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Abstract

This paper proposes to improve visual question answer-

ing (VQA) with structured representations of both scene

contents and questions. A key challenge in VQA is to require

joint reasoning over the visual and text domains. The pre-

dominant CNN/LSTM-based approach to VQA is limited by

monolithic vector representations that largely ignore struc-

ture in the scene and in the question. CNN feature vectors

cannot effectively capture situations as simple as multiple

object instances, and LSTMs process questions as series

of words, which do not reflect the true complexity of lan-

guage structure. We instead propose to build graphs over

the scene objects and over the question words, and we de-

scribe a deep neural network that exploits the structure in

these representations. We show that this approach achieves

significant improvements over the state-of-the-art, increas-

ing accuracy from 71.2% to 74.4% on the “abstract scenes”

multiple-choice benchmark, and from 34.7% to 39.1% for

the more challenging “balanced” scenes, i.e. image pairs

with fine-grained differences and opposite yes/no answers

to a same question.

1. Introduction

The task of Visual Question Answering has received

growing interest in the recent years (see [17, 4, 25] for ex-

ample). One of the more interesting aspects of the problem

is that it combines computer vision, natural language pro-

cessing, and artificial intelligence. In its open-ended form,

a question is provided as text in natural language together

with an image, and a correct answer must be predicted, typ-

ically in the form of a single word or a short phrase. In the

multiple-choice variant, an answer is selected from a pro-

vided set of candidates, alleviating evaluation issues related

to synonyms and paraphrasing.

Multiple datasets for VQA have been introduced with

either real [4, 14, 17, 21, 31] or synthetic images [4, 30].

Our experiments uses the latter, being based on clip art

or “cartoon” images created by humans to depict realistic
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Figure 1. We encode the input scene as a graph representing the

objects and their spatial arrangement, and the input question as a

graph representing words and their syntactic dependencies. A neu-

ral network is trained to reason over these representations, and to

produce a suitable answer as a prediction over an output vocabu-

lary.

scenes (they are usually referred to as “abstract scenes”, de-

spite this being a misnomer). Our experiments focus on

this dataset of clip art scenes as they allow to focus on se-

mantic reasoning and vision-language interactions, in iso-

lation from the performance of visual recognition (see ex-

amples in Fig. 5). They also allow the manipulation of

the image data so as to better illuminate algorithm perfor-

mance. A particularly attractive VQA dataset was intro-

duced in [30] by selecting only the questions with binary an-

swers (e.g. yes/no) and pairing each (synthetic) image with

a minimally-different complementary version that elicits the

opposite (no/yes) answer (see examples in Fig. 5, bottom

rows). This strongly contrasts with other VQA datasets of

real images, where a correct answer is often obvious with-

out looking at the image, by relying on systematic regulari-

ties of frequent questions and answers [4, 30]. Performance

improvements reported on such datasets are difficult to in-

terpret as actual progress in scene understanding and rea-

soning as they might similarly be taken to represent a better

modeling of the language prior of the dataset. This ham-

pers, or at best obscures, progress toward the greater goal

of general VQA. In our view, and despite obvious limita-

tions of synthetic images, improvements on the aforemen-

tioned “balanced” dataset constitute an illuminating mea-

sure of progress in scene-understanding, because a language
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model alone cannot perform better than chance on this data.

Challenges The questions in the clip-art dataset vary

greatly in their complexity. Some can be directly answered

from observations of visual elements, e.g. Is there a dog in

the room ?, or Is the weather good ?. Others require relating

multiple facts or understanding complex actions, e.g. Is the

boy going to catch the ball?, or Is it winter?. An additional

challenge, which affects all VQA datasets, is the sparsity of

the training data. Even a large number of training questions

(almost 25,000 for the clip art scenes of [4]) cannot pos-

sibly cover the combinatorial diversity of possible objects

and concepts. Adding to this challenge, most methods for

VQA process the question through a recurrent neural net-

work (such as an LSTM) trained from scratch solely on the

training questions.

Language representation The above reasons motivate us

to take advantage of the extensive existing work in the nat-

ural language community to aid processing the questions.

First, we identify the syntactic structure of the question us-

ing a dependency parser [7]. This produces a graph repre-

sentation of the question in which each node represents a

word and each edge a particular type of dependency (e.g.

determiner, nominal subject, direct object, etc.). Second,

we associate each word (node) with a vector embedding

pretrained on large corpora of text data [20]. This embed-

ding maps the words to a space in which distances are se-

mantically meaningful. Consequently, this essentially reg-

ularizes the remainder of the network to share learned con-

cepts among related words and synonyms. This partic-

ularly helps in dealing with rare words, and also allows

questions to include words absent from the training ques-

tions/answers. Note that this pretraining and ad hoc pro-

cessing of the language part mimics a practice common for

the image part, in which visual features are usually obtained

from a fixed CNN, itself pretrained on a larger dataset and

with a different (supervised classification) objective.

Scene representation Each object in the scene corre-

sponds to a node in the scene graph, which has an associated

feature vector describing its appearance. The graph is fully

connected, with each edge representing the relative position

of the objects in the image.

Applying Neural Networks to graphs The two graph

representations feed into a deep neural network that we

will describe in Section 4. The advantage of this approach

with text- and scene-graphs, rather than more typical repre-

sentations, is that the graphs can capture relationships be-

tween words and between objects which are of semantic

significance. This enables the GNN to exploit (1) the un-

ordered nature of scene elements (the objects in particular)

and (2) the semantic relationships between elements (and

the grammatical relationships between words in particular).

This contrasts with the typical approach of representing the

image with CNN activations (which are sensitive to individ-

ual object locations but less so to relative position) and the

processing words of the question serially with an RNN (de-

spite the fact that grammatical structure is very non-linear).

The graph representation ignores the order in which ele-

ments are processed, but instead represents the relationships

between different elements using different edge types. Our

network uses multiple layers that iterate over the features

associated with every node, then ultimately identifies a soft

matching between nodes from the two graphs. This match-

ing reflects the correspondences between the words in the

question and the objects in the image. The features of the

matched nodes then feed into a classifier to infer the answer

to the question (Fig. 1).

The main contributions of this paper are four-fold.

1) We describe how to use graph representations of scene

and question for VQA, and a neural network capable of

processing these representations to infer an answer.

2) We show how to make use of an off-the-shelf language

parsing tool by generating a graph representation of text

that captures grammatical relationships, and by making

this information accessible to the VQA model. This rep-

resentation uses a pre-trained word embedding to form

node features, and encodes syntactic dependencies be-

tween words as edge features.

3) We train the proposed model on the VQA “abstract

scenes” benchmark [4] and demonstrate its efficacy

by raising the state-of-the-art accuracy from 71.2% to

74.4% in the multiple-choice setting. On the “balanced”

version of the dataset, we raise the accuracy from 34.7%

to 39.1% in the hardest setting (requiring a correct an-

swer over pairs of scenes).

4) We evaluate the uncertainty in the model by presenting

– for the first time on the task of VQA – precision/recall

curves of predicted answers. Those curves provide more

insight than the single accuracy metric and show that the

uncertainty estimated by the model about its predictions

correlates with the ambiguity of the human-provided

ground truth.

2. Related work

The task of visual question answering has received in-

creasing interest since the seminal paper of Antol et al. [4].

Most recent methods are based on the idea of a joint em-

bedding of the image and the question using a deep neu-

ral network. The image is passed through a convolutional

neural network (CNN) pretrained for image classification,

from which intermediate features are extracted to describe

the image. The question is typically passed through a re-
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Figure 2. Architecture of the proposed neural network. The input is provided as a description of the scene (a list of objects with their visual

characteristics) and a parsed question (words with their syntactic relations). The scene-graph contains a node with a feature vector for

each object, and edge features that represent their spatial relationships. The question-graph reflects the parse tree of the question, with a

word embedding for each node, and a vector embedding of types of syntactic dependencies for edges. A recurrent unit (GRU) is associated

with each node of both graphs. Over multiple iterations, the GRU updates a representation of each node that integrates context from its

neighbours within the graph. Features of all objects and all words are combined (concatenated) pairwise, and they are weighted with a

form of attention. That effectively matches elements between the question and the scene. The weighted sum of features is passed through

a final classifier that predicts scores over a fixed set of candidate answers.

current neural network (RNN) such as an LSTM, which

produces a fixed-size vector representing the sequence of

words. These two representations are mapped to a joint

space by one or several non-linear layers. They can then

be fed into a classifier over an output vocabulary, predicting

the final answer. Most recent papers on VQA propose im-

provements and variations on this basic idea. Consult [25]

for a survey.

A major improvement to the basic method is to use an

attention mechanism [31, 27, 5, 12, 3, 28]. It models in-

teractions between specific parts of the inputs (image and

question) depending on their actual contents. The visual

input is then typically represented a spatial feature map,

instead of holistic, image-wide features. The feature map

is used with the question to determine spatial weights that

reflect the most relevant regions of the image. Our ap-

proach uses a similar weighting operation, which, with our

graph representation, we equate to a subgraph matching.

Graph nodes representing question words are associated

with graph nodes representing scene objects and vice versa.

Similarly, the co-attention model of Lu et al. [16] deter-

mines attention weights on both image regions and ques-

tion words. Their best-performing approach proceeds in a

sequential manner, starting with question-guided visual at-

tention followed by image-guided question attention. In our

case, we found that a joint, one-pass version performs bet-

ter.

A major contribution of our model is to use structured

representations of the input scene and the question. This

contrasts with typical CNN and RNN models which are lim-

ited to spatial feature maps and sequences of words respec-

tively. The dynamic memory networks (DMN), applied to

VQA in [26] also maintain a set-like representation of the

input. As in our model, the DMN models interactions be-

tween different parts of the input. Our method can addition-

ally take, as input, features characterizing arbitrary relations

between parts of the input (the edge features in our graphs).

This specifically allows making use of syntactic dependen-

cies between words after pre-parsing the question.

Most VQA systems are trained end-to-end from ques-

tions and images to answers, with the exception of the

visual feature extractor, which is typically a CNN pre-

trained for image classification. For the language pro-

cessing part, some methods address the the semantic aspect

with word embeddings pretrained on a language modeling

task (e.g. [23, 9]). The syntactic relationships between the

words in the question are typically overlooked, however. In

[30], hand-designed rules serve to identify primary and sec-

ondary objects of the questions. In the Neural Module Net-

works [3, 2], the question is processed by a dependency

parser, and fragments of the parse, selected with ad hoc

fixed rules are associated with modules, are assembled into

a full neural network. In contrast, our method is trained to

make direct use of the output of a syntactic parser.

Neural networks on graphs have received significant

attention recently [8, 11, 15]. The approach most similar

to ours is the Gated Graph Sequence Neural Network [15],

which associate a gated recurrent unit (GRU [6]) to each

node, and updates the feature vector of each node by itera-

tively passing messages between neighbours. Also related

is the work of Vinyals et al. [24] for embedding a set into

fixed-size vector, invariant to the order of its elements. They

do so by feeding the entire set through a recurrent unit mul-

tiple times. Each iteration uses an attention mechanism to

focus on different parts of the set. Our formulation sim-

ilarly incorporates information from neighbours into each

node feature over multiple iterations, but we did not find

any advantage in using an attention mechanism within the
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recurrent unit.

3. Graph representation of scenes and ques-

tions

The input data for each training or test instance is a

question, and a parameterized description of contents of the

scene. The question is processed with the Stanford depen-

dency parser [7], which outputs the following.

• A set of NQ words that constitute the nodes of the ques-

tion graph. Each word is represented by its index in the

input vocabulary, a token xQ
i ∈ Z (i ∈ 1..NQ).

• A set of pairwise relations between words, which consti-

tute the edges of our graph. An edge between words i and

j is represented by eQij ∈ Z, an index among the possible

types of dependencies.

The dataset provides the following information about the

image

• A set of NS objects that constitute the nodes of the scene

graph. Each node is represented by a vector xS
i ∈ R

C of

visual features (i ∈ 1..NS). Please refer to the supple-

mentary material for implementation details.

• A set of pairwise relations between all objects. They form

the edges of a fully-connected graph of the scene. The

edge between objects i and j is represented by a vector

eSij ∈ R
D that encodes relative spatial relationships (see

supp. mat.).

Our experiments are carried out on datasets of clip art

scenes, in which descriptions of the scenes are provided in

the form of lists of objects with their visual features. The

method is equally applicable to real images, with the object

list replaced by candidate object detections. Our experi-

ments on clip art allows the effect of the proposed method

to be isolated from the performance of the object detector.

Please refer to the supplementary material for implementa-

tion details.

The features of all nodes and edges are projected to a

vector space RH of common dimension (typically H=300).

The question nodes and edges use vector embeddings im-

plemented as look-up tables, and the scene nodes and edges

use affine projections:

x
′
Q
i = W1

[

xQ
i

]

e
′
Q
ij = W2

[

eQij
]

(1)

x
′
S
i = W3x

S
i + b3 e

′
S
ij = W4e

S
ij + b4 (2)

with W1 the word embedding (usually pretrained, see sup-

plementary material), W2 the embedding of dependencies,

W3 ∈ R
h×c and W4 ∈ R

h×d weight matrices, and b3 ∈ R
c

and b4 ∈ R
d biases.

4. Processing graphs with neural networks

We now describe a deep neural network suitable for pro-

cessing the question and scene graphs to infer an answer.

See Fig. 2 for an overview.

The two graphs representing the question and the scene

are processed independently in a recurrent architecture. We

drop the exponents S and Q for this paragraph as the same

procedure applies to both graphs. Each node xi is associ-

ated with a gated recurrent unit (GRU [6]) and processed

over a fixed number T of iterations (typically T=4):

h0

i = 0 (3)

ni = poolj( e
′

ij ◦ x
′

j ) (4)

ht
i = GRU

(

ht−1

i , [x′

i ; ni]
)

t ∈ [1, T ]. (5)

Square brackets with a semicolon represent a concatena-

tion of vectors, and ◦ the Hadamard (element-wise) product.

The final state of the GRU is used as the new representation

of the nodes: x′′

i = hT
i . The pool operation transforms fea-

tures from a variable number of neighbours (i.e. connected

nodes) to a fixed-size representation. Any commutative op-

eration can be used (e.g. sum, maximum). In our imple-

mentation, we found the best performance with the average

function, taking care of averaging over the variable number

of connected neighbours. An intuitive interpretation of the

recurrent processing is to progressively integrate context in-

formation from connected neighbours into each node’s own

representation. A node corresponding to the word ’ball’, for

instance, might thus incorporate the fact that the associated

adjective is ’red’. Our formulation is similar but slightly

different from the gated graph networks [15], as the prop-

agation of information in our model is limited to the first

order. Note that our graphs are typically densely connected.

We now introduce a form of attention into the model,

which constitutes an essential part of the model. The mo-

tivation is two-fold: (1) to identify parts of the input data

most relevant to produce the answer and (2) to align spe-

cific words in the question with particular elements of the

scene. Practically, we estimate the relevance of each pos-

sible pairwise combination of words and objects. More

precisely, we compute scalar “matching weights” between

node sets {x
′
Q
i } and {x

′
S
i }. These weights are compara-

ble to the “attention weights” in other models (e.g. [16]).

Therefore, ∀ i ∈ 1..NQ, j ∈ 1..NS:

aij = σ

(

W5

( x
′
Q
i

‖x
′Q
i ‖

◦
x

′
S
j

‖x
′S
j ‖

)

+ b5

)

(6)

where W5 ∈ R
1×h and b5 ∈ R are learned weights and

biases, and σ the logistic function that introduces a non-

linearity and bounds the weights to (0, 1). The formula-

tion is similar to a cosine similarity with learned weights

on the feature dimensions. Note that the weights are com-

puted using the initial embedding of the node features

(pre-GRU). We apply the scalar weights aij to the cor-

responding pairwise combinations of question and scene

features, thereby focusing and giving more importance to

the matched pairs (Eq. 7). We sum the weighted features

over the scene elements (Eq. 8) then over the question ele-
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ments (Eq. 9), interleaving the sums with affine projections

and non-linearities to obtain a final prediction:

yij = aij . [x
′′
Q

i ; x
′′
S

j ] (7)

y′i = f
(

W6

∑NS

j yij + b6
)

(8)

y′′ = f ′
(

W7

∑NQ

i y′i + b7
)

(9)

with W6, W7, b6, b7 learned weights and biases, f a ReLU,

and f ′ a softmax or a logistic function (see experiments,

Section 5.1). The summations over the scene elements and

question elements is a form of pooling that brings the vari-

able number of features (due to the variable number of

words and objects in the input) to a fixed-size output. The

final output vector y′′ ∈ R
T contains scores for the possible

answers, and has a number of dimensions equal to 2 for the

binary questions of the “balanced” dataset, or to the num-

ber of all candidate answers in the “abstract scenes” dataset.

The candidate answers are those appearing at least 5 times

in the training set (see supplementary material for details).

5. Evaluation

Datasets Our evaluation uses two datasets: the origi-

nal “abstract scenes” from Antol et al. [4] and its “bal-

anced” extension from [30]. They both contain scenes cre-

ated by humans in a drag-and-drop interface for arranging

clip art objects and figures. The original dataset contains

20k/10k/20k scenes (for training/validation/test respec-

tively) and 60k/30k/60k questions, each with 10 human-

provided ground-truth answers. Questions are categorized

based on the type of the correct answer into yes/no, num-

ber, and other, but the same method is used for all cate-

gories, the type of the test questions being unknown. The

“balanced” version of the dataset contains only the subset

of questions which have binary (yes/no) answers and, in ad-

dition, complementary scenes created to elicit the opposite

answer to each question. This is significant because guess-

ing the modal answer from the training set will the succeed

only half of the time (slightly more than 50% in practice

because of disagreement between annotators) and give 0%
accuracy over complementary pairs. This contrasts with

other VQA datasets where blind guessing can be very ef-

fective. The pairs of complementary scenes also typically

differ by only one or two objects being displaced, removed,

or slightly modified (see examples in Fig. 5, bottom rows).

This makes the questions very challenging by requiring to

take into account subtle details of the scenes.

Metrics The main metric is the average “VQA score” [4],

which is a soft accuracy that takes into account variability of

ground truth answers from multiple human annotators. Let

us refer to a test question by an index q = 1..M , and to each

possible answer in the output vocabulary by an index a. The

ground truth score s(q, a) = 1.0 if the answer a was pro-

vided by m≥3 annotators. Otherwise, s(q, a) = m/31. Our

method outputs a predicted score ŝ(q, a) for each question

and answer (y′′ in Eq. 9) and the overall accuracy is the av-

erage ground truth score of the highest prediction per ques-

tion, i.e. 1

M

∑M

q s(q, argmaxa ŝ(q, a)).

It has been argued that the “balanced” dataset can bet-

ter evaluate a method’s level of visual understanding than

other datasets, because it is less susceptible to the use of lan-

guage priors and dataset regularities (i.e. guessing from the

question[30]). Our initial experiments confirmed that the

performances of various algorithms on the balanced dataset

were indeed better separated, and we used it for our ab-

lative analysis. We also focus on the hardest evaluation

setting [30], which measures the accuracy over pairs of

complementary scenes. This is the only metric in which

blind models (guessing from the question) obtain null accu-

racy. This setting also does not consider pairs of test scenes

deemed ambiguous because of disagreement between an-

notators. Each test scene is still evaluated independently

however, so the model is unable to increase performance by

forcing opposite answers to pairs of questions. The met-

ric is then a standard “hard” accuracy, i.e. all ground truth

scores s(i, j) ∈ {0, 1}. Please refer to the supplementary

material for additional details.

5.1. Evaluation on the “balanced” dataset

We compare our method against the three models pro-

posed in [30]. They all use an ensemble of models exploit-

ing either an LSTM for processing the question, or an elab-

orate set of hand-designed rules to identify two objects as

the focus of the question. The visual features in the three

models are respectively empty (blind model), global (scene-

wide), or focused on the two objects identified from the

question. These models are specifically designed for binary

questions, whereas ours is generally applicable. Neverthe-

less, we obtain significantly better accuracy than all three

(Table 1). Differences in performance are mostly visible in

the “pairs” setting, which we believe is more reliable as it

discards ambiguous test questions on which human annota-

tors disagreed.

During training, we take care to keep pairs of comple-

mentary scenes together when forming mini-batches. This

has a significant positive effect on the stability of the op-

timization. Interestingly, we did not notice any tendency

toward overfitting when training on balanced scenes. We

hypothesize that the pairs of complementary scenes have a

strong regularizing effect that force the learned model to fo-

cus on relevant details of the scenes. In Fig. 5 (and in the

supplementary material), we visualize the matching weights

between question words and scene objects (Eq. 6). As ex-

pected, these tend to be larger between semantically related

1Ground truth scores are also averaged in a 10–choose–9 manner [4].
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Figure 3. Precision/recall on the “abstract scenes” (left: multiple choice, middle: open-ended) and “balanced” datasets (right). The scores

assigned by the model to predicted answers is a reliable measure of its certainty: a strict threshold (low recall) filters out incorrect answers

and produces a very high precision. On the “abstract scenes” dataset (left and middle), a slight advantage is brought by training for soft

target scores that capture ambiguities in the human-provided ground truth.

elements (e.g. daytime↔sun, dog↔puppy, boy↔human)

although some are more difficult to interpret.

Our best performance of about 39% is still low in ab-

solute terms, which is understandable from the wide range

of concepts involved in the questions (see examples in

Fig. 5 and in the supplementary material). It seems un-

likely that these concepts could be learned from training

question/answers alone, and we suggest that any further sig-

nificant improvement in performance will require external

sources of information at training and/or test time.

Ablative evaluation We evaluated variants of our model

to measure the impact of various design choices (see num-

bered rows in Table 1). On the question side, we evalu-

ate (row 1) our graph approach without syntactic parsing,

building question graphs with only two types of edges, pre-

vious/next and linking consecutive nodes. This shows the

advantage of using the graph method together with syntac-

tic parsing. Optimizing the word embeddings from scratch

(row 2) rather than from pretrained Glove vectors [20] pro-

duces a significant drop in performance. On the scene side,

we removed the edge features (row 3) by setting eSij = 1.

It confirms that the model makes use of the spatial relations

between objects encoded by the edges of the graph. In rows

4–6, we disabled the recurrent graph processing (x′′

i = x′

i)

for the either the question, the scene, or both. We finally

tested the model with uniform matching weights (aij = 1,

row 10). As expected, it performed poorly. Our weights act

similarly to the attention mechanisms in other models (e.g.

[31, 27, 5, 12, 28]) and our observations confirm that such

mechanisms are crucial for good performance.

Precision/recall We are interested in assessing the confi-

dence of our model in its predicted answers. Most existing

VQA methods treat the answering as a hard classification

Avg. score Avg. accuracy

Method over scenes over pairs

Zhang et al. [30] blind 63.33 0.00

with global image features 71.03 23.13

with attention-based image features 74.65 34.73

Graph VQA (full model) 74.94 39.1

(1) Question: no parsing (graph with previous/next edges) 37.9

(2) Question: word embedding not pretrained 33.8

(3) Scene: no edge features (e
′S
ij=1) 36.8

(4) Graph processing: disabled for question (x
′′Q
i =x

′S
i ) 37.1

(5) Graph processing: disabled for scene (x
′′S
i =x

′Q
i ) 37.0

(6) Graph processing: disabled for question/scene 35.7

(7) Graph processing: only 1 iteration for question (TQ=1) 39.0

(8) Graph processing: only 1 iteration for scene (T S=1) 37.9

(9) Graph processing: only 1 iteration for question/scene 39.1

(10) Uniform matching weights (aij=1) 24.4

Table 1. Results on the test set of the “balanced” dataset [30]

(in percents , using balanced versions of both training and test

sets). Numbered rows report accuracy over pairs of complemen-

tary scenes for ablated versions of our method.

over candidate answers, and almost all reported results con-

sist of a single accuracy metric. To provide more insight,

we produce precision/recall curves for predicted answers. A

precision/recall point (p, r) is obtained by setting a thresh-
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Figure 4. Impact of the amount of training data on performance

(accuracy over pairs on the “balanced” dataset). Language prepro-

cessing always improve generalization: pre-parsing and pretrained

word embeddings both have a positive impact individually, and

their effects are complementary to each other.

old t on predicted scores such that

p =

∑

i,j ✶
(

ŝ(i, j)>t
)

s(i, j)
∑

i,j ✶(ŝ(i, j)>t)
(10)

r =

∑

i,j ✶
(

ŝ(i, j)>t
)

s(i, j)
∑

i,j s(i, j)
(11)

where ✶(·) is the 0/1 indicator function. We plot preci-

sion/recall curves in Fig. 3 for both datasets2. The predicted

score proves to be a reliable indicator of the model confi-

dence, as a low threshold can achieve near-perfect accuracy

(Fig. 3, left and middle) by filtering out harder and/or am-

biguous test cases.

We compare models trained with either a softmax or a

sigmoid as the final non-linearity (Eq. 9). The common

practice is to train the softmax for a hard classification ob-

jective, using a cross-entropy loss and the answer of highest

ground truth score as the target. In an attempt to make better

use of the multiple human-provided answers, we propose to

use the soft ground truth scores as the target with a logarith-

mic loss. This shows an advantage on the “abstract scenes”

dataset (Fig. 3, left and middle). In that dataset, the soft tar-

get scores reflect frequent ambiguities in the questions and

the scenes, and when synonyms constitute multiple accept-

able answers. In those cases, we can avoid the potential

confusion induced by a hard classification for one specific

answer. The “balanced” dataset, by nature, contains almost

no such ambiguities, and there is no significant difference

between the different training objectives (Fig. 3, right).

Effect of training set size Our motivation for introducing

language parsing and pretrained word embeddings is to bet-

ter generalize the concepts learned from the limited train-

ing examples. Words representing semantically close con-

cepts ideally get assigned close word embeddings. Simi-

larly, paraphrases of similar questions should produce parse

2The “abstract scenes” test set is not available publicly, and preci-

sion/recall can only be provided on its validation set.

graphs with more similarities than a simple concatenation of

words would reveal (as in the input to traditional LSTMs).

We trained our model with limited subsets of the training

data (see Fig. 4). Unsurprisingly, the performance grows

steadily with the amount of training data, which suggests

that larger datasets would improve performance. In our

opinion however, it seems unlikely that sufficient data, cov-

ering all possible concepts, could be collected in the form

of question/answer examples. More data can however be

brought in with other sources of information and supervi-

sion. Our use of parsing and word embeddings is a small

step in that direction. Both techniques clearly improve gen-

eralization (Fig. 4). The effect may be particularly visible in

our case because of the relatively small number of training

examples (about 20k questions in the “balanced” dataset).

It is unclear whether huge VQA datasets could ultimately

negate this advantage. Future experiments on larger datasets

(e.g. [14]) may answer this question.

5.2. Evaluation on the “abstract scenes” dataset

We report our results on the original “abstract scenes”

dataset in Table 2. The evaluation is performed on an auto-

mated server that does not allow for an extensive ablative

analysis. Anecdotally, performance on the validation set

corroborates all findings presented above, in particular the

strong benefit of pre-parsing, pretrained word embeddings,

and graph processing with a GRU. At the time of our sub-

mission, our method occupies the top place on the leader

board in both the open-ended and multiple choice settings.

The advantage over existing method is most pronounced on

the binary and the counting questions. Refer to Fig. 5 and

to the supplementary for visualizations of the results.

6. Conclusions

We presented a deep neural network for visual question

answering that processes graph-structured representations

of scenes and questions. This enables leveraging existing

natural language processing tools, in particular pretrained

word embeddings and syntactic parsing. The latter showed

significant advantage over a traditional sequential process-

ing of the questions, e.g. with LSTMs. In our opinion,

VQA systems are unlikely to learn everything from ques-

tion/answer examples alone. We believe that any signif-

icant improvement in performance will require additional

sources of information and supervision. Our explicit pro-

cessing of the language part is a small step in that direction.

It has clearly shown to improve generalization without rest-

ing entirely on VQA-specific annotations. We have so far

applied our method to datasets of clip art scenes. Its direct

extension to real images will be addressed in future work,

by replacing nodes in the input scene graph with proposals

from pretrained object detectors.
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Multiple choice Open-ended

Method Overall Yes/no Other Number Overall Yes/no Other Number

LSTM blind [4] 61.41 76.90 49.19 49.65 57.19 76.88 38.79 49.55

LSTM with global image features [4] 69.21 77.46 66.65 52.90 65.02 77.45 56.41 52.54

Zhang et al. [30] (yes/no only) 35.25 79.14 — — 35.25 79.14 — —

Multimodal residual learning [13] 67.99 79.08 61.99 52.57 62.56 79.10 48.90 51.60

U. Tokyo MIL (ensemble) [22, 1] 71.18 79.59 67.93 56.19 69.73 80.70 62.08 58.82

Graph VQA (full model) 74.37 79.74 68.31 74.97 70.42 81.26 56.28 76.47

Table 2. Results on the test set of the “abstract scenes” dataset (average scores in percents).

Is the dog sleeping or resting ?

Answer: sleeping

What is the boy holding ?

Answer: toy blocks

Is the dog white ?

Answer: yes
Is the dog white ?

Answer: no

Is it daytime ?

Answer: yes
Is it daytime ?

Answer: no

Figure 5. Qualitative results on the “abstract scenes” dataset (top row) and on “balanced” pairs (middle and bottom row). We show the

input scene, the question, the predicted answer, and the correct answer when the prediction is erroneous. We also visualize the matrices

of matching weights (Eq. 6, brighter correspond to higher values) between question words (vertically) and scene objects (horizontally).

The matching weights are also visualized over objects in the scene, after summation over words, giving an indication of their estimated

relevance. The ground truth object labels are for reference only, and not used for training or inference.
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