonal matrix of vertex degrees. Some other graph

2010 Mathematics Subject Classification. 05C50, 68P20, 68R10.
Keywords and Phrases. Spectral graph theory, computer science, internet, complex networks, spec-

tral clustering.

1
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matrices will be introduced later. The spectral graph theory includes all these
particular theories together with interaction tools.

It was recognized in about the last ten years that graph spectra have sev-
eral important applications in computer sciences (see, e.g., [35, 36, 45]). Graph
spectra appear in the literature in Internet technologies, computer vision, pattern
recognition, data mining, multiprocessor systems, statistical databases and in many
other areas. There are thousands of such papers.

The two of us (D. C. and S. K. S.) have published a survey [45] of the
applications of graph spectra in Computer science. We have identified several
applications in the following branches of Computer science:

1. Expanders and combinatorial optimization,

2. Complex networks and the Internet topology,

3. Data mining,

4. Computer vision and pattern recognition,

5. Internet search,

6. Load balancing and multiprocessor interconnection networks,

7. Anti-virus protection versus spread of knowledge,

8. Statistical databases and social networks,

9. Quantum computing.

Subsequently, we have also become aware of applications in

10. Bioinformatics,

11. Coding theory,

12. Control theory.

This classification of numerous applications contains some overlapping in the
classified material. For example, methods of data mining (in particular, spectral
graph clustering) appear in computer vision, social networks and Internet search
while several problems of combinatorial optimization are relevant for data mining
(e.g., in clustering).

Since methods of Computer science are present in all branches of science,
applications of graph spectral techniques to Computer science are transferred to
almost all branches of science (telecommunications, electrical engineering, biology,
chemistry, geography, social sciences, etc.). Sometimes by using the adjective ”com-
putational” one can denote those parts of particular sciences which overlap with
Computer science (e.g., computational biology, computational chemistry, etc.). In
this sense one can speak of computer sciences as we have put in the title of this
paper.

Of course, graph spectra appear in Computer science since graphs for them-
selves are relevant. The main benefit of using graph spectra comes from the fact
that eigenvalues and eigenvectors of several graph matrices can be quickly computed
(computational complexity is O(n3) where n is the number of vertices). However,
spectral graph parameters contain a lot of information on the graph structure (both
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global and local). This includes some information on graph parameters that, in gen-
eral, are computed by exponential algorithms (e.g. chromatic number, the size of
maximal clique, etc.). For example, computing the chromatic number of a graph
with a few thousands vertices is a difficult task while eigenvalues and eigenvectors
can be computed in a few seconds (by iterative algorithms). See Section 5 for
further discussion on these topics.

Graphs that are treated in computer sciences using graph spectra typically
represent either some physical networks (computer network, Internet, biological
network, etc.) or data structures (documents in a database, indexing structure,
etc.) In the first case the graphs usually have a great number of vertices (thousands
or millions) and they are called complex networks while in the second case graphs
are of small dimensions.

The approach in this paper is essentially different from one in the companion
paper [45]. We describe particular topics from the theory of graph spectra inde-
pendently of the areas of Computer science in which they are used. However, for
each described spectral technique we indicate fields where they are used. Of course,
we do not have space here to provide standard details from the theory of graphs
spectra; instead we direct the reader to the corresponding mathematical literature,
in particular to books [33, 41]. In order to reduce the overlap with [45] we have
omitted some explanations which can be found in [45].

It should be noted that papers in Computer science sometimes contain math-
ematical contributions to the theory of graph spectra (see, e.g., [118, 64]).

The rest of the paper is organized as follows. Section 2 contains description of
several graph matrices while other sections present topics from the theory of graph
spectra which are used in applications. Section 3 is devoted to significant graph
eigenvalues, while Section 4 describes eigenvector techniques. Graph spectrum
characterizes a graph to a great extent so that eigenvalues are used to encode or to
index the graph. Such techniques are presented in Section 5. Spectra of random
graphs appear in Section 6, while Section 7 contains miscellaneous topics from the
theory of graph spectra with indications of their specific application. Section 8
concludes the paper.

2. GRAPH MATRICES

It should be noted that spectra of several graph matrices appear in applica-
tions. The adjacency matrix and Laplacian appear most frequently but also the
signless Laplacian as well as normalized versions of these matrices. Incidence, dis-
tance and other matrices can be found as well. Sometimes the considerations move
from graph matrices to general ones; equivalently, weighted graphs appear instead
of graphs. In some cases we encounter digraphs and hyper-graphs and correspond-
ing matrices as well.

One can notice that not only the eigenvalues but also the eigenvectors of
relevant graph matrices appear in applications in most cases.

In many papers the normalized Laplacian matrix L̂ = D−
1
2 (D − A)D−

1
2 =
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D−
1
2LD−

1
2 appears. This matrix has 1’s on the diagonal, and at an off-diagonal

position (i, j) the entry is equal to 0 for non-adjacent and − 1
√

didj
for adjacent

vertices i, j of degrees di, dj . The spectrum of L̂ belongs to the interval [0, 2] inde-
pendently of the number of vertices. The book by F. Chung [23] is devoted to
the normalized Laplacian.

For non-trivial connected graphs the matrices D−1A and (2D)−1Q = (2D)−1

(D +A) =
1

2
(I +D−1A) are transition matrices of Markov chains for random and

lazy random walks.

Note that the normalized Laplacian matrix L̂ = D−
1
2LD−

1
2 = D−

1
2 (D −

A)D−
1
2 = I − D−

1
2AD−

1
2 and the normalized signless Laplacian matrix Q̂ =

D−
1
2QD−

1
2 = D−

1
2 (D + A)D−

1
2 = I +D−

1
2AD−

1
2 are connected by the relation

Q̂ = −L̂+ 2I. This means that Q̂-theory is simply reduced to L̂-theory. A similar

statement holds for the matrix D−
1
2AD−

1
2 .

The book [33] describes some spectral properties of the matrices D−1A and

D−
1
2AD−

1
2 (they are similar, see p. 48) and

1

2
(I +D−1A) (see p. 110). All three

matrices have real eigenvalues.

From the adjacency matrix A = [aij ] of a graph G we can build the matrix

B = [bij ] where bij = aij − didj

m
, m being the number of edges of G. This matrix is

called the modularity matrix (see, for example, [86]).

Let G be a graph with adjacency matrix A and consider the matrix H(t) =
eiAt, where t is a real variable and i2 = −1. This matrix appears in quantum
computing.

Very frequently we encounter affinity or similarity matrices. For a set of
objects the entries of such matrices indicate the measure of affinity or similarity
between the corresponding objects. For a set of points in an Euclidean space the
affinity between two points at distance d is usually defined as exp(−d2/2σ2), where
σ is a parameter.

Affinity matrices can be understood as adjacency matrices of weighted (com-
plete) graphs. The row sums now play the role of vertex degrees. Such matrices
can be normalized or transformed in a Laplacian-like form.

For a digraph G one can consider symmetric matrices AAT and ATA together
with the adjacency matrix A of G. The matrix AAT (ATA) contains out- (in-)
degrees on the diagonal while the (i, j)-entry is equal to the number of common
front (rear) neighbours for vertices i and j.

The adjacency matrix of a digraph G with positive out-degrees could be
normalized so that the sum of entries in each row is equal to 1. This is achieved
by dividing the entries in each row by the out-degree of the corresponding vertex.
Equivalently, we form a new matrix P = D−1

+ A where D+ is the diagonal matrix
of out-degrees. The matrix P is a transition matrix of a Markov chain and the
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normalized eigenvector of the largest eigenvalue of its transpose PT defines the
steady-state of the chain if it exists.

3. SIGNIFICANT EIGENVALUES

Some graph eigenvalues are for themselves important graph parameters and
are therefore also interesting in applications. We shall consider in separate subsec-
tions the largest A-eigenvalue, the second smallest L-eigenvalue, the second largest
A-eigenvalue and the least A-eigenvalue. We conclude with a subsection on main
eigenvalues.

3.1. Largest eigenvalue

The largest eigenvalue, i.e. the index (known also as spectral radius), of a
graph is a mathematically very important graph parameter as presented, for exam-
ple, in a survey paper [38].

By Theorem 1.12 of [33] the index of a graph is equal to a kind of mean
value of vertex degrees, i.e. to the so called dynamical mean value, which takes
into account not only immediate neighbors of vertices but also the neighbors of the
neighbors, etc. The index is also known to be a measure of the extent of branching
of a graph, and in particular of a tree (see [34] for the application in chemical
context and [31] for a treatment of directing the branch and bound algorithms for
the travelling salesman problem).

The largest eigenvalue λ1 of the adjacency matrix plays an important role
in modelling virus propagation in computer networks. The smaller the largest
eigenvalue, the larger the robustness of a network against the spread of viruses is.
In fact, it was shown by Y. Wang et al. in [112] that the epidemic threshold in
spreading of the viruses is proportional to 1/λ1. Another model of virus propagation
in computer networks has been developed by P. Van Mieghem et al. in [109] with
the same conclusion concerning 1/λ1. Motivated by the above facts, the authors
of [47] determine graphs with minimal λ1 among graphs with a given number of
vertices and having a given diameter.

Research and development networks (R&D networks) are studied using the
largest eigenvalue of the adjacency matrix in papers [72, 73] by M. D. König

et al. In such networks it is desirable that the knowledge is spread through the
network as much as possible. Therefore the tendency is to achieve high values of
the largest eigenvalue, just opposite to the considerations of virus propagation.

An intuitive explanation of both phenomena, advantage to have a minimal
value of λ1 for virus protection and a maximal value of λ1 for knowledge spread,
can be obtained by the fact that the number of walks of length k in a connected
graph behaves asymptotically as cλk

1 for a constant c > 0.

Counting walks with specified properties in a graph (or digraph) is related to
graph spectra by the following well-known result (see [33] p. 44).

Theorem 3.1. If A is the adjacency matrix of a graph, then the (i, j)-entry a
(k)
ij

of the matrix Ak is equal to the number of walks of length k that originate at vertex
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i and terminate at vertex j.

The greater the number of walks, the more intensive the spread of the moving
substance is, no matter whether this is the virus or the knowledge.

Our paper [45] announced a result of [101] that under some conditions the
balanced subdivisions of regular graphs of degree 3 have the smallest index among
connected graphs with a fixed numbers of vertices and edges if n is large enough.
Hence, balanced subdivisions of regular graphs of degree 3 should be considered as
good models of virus resistant computer networks.

The quantity 1/λ1 also appears in several other networks, including sensor
and wireless networks (see [100], where it is called the congestion number). The
intuitive explanation to this definition is that while we have more paths of a fixed
length in order to send information, we can split the information on these paths
and coordinate them to arrive with the same number of hops at the receiver. This
has the advantage of equalizing source-destination delays of packets that belong
to the same class, which allows one to minimize the amount of packets that come
out of sequence. This is desirable since in data transfers, out of order packets are
misinterpreted to be lost which results not only in retransmissions but also in drop
of systems throughput.

We shall mention the use of the index in the area of multiprocessor inter-
connection networks. For motivation and details see Subsection 7.1, our previous
review paper [45] and the source papers [27, 28, 29].

There are four related notions which are useful. The first type mixed tightness

t1(G) of a graph G is defined as the product of the number of distinct eigenvalues
m and the maximum vertex degree ∆ of G, i.e. t1(G) = m∆. Structural tightness
stt(G) is the product (diam+1)∆ where diam is the diameter of a graph G. Spectral
tightness spt(G) is the product mλ1 of the number of distinct eigenvalues m and
the largest eigenvalue λ1 of a graph G. The second type mixed tightness t2(G) is
defined as t2(G) = (diam+1)λ1.

According to the well-known inequality ([33], p. 85)

δ ≤ d ≤ λ1 ≤ ∆,

where δ and ∆ denote minimum and maximum vertex degree, respectively, and
d denotes the average value of the vertex degrees, we have that spt(G) ≤ t1(G).
The relation between stt(G) and t1(G) is t1(G) ≥ stt(G), since m ≥ 1 + diam (see
Theorem 3.13. from [33]). Finally, we have t2(G) ≤ spt(G) and t2(G) ≤ stt(G)

The use of the largest eigenvalue, i.e. the index, of a graph instead of the
maximal vertex degree in description of multiprocessor topologies seems to be ap-
propriate for several reasons [27, 28, 29].

3.2. Algebraic connectivity

The second smallest Laplacian eigenvalue is called algebraic connectivity of the
graph and was introduced by Fiedler [54] (for a graph G we write α(G) = ν2(G)).
The importance of this eigenvalue stems from the fact that both “graphic” measures
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of connectivity of graphs, i.e. vertex connectivity κ and edge connectivity κ′, do not
feature, in many situations, as appropriate measures. For example, both are equal
to 1 for all trees, while the algebraic connectivity is the largest for stars (also equal
to 1) and the smallest for paths. It is also known (by the interlacing theorem, see
Theorem 5.2) that any edge deleted subgraph of a connected graph has algebraic
connectivity that is no larger than the graph in question; thus, as is expected, it
possesses a monotonicity property. In addition there are many other inequalities
which relate the algebraic connectivity to connectivities κ and κ′. Namely, we have

2κ′(G)

(

1− cos
π

n

)

≤ α(G) ≤ κ(G) ≤ κ′(G) ≤ δ(G),

where G is a graph on n vertices and minimal vertex degree δ (for more details,
see, e.g., [41], Section 7.5). For further information see [1, 68].

The algebraic connectivity is related to many structural graph invariants and
several very important problems in combinatorial optimization. Here we put the
emphasis on separation and metric problems, and also isoperimetric and expansion
problems. These problems give rise to several important graph invariants (see,
e.g., [41] Section 7.5 and 7.6). Most of the problems arising in this context are,
from the complexity points of view, very hard (usually NP-hard). In solving such
problems algebraic connectivity appears as a crucial quantity in designing various
heuristics. (Its main advantage is that it can be computed in polynomial time).
It is noteworthy to add that there are some other possibilities where algebraic
connectivity can be used. For example, in [26], the symmetric travelling salesman

problem is formulated in terms of discrete semi-definite programming by means of
algebraic connectivity.

The most important separation problems are max-cut and min-cut problems,
and also bipartition width (all being NP-hard). Let S ∪ S be a bipartition of the
vertex set of some graph, and let ∂(S) = {st : s ∈ S, t ∈ S}. So edges in ∂(S)
represent a cut in the graph in question. The first two cut problems are related to
finding a cut of maximal and minimal size, while the third one features as a min-cut
problem in which bipartition is even (so cardinalities of S and S differ at most by
1). The cardinalities of the corresponding sets S give rise to graph invariants (i.e.
the measures of separation), and there are many bounds on these invariants in the
literature which relate them with the algebraic connectivity (see Subsection 7.5.1
of [41]). In the context of metric problems, most of the results in the literature are
related to bounding diameter by using algebraic connectivity and largest eigenvalue
of the Laplacian (see Subsection 7.5.2 of [41]). The min-cut problem can be treated
by eigenvectors of ν2(G) (see Subsection 4.2).

We now switch to isoperimetric problems, which are the discrete analogies of
classical isoperimetric problems (in Euclidean spaces). Thus, the aim is to find the

minimum value of quotient
|∂(S)|

|S|
, where S is non-empty and does not contain more

than the half of vertices of the graph in question. The related quantity is called
the isoperimetric number of a graph (or an edge expansion number - see below).
Its relation to the algebraic connectivity is expressed by various inequalities (or
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lower and upper bounds, obtained by B. Mohar [82]). If i(G) is an isoperimetric
number of a graph G on at least 4 vertices then

α(G)

2
≤ i(G) ≤

√

α(G)(2∆(G) − α(G);

here ∆(G) is the maximal (vertex) degree of G.

The expansion problems represent the vertex counterpart of isoperimetric
problems. Now, instead of the edge boundary (denoted by ∂(S)) we consider the
vertex boundary, defined by δ(S) = {t : t ∼ s, s ∈ S}. Similarly as above, now
in the problem which arises the aim is to find the minimum value of the quotient
|δ(S)|

|S|
, where S is restricted as above. The related quantity (expansion) is called

the vertex expansion number or the expansion number of a graph for short. Again,
its relation to algebraic connectivity can be expressed by various inequalities. If
j(G) is an expansion number of a non-trivial graph G then the following bound is
obtained by Alon [2]:

j(G) ≥ 2ǫ

∆(G) + 2ǫ
,

where 0 ≤ ǫ ≤ α(G); in addition, if j(G) ≥ c > 0, then

α(G) ≥ c2

2c2 + 4
.

Finally, we mention some further details related to expansion problems. In-
formally, in this context, we are interested in constructing graphs (or better say
families of graphs), which are in a sense good “expanders”. This means, we have
to find sparse graphs with high connectedness, or equivalently, that any small sub-
set of its vertices has a good connections to the rest of a graph. Accordingly, in
practice then we encounter various graphs often couched in terms of enlargers, mag-
nifier, concentrators and super-concentrators, just to mention some specific terms
(for definitions, see, e.g, [41]). Among such graphs, expanders (usually defined for
bipartite graphs), are also described in the same book. All of them, appear in the
treatment of several problems in Computer science (for example, communication
networks, error-correcting codes, optimizing memory space, computing functions,
sorting algorithms, etc.). Here we only note that good expanders are used as models
for robust network in Computer science. For further details, see Subsection 3.3.

The ratio γ =
ν2

νn
, where νn is the largest while ν2 the second smallest eigen-

value of the graph Laplacian, is also an important graph invariant. This ratio is
relevant for the process of synchronization in complex networks in some special
cases [57].

The same ratio appears in sensor networks. (A sensor network consists of
spatially distributed sensors with limited capacities and links connecting them.)
One of the basic problems with these networks is to design a topology (connection
graph) that maximizes the ratio γ. The larger this ratio is, the faster is the conver-
gence speed of the decision fusion algorithm, and thus better the performance of
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the network. In [66], it was pointed that (non-bipartite) Ramanujan graphs (see
the next subsection) are good candidates for desired topologies.

There are many other problems in sensor networks where the tools from the
combinatorial optimization and spectral graph theory can be helpful, say in solving
partitioning, assignment, routing and scheduling problems.

3.3. The second largest eigenvalue

The second largest A-eigenvalue of r-regular graphs is related to the algebraic
connectivity (namely, we have λ2 + ν2 = r). Therefore, for regular graphs the
problem of maximizing the algebraic connectivity becomes equivalent to that of
minimizing the second largest eigenvalue.

Good expanders can be constructed from graphs with a small second largest
eigenvalue in modulus. This class of graphs includes the so called Ramanujan

graphs. Let Λ(G) be the second largest modulus of an eigenvalue of a graph G. A
Ramanujan graph is a connected r-regular graph for which Λ(G) ≤ 2

√
r − 1. This

is the Boppana bound which represents the limes inferior of Λ(G) over the set of
connected r-regular graphs G (see [79] as one of the most important papers con-
cerning Ramanujan graphs). For further details on the applications of Ramanujan
graphs, see [44] and references therein.

3.4. The least eigenvalue

There are some applications of the theory of graphs with least A-eigenvalue
−2.

A dumbbell is a graph obtained by joining two cycles by a path (possibly of
length 0). If both cycles of a dumbbell are odd, then the dumbbell is called odd. It
is well-known (cf., e.g., [40], p. 126) that eigenvectors of a basis of the eigenspace
of the eigenvalue −2 in line graphs can be obtained by certain edge valuations of
even cycles and odd dumbbells in the root graphs.

Statistical databases are those that allow only statistical access to their records.
Individual values are typically deemed confidential and are not to be disclosed, ei-
ther directly or indirectly. Thus, users of a statistical database are restricted to
statistical types of queries, such as looking for the sum of the values, minimum or
maximum value of some records, etc. Moreover, no sequence of answered queries
should enable a user to obtain any of the confidential individual values. However,
if a user is able to determine a confidential individual value, the database is said
to be compromised. Statistical databases that cannot be compromised are called
compromise-free or secure.

In the special case where queries are related to the sum of values of records in
the database and each record is contained in at most two queries, the query matrix
corresponds to a an incidence matrix of a graph G. Queries correspond to vertices
and records correspond to edges.

The results from [13, 15] show an interesting connection between the com-
promise-free query collections and the graphs with least eigenvalue −2 [40]. This
connection was recognized in [14].
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The following theorem was proved in [13, 15] with a different terminology.
See [45] for some bibliographical comments.

Theorem 3.2. A database is compromise-free if and only if each edge of G is

contained either in an even cycle or in an odd dumbbell of G.

3.5. Main eigenvalues

An A-eigenvalue of a graph is called main if the corresponding eigenspace
contains a vector in which the sum of coordinates is different from 0.

Graphs in which all eigenvalues are mutually distinct and main have recently
attracted some attention. There are no such graphs on less than 6 vertices and
there are exactly 8 connected graphs with this property on 6 vertices. One can
prove that such graphs have a trivial automorphism group [42].

In control theory networked dynamic systems which consist of independent
”agents” (integrators) exchanging information along edges of a graph are consid-
ered. Such a system is ”controllable” if and only if the corresponding graph has all
eigenvalues mutually distinct and main [91, 42, 43].

4. EIGENVECTOR TECHNIQUES

Graph eigenvectors also contain a lot of information on graph structure. How-
ever, one should point out that eigenvectors are not graph invariants since they
depend on the labelling of graphs. On the other hand, that can be an advantage,
especially when one is looking for a cleaver labelling of the graph, for example,
in Subsection 4.2. The subsections are devoted to the principal eigenvector, the
Fiedler eigenvector and to problems related to simultaneous consideration of sev-
eral eigenvectors.

4.1. Principal eigenvector

The normalized positive eigenvector belonging to the largest A-eigenvalue of
a connected graph is called the principal eigenvector.

The subject of ranking individuals or objects by eigenvectors of suitably cho-
sen graph matrices is an old subject in the mathematical literature. One of the
basic references is the thesis [114]. In particular, the ranking of the participants of
a round-robin tournament can be carried out in this way (see, e.g., [33], p. 226).
These methods have been used in the field of sociology for a long time as well (see,
e.g., [11]).

We reproduce here a relevant result. The following theorem of T. H. Wei

[114] is noted in [39], p. 26:

Theorem 4.1. Let Nk(i) be the number of walks of length k starting at ver-

tex i of a non-bipartite connected graph G with vertices 1, 2, . . . , n. Let sk(i) =

Nk(i) ·
( n
∑

j=1

Nk(j)
)

−1

. Then, for k →∞, the vector (sk(1), sk(2), . . . , sk(n))
T tends

towards an eigenvector corresponding to the index of G.
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Hence, ranking graph vertices by coordinates of the principal eigenvectors
means ranking them according to numbers of walks. The number of walks Nk(i)
can be interpreted as the “influence” or “importance” of vertex i. It is also called
the centrality of vertex i.

Web search engines are based on eigenvectors of the adjacency and some
related graph matrices. The most known systems are PageRank by S. Brin and
L. Page [16] (used in Google) and Hyperlinked Induced Topics Search (HITS) by
J. Kleinberg [70].

In this context the structure of the Internet is represented by a digraph G in
which web pages correspond to vertices and links between the pages (hyperlinks)
to arcs.

HITS exploits eigenvectors belonging to the largest eigenvalues of symmetric
matrices AAT and ATA, where A is the adjacency matrix of a subgraph of G
induced by the set of web pages obtained from search key words by some heuristics.
The obtained eigenvectors define a certain ordering of the selected web pages.

PageRank uses similar ideas. Random walks are utilized in this model. In
fact, the adjacency matrix of G is normalized so that we use the matrix P = D−1

+ A,
introduced in Section 2. (Prior to this transformation, in order to eliminate zero-
rows in P, the arcs going to all of the other vertices are added to each vertex without
outgoing arcs. In addition to this, in order to ensure primitivity of the matrix, at
least one odd cycle is artificially formed if such one did not exist.) Further, a convex
combination P of P and a rank 1 matrix is formed. The matrix P is a transition
matrix of a Markov chain and the normalized eigenvector of the largest eigenvalue

of its transpose P
T
defines the steady-state of the chain. Pages are ranked by the

coordinates of this eigenvector.

Expository paper [75] contains a survey of both techniques.

The same idea of ranking vertices appears with eigenvector centrality, which
is also a measure of the importance of a vertex in a network. It assigns relative
scores to all the vertices in the network based on the principle that the connections
to the high-scoring vertices contribute more to the score of the vertex in question
than the equal connections to low-scoring vertices. Google’s PageRank is a variant
of the eigenvector centrality measure. For more details, see [20, 21].

There are many papers in Computer science literature on different aspects of
using eigenvectors in Internet search engines.

In computer vision, Sarkar and Boyer [93] have shown how the eigenvector
of the largest eigenvalue of a relevant graph matrix can be used to group line
segments.

4.2. The Fiedler eigenvector

Recall first that the smallest eigenvalue of the graph Laplacian is always equal
to 0, and that its multiplicity is equal to the number of the connected components
of the graph. Then, for each component, we have an eigenvector whose entries are
equal to a non-zero constant for vertices in that component, and zero otherwise
(see Theorem 4.2 for details). The eigenvector belonging to the second smallest
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Laplacian eigenvalue of the connected graph is called the Fiedler eigenvector. Of
course, now we have both positive and negative entries in it.

A heuristic for solving the min-cut problem uses the Fiedler eigenvector to
partition the vertex set into parts corresponding to positive and negative coordi-
nates of this vector [55].

It was observed that useful partitioning of a vertex set of a graph can be
based by observing the “sign pattern” of eigenvectors, including the “bottom eigen-
vectors” of the graph Laplacian (but also of “top eigenvectors” of the adjacency
matrix). With this observations in mind, we now describe two ways of graph par-
titioning heuristics:

(i) Recursive spectral bisection: we use Fiedler eigenvector to divide the vertices
of the graph into two parts by the sign pattern, and then continue with the
same procedure for each part until we satisfy some criterion of optimality
(see, e.g., [7, 89]).

(ii) Iterative spectral bisection: we start as in (i), but next use the third - smallest,
the fourth - smallest, etc. eigenvalue to refine our intermediate partitions until
we stop due to some criterion (see clustering algorithms in Subsection 4.3).

These ideas were exploited in the literature in various ways for devising powerful
heuristics for spectral graph partitioning and/or clustering. For instance, Shi and
Malik [97] have shown how the sign pattern of the Fiedler eigenvector can be
used to separate the foreground from the background structure in images. The
original procedure from [55] has been improved by using the matrix D−1L (so as
to maximize the normalized graph cut). More generally, image segmentation is
an important procedure in computer vision and pattern recognition. The problem
is to divide the image into regions according to some criteria. Very frequently the
image segmentation is obtained using eigenvectors of some graph matrices (for more
details see, e.g., [115]).

Another applications are related to vertex orderings. The idea is to consider
the ordering of vertices induced by ordering the entries of the Fiedler eigenvector.
The following nice interpretation of the Fiedler eigenvector explains these applica-
tions, namely, it is a solution to the following optimization problem:

Minimize F (x1, x2, . . . , xn) =
∑

ij∈E(G)

wij(xi − xj)
2

Subject to: x1 + x2 + · · ·+ xn = 0, x;2
1 + x 2

2 + · · ·+ x 2
n = 1.

This problem can be viewed as imbedding a weighted graph G (wij is a
weight of an edge ij), in the real line so that the weighted sum of the squares of
all edges is minimal. This optimization problem is equivalent to the description
of the second smallest Laplacian eigenvalue through the Rayleigh quotient. Based
on this many heuristics are proposed for sorting rows/columns of symmetric sparse
matrices which gives rise to some nice patterns of the matrices, which are useful
not only in visualization of these matrices, but also in numerical calculations. Some
of the related problems are bandwidth, profile or envelope size, work bound, just to
mention only a few of them (needles to say, they are NP-hard). These problems are
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essentially discrete ones (belong to combinatorial optimization) but when relaxed
to continuous counterparts give rise to minimization/maximization of the Rayleigh
quotient, and therefore some of the Laplacian eigenvalues are encountered, including
the algebraic connectivity. Further related details on these problems can be found,
say in [83, 84, 85, 104, 105]. For some applications related to Internet that
concern the reordering of term-by-document matrix (or hypertext matrix) one can
use the same heuristics as for the envelope reduction problem (see [6]).

As is told in Subsection 3.3, in regular graphs the eigenvalue λ2 corresponds
to the algebraic connectivity ν2 with the same (Fiedler) eigenvector. However, the
eigenvector z of λ2 shows similar properties also in non-regular graphs. For example,
in [58], the authors quote the example of a random graph on 600 vertices, where
the sign pattern of the eigenvector of λ2 gives rise to a bisection of high quality,
without clear theoretical explanation. In this situation, the following theorem of
Fiedler becomes relevant (see [55], or [39] p. 219): namely, subgraphs induced
by vertices with non-negative and non-positive entries of z are connected (see also
[4]).

4.3. Other eigenvectors

Let G be a connected graph on n vertices. Eigenvalues in non-decreasing
order and corresponding orthonormal eigenvectors of the Laplacian L = D − A of
G are denoted by ν1 = 0, ν2, . . . , νn and u1, u2, . . . , un, respectively.

Let us form now an n × k matrix U containing the vectors u1, u2, . . . , uk as
columns. In this way we have constructed a geometric representation G of G in the
k-dimensional space Rk: we just take rows of U as point coordinates representing
the vertices ofG. Edges are straight line segments between the corresponding points.

The sum of squares of lengths of all edges in the representation G of G is
equal to ν1 + ν2 + · · · + νk, and this is a minimal value over all representations
obtained via matrix U with orthonormal columns, as noted in the literature (see,
e.g., [74]).

It should be expected that such an extremal graph representation must have
remarkable properties. It is used in data clustering assuming that k is the number
of clusters, given in advance. In particular, this representation enhance the cluster-
properties of the original data and clusters can now be easily detected. Classical
clustering methods (say k-means algorithm) should be applied to this new graph
presentation.

The number of clusters k is not always given in advance. There are methods
to determine k: using the so called eigengap (extremal difference between successive
Laplacan eigenvalues) [71] and, again, using eigenvectors [119].

The results obtained by this and similar spectral clustering algorithms are
very good and popular among researchers. However, these algorithms are not
completely theoretically explained and understood.

Very frequently instead of the Laplacian we can consider matrices of weighted
graphs. In particular, one can use a Laplacian-like matrix formed from the affinity
matrix of a set of objects.
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Graph representation obtained by the Laplacian matrix has been used in
graph drawings [74, 62, 107, 56]. Now the coordinates of vertices are determined
by the corresponding two, or three, entries of eigenvectors depending of dimension
of space in which graph is drawn.

Together with the Laplacian L and the normalized Laplacian L̂ also the ma-
trix D−1L has been used in clustering algorithms. According to [80] the last matrix
performs best.

We offer some observations supporting the usefulness of the described clus-
tering procedure.

Theorem 4.2. Let G be a connected graph on n vertices with Laplacian L. Sup-
pose that the multiplicity of eigenvalue 0 is equal to k and let U be an n× k matrix

whose columns are independent eigenvectors of 0. Then G has k components and

their vertices are uniquely determined by rows of U in the sense that the vertices

corresponding to identic rows are in the same component while two vertices corre-

sponding to non-identic rows are in different components.

Proof. It is well known that the number of components is equal to the multiplicity
of eigenvalue 0. Define characteristic vector of a component as an n-vector having
components equal to 1 for vertices in the component and equal to 0 otherwise.
Characteristic vectors of components form a basis of the eigenspace of 0. Hence,
any eigenvector of 0, being a linear combination of the characteristic vectors of
components, has the same value of the components corresponding to vertices of
any fixed component. Also, the rows of U, whose rank is equal to k, are mutually
equal for vertices in a component. However, distinct rows of U correspond to
vertices from different components for otherwise U would have less than k distinct
rows and its rank would be less than k. �

A similar theorem can be formulated for the A-theory for regular graphs. De-
termining components for non-regular graphs requires the knowledge of all eigen-
vectors of the graph.

Spectral clustering can be performed using the modularity matrix, introduced
in Section 2 (see paper by M. E. J. Newman [86]).

We shall mention a couple of other things.

An image, for example, of 100 × 100 pixels, each having 256 colour levels,
can be represented as a point in Euclidean space of dimension 2560000. However,
images in reality usually are contained in a subspace of much lower dimension.
Several authors have explored the use of eigenvectors of the Laplacian and related
operators to map data to a manifold in a low dimensional space [92, 10]. These
maps are similar as those described in graph clustering.

Spectral filtering is an important method in handling huge sets of data. This
method uses the eigenvectors of the adjacency and other graph matrices to find
some clusters in data sets represented by graphs. For example, in [58] spectral
filtering is applied in the study of Internet structure. The method uses adjacency
matrix, its k < n largest eigenvalues and corresponding eigenvectors. The method
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of [58] has been critically commented in [94]. However, theoretical justification of
the method can be found in [18].

5. SPECTRAL RECOGNITION PROBLEMS

As already pointed out, the benefit of using graph spectra in treating graphs
is that eigenvalues and eigenvectors of several graph matrices can be quickly com-
puted. Spectral graph parameters contain a lot of information on the graph struc-
ture (both global and local) including some information on graph parameters that,
in general, are computed by exponential algorithms.

Moreover, in some applications in data mining graph spectra are used to
encode graphs themselves (see, e.g., [48, 120]).

At some time it was conjectured that non-isomorphic graphs have different
spectra, i.e. that graphs are characterized by their spectra. Very quickly this con-
jecture was refuted and numerous examples and families of non-isomorphic graphs
with the same spectrum were found. In particular, it was proved that almost all
trees are not characterized by their spectra. Analogous question for general graphs
remained open (see, e.g., [33], Section 6.1, for a survey on these questions).

Also in Chemistry there was a criticism on using graph eigenvalues to char-
acterize molecules [63].

Graphs with the same spectrum of an associated matrix M are called cospec-

tral graphs with respect to M, or M-cospectral graphs.

The existence of cospectral graphs is not considered as a disadvantage in
using graph spectra in Computer Science since it is believed that graph spectra
contain enough information for the purposes for which they are used.

The following example is illustrative in this respect. The indexing structure
of objects appearing in computer vision (and in a wide range of other domains such
as linguistics and computational biology) may take the form of a tree. An indexing
mechanism that maps the structure of a tree into a low-dimensional vector space
using graph eigenvalues is developed in [98].

To clarify recent developments we need some definitions.

A graph H cospectral with a graph G, but not isomorphic to G, is called a
cospectral mate of G. Let G be a finite set of graphs, and let G′ be the set of graphs
in G which have a cospectral mate in G with respect to M. The ratio |G′|/|G| is
called the spectral uncertainty of (graphs from) G with respect to M (or, in general,
spectral uncertainty of the M -theory).

The papers [46, 61] provide spectral uncertainties rn with respect to the
adjacency matrix A, sn with respect to the Laplacian L and qn with respect to
the signless Laplacian Q of sets of all graphs on n vertices for n ≤ 11 (see [17] for
n = 12):

n 4 5 6 7 8 9 10 11 12

rn 0 0.059 0.064 0.105 0.139 0.186 0.213 0.211 0.188
sn 0 0 0.026 0.125 0.143 0.155 0.118 0.090 0.060
qn 0.182 0.118 0.103 0.098 0.097 0.069 0.053 0.038 0.027
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We see that the sequences sn and qn are decreasing for n ≤ 12 while the
sequence rn is increasing for n ≤ 10. Yet, it starts to decrease for n > 10. This is
a strong basis for believing that almost all graphs are determined by their spectra
when n tends towards the infinity, as conjectured in [46, 61]. The proof of this
conjecture would strengthen the theory of graph spectra and, in particular, its
application to computer sciences.

Having in view the above data, the L-spectrum is used to encode graphs
rather than A-spectrum, i.e. the L-spectrum has more representational power than
the A-spectrum, in terms of resulting in fewer cospectral graphs. The above data
show that it is even better to use signless Laplacian eigenvalue since they have
stronger characterization properties.

There are many results in the mathematical literature on spectral charac-
terizations of particular classes of graphs (see, e.g., Chapter 4 of [41]. However,
these results hardly could be applied to graphs which appear as complex networks.
It is therefore of interest to construct or generate a graph starting from its spec-
trum. An algorithm for such a reconstruction has been developed in [25]. Given
the spectrum of a graph, the algorithm starts from a random graph and uses the
tabu search to diminish a certain spectral distance (see next subsection) between
the given and current spectrum.

5.1. The spectral distance and similarity of graphs

The Euclidean distance between the eigenvalue sequences of two graphs on
the same number of vertices is called the spectral distance of graphs. Some other
spectral distances have been considered as well.

Two graphs are considered as similar if their spectral distance is small. (Two
graphs can be similar without corresponding matrices being similar.) If two graphs
are at zero distance, this does not necessarily mean that they are equal (i.e. iso-
morphic); they are only cospectral. In this sense, cospectral graphs are similar.
A spectrally based measure of similarity between networks has been introduced in
[53], and applied to Internet topology analysis.

In some cases researchers feel that the spectrum very well characterizes the
graphs under consideration so that the spectrum is considered as a fingerprint of the
corresponding network. The eigenvalues γi; i = 1, 2, . . . , n of L̂ in non-decreasing

order can be represented by points
(

i− 1

n− 1
, γi

)

in the region [0, 1]× [0, 2] and can

be approximated by a continuous curve. It was noticed in [110, 111] that this
curve is practically the same during the time for several networks in spite of the
increasing number of vertices and edges of the corresponding graph.

5.2. Interlacing theorem and spectra of subgraphs

The following theorem is very important in spectral graph theory and its
applications. (Recall that the matrix A with complex entries aij is called Hermitian

if AT = A, i.e. aji = aij for all i, j.)

Theorem 5.1. (see, e.g., [33], p. 19) Let A be a Hermitian matrix with eigenvalues



Graph spectral techniques in computer sciences 17

λ1 ≥ λ2 ≥ · · · ≥ λn and let B be one of its principal submatrices. If the eigenvalues
of B are µ1 ≥ µ2 ≥ · · · ≥ µm then λn−m+1 ≤ µi ≤ λi (i = 1, . . . ,m)

The inequalities of this theorem are known as Cauchy’s inequalities and the
whole theorem is known as the Interlacing Theorem. It is used frequently as a
spectral technique in graph theory.

In several databases the data are often represented as graphs. Very frequently
graphs are indexed by their spectra.

In [88] a spectral graph theory approach is presented for representing melodies
as graphs, based on intervals between the notes they are composed of. These graphs
are then indexed using their Laplacian spectrum. This makes it possible to find
melodies similar to a given melody.

The query for such a database is given by a graph. To find similar data in the
database it is necessary to compare subgraphs of the query graph with subgraphs
of the graphs stored in the database. One should efficiently select a small set of
database graphs, which share a subgraph with the query. Instead of comparing
subgraphs one can compare their spectra. In this situation the interlacing theorem
is often an effective tool in pruning the search.

Note that the subgraph isomorphism problem is NP-complete while compar-
ing spectra can be done in polynomial time.

To accelerate the process of computing spectra of subgraphs the spectral in-

tegral variation technique is used in [48]. First, we have the following variation of
the interlacing theorem for L-spectra.

Theorem 5.2. Let G be a connected graph on n vertices. Eigenvalues in non-

decreasing order of the Laplacian L = D−A of G are denoted by ν1 = 0, ν2, . . . , νn.
Let G′ be obtained from G by adding an edge and let σ1 = 0, σ2, . . . , σn be L-
eigenvalues of G′. Then

0 = ν1 = σ1 ≤ ν2 ≤ σ2 ≤ · · · ≤ νn ≤ σn.

The proof is obtained using well-known Courant-Weyl inequalities (see, e.g.,
[33], pp. 51–52).

Hence, when adding an edge the L-eigenvalues do not decrease. However,
the sum of L-eigenvalues increases by 2. We are interested in the case when L-
eigenvalues change only by integer quantities. Evidently there are just two possible
scenarios [103, 52] where that can happen: either one eigenvalue will increase by
2 (and n − 1 eigenvalues remain unchanged) or two eigenvalues will increase by 1
(and n − 2 eigenvalues remain unchanged). Precise conditions when each of these
two cases of spectral integral variation technique occurs are given in the literature
[67, 103].

5.3. Structural and spectral perturbations of graphs

The spectral integral variation technique, described in the last subsection, is
just an example involving graph perturbations. A graph perturbation means a small
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change in graph structure (e.g., adding an edge or a vertex). We are interested in
changes in graph eigenvalues caused by a perturbation.

There is a chapter in the book [39] devoted to graph perturbations and cor-
responding changes in the spectrum.

The problem of protecting the privacy appears in social networks on the
Internet (for example, Facebook) when studying general properties of an existing
network. A way to protect the privacy of personal data is to randomize the network
representing relations between individuals by deleting some actual edges and by
adding some additional edges in such a way that the global characteristics of the
network are unchanged. This is achieved by using eigenvalues of the adjacency
matrix (in particular, the largest one) and of the Laplacian (algebraic connectivity)
to control the process of deleting and adding the edges [118]. The choice of deleted
and added edges is performed by using results of [39], Chapter 6, for the largest
eigenvalue and the corresponding results for the algebraic connectivity have been
derived in the paper.

In Computer science literature, some spectral perturbations of graphs have
been considered as well. This means that the graph spectrum is slightly changed
while the eigenvectors remain unchanged. This is used in connection with the
formula for spectral decomposition of the adjacency matrix A of a graph, i.e. A =
UΛUT , where Λ is a diagonal matrix containing the eigenvalues of A and the
columns of matrix U are orthonormal eigenvectors of A. The paper [77] proposes
a new robustness parameter for complex networks: this is the maximal number k
such that one can replace k smallest in modulus eigenvalues of A with zeros with
the possibility that A still can be reconstructed.

A similar “deletion” of eigenvalues appears also in the so called latent se-

mantic indexing (LSI) but it is applied on singular values of the term-by-document
matrix (see, e.g., [87, 102]).

6. SPECTRA OF RANDOM GRAPHS

Complex networks is a common name for various real networks which are
presented by graphs with an enormously great number of vertices. Here belong
Internet graphs, phone graphs, e-mail graphs, social networks and many others. In
spite of their diversity such networks share some common properties.

A very frequent characteristic of a complex networks (both real and theoreti-
cal) is the degree and eigenvalue distribution. Both distributions obey a power law

of the form x−β for a positive constant β. A network with power law distributions
is called scale-free.

In particular, if nk denotes the number of vertices of degree k, then asymptot-
ically nk = ak−β for some constant a. The power law for eigenvalues can be formu-
lated in the following way. Let λ1, λ2, . . . be non-increasing sequence of eigenvalues
of the adjacency matrix, then asymptotically λk = ak−γ for some constant a and
positive γ.

It was conjectured in [51] that in networks with degree power law the largest
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eigenvalues of the adjacency matrix also have a power law distribution. That was
proved under some conditions in [81]. See [99] for analysis of some empirical data.

Several models of random graphs have been used to describe complex net-
works. One is the classical Erdös-Rényi model [50] where we have a constant
probability for the existence of each edge. There are models where given degree
distribution is realized [5]. Many real networks obey the small-word model in-
troduced in [113]. An asymptotic distribution of eigenvalues of certain random
symmetric matrices, known as Wigner’s semi-circle law, has been derived in [116].

The asymptotic behaviour of algebraic connectivity for random graphs in
Erdös-Rényi model has been derived in [65]. An approximate expression for al-
gebraic connectivity of complex networks in the same model has been obtained
in [64]. It was suggested that the algebraic connectivity should be taken as the
measure of the robustness of complex networks.

There is a section on spectra of random graphs in [32], where early results
have been described. The book [24] is devoted to complex networks. There are
two chapters which describe spectral properties of such networks. The book [108]
describes how graph spectra are used in complex networks. See also [23, 57].

7. MISCELLANEOUS TOPICS

In separate subsections we treat the Hoffman polynomial, integral graphs and
graph divisors.

7.1. The Hoffman polynomial

Let G be a connected graph on n vertices with Laplacian L = D−A. Suppose
that G has distinct Laplacian eigenvalues µ1 = 0, µ2, . . . , µm with multiplicities
k1 = 1, k2, . . . , km, respectively.

Let j be all-1 vector and J a square all-1 matrix.

Theorem 7.1. Let G be a connected graph on n vertices with Laplacian L and

distinct Laplacian eigenvalues µ1 = 0, µ2, . . . , µm. Let h(x) = (x−µ2) · · · (x−µm).
Then h(L) = aJ where a = (−1)m−1µ2 · · ·µm/n.

Proof. Since L is a symmetric matrix its minimal polynomial m(x) has the form
m(x) = xh(x) and we have Lh(L) = O. Suppose that h(L) = M and consider a
column u of M. We have Lu = 0. Let C be the vertex-arc incidence matrix of the
digraph obtained from G by introducing any orientation of edges of G. It is well-
known that L = CCT and from Lu = 0 we get CCTu = 0 and CTu = 0. Hence, for
any edge e of G coordinates of u corresponding to the end-vertices of e are mutually
equal. Since G is connected all coordinates of u are mutually equal. Since M is
symmetric all its columns are mutually equal. Hence, M = aJ, i.e. h(L) = aJ for
some constant a. The trace of aJ is an and the trace of h(L) is (−1)m−1µ2 · · ·µm

and the proof is completed.

Remark. If we introduce

H(x) =
(−1)(m−1)n

µ2 · · ·µm

h(x) =
(−1)(m−1)n

µ2 · · ·µm

(x− µ2) . . . (x− µm)
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we get H(L) = J. The polynomial H(x) is called the Laplacian Hoffman polynomial of G
analogous to the Hoffman polynomial originally introduced for the adjacency matrix and
known to exist only for regular connected graphs.

If G is regular of degree r with distinct A-eigenvalues σ1 = r, σ2, . . . , σm we have
L = rI − A and µi = r − σi, i = 2, . . . , m. The relation H(L) = J is then transformed
into

n

(r − σ2) · · · (r − σm)
(A− σ2I) · · · (A− σmI) = J.

The polynomial

HA(x) =
n

(r − σ2) · · · (r − σm)
(x− σ2) · · · (x− σm)

is called the Hoffman polynomial. It is proved that for a polynomial P (x) the relation

P (A) = J holds if and only if G is regular and connected and in this case the only such

polynomial is the Hoffman polynomial HA(x) (see, e.g., [33], p. 95).

Our result is relevant for load balancing in multiprocessor systems.

The job which has to be executed by a multiprocessor system is divided into
parts that are given to particular processors to handle them. Elementary jobs
distribution among processors can be represented by a vector x whose coordinates
are non-negative integers. Of course, it would be optimal that the number of
elementary jobs given to a processor is the same for all processors, i.e., that the
vector x is an integer multiple of the vector j whose coordinates are all equal to 1.
However, vector x is usually changed during the work of the system because some
elementary jobs are executed while new elementary jobs are being permanently
generated during the execution process. Therefore it is reasonable that processors
with a great number of elementary jobs send some of them to adjacent processors
so that the job distribution becomes as uniform as possible. In this way the so
called problem of load balancing is important in managing multiprocessor systems.

We shall present a known algorithm for the load balancing problem in our
interpretation using the Laplacian Hoffman polynomial.

We have H(L)x = Jx = βj, where β is the sum of the coordinates of x. If
x represents any job distribution the matrix 1

n
H(L) transforms it into a uniform

distribution. We can write

1

n
H(L) = (I − 1

µ2
L) · · · (I − 1

µm

L)

Introducing vectors x(1) = x,x(2), . . . ,x(m) by relations

(1) x(k) =
(

I − 1

µk

L
)

x(k−1), k = 2, . . . ,m

we shall obtain x(m) = β
n
j.

The transformation I − 1

µk

L will cause that the component of x(k) =
(

I −
1

µk

L
)

x(k−1) in the eigenspace of µk disappears while the component in the eigenspace

of 0 remains unchanged.
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We have seen how a vector x can be transformed to a scalar multiple of j using
the iteration process (1), which involves the Laplacian matrix of the multiprocessor
graph G. It remains to be seen what relations (1) mean in terms of load moving.

Let vector x(k) have coordinates x
(k)
1 , x

(k)
2 , . . . , x

(k)
n . Relations (1) can be

rewritten in the form

(2) x
(k)
i = x

(k−1)
i − 1

µk

∑

i∗j

(

x
(k−1)
i − x

(k−1)
j

)

,

where di is the degree of vertex i. This means that the current load at vertex i is

changed in such a way that vertex (processor) i sends the
1

µk

-th part of its load

to each of its di neighbors and, because this holds for every vertex, also receives

the
1

µk

-th part of the load from each of its di neighbors. The amounts should be

added algebraically and in this way we get the final value of the flow through edge
ij (sent either from i to j or vice versa). The obtained flow is ℓ2-optimal, i.e., the
sum of the squares of particular edge flows is minimal (see, for e.g., [49]).

7.2. Integral graphs

A graph is called integral if its spectrum consists entirely of integers. Each
eigenvalue has integral eigenvectors and each eigenspace has a basis consisting of
such eigenvectors.

Integral graphs have been studied for decades as a kind of mathematical cu-
riosity without any idea of what they could be used for outside of mathematics (see
[3] for a survey of results up to 2002). In particular, there are exactly 13 connected,
cubic, integral graphs [19]. Among them are, for example, the 3-dimensional cube
and the Petersen graph.

It has been discovered recently [22] that A-integral graphs can play a role
in the so called perfect state transfer in quantum spin networks of quantum com-
puting. (Quantum computation is a model of computation based on the principles
of quantum mechanics although the corresponding computers have not yet been
realized [90].) Speaking in terms of quantum physics, there is perfect state trans-
fer between two vertices of a graph if a single excitation can travel with fidelity
one between the corresponding sites of a spin system modelled by the graph [96].
L-integral graphs also appear in the discussions of perfect state transfer [69].

Let G be a graph with adjacency matrix A and consider the matrix H(t) =
eiAt where t is a real variable and i2 = −1. According to [59], perfect state transfer
occurs between vertices u and v of G if there is a value of t such that |H(t)u,v| = 1.
This can happen in integral graphs, but does not always.

Further details on this topic can be found in [95, 59, 60, 96, 106].

The 3-dimensional cube is the only connected cubic integral graph with per-
fect state transfer [96]. Some other results in this direction have been obtained in
[8, 9].

Integral graphs are of interest in constructing multiprocessor interconnection
networks.
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In integral graphs load balancing algorithms (see previous subsection), which
use eigenvalues and eigenvectors, can be executed in integer arithmetics as noted in
[28]. In addition, these integral eigenvectors can be selected so that they contain
a lot of coordinates equal to 0 [30].

Any load distribution vector can, of course, be represented as a linear combi-
nation of eigenvectors of a graph. We can introduce several load balancing schemes
on the set of selected integral eigenvectors. At this step we can introduce various
additional optimality criteria. For more details see [30].

The further study of integral graphs in connection to multiprocessor topolo-
gies seems to be a promising subject for future research.

7.3. Graph divisors

First we quote the following result.

Theorem 7.2. ([33], p. 20) Let A be any matrix partitioned into blocks with square

blocks on the main diagonal. Let the block Aij have constant row sums bij and let

B = (bij). Then the spectrum of B is contained in the spectrum of A (having in

view also the multiplicities of the eigenvalues).

The content of this theorem justifies the introduction of the following defini-
tion.

Definition. Given an s × s matrix B = (bij), let the vertex set of a graph G be

partitioned into (non-empty) subsets X1, X2, . . . , Xs so that for any i, j = 1, 2, . . . , s
each vertex from Xi is adjacent to exactly bij vertices of Xj . The multidigraph H
with adjacency matrix B is called a front divisor of G, or briefly, a divisor of G.

The existence of a divisor means that the graph has a certain structure;
indeed, a divisor can be interpreted as a homomorphic image of the graph. On
the other hand, by the above theorem, the characteristic polynomial of a divisor
divides the characteristic polynomial of the graph (i.e. the spectrum of a divisor is
contained in the spectrum of the graph). In this way the notion of a divisor can be
seen as a link between spectral and structural properties of a graph.

Divisors have been considered in the literature also under the name equitable
partitions.

The concept of a divisor has also featured in coding theory. As an application
of the divisor concept in this field we shall outline an elementary proof of Lloyd’s
Theorem due to Cvetković and van Lint [37]. For the general concepts of coding
theory, see, e.g., [76] (with Lloyd’s Theorem on p. 111).

We need some preparations. Consider a set F of b distinct symbols which we
call the alphabet. The elements of Fn will be called words of length n. In Fn the
Hamming distance d is defined by

d(x,y) = |{i : xi 6= yi, 1 ≤ i ≤ n}|.

A subset S of Fn is called a perfect e-code if Fn is partitioned by the spheres Se(c)
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(c ∈ S), where
Se(c) := {x ∈ Fn : d(x, c) ≤ e}.

In 1957 Lloyd [78] proved a strong necessary condition for the existence of
a perfect e-code when b = 2 (the binary case). In the years since 1972 several
authors (see [33], p. 131) have proved that the theorem (always referred to as
Lloyd’s Theorem) holds for all b:

Theorem 7.3. (Lloyd’s Theorem) If a perfect e-code of length n over an alphabet

of b symbols exists, then the e zeros xi of the polynomial

φenb(x) :=

e
∑

i=0

(−1)i(b− 1)e−i

(

n− x

e− i

)(

x− 1

i

)

are distinct positive integers ≤ n.

A proof using spectral graph theory exploits the fact that a perfect code
determines a divisor in the graph in which vertices are words of length n two words
being adjacent if they are at Hamming distance 1.

The notion of a divisor, i.e. equitable partition, is also used in control theory
[91, 42] and in social network analysis [12].

8. CONCLUSION

From the presented material one can see that a great part of the theory of
graph spectra is really used in computer sciences.

Through various applications in computer sciences it becomes clear that spec-
tral graph theory is by no means bounded to a particular graph matrix, such as
adjacency matrix or Laplacian. A great variety of graph matrices are used depend-
ing on the problem treated.

Due to enormous number of scientific papers in computer sciences which use
graph spectral techniques and due to various fields where these techniques are
applied, it is really difficult to produce a balanced and comprehensive survey.

For decades graph theory was just a collection of weakly interrelated subthe-
ories (chromatic graph theory, metrical problems, trees, planar graphs, etc.). The
theory of graph spectra contains tools which can be applied to all these subtheo-
ries, although with varying strength, and one can think of it as being a unifying
theory for the whole graph theory. However, spectral techniques are weak for some
problems and mathematicians could reasonably hold doubt in such a possible con-
clusion.

In applications to computer sciences spectral graph theory is considered as
very strong and perhaps one can say that its unifying mission for graph theory has
been realized through Computer Science.
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Mathematical Institute SANU, Belgrade, 2009, 33–63; improved version in [36].
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111. D. Vukadinović, P. Huang, T. Erlebach: On the spectrum and structure of the

Internet topology graphs. Proc. Second Internat. Workshop on Innovative Internet
Computing Systems, IICS ’02, 2346 (2002), 83–95.

112. Y. Wang, D. Chakrabarti, C. Wang, C. Faloutsos: Epidemic spreading in real

networks : An eigenvalue viewpoint. 22nd Symp. Reliable Distributed Computing,
Florence, Italy, Oct. 6–8, 2003.

113. D. J. Watts, S. H. Strogatz: Collective dynamics of small-world networks. Na-
ture, 393 (1998), 440–442.

114. T. H. Wei: The algebraic foundations of ranking theory. Thesis, Cambridge, 1952.
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