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Abstract: A bipolar single-valued neutrosophic (BSVN) graph structure is a generalization of a
bipolar fuzzy graph. In this research paper, we present certain concepts of BSVN graph structures.
We describe some operations on BSVN graph structures and elaborate on these with examples.
Moreover, we investigate some related properties of these operations.
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1. Introduction

Fuzzy graphs are mathematical models for dealing with combinatorial problems in different
domains, including operations research, optimization, computer science and engineering. In 1965,
Zadeh [1] proposed fuzzy set theory to deal with uncertainty in abundant meticulous real-life
phenomena. Fuzzy set theory is affluently applicable in real-time systems consisting of information
with different levels of precision. Subsequently, Atanassov [2] introduced the idea of intuitionistic fuzzy
sets in 1986. However, for many real-life phenomena, it is necessary to deal with the implicit counter
property of a particular event. Zhang [3] initiated the concept of bipolar fuzzy sets in 1994. Evidently
bipolar fuzzy sets and intuitionistic fuzzy sets seem to be similar, but they are completely different sets.
Bipolar fuzzy sets have large number of applications in image processing and spatial reasoning. Bipolar
fuzzy sets are more practical, advantageous and applicable in real-life phenomena. However, both
bipolar fuzzy sets and intuitionistic fuzzy sets cope with incomplete information, because they do
not consider indeterminate or inconsistent information that clearly appears in many systems of
different fields, including belief systems and decision-support systems. Smarandache [4] introduced
neutrosophic sets as a generalization of fuzzy sets and intuitionistic fuzzy sets. A neutrosophic set
has three constituents: truth membership, indeterminacy membership and falsity membership, for
which each membership value is a real standard or non-standard subset of the unit interval [0~,17].
In real-life problems, neutrosophic sets can be applied more appropriately by using the single-valued
neutrosophic sets defined by Smarandache [4] and Wang et al. [5]. Deli et al. [6] considered bipolar
neutrosophic sets as a generalization of bipolar fuzzy sets. They also studied some operations and
applications in decision-making problems.

On the basis of Zadeh’s fuzzy relations [7], Kauffman defined fuzzy graphs [8]. In 1975,
Rosenfeld [9] discussed a fuzzy analogue of different graph-theoretic ideas. Later on, Bhattacharya [10]
gave some remarks on fuzzy graphs in 1987. Akram [11] first introduced the notion of bipolar fuzzy
graphs. In 2011, Dinesh and Ramakrishnan [12] studied fuzzy graph structures and discussed their
properties. In 2016, Akram and Akmal [13] proposed the concept of bipolar fuzzy graph structures.
Certain concepts on graphs have been discussed in [14-19]. Ye [20-22] considered several applications
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of single-valued neutrosophic sets. Inthis research paper, we present certain concepts of bipolar
single-valued neutrosophic graph structures (BSVNGSs). We introduce some operations on BSVNGSs
and elaborate on these with examples. Moreover, we investigate some relevant and remarkable
properties of these operators.

We have used standard definitions and terminologies in this paper. For other notations,
terminologies and applications not mentioned in the paper, the readers are referred to [23—-29].

2. Bipolar Single-Valued Neutrosophic Graph Structures

Definition 1. [4] A neutrosophic set N on a non-empty set V is an object of the form
N ={(v,Tn(v),In(v), FN(v)) : v € V}

where Ty, In,En @ V. — [07,17] and there is no restriction on the sum of Tyn(v), In(v) and Fy(v)
forallv e V.

Definition 2. [5] A single-valued neutrosophic set N on a non-empty set V is an object of the form
N ={(v,Tn(v), In(v), FN(v)) : v € V}

where Tn, In, Fx : V — [0,1] and the sum of Ty (v), In(v) and Fy(v) is confined between 0 and 3 for all
veV.

Definition 3. [23] A BSVN set on a non-empty set V is an object of the form
B ={(v, T3 (v), Iz (¢v), F5 (0), T§' (0), I (v), Fy' (v)) s 0 € V'}

where Tg, Ig, Fg : V. — [0,1] and Tév, I{;’, Fé‘] : V. — [=1,0]. The positive values Tg(v), Ig(v) and
FE(v) denote the truth, indeterminacy and falsity membership values of an element v € V, whereas negative
values TY (0), 1Y (v) and FY (v) indicate the implicit counter property of truth, indeterminacy and falsity
membership values of an element v € V.

Definition 4. [23] A BSVN graph on a non-empty set V is a pair G = (B, R), where B is a BSVN set on V
and R is a BSVN relation in V such that

forallb,d € V.
We now define the BSVNGS.

Definition 5. [30] A BSVNGS of a graph structure Gs = (V,V1,Va,..., Vi) is denoted by
Gpn = (B, By, Ba, ..., By), where B =< b, TP (b), 17 (b), FP(b), TN(b), IN(b), FN(b) > is a BSVN set on
the set V and By, =< (b,d), TY (b,d), IF (b,d), FF (b,d), T (b,d), IN (b,d), FN (b, d) > are the BSVN sets on
Vi such that

TL(b,d) < min{TP(b), TP (d)}, If (b,d) < min{I”(b), I?(d)}, FF (b,d) < max{FF(b), FF(d)},
TN(b,d) > max{TN(b), TN(d)}, I (b,d) > max{IN(b), IN(d)}, FN(b,d) > min{FN(b), FN(d)}

forallb,d € V.Notethat 0 < TF(b,d) + I (b,d) + FF(b,d) <3, =3 < TN(b,d) + IN(b,d) + FN(b,d) <0
forall (b,d) € Vi, and (b, d) represents an edge between two vertices b and d. In this paper we use bd in place

of (b, d).
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Example 1. Consider a graph structure Gs = (V, Vi, V5, V3) such that V = {b1, by, b3,by, bs, bs, b7, bg},
Vi = {b1by, byb7, bsbg, bebs, bsbe, b3bs}, Vo = {b1bs, bsby, bsbe, bybg}, and V3 = {bibs,bobs}. Let B be
a BSVN set on V given in Table 1 and By, By and B3 be BSVN sets on Vi, V, and V3, respectively, given
in Table 2.

Table 1. Bipolar single-valued neutrosophic (BSVN) set B on vertex set V.

B b1 by b3 by bs be by bg

TP 05 0.4 0.4 0.5 0.3 0.4 0.5 0.3
P 04 0.3 0.4 0.4 0.2 0.4 0.5 0.4
06 0.5 0.4 0.6 0.4 0.7 0.4 0.5
T™N 05 —-04 —-04 —-05 —-03 —-04 —-05 -03
IN 04 -03 -04 -04 —02 —-04 -05 -04
N —06 -05 -04 —-06 -04 —07 —-04 —05

Table 2. BSVN sets By, B, and Bs.

By biby byb; bsbgs bebg bsbg bsby By bibs bsb; bsbg bybg Bz bibs  baby

TP 04 04 0.3 0.3 0.3 04 TP 03 0.3 0.4 03 TP 04 0.4
P03 0.3 0.4 0.4 0.2 04 IP 0.2 0.2 0.4 04 IP 04 0.3
P 06 0.5 0.6 0.7 0.7 06 FP 06 0.4 0.7 05 FP 06 0.6
TN 04 -04 -03 -03 -03 -04 TN —03 —-03 -04 -03 TN —04 -—04
N 03 -03 —-04 -04 -02 -—-04 IN —02 -02 -04 -04 IN —04 -03
N _06 -05 -06 -07 -07 —-06 FN —06 -04 -07 -05 FN —06 —06

By direct calculations, it is easy to show that ébn = (B, By, By, B3) is a BSVNGS. This BSVNGS is shown
in Figure 1. Generated with LaTeXDraw 2.0.8 on Saturday March 11 20:30:24 PKT 2017.

b5(0.3,0.2,0.4, —0.3, —0.2, —0.4) bs(0.4,0.4,0.7, —0.4, —0.4, —0.7)
< B1(0.3,0.2,0.7, —0.3, —0.2, — .
9@ 1( ) s 3 ) 0~7) /Q

b1(0.5,0.4,0.6, 0.5, —0.4, —0.6)
b8(0.3,0.4,0.5, —0.3, —0.4, —0.5)

N s -
& B3(0.4,0.3,0.6, —0.4, 0.3, —0.6) R
b2(0.4,0.3,0.5,—0.4, ~0.3, —0.5) b4(0.5,0.4,0.6, —0.5, —0.4, —0.6)

Figure 1. A BSVN graph structure.

Definition 6. A BSVNGS Gy, = (B, By, By, . .., By,) is called a By-cycle if (supp(B), supp(By),
supp(Ba), ..., supp(Bm)) is a Bi-cycle.

Example 2. Consider a BSVNGS Gy, = (B, By, By) as shown in Figure 2.
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b1(0.5,0.8,0.7, 0.5, —0.8, —0.7)

Figure 2. A BSVN Bj-cycle.
Gy is a By-cycle, as (supp(B), supp(By),supp(By)) is a Bi-cycle, that is, by-b3-by-bs-by.

Definition 7. A BSVNGS Gy, = (B, By, B, ..., Bu) is a BSVN fuzzy By-cycle (for any k) if Gy, is a By-cycle
and no unique By-edge bd exists in Gy, such that Tgk(bd) = min{Té’k (ef) = ef € By = supp(By)},
I8 (bd) = min{I} (ef) : ef € By = supp(By)}, Fh (bd) = max{EL (ef) : ef € By = supp(By)},

Té\}]((bd) = max{Téi(ef) cef € By = supp(By)}, I{;\i(bd) = max{lg((ef) :ef € By = supp(By)}
or FBNk(bd) = min{FBNk(ef) cef € By = supp(By)}.

Example 3. Consider a BSVNGS Gy,

(B, By, By) as depicted in Figure 3.

B»(0.2,0.5,0.5, —0.2, —0.5, —0.5)

$2(0.3,0.4,0.4, —0.3, —0.4, —0.4)

54(0.3,0.3,0.5,-0.3, —0.3, —0.5)

Figure 3. A BSVN fuzzy B-cycle.

ng(bd) = min{ng(ef) tef € By = supp(By)}, Igz(bd) = min{Igz(ef) tef € By = supp(By)},
ng(bd) = max{ng(ef) cef € By = supp(By)}, Té\;(bd) = max{Téi(ef) cef € By = supp(By)},
Iglz(bd) = max{lé\[z(ef) cef € By =supp(By)} or Fé‘;(bd) = min{Fg(ef) cef € By =supp(By)}.

Definition 8. A sequence of vertices (distinct) in a BSVNGS Gbn = (B, By, By, ..., By) is called a By-path,
that is, b1, by, . .., by, such that by_1by is a BSVN By-edge, forallk =2,...,m.

Example 4. Consider a BSVNGS Gn

(B, By, By) as represented in Figure 4.
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b2(0.3,0.5,0.4, —0.3, 0.5, —0.4)

(90— ‘90— 70— ‘9°09'0 ‘F°0) ¢

b3(0.2,0.6,0.6,—0.2, —0.6, —0.6)

b4(0.3,0.4,0.5, 0.3, —0.4, —0.5)

Figure 4. A BSVN Bj-path.

In this BSVNGS, the sequence of distinct vertices by, by, b3, by is a BSVN By-path.

Definition 9. Let Gy, = (B, By, By, . .., Byy) be a BSVNGS. The positive truth strength TP .Pg, , positive falsity
strength FT.Pg,, and positive indeterminacy strength I* .Pg, of a By-path, Pg, = by, by, ..., by, are defined as
n n n
T".Pg,= A [Tg, (by—1bp)], IP.Pp,= A [I§ (by—1bp)], F*-Pp,= V [Ff (by-1by)]
h=2 h=2 h=2 *

Similarly, the negative truth strength TN .Pg , negative falsity strength FN Pg, , and negative indeterminacy
strength IN .Pg, of a Bi-path are defined as

n n n
TN.Pg,= V [T} (by_1by)], IN.Pg,= V [I§ (by—1by)], FN.Pg,= A [FY (by—1by)]
h=2 K h=2 F h=2 F

Example 5. Consider a BSVNGS Gy, = (B, By, Ba, B3) as shown in Figure 5.

b8(0.2,0.4,0.4, —0.2, —0.4, —0.4)
Ve

B
- o
A . / |
N (=]
o 2 ! T
p% D » /> =]
Q o ~
) e YA I
e ] /o )
o NTA: S~
S L Y 5
/ < NS
I~ 3 S S
3 | PO
< L be\ <% s
| ™ - = = o
o~ Sk T !
=] %‘L« L <
[ 5 = S
3 v ] R
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| SL50° S : ls
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o Q ) ~
(=R =]
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S =
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=l
I
=
==l
=
(==l
2l
IS
=
Q

[
b1(0.4,0.4,0.5,—0.4, —0.4, —0.5)

Figure 5. A bipolar single-valued neutrosophic graph structure (BSVNGS) Gy, = (B, By, Ba, B3).
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In this BSVNGS, there is a By-path, that is, Pg, = bs, be, bg,ba, bs. Thus, TN .Pg = —0.2, IN.Pg = —0.2,
FN.Pg,=—0.6, T".Pg, = 0.2, I”.Pp = 0.2 and F¥ Pg, = 0.6.

Definition 10. Let Gy, = (B,B1,By,...,Bw) bea BSVNGS. Then

o The By-positive strength of connectedness of truth between two nodes b and d is defined by
T§> (bd) = l\>/1{T§}f(bd)}, such that T§! (bd) = (Tf'~" o TE")(bd) for 1 > 2

and TE2(bd) = (TF!  TE) (0d) =  (TE! by) A TH! (3.

o The By-positive strength of connectedness of indeterminacy between two nodes b and d is defined by
15 (bd) = \/ {If!(bd)}, such that If! (bd) = (Ig' " o I5)) (bd) for 1 > 2
1>1

and IF2(bd) = (I§! o IFV) (bd) = \y/(l{;’;(by) A g (yd).

o The By-positive strength of connectedness of falsity between two nodes b and d is defined by
F§>(bd) = A {Fp'(bd)}, such that F' (bd) = (F5' " o Fpl)(bd) for 1 > 2
1>1

and FE2(0d) = (FfT o 51 (bd) = \(FG) (by) v Ff1 (ya)).

o The By-negative strength of connectedness of truth between two nodes b and d is defined by
Ty (bd) = A\ {Tg (bd)}, such that Tp! (bd) = (:rijj—1 o Tp'") (bd) for I > 2
1>1

and Ty*(bd) = (Ty' o TR) (bd) = /y\(TBNkl(by) vV TR (yd)).

o The By-negative strength of connectedness of indeterminacy between two nodes b and d is defined by
15 (bd) = lé\l{ll];]’f(bd)}, such that Ty (bd) = (I5'~" o IN") (bd) for 1 > 2

and Ip?(bd) = (Ip! o Ip) (bd) = /y\(Igfkl(by) vV I (yd)).

o The By-negative strength of connectedness of falsity between two nodes b and d is defined by
™ (bd) = lyl{Fg’(bd)}, such that FY! (bd) = (FY'=" o F") (bd) for 1 > 2

and Fp?(bd) = (Fg'' o F3'") (bd) = \y/(ng(by) A Fpt(yd)).

Definition 11. Let Gy, = (B, By, By, ..., By) bea BSVNGS and “b” be a node in Gy,,. Let (B, B{,B),...,By,)
be a BSVN subgraph structure of Gy, induced by B\ {b} such that Ve # b, f # b

TE (b) = IL,(b) = F5 (b) = TP (be) = I, (be) (be) =0
TN (b) = I (b) = F(b) = TN(be) _IN( e) = (be) =0
Ty (e) = Tg(e), I (e) I (e), Fg (e) = Fg (e), T{J( ) = =I§(e) Fye) = F§'(e)

p(e) I
Ty (ef) = Tg, (ef), Iy (ef) = I, (ef), Fyy (ef) = Fy (ef), T (f)
FX (ef) :PN(ef) Vedges be, efe

k
Then b is a BSVN fuzzy By cut-vertex if Tglf"(ef) > Tgf"(ef), ngw(ef) > Igf"(ef), Fg:"(ef) >
ngm(ef), Tg{w(ef) < Té\ll,{w(ef), Ié\”:’"(ef) < Ig,(w(ef) and FBNk""(ef) < Fézw(ef),for somee, f € B\ {b}.
Note that vertex b is a BSVN fuzzy By — T cut-vertex szgkc"’(ef) > Tg},:x’(ef), it isa BSVN fuzzy By — IP
cut-vertex if Ig:"(ef) > Igf’(ef), and it is a BSVN fuzzy By — FP cut-vertex ing:"(ef) > Fg;"(ef).
Moreover, vertex b is a BSVN fuzzy By — TN cut-vertex z'fTé\]’:’"(ef) < Tllg\]’,cw(ef), it isa BSVN fuzzy B — IV
cut-vertex zflgfk‘”(ef) < Iéi,{""(ef) and it is a BSVN fuzzy By — FN cut-vertex ifFé\]](""(ef) < Fé\lf,(""(ef).

QX

bn

Example 6. Consider a BSVNGS Gy, = (B By, B,) as depicted in Figure 6, and let G, = (B', B}, B}) be a
BSVN subgraph structure of the BSVNGS Gy,,, which is obtained through deletion of vertex by.
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Figure 6. A BSVNGS G, = (B, By, By).

The vertex by is a BSVN fuzzy By — I¥ cut-vertex and a BSVN fuzzy By — IN cut-vertex,
because lgf(bzbS) = 0, Iz®(bbs) = 0.5, Igf"(b4b3) = 07, I§®(bsb3) = 07, Igf"(b3b5) = 03,
I5> (b3bs) = 0.4. Ié\g“(bzbg =0> —05 = Iy®(bsbs), Ié\g“(bz;bg) = 0.7 = Iy (babs) and I{j{”(b3b5) =
—0.3 > —0.4 = I *(bsbs).

Definition 12. Suppose Gy = (B,B1,By, ..., Bn) isa BSVNGS and bd is a By-edge. Let (B', B}, B, ..., By,)
be a BSVN fuzzy spanning subgraph structure of Gy, such that
Tgl,c(bd) =0= ng(bd) = F{;é (bd), Téi (bd) =0 = I{%’,{ (bd) = F};i(bd)
Ty, (gh) = Tg, (8h), Ty (gh) = I, (8h)
ng(bd) = ng(bd), Tl_{;\;i (gh) = Té\}c (gh), Ig,( (gh) = 1Y (gh), Féi(bd) = FBNk(bd), V edges gh # bd

k
Then bd is a BSVN fuzzy By-bridge if Tz (ef) > Té’;"(ef), I5>(ef) > Ig],:"’(ef), Fge(ef) >
Fgl,:’"(ef), Tgll(w(ef) < Té\ll,cw(ef), Igiw(ef) < Ié\j/{”(ef) and FBNkw(ef) < Flg\]]/(“(ef), for some e, f € V.
Note that bd is a BSVN fuzzy By — TP bridge #Tgf"(ef) > T;},f"(ef), it is a BSVN fuzzy By — I” bridge if
Ig:‘)(ef) > Igi’"(ef) and it is a BSVN fuzzy By — FF bridge ing}:"’(ef) > Fg;{‘x’(ef). Moreover, bd is a BSVN
fuzzy By — TN bridge if T™(ef) < Tgl,(w(e f), it is a BSVN fuzzy By — IN bridge if Iy (ef) < Igf(e f)
and it is a BSVN fuzzy By — FN bridge ifFBNk°°(ef) < FBNI,C°°(ef).

Example 7. Consider a BSVNGS Gy, = (B, By, B,) as depicted in Figure 6 and G, = (B, B}, B), a BSVN
spanning subgraph structure of the BSVNGS Gy, obtained by deleting Bi-edge (bybs) and that is shown in
Figure 7.
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Figure 7. A BSVNGS G'ys = (B', B}, B}).

This edge (bybs) is a BSVN fuzzy Bi-bridge, as Tg,“(b2b5) =0.3, Tgf"(bzb5) =04, I§P°(b2b5)= 0.3,
1 1

I5 (babs) = 04, ng""(b2b5)= 0.4, Fy™(babs) = 0.5., Té\i‘”(bzbg;) = 03> —04=Tp>(bybs), Ié\g""(b2b5)=

—0.3 > —0.4= IJ\®(babs), and Flyim(bzb5)= —0.4 > —0.5= F'™(babs).

Definition 13. A BSVNGS G, = (B,By,Ba,...,By) is a Bi-tree if (supp(B),supp(By),supp(Ba),
...,supp(Bn)) is a By-tree. Alternatively, Gy, is a By-tree if Gy, has a subgraph induced by supp(By)
that forms a tree.

Example 8. Consider the BSVNGS Gy, = (B, By, Bo) as depicted in Figure 8.

b5(0.6,0.7,0.6, —0.6, —0.7, —0.6)

b1(0.5,0.8,0.7, —0.5, —0.8, —0.7)

Figure 8. A BSVN B,-tree.

This BSVNGS Gy, = (B, By, By) is a By-tree, as (supp(B), supp(By), supp(Ba)) is a Bo-tree.

Definition 14. A BSVNGS Gy, = (B, By, Ba, ..., By) is a BSVN fuzzy By-tree if Gy, has a BSVN fuzzy
spanning subgraph structure Hy, = (B, B}, B}, ..., Bl,) such that for all By-edges, bd not in Hy,:

1. Hy, is a Bj-tree.
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2. Th(bd) < Tpo(bd), Ip (bd) < I5°(bd), Fg (bd) < Fp>(bd), TE(bd) > Tpe(bd),
k k k k
I, (bd) > 15 (bd), and Fyl (bd) > Fjy*(bd).
k k

In particular, Gy, is a BSVN fuzzy By — T" tree ingk (bd) < Tg},:’"(bd), it is a BSVN fuzzy By — I” tree
szB (bd) < IP“(bd) and it is a BSVN fuzzy By — F" tree ing (bd) > pr(bd) Moreover, Gy, is a BSVN
fuzzy By — TN tree szé\li((bd) > Tg‘”(bd) it isa BSVN fuzzy By — IV tree szN (bd) > IN°°(bd) and it is a

k
BSVN fuzzy By, — FNtree ifFBNk(bd) < Fé\/"”(bd).
k

Example 9. Consider the BSVNGS Gy, = (B, By, Bo) as depicted in Figure 9.

Figure 9. A BSVN fuzzy Bj-tree.

It is By-tree, rather than a By-tree. However, it is a BSVN fuzzy By-tree, because it has a BSVN fuzzy
spanning subgraph (B’, B, B) as a B}-tree, which is obtained through the deletion of the By-edge bybs from
Gpn. Moreover, Té’{"’(b2b5) =03, Th (babs) = 0.2, 1§f>°(b2b5) =03, I (babs) = 0.1, Fg,""(b2b5) =04,
FBl (b2b5) = 0.5. Tgm(bzbﬂ =-03<-02= Tl\i (b2b5), Ié\gm(bzb5) =-03<-01= Il\i(bzb5) and
FN* (bybs) = —0.4 > —0.5 = Fp, (babs).

1

Now we define the operations on BSVNGSs.

Definition 15. Let Gy; = (By,B11,B1a,...,Biy) and Gy = (By, Ba1, By, ..., Boy) be two BSVNGSs.
The Cartesian product of Gpy and Gy, denoted by

Gp1 X Gpp = (By x By, B1y X By, Bia X B, ..., By X Bo)

is defined as
T(pB xB )(bd) (TP X TP )(bd) B (b) 52(01)
@ (B <y (0d) = (Ig x Iy )(bd) Tg, (b) A T, (d)
E3, 5, (bd) = (FP X PP)( d) = Fg (b) VF};z(d)
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T(fg <5y (0d) = (TR x T )(bd) = TE! (b) VTBNZ(d)
(ii) (B (3, By (bd) = (1§ < IF)) (bd) = If (D) V I (d)
F(B <5y (0d) = (FN X FN)( d) = N(b) /\ng(d)
forall (bd) € V1 x Vp,
T(I;h <8y (01 (bd2) = (Tf, x Ty, )(bdy)(bd2) = Ty, (b) ATy, (drda)
(iii) I3, g,y (bd1) (bd2) = (Ig, x If ) (bdy)(bd) = Ij ( A, (didy)

)
BlkaZk)(bdﬂ(bdz) — (b, x F ) (bdy) (bdy) = FE, (5) v Ff (dod)
) (bd1) (bda) = (T x T§ ) (bdy)(bds) = TN b)V T (1)

(
(iv) Ig\,glkaZk)(bdl)(bdz) (I§, x Ig ) (bdy1)(bd2) = IN( )V Ig (d1da)

E(% pyy) (bd1) (bdz) = (FR x Fy )(bdy)(bd2) = Fhf(b) A Fpl (d1dy)
forallb € Vy, (d1dy) € Vi, and

T&lkxg (1) (bad) = (TF, < Tf ) (brd) (bad)

Tk, (d) AT (b1ba)

) BlkaZk ) (01d) (bad) = (I, x T, ) (01) (bad) = T, (d) A I, (brbo)
(BlkXBZk (b1d>(b2d) (Fgw x F§2k (bld ( d) = FP( )\/Ffl;zk blbz)
BlkaZk ) (b1d) (b2d) = (TN By X BZk)(bld)( d) =T (d )VTzlg\Ik(blbz)

WD) 3 Iy (1) (bad) = (T, > T, ) (0rd) (bad) = T, (d) V I, (brbo)
. ey (1) (02d) = (FR < FRL ) (b1d) (bad) = (d)/\FB (babs)

foralld € V,, (biby) € Vig.

10 of 20

Example 10. Consider Gy; = (By, B11, B12) and Gy = (Ba, Bo1, Baz) as BSVNGSs of GSs G = (Vi, Vi1, Vi)
and Gg = (Va, Va1, Vay), respectively, as depicted in Figure 10, where Vi1 = {biby}, Vi = {bsby}

V21 = {d1d2}, and V22 = {dzdg,}

=2

=8 N
o o =S
o o
e o ©
=N =
oo o
S w
Lo |
o o o
S b
[ |
° o °
= > =
[ |
oo o
ARG &

62(0.5,0.2,0.8, 0.5, -0.2, —0.8) b4(0.5,0.2,0.6, —0.5, —0.2, —0.6)

Figure 10. Two BSVNGSs Gy, and Gyp.

(60— ‘€0~ ‘60— ‘G0 ‘€0 ‘G"0) ¥P

d2(0.3,0.2,0.4,—0.3, —0.2, —0.4)

The Cartesian product of Gy, and Gy, defined as Gyy x Gy = {By X Ba, Byy X Bay, Bia X Bay}, is depicted

in Figures 11 and 12.
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g@.’
Bi2 x B22(0.3,0.1,0.6,—0.3, —0.1, —0.6) ““@_J\
7
o - 2
N b2d1(0.2,0.1,0.8, —0.2, —0.1, —0.8) 2 e,
" 2
N X Yo
e & B
R —- \0
© S 4
¥ » o
A\ d
? <
g o
2 ¢
% & 2
% ! /§°
24 & o
4 ~ N
% L &
ks ft &
\ L
@ | ®"
¢ L &
' b1d1(0.2,0.1,0.6, —0.2, —0.1, —0.6) NG
o
&
- N
Bia x B22(0.3,0.2,0.8,—0.3, 0.2, —0.8) «

Figure 11. Gy % Gpp.
Biz X B22(0.3,0.1,0.5,-0.3, —0.1, —0.5)

b4d1(0.2,0.1,0.6, —0.2, —0.1, —0.6)

bydy (0.2,0.1,0.4, —0.2, —0.1, —0.4)

Bi2 x B22(0.3,0.2,0.6,—0.3, —0.2, —0.6)

Figure 12. Gy % Gpa.

Theorem 1. The Cartesian product Gy x Gy = (By X Ba, By X Ba1, Bz X Boy, ..., Biy X Bay) of two
BSVNSGSs of GSs Gy and Gy is a BSVNGS of Gs; x Gg.

Proof. Consider two cases:

Case 1. Forb € Vi, dyd, € Vo,

T2 o (b)) = TE, () A TE, (dsd)
< Tg, (b) A [T, (dv) A T, (d2)]
= [Tg, (b) AT, (d1)] A [Tg, (b) A Th, (d2)]
- T(l;lXBz)(bdl) A T(%lXBz)(bdZ)

Ty, by (b)) (b)) = TR (b) v T3, (drda)
> Tg(b vV [TBNZ(dl) V; Tg(dz)]
= [Tg, (b) V Tg\ (d1)] V [TE] (b) V Tp\ (d2)]
= T(Z\l]31XBz)(bd1) Vv T(I;]31XBZ)(bd2)

—_ —
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1y, ey (bd1)(bda)) = I, (b) A I, (did2)
Ig, (b) A [T, (d1) A I, (d2)]

[I5, (b) A I, (d1)] A [T, (b) A g, (d2)]

I (B1xBy) (bdl)/\IB1sz (bd2)

I I/\

d1dy)

dy) V If (do)]

dy)] V(I3 (b) V I, (d2)]
V Iy, 5, (bd2)

IN, g, (b)) (bd2)) = I} (b) V I},
> Iy (b) V[,
= [} (b) v I}

\//-\/\,-\

- Ig\élXBz)(bdl

Fli, ) ((bd1) (bda)) = Ff (b) V FE, (d1da)
< FE (b) v [FE, (d1) V E, (d2)]
= [F5 (b) Vv F, (d1)] V [FL (b) V FE, (d2)]
= F&leZ)(bdl) v F(leBz)(bdz)

¥,y (bd1) (bda)) = FY (b) A R, (dida)
> F} (b) A [FRL(dh) A FR ()]
= [Fl(b) A ER ()] A [FR (b) A FR (d2)]

- F(Iél xBy) (bdy) A F(Bl xBy) (bdz)

for bdq,bd, € V1 x V5.
Case 2. Forb € V,,dyd> € Vi,

T(PBlkXBZk)((dlb) (d2b)) = ng(b
< T, (0) a)]
= [T§,(b) A TE ()] A [TE, (b) A TE, (da)]
- T(%lez)(dlb) A T(leBz)(de)

A Tglk(dldz)
A [T, (d1) AT (

—_ —

TN

(B1x % Box

) ((d1b)(dab)) = T, (b) V T, (d1da)
> Tpy (b) V [TE (d1) V Tp, (d2)]
= [Thy (b) V T, (d1)] V [Tpy (b) V T (d2)]
= T(I\L]31>< By (d10) V T(le 5y (d20)

Iy, 5y (d1b) (dab)) = 132<b> NI (dido)
> (dh) A Tf (d2)]

B, (d1)] A (I, (b) A I (d2))]

= IPleBZ (dy )/\IB «By) (d2D)

[131
1

12 of 20
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1%, by ((d1D) (d2b) = I}, (b) V I, (drda)
> IB (b) v [131 (d1) v IBl(dZ)]
[IBz(b) \/IB (d1)] v (I, ,(0) \/IB (d2)]

= II\é <y (d1D) v IN, (B, x By (d20)

F3, <, ((d10)(d2b)) = Fg, (b) V Fg, (d1da)
< Fh, (b) V [Fg (dv) V g (d2)]
= [Fh, (b) V Fg, (d1)] V [Fg, (b) V Fg, (d2)]
= F(3 p,) (d1b) V F[3 . 3, (d2D)

—_  ~—

F(Iz]alkaZk)((dlb)(dzb)) Fgl (b) /\FBlk(dle)
> Fg (b) A [FR (dq) A Fg, (dy)]
= [Fay (b) A FR) (d1)] A [FE(b) Ay (d2)]
= Flb, x5y (10) A Flg ) (20)

for dib,drb € V1 x V5.

Both cases hold forall k € {1,2,...,m}. This completes the proof. [

Definition 16. Let Gy, = (By, B1y,B1a,...,Biy) and Gy = (B, Bo1, By, ..., Bow) be two BSVNGSs.
The cross product of Gy and Gyy, denoted by

Gp1 * Gpp = (By % By, B11 * Bo1, Bia % B, ..., By * Boy)

is defined as

( (bd) = T
() {1 () = (15« 12 ) (bd) = I} (

) A, (d)
Fly sy (bd) = (FL « FL ) (bd) = Ff (b) v Ff (d)
(5, (bd) = (T3 * Tp)) (bd) = Tg (b) v Ty (d)

(ii) 1% g, (0d) = (15 % IR ) (bd) = I} (b) v I} ()
F(Z\E];I*Bz)(bd) (Fp * Fp ) (bd) = F}l (b) A Fg, (d)

forall (bd) € Vi x Vy, and
T&lk*sz)(bldl)(bdz) - (Tglk * Tng)(bldl)(bde) = Tllijlk(ble) A Tll;zk (dydz)
() {1y g, (1) (bady) = (I IE ) (bach) (bay) = 1F, (biba) A TE (i)
P(l;lk*BZk)(bldl)(bzdz) = (F, * Fg ) (bidv)(bady) = Fy (biba) V Fy (d1d2)
T0G ey (D11) (b2d2) = (TR + TR ) (brd) (bada) = T (brb2) V T3, (dda)
@) Dy (1) (o) = (1Y, 1) 0t ) = 13, ) v ) ()
Fgalk*BZk)(bldl)(bZdZ) = (leg\{k * Flik)(bldl)(bzdz) = F{;\ik(blbz) A ng(dldz)
forall (biby) € Vi, (drda) € V.

Example 11. The cross product of BSVNGSs Gy and Gy, shown in Figure 10 is defined as Gy * Gpy =
{By * By, B11 * Bo1, B1p * By } and is depicted in Figure 13.
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Q> VDQ'
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o bads3(0.5,0.2,0.6, 0.5, —0.2, —0.6) b3d3(0.4,0.2,0.5, —0.4, —0.2, —0.5) N
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©  b3d2(0.3,0.2,0.4,—0.3, —0.2, —0.4) bsd2(0.3,0.2,0.6,—0.3, —0.2, —0.6) O
\Q} R R 0,9'
N Bi1 * B21(0.2,0.1,0.8,—0.2, —0.1, —0.8) &@.
?@ b2d2(0.3,0.2,0.8, —0.3, —0.2, —0.8) b1d1(0.2,0.1,0.6, —0.2, 0.1, —0.6)

Figure 13. Gy % Gpp.

Theorem 2. The cross product Gy * Gy = (By * By, B11 * Bo1, Bia % Boa, . . ., By * Bow) of two BSVNSGSs
of GSs Ggy and G is a BSVNGS of Gg; * Ggp.

Proof. For b1b; € Vi, didy € Vs,

T(s, 5, (01d1) (b2d2)) = T, (b1b2) A T, (dida)
< [Tg, (b1) A Tk, (b2] A [T, (d1) A T, (d2)]
= [Tg, (b1) A Tg, (d1)] A [Th, (b2) A T, (d2)]
- T(I;l*Bz)(bldl) A T(Z;S’l*Bz)(b2d2)

T(%, e, (B1d1) (b2d2)) = T, (biba) V T (drda)
> (T3, (b1) V T (ba] V [T (dy) V T, ()]
= [Th (by) v T (d1)] V [T§ (b2) V Tp. (d2)]
- T(I}]‘Il*Bz)(bldl) v T(IEIH*BZ)(bde)

I3, o5y (01d1) (bad2)) = I, (b1b2) A I, (d1da)

(15, (b1) A I (ba] A [T, (d1) A T, (d2)]
(15, (b1) A Ig, (d1)] A I, (b2) A T, (d2)]
1531*32) (brddy) A 1531*32)(1725[2)

IIA

103, ey (0101) (b2d2)) = I (b1b2) V I, (ddha)
>[I (b1) V 1§, (ba] V [I5] (d1) V I (d2)]
= [I5 (by) V Ig, (d1)] V (1§ (b2) V I, (d2)]
- 1(1\1]31*32)(171‘11) v 1%1*32)(172[12)
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g, ep,) (01d1) (bad2)) = Fg (b1b2) V F, (d1da)
< [Fg, (b)) V Fg (bo] V [Fh, (dy) V Fp (d2)]
= [F§, (b1) V FE, (d1)] V [Fg, (b2) V Ff, (d2)]
- F&]*Bz)(bldl) v F(I;l*Bz)(bZdz)

E(% oy (01d1) (bad2)) = Fg (b1b2) A FR (dida)
> [Fpy (b1) A Fg, (ba] A [Fpl (dy) A FE (da)]
= [Fl];\i(bl) A Fpe(d1)] A [FBl(bZ) A Fgl ()]
= Fly, .5,y (01d1) A Fg ., (bads)
where bydy, bydy € Vi« Voand h € {1,2,...,m}. O

Definition 17. Let Gy, = (By, B11,B1a,...,Biy) and Gy = (B, Bo1, By, ..., Bow) be two BSVNGSs.
The composition of Gy and Gyy, denoted by

Gp1 0 Gy = (By 0 By, By 0 By1, Bia 0 By, ..., By © Bo)

is defined as
Bsz (bd) (TP oTh ,)(bd) =Ty, P (b) /\ng(d)
G 1y (6d) = (15, o 12 (bd) = IE (b) A T2, (d)
F(%loBz)(bd) (FP oFP)( d) = Fg (b) \/P};Z(d)
T, () = (T} 0 TR) 0 § = TH0) VTN (@)
(ii) I(BIOBZ)(bd) = (IN o IN)(b )= é\](b) \ 1%?2( )
EN (bd) = (PN o FN)( d) = N(b) A Fé\i (d)

(B1°By)
forall (bd) € V1 x Vp,

T(%lkOBZk)(bdl)(bdz) - (Tglk © ngk)(bdl)(bdz) - T}i(b) N ngk (d1d2)

(i) I(poy) (b41) (bd2) = (Ig,, © Iy, ) (bd) (bdy) = Iy, (b) A I, (drda)
(%lkosz)(bdl)(bdZ) - (Fglk © FP )(bdl)(bdZ) = Fgl (b) v szk (dldz)
(B1k032k)(bdl)(bd2) (Té\ik ° Té\ik)(bdl)(bdz) = Té\i (b) v Tgk(dldz)

W) q Toyomy) (bd1) (0d2) = (I, oI5, ) (bdy) (bdz) = I, () V I, (1)

F(I;glkOsz) (bdl) (bdZ) (Fé\ik °© FN )(bdl) (bdZ) - Fé\i (b) A Fé\ik (dldz)
forallb € Vi, (dida) € Vi,

T{};] o5y (018) (b2d) = (Tf, o Tf ) (01d)(bad) = Tf (d) A T, (b1bo)
) (BlkOBZk)(bl )(bod) = (I, © sz)(bld)(b2 ) = Ip, (d) N (b1b2)
(BlkOsz ( 1) (b2d) = (Fglk B2k )(b1d) (bod) = FP (d) \Y% Fglk(blbz)
Tl o, (1) (b2d) = (TR o TR ) (b1d) (b2 ): g’ (d) Vv TY (bibo)
(vi) 103, op,,) (1) (bad) = (I o Iy ) (brd) (bad) = I (d) V I, (blbz)
Ely, ony (01) (02d) = (FE, o FYY ) (b1d) (bad) = N(d)APéikwlbz)

foralld € V , (b1by) € Vg, and
T(PBlkoBZk)(bldl)(bzdz) (Tg, o Th ) (brdy)(bady) = T (b1ba) ATE (di) AT (d2)
(vii) I%lkoBZk)(bldl)(bzdz) (Iglk oI )(brd1)(badz) = Iy (b1ba) A I, (d1) A I (da)

Efy opy (b1d1) (bad2) = (Fg o Ff ) (bid1)(bada) = Fy, (b1bo) V Fg, (d1) V Ff, (d2)
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TI(??uosz) (b1dy)(bad2)
I(}{‘IMOBZk) (b1d1)(b2d2)
F(BlkOBZk) (bydy)(badz) =

(viii)

= (Té\f

N
(FBlk

1k

for all (blbz) € Vik, (dldz) € Vo such that dy # dy.

Example 12. The composition of BSVNGSs Gy and Gy, shown in Figure 10 is defined as Gpr 0 Gyp =

{Bj o By, B11 © By1, B1z 0 By } and is depicted in Figures 14 and 15.

o T, ) (brdn) (o) = T, (biba) V T (d) v T}, (d2)
(13, o 18, (udy) (0a) = I, (o) V IR () V I3 (&)
© Fiy, ) (b1d) (badz) = Fi (biba) A F, (dh) A F (d2)

x-/Q O;Qz'
/Q' /O'v')
e Bi1 0 B21(0.2,0.1,0.8,—0.2, 0.1, —0.8) "a,
/ K7
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Figure 15. Gy © Gpp.

Theorem 3. The composition Gy, o Gy = (By 0 By, By1 © By, B12 0 By, . .., By © Bow) of two BSVNGSs of

GSs Gy and Gy is a BSVNGS of Gy 0 Ggp.

Proof. Consider three cases:
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Case 1. Forb € V4,dqdy € Vy,

T (3,08, ((bd1) (bd2)) = Tg, (b) A TBZk (d1da)
< Th, (b) A [T, (d1) A TBZ (d2)]
= [Tg, (b) A Tg, (d1)] A [T, (b) A T, (d2)]
= T&loBz)(bdl) A T(B o5y) (bd2)

T(%, on,,) ((bd1)(bd2)) = TE (b) V Tpy, (d1da)
> Ty (b) V [Thy(d1) V TR (d2)]
= [Tg, (b) v Tgy (d1)] V [TH (b) V TE (d2)]

= T(5,08,) (bd1) V T(, o, (bd2)

I, (b) A I, (drdy)

Ig, (b) A [Ig, (d1) A T, (d2)]

= [I5, (b) A T, (d)] A [TE, (0) A I, (d2)]
= If’ oBy) (bd1) A I(BloBz)(bdZ)

1{3, 08, ((bd1) (bd2)) =

1Y o) (bdy) (b)) = 1Y (b) V 1), (d1d2)
> Ip (b) V [IE, (dv) V I, (d2)]
= [I§] (b) V Iy (d1)] V [I5 (b) V IE; ()]
= I{b,0my) (bd1) V (g, o, (bd2)

Ff3,, 08, ((bd1) (bda)) = Fg, (b) V F§, (d1da)
< Fg, (b) V [Fg, (d1) V Ff, (d2)]
= [Fg, (b) V F, (d1)] V [ (b) V Ff, (d2)]
= Pg;loBz)(bdl) % P(l';loBz)(bdz)

EY. opy (bid1) (bda)) = EY (b) A Y, (d1d2)
> B (b) A [EY (d1) A Y (d2)]
— (B (b) A BN ()] A [EY (0) A EY ()]
= EN o) (bdy) NEN, o (bda)

for bdy,bdy, € V1 0o V5.
Case 2. Forb € V,, ddy € Vi,
f%mhﬂhw%wﬁﬂﬁwA%JmM
< Tg, (b) A [Tg (dv) A Tp, (d2)]
= [Tg, (b) A Tk, (d1)] A [Tg, (b) A T, (d2)]
- T(I;ﬁOBz) (d1b) A T(BloBz)(dzb)

—_—  ~—
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T(%, op,,) (d1D)(d2b)) = TE (b) V Tpy (d1d3)
> Th (b) V [Th (1) V T (d2)]
= [Tsz(b) v TB1 (d1)] V [Tg (b) 2 TB (d2)]

(B1oBZ) (d1b) vV T(}, oBy) (d2D)

A (15, (d1) A T, ()]
= [I5, () N I, (d1)] (15, (b) A I, (d2))
= IngloBz)(dlb) (B 032)(d2b)

oy (01D) (2D)) = IR, (0) v I}, (dad2)
> I (b) V [Ip, (d1) V 1§ (d2)]
= [I5.(b) VIR (d)] v [IE.(0) V I} (d2)]
- Ié\l]hoBz)(dlb) v I(I\LgloBz)(de)

F(%lkoBZk)((dlb)(de)) = Fg,(b) V Fg, (d1d2)
< Fg, (b) V [Fg, (d1) V Fgl(dz)]
= [Fg,(b) V Fg (dv)] V [Fg, (b) V Ff (d2)]
= Flp,op,)(d10) V Fly .., (d2b)

F(I\élkoBZk)<(d1b)(d2b>) = Fg(b) AF (dvda)
> Fl (b) A [Fh (d1) A FE (d2)]
= [Fgy (b) A Fpy (d1)] A [FR (b) A Fg, (d2)]
= Fl3,0p,)(d10) N Elg .. (d2b)

for d1b,drb € V1 0 V5.
Case 3. For (b1by) € Vig, (d1da) € Vo such that dy # dy,

T (3,08, (01d1) (b2d2)) = Th, (b1b2) A T, (d1) A T, (da)
< [Tg, (b1) AT (b2] A [Tg, (d1) A T, (d2)]
= [T, (b1) A Tg, (d1)] A [T, (b2) A T, (d2)]
T(BloB ) (brd1) A T(I;g]osz)(bde)

T(I\LjalkoBZk)((bldl)(bde)) = Tg! (biby) V Tpl(dv) V T, (d2)
> [Tg (b1) V T (b2] V [Tp. (d1) V Th (d2)]
= [T (b1) V Tpy (d1)] V [TR! (b2) V T, ()]
- T(I}glOBz)(bldl) v T(IéloBz)(bzdz)
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13,08, (01d1) (bad2)) = I, (b1b2) A T, (dr) A T, (da)
(15, (b1) A I (ba] A [T, (d1) A T, (d2)]
(15, (b1) A I, (d1)] A [T, (b2) A T, (do)]
1531032)(51111) A 1531032)(172112)

I IA

Iy

I(I\IglkoBZk) ((b1d1) (b2d2))

Y

1k
B (b1) V I} (bo] V [Ig)(d1) V I (d2)]
(15, (b1) V I, (d1)] V [T, (b2) V I (d2))]
13,08, (b1d1) V (g o5, (b2dd2)

B (b1b) v If) (dy) V I (d2)
(I

B

N

F(3, o, (01d1) (bad2)) = Fg, (b1b2) V Fi, (d1) V F, (d2)
< [Fg, (b1) V Eg, (b2] V [F, (d1) V P, (d2)]
= [Fg, (b1) V Fg, (d1)] V [Fg, (b2) V F, (d2)]
= Fl3,08,) (01d1) V Fg .. (badd2)

F(3, oy (01d1) (b2d2)) = Fp) (b1b2) A Fi (d1) A PR (d2)
> [FR) (b1) A FE (bo] A [Fp, (d1) A FRL(do)]
= [Fg, (b1) A Fg, (d1)] A [Fg (b2) A FE (d2))]
= F(Iélo&) (brd1) A F(AéloB2) (bad>)

where b1dq, bydy € Vo V.

All cases are satisfied forallk € {1,2,...,m}. O

3. Conclusions

The notion of bipolar fuzzy graphs is applicable in several domains of engineering, expert systems,
pattern recognition, signal processing, neural networks, medical diagnosis and decision-making.
BSVNGSs show more flexibility, compatibility and precision for a system than single-valued
neutrosophic graph structures. In this research paper, we introduced certain concepts of BSVNGSs
and elaborated on them with suitable examples. Further, we defined some operations on BSVNGSs
and investigated some relevant properties of these operations. We intend to generalize our research of
fuzzification to (1) concepts of BSVN soft graph structures, (2) concepts of BSVN rough fuzzy graph
structures, (3) concepts of BSVN fuzzy soft graph structures, and (4) concepts of BSVN rough fuzzy
soft graph structures.
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