GRAPH SUBSPACES AND THE SPECTRAL SHIFT FUNCTION
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ABSTRACT. We obtain a new representation for the solution to the operator Sylvester
equation in the form of a Stieltjes operator integral. We also formulate new sufficient con-
ditions for the strong solvability of the operator Riccati equation that ensures the existence
of reducing graph subspaces for block operator matrices. Next, we extend the concept of
the Lifshits—Krein spectral shift function associated with a pair of self-adjoint operators to
the case of pairs of admissible operators that are similar to self-adjoint operators. Based on
this new concept we express the spectral shift function arising in a perturbation problem for
block operator matrices in terms of the angular operators associated with the corresponding
perturbed and unperturbed eigenspaces.
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1. INTRODUCTION

The spectral analysis of operator block matrices is an important issue in operator theory
and mathematical physics. The search for invariant subspaces, the problem of block diago-
nalization, the analytic continuation of the compressed resolvents into unphysical sheets of
the spectral parameter plane as well as the study of trace formulas attracted considerable
attention in the past due to numerous applications to various problems of quantum me-
chanics, control theory, magnetohydrodynamics, and areas of mathematical physics (see
[2],[3],129], [32], [41], [42], [44], [48], [54], [56] and references cited therein).

In this work we restrict ourselves to the study of self-adjoint operator block matrices of

the form
Ao Bm
H= 11
( Bio A1 ) (1)
acting in the orthogonal sur’ = # ¢ # of separable Hilbert spacg% and #;. The
entriesA;, i = 0,1, are assumed to be self-adjoint operatorg{non domainsdom(A;).

The off-diagonal elemen®;; : #; — #4,i=0,1, j = 1—i, Bo1 = Bj,, are assumed to be
bounded operators. Under these assumptions the ntaisxa self-adjoint operator i
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ondom(H) = dom(Ag) © dom(A;) = dom(A) whereA = diag{Ag,A1}. We also use the
notation

_ (0 Bao
H=A+B where B_(Bm O)'

In the circle of ideas concerning the block diagonalization problem for block operator
matrices 1.1) the existence of invariant graph subspaces plays a crucial role. Recall that

a subspacgji, i =0 ori =1, is said to be a graph subspaceffassociated with the
decompositionf = Hy @ #4 if it is the graph of a (bounded) operat@;;, j = 1—i,
mapping#; to #;.

The existence of a reducing graph subspace for a block operator niafijixs(equiv-
alent to the existence of a bounded off-diagonal strong sol@Qioa the operator Riccati
equation

QA-AQ+QBQ =B (1.2)
having the form
0 «
Q= ( Qo Qo ) Quo= —Qb1- (1.3)

Following a tradition in operator theory we c&lly; and Q1o (and even the total block
matrix Q) theangularoperators.

Given a strong solutionl(3) to the equation.2), the operator matrix{ = A + B has
invariant graph subspac& = {X € # : Py, X = Q10P X} and G1 = {X € H : Py x =
Qo1Ps; X} whereP, denote the orthogonal projections:# = Ho & # onto the channel
subspaced{, i = 0,1. As a consequencel, can be block diagonalized

I+Q) H(1+Q) =A+BQ= < AO+%01Q10 Al+lgloQol )

by the similarity transformation generated by the operaterQ. Under these circum-
stances the block-diagonalization problem Fbrby a unitary transformation admits an
“explicit” solution,

sy Ho O
UHU_<O H1>’ (1.4)
whereU is the unitary operator from the polar decompositiehQ = U|l + Q|, and the
diagonal entriesd;, i = 0,1, are self-adjoint operators similar #g + Bp1Q10 and Ay +

B10Qo1, respectively.

Therefore, typical problems afualitative perturbation theory such as the existence of
the invariant graph subspaces, as well as a possibility of the block diagonalization can be
reduced to purely analytic questions concerning the solvability of related operator Riccati
(and Sylvester) equations. Extensive bibliography is devoted to the subject. Not pretending
to be complete we refer td], [2], [3], [4], [5], [6], [8], [9], [10], [18], [19], [20], [21],

[47], [48], [52], [53], [54], [55], [56], [57], [63]. Notice that the Riccati equations with
operator coefficients, often unbounded, are also a basic tool in the optimal control theory
(see 9], [17],[32], [42)], [65]) (however, the optimal control Riccati equations are usually
associated with non-self-adjoint operator matrices of the fari))X

An intriguing problem ofguantitativeperturbation theory is the study of the relation-
ship between geometrical characteristics of rotations of the invariant subspaces and the
accompanying shifts of the spectrum under a given perturbation. It is the development of
the quantitative perturbation theory for self-adjoint block operator matrices that is the main
goal of the present paper.
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In this context, the most important numerical quantitative spectral characteristics is the
Lifshits-Krein spectral shift function36], [37], [38], [39], [40], [45], [46]. Detailed re-
views of results on the spectral shift function and its applications were published by Birman
and Yafaev 13], [14], [69] and by Birman and PushnitskilP]. For many more references
the interested reader can cons@8|[ [24], [26], [27], [58], [60]. For recent results we
refer to 5], [35], [59], [61], [62], and [64].

The spectral shift functio(A;H,A) associated with the paiH,A) of self-adjoint
operators is usually introduced by the trace formula

tr(o(H) — (A)) = /Rd)\ o' MEH,A). (1.5)

The trace formulaX(.5) holds for a rather extensive class of functignsR — C, including
the clas<Cy (R) of infinitely differentiable functions with a compact support, provided that
the self-adjoint operatotd andA are resolvent comparable, that is, the difference of their
resolvents is a trace class operator.

In case of the block operator matrices the quantitative spectral analysis outlined above
has a series of specific features. In particular, if the métr@dmits a block diagonalization
as in (L.4), one might expect the validity of the following splitting representation for the
spectral shift function

E(N\H,A) = &(A;Ho, Ag) +E&(A; H1, Ag). (1.6)

However, a certain difficulty in this way is that the spectral shift function associated with
a pair of self-adjoint operators is nstablewith respect to unitary transformations of its
operator arguments. That is,Ufis a unitary operator, the representation

ENUTHU,A) =E(AH,A) (L.7)

fails to hold in general, even if both terms ih.7) are well-defined (see Exampe9).

One of the main goals of the present paper is to extend the concept of the spectral
shift function to pairs ohdmissiblgsimilar to self-adjoint) operators (see Definitidrd)
followed by the proof of the splitting formulal(6) as well as the proof of its “non-self-
adjoint” version

&N H,A) =&(A, Ao+ Bo1Q10,A0) + &(A, A1+ B10Qo1, A1) (1.8)

in the Hilbert-Schmidt class perturbation theory.

It is worth mentioning that the splitting formuld..8) connects a purely spectral char-
acteristics of the perturbation, the spectral shift func§k H,A), with the geometry of
mutual disposition of the invariant graph subspaces of the operator nhttetermined
by the angular operat@ (provided that the reducing graph subspacesif@xist).

The plan of the paper is as follows.

In Section2 we compare different representations for the solutions of the operator
Sylvester equation2(3) and obtain new representations for its strong solution based on
the operator Stieltjes integrals approach. These are the representaizisuid @.29).

In Section3 we extend our key result of Sectiéh(Theorem2.14) to the case of the
operator Riccati equation

QA-CQ+QBQ=D (2.9)
with self-ajoint (possibly unbounded) andC and bounded andD. One of our main

results (see Theore®.7) provides a series of new sufficient conditions that imply the
weak or strong solvability of1(9). We prove, in particular, that if the operatgksandC
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are bounded and 1
VIBJIDI| < — dist{spe¢A), spe¢C)},

then (L.9) has even an operator solution. This result is optimal in the following sense: in
case wher® = B* the best possible constamin the inequality

IB|| < cdist{specA),spedC)}

that implies the solvability ofX.9) lies within the interval{%, \@} (see Remar.12.

In Sectiond we introduce the concept of a spectral shift function for the pairs of admis-
sible operators which are similar to self-adjoint (see Definitibdsand4.7). We relate our
general concept of the spectral shift function associated with pairs of operators similar to
self-adjoint to the one based on the perturbation determinant approach originally suggested
by Adamjan and Langer in the case of trace class perturbatipns [

In Section5 we discuss invariant graph subspaces for block operator matrices and link
their existence with the existence of strong solutions to the corresponding Riccati equations
(Lemmab.3and Theorent.1).

In Section6, under rather general assumptions we prove the splitting formlLu@sand
(1.8 (Theorem6.1).

Section7 is devoted to a detailed study of the case where the spectra of the diagonal
entriesAg andA; of the operator matri¥ are separated. Based on the results of Sec.
we prove one of the central results of the present paper (ThebEand Corollary7.15
concerning the validity of the splitting formulas.6), (1.8) in case of Hilbert-Schmidt per-
turbationsB: if the perturbatiorB is sufficiently small in a certain sense (see Hypotheses
7.1and7.2) and the operatod = A + B andA are resolvent comparable, then

(i) the splitting formulasX.6) and (.8) hold;
(ii) the following equalities are valid

&(AiHo,Ao) = &(A\; Ao+ Bo1Q10,A0) =0,  for a.e.A € spe¢Ay)
E(A;H1, A1) =&(A\; AL +B10Q10,A1) =0, fora.e.\ € specAy).

2. SYLVESTER EQUATION

The principal purpose of this section is to introduce a new representation for the solution
X of the operator Sylvester equation

XA-CX =Y.

We also discuss and compare the known representation theorems for sxlutieor a
detail exposition and introduction to the subject we refer to the papeifdpl, [21], [47],
[57], [63] and references therein.

In the following B(#, X) denotes the Banach space of linear bounded operators be-
tween Hilbert spaces$/ and K. By B,(#, X), p > 1, we understand the standard Schat-
ten—von Neumann ideals &(H, K). For B(H,H) and By(H,#) we use the corre-
sponding shorten notatidB(# ) andB,(H ). The By(H , K)—norm of a bounded operator
T acting from# to X is denoted byj|T||p.

Given two Hilbert spacegf/ and X, recall the concept of symmetric normed ideals of
B(H, K), following [29].

Definition 2.1. A two-sided ideals C B(#, X) is called a symmetric normed ideal of
B(#H, K) ifitis closed with respect to a nort ||| on.S which has the following properties:

(i) fTeS,KeB(K),HeB(H),thenKTH e B(H, K) and||KTH||| < IKIIINTHHIHII;
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(i) if T is rank one thed(|T||| = |IT|l.

For technical reasons we also assume that

(i) if Ty € S with sup, |||Tn|l| < %, and if T, — Ain the weak operator topology, then
Ae s and|[A]] < sup, || Tall

Recall that if X = # then for any symmetric normed idesilpossessing the properties
(i)—(iii) and being different fromB(#), the following holds true:

Bi(H) CS C Bo(H).

The symmetric norm omB.,(#{) coincides with the operator norm B(H).
Following [52], we recall the concept of a norm with respect to the spectral measure of
a self-adjoint operator.

Definition 2.2. LetY € B(#H, X) be a bounded operator from a Hilbert spagé to a
Hilbert spaceXk and let{Ec(A)} be the spectral family of a self-adjoiriot necessarily
boundedl operatorC acting in the Hilbert space. Introduce

1/2
1Ylee = <SUDZ||EC(5|<)Y||2> : (2.1)
{0}

where the supremum is taken over a firfdecountablg system of mutually disjoint Borel
subsetgdy}, &N & =0, if k# |. The numbe{{Y||g. is called theEc-norm of the operator
Y. ForZ € B(K,#) theEc-norm||Z||g. is defined ag{Z||g. = || Z* /e

One easily checks that if the norifiY||g.. is finite one has
V<Y e
If, in addition, Y is a Hilbert-Schmidt operator, then
IVlee < IYll2, Y € Bo(H,K), (22)
where|| - ||2 denotes the Hilbert-Schmidt norm (%, X).

Definition 2.3. Let A andC be densely defined possibly unbounded closed operators in
the Hilbert spacedf and X, respectively. A bounded operatére B(H, X) is said to be
a weak solution of the Sylvester equation

XA—CX=Y, Y e BH,X), (2.3)

(XAf,g)— (Xf,C'g) = (Y f,g) forall f € dom(A)andge dom(C*). (2.4)
A bounded operatoX € B(H, X) is said to be a strong solution of the Sylvester equation

2.9 if
ran(X

XAf-CXf=Yf forall f €cdomA). (2.6)

Finally, a bounded operatoX € B(#, X) is said to be an operator solution of the Sylvester
equation(2.3) if

) c dom(C), (2.5)
dom(A)
and

ran(X) C dom(C),
the operatorX Ais bounded omlom(XA) = dom(A), and the equality
XA-CX=Y (2.7)
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holds as an operator equality, wheXeA denotes the closure &fA
Along with the Sylvester equatio2 () we also introduce the dual equation
ZC*—AZ=Y", (2.8)

for which the notion of weak, strong, and operator solutions is defined in a way analogous
to that in Definition2.3.

It is easy to see that if one of the equatio8s3( or (2.8) has a weak solution then so
does the other one.

Lemma 2.4. Let A andC be densely defined possibly unbounded closed operators in the
Hilbert spacesH and X, respectively. Then an operat¥re B(#, X) is a weak solution

to the Sylvester equatiqi2.3) if and only if the operatoZ = —X* is a weak solution to

the dual Sylvester equatidg.8).

Proof. According to Definitior2.3an operatoX € B(#, X) is a weak solution to2.3) if
(2.4 holds. Meanwhile,Z.4) implies

—(X*C*g, f) + (X*g,A*f) = (Y*g,f) forallgedomC*)andf € domA).

Thus, by Definition2.3 the operatoiZz = —X* is a weak solution to the dual Sylvester
equation 2.8). The converse statement is proven in a similar way. O

The following result, first proven by M. Krein in 1948, gives an “explicit” representation
for a unique solution of the Sylvester equatddA— CX =Y, provided that the spectra of
the operators\ andC are disjoint and one of them is a bounded operator. (Later, this result
was independently obtained by Y. Daleckif] and M. Rosenblumdg3]).

Lemma 2.5. LetA be a possibly unbounded densely defined closed operator in the Hilbert
space# andC a bounded operator in the Hilbert spadé such that

spe¢A)Nspe¢C) =0
andY € B(H, X). Then the Sylvester equati¢h3) has a unique operator solution

_ 1 -1 -1
xfz—m/yducfo Y(A-0) Y, (2.9)

wherey is a union of closed contours in the complex plane with total winding numbers
0 aroundspec¢A) and 1 aroundspedC) and the integral converges in the norm operator
topology. Moreover, iff € § for some symmetric ideal C B(#, X)) with the norm|||- |||,
thenX € § and

X1 < (2m =y iupH C= A=V
€Y

where|y| denotes the length of the contopr

If AandC are unbounded densely defined closed operators, even with separated spec-
tra, that is,dist{specA),sped¢C)} > 0, then the Sylvester equatio2.8) may not have
bounded weak solutions (se€&7] for a counterexample). Nevertheless, under some addi-
tional assumptions equatioB.g) is still weakly solvable.

The next statement is a generalization of Len#igo the case of unbounded operators,

a result first proven by Hein3[).
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Lemma 2.6. LetA— %I and —-C — %I, d > 0, be maximal accretive operators in Hilbert
spacesH and X, respectively, an € B(#, X). Then the Sylvester equati¢h3) has a
unigue weak solution

+00
X = / dteStye At (2.10)
0

where the integral is understood in the weak operator topology. Moreovérgifs for
some symmetric idedl C B(#, X) with the norm|| - |||, thenX € § and

1
X< F Y-

If both A andC are self-adjoint operators with separated spectra one still has a statement
regarding the existence and uniqueness of a weak solution with no additional assumptions.
Theorem 2.7. Let A andC be self-adjoint operators in Hilbert spacé$ and X and

d = dist{spec¢A),spe¢C)} > 0. (2.11)
Then the Sylvester equati¢2.3) has a unique weak solution

X = / " diCye ALy (1) dt, (2.12)

where the integral is understood in the weak operator topology. Hgrdenotes any
function inL'(R), continuous except at zero, such that

[m e ' fy(s)ds= )—1( whenevetx| > % (2.13)

Moreover, ifY € § for some ideals C B(#, X)) with a symmetric nornj| - |||, thenX € §
and

[
X< 5 Il (2.14)
where
T
= — 2.1
o= (2.15)

and estimaté2.14) with the constant given by(2.15 is sharp. In particular, the estimate
(2.14, (2.15 holds for anyY € B(H, X), that is,

Tt
IXIF< g Y1) (2.16)

Remark 2.8. Theorem2.7 with the following bounds for the best possible constaint

(2.19
\/g <c<L2 (2.17)

has been proven if8]. From[9] one can also learn that the best possible consta(® ih4)
admits the following estimate from above

. ~ 1
c<int {|[flag : feLYR), f(x)=_, X >1}, (2.18)

where .
f(x):/ e '™fy(s)ds xeR.

The fact that the infimum i(2.18) equalsrt/2 goes back to B. Sz.-Nagy and A. Strafe$z
[6€]). The proof of the fact that the valwe= 11/2 is sharp is due to R. McEach[81].
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The discussion of existence of strong solutions to the Sylvester equation needs some
technical tools from the Stieltjes theory of integration. We briefly recall the main concepts
and results of this theory (se8[[7], [52], and references therein).

Definition 2.9. Let[a,b) C R, —» < a< b < +». Assume that is a self-adjoint possibly
unbounded operator itk and {Ec (1) },er is its spectral family.
The operator-valued function

F:lab) — B(X,#)

is said to be uniformlyresp. strongly, weakjyintegrable from the right over the spectral
measurel Ec([) on[a,b) if the limit

n

b
JFWdE@ = lim 5 FEQIEC(E) (2.19)

max(a.” |0 K=1
k=1

exists in the unifornfresp. strong, wegkoperator topology. Here{)f(n) = [Mk-1, M) and
\6|((n)| =Mk — Mk-1, k=1,2,...,n, wherea= o < p1 < ... < pp = b is a partition of the
interval [a,b), and{y € 6|((n). The limit valug(2.19), if it exists, is called the right Stieltjes
integral of the operator-valued functidh over the measurdEc(|) on [a,b).

Similarly, the function

G:[ab) — B(H, X)

is said to be uniformlyresp. strongly, weak)yintegrable from the left over the measure
dEc() on[a,b), if there exists the limit

n

[dEcwom = lim Y ()6 (2.20)

max|a\" -0 K=1
k=1

in the uniform(resp. strong, wegkoperator topology. The corresponding limit value
(2.20), if it exists, is called the left Stieltjes integral of the operator-valued funci@ver
the measurelEc(p) on [a,b).

Lemma 2.10([52], Lemma 10.5) An operator-valued functioR (1),
F:lab)— B(XK,H),

is integrable in the weakuniform) operator topology over the measuié&c () on [a,b)
from the left if and only if the functiofi (W)]* is integrable in the weatuniform) operator
topology over the measudEc (1) on [a,b) from the right and then

b b
{/ F(u>dEc(u)] — [dEcWF M) (2.21)

Remark 2.11. In general, the convergence of one of the integ@<1) in the strong
operator topology only implies the convergence of the other one in the weak operator

topology.

Some sufficient conditions for the integrability of an operator-valued funétign over
a finite interval in the uniform operator topology are available. For instance, we have the
following statement.
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Lemma 2.12([3], Lemma 7.2 and Remark 7.3)et # and X be Hilbert spaces and |&
be a self-adjoint operator irK(. Assume that the operator-valued functienF : [a,b) —
B(XK,H), satisfies the Lipschitz condition

[F(k2) —F()l| <clle— | forany pg, e € [ab) (2.22)

for some constant > 0. Then the operator-valued functidnis right-integrable ona, b)
with respect to the spectral measutEc (M) in the sense of the uniform operator topology.

b b
The improper weak, strong, or uniform right (left) integrals- () dEc (1) /dEc(u) G(p
a

a
with infinite lower and/or upper bounda & —e and/orb = +) are understood as the

limits, if they exist, of the integrals over finite intervals in the corresponding topologies.
For example,

[oe] b
[dEcwom=_lim [ dEceH.

al—oobfeo

We also use the notations

~+co
| dE(wem = [ dEc(wem
speq¢C) —0

and

+o00
| FdEc® = [ FRdE®m.
spe¢C) —e

Lemma 2.13([52], Lemma 10.7) Let an operator-valued functiof : sped¢C) — B(H)
be bounded

[Flle = sup [[F (W]} <o,
pespedC)

and admit a bounded extension fraped¢C) to the whole real axi® which satisfies the
Lipschitz condition2.22. If the Ec-norm ||Y|g. of the operatory € B(#H, X)) is finite,
then the integrals

[ dEcYFW and [ FRyY dE()

specC) spe¢C)
exist in the uniform operator topology. Moreover, the following bounds hold

| B FR | < ¥l (2.23)
speqC)
[ Y dEem)| < ¥l [Fl (229
specC)

Now we are ready to state the key result of this section: if eitherC is self-adjoint,
then a strong solution to the Sylvester equation, if it exists, can be represented in the form
of an operator Stieltjes integral.
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Theorem 2.14. Let A be a possibly unbounded densely defined closed operator in the
Hilbert space# andC a self-adjoint operator in the Hilbert spack. LetY € B(H, X)
and suppose thai andC have separated spectra, i. e.,

dist{specA),spe¢C)} > 0. (2.25)

Then the following statements are valid.
(i) Assume that the Sylvester equat{@r8) has a strong solutioX € B(H, X). Then
X is a unique strong solution t2.3) and it can be represented in the form of the
Stieltjes integral

X = Ec(dWY(A—p ™, (2.26)
specC)

which converges in the sense of the strong operator topolo@( #, X).
Conversely, if the Stieltjes integr&R.26) converges in the strong operator

topology, therX given by(2.26) is a strong solution t@2.3).
(i) Assume that the dual Sylvester equation

ZC—AZ=Y" (2.27)

has a strong solutio € B(X, #). ThenZ is a unigue strong solution t2.27)
and it can be represented in the form of the Stieltjes operator integral

_ * —1\*
z——| ey (K WY () (2.28)

which converges in the sense of the strong operator topolo@ i, H ).
Conversely, if the operator Stieltjes integral (.28 converges in the strong
operator topology, thed given by(2.28) is a strong solution t§2.27).

Proof. (i) Assume that the Sylvester equatidh3) has a strong solutioX € B(#, X),
that is, .5 and @.6) hold. Letd be a finite interval such thain spec(C) # 0 and
b € 0N spec(C). Applying to both sides ofZ.6) the spectral projectiokc(d), a short
computation yields

Ec(B)XAf — psEc(3)X f = Ec(3)Y f+ Ec(8)(C — pg)X f (2.29)

for any f € dom(A). Sinceps € 6N spec(C), by (2.25 one concludes thats belongs to
the resolvent set of the operathrHence, 2.29 implies

Ec(8)X = Ec(8)Y(A—ps) ' + (C — Hs) Ec ()X (A—15) *. (2.30)

Next, let[a,b) be a finite interval anddy} a finite system of mutually disjoint intervals
such thatfa,b) = Uxdk. For thosek such thatd, Nspec(C) # 0 pick a pointps, € &N
spec(C). Using @.30 one obtains

Ec(B)X= Y  Ec(&)Y(A—is) "
k:dNspe¢C)+#0 k:0xNspecC)#0
+ Y (C—pg)Ec(®X(A—ps) " (231)
k:0xNspe¢C)#£0
The left hand side ofZ.31) can be computed explicitly:

Ec(3k)X = Ec([a,b) N spe¢C)) X = Ec([a,b))X. (2.32)
dNspe¢C)+£0
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The first term on the r. h. s. 02(31]) is the integral sum for the Stieltjes integral26).
More precisely, sincéA — p)~ is analytic in a complex neighborhood fat b] N spedC),
by Lemma2.120ne infers

n-lim Ec(3)Y(A—ps,) ™ (2.33)
max|3|—0y.5,1 specC) 40
- [ E@iva-p
[a,b)Nspe¢C)
The last term on the right hand side @ 31) vanishes
n-lim Yy (C—Hs)Ec(B)X(A—pg) T =0. (2.34)
mfxlak‘ﬁok:ékﬁ spec¢C)#£0
This can be seen as follows. For ahy # we have the estimate

2

(C - Uﬁk) EC(ak) X(A_ “6k)_1f
dkNspecC)#0

=< <A*—u5k>1X*<c—u5k>2Ec<6k>><<A—u6k>1f7f>
k:8xN specC)+#0

< S BPIXIPIA = ke) T HIPIFIP

SkNspeg¢C)£0D

< (b—a)|X|*[[f]* maxi&|  sup [I(A—p)H*.
pela,b)nspecC)

Here we have used the estimate

. - o 2| < suptu- )2 < 84

1(C — b, ) *Ec (B = A
Kk pedy

Passing to the Iimitnkax|6k| — 01in (2.31), by (2.32—(2.34 one concludes that for any
finite interval[a, b)

Ec(lab)X= [ EcduY(A-w™ (2.35)
[a,b)NspedC)

Since
slim Ec([ab))X =X,

a— —oo

b— 4o
(2.395 implies 2.26), which, in particular, proves the uniqueness of a strong solution to the
Riccati equationZ.3).

In order to prove the converse statement of (i), assume that the Stieltjes integral on the
r.h.s. part of 2.35 converges aa — —o andb — +oo in the strong operator topology.
Denote the resulting integral BY. Then, .35 holds for any finitea andb. This implies
that for anyf € dom(A) we have

CEc([a,b))X f — Ec([a,b)) XAf

= [ EWYA-p At
[a,b)NspecC)
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—— [ Ec@WYf--Ec(ab)YF.
[a,b)NspecC)
Hence,
CEc([a,b))X f = Ec([a,b))XAf—Ec([a,b))Y f for any f € dom(A) (2.36)

andCEc([a,b))X f converges t&XAf+Y f asa— —c andb — +co. Therefore,

suf CEc(fa.b))X | =sup [ |Pd(EcX 1 X 1) <e

a<b a<

[a,b)NspecC)

and, hence,
Xf edom(C). (2.37)
Then .36 can be rewritten in the form
Ec([a,b))CX f = Ec([a,b))XAf—Ec([a,b))Yf, a<b. (2.38)

Combining .37 and .38 proves thaiX is a strong solution to the Sylvester equation
2.3.

(i) Assume that the dual Sylvester equati@gj has a strong solutioB € B( X, #).
As in the proof of (i), choose a finite intervalC R such thatd Nspec(C) # 0. Since
Ec(d) X € dom(C), we haveZEc(8)f € dom(A*) for any f € K by the definition of a
strong solution. Take a poipg € dNspec(C). It follows from (2.25 thatys & spe¢A*).
As in the proof of (i), it is easy to check the validity of the representation

ZEc(3)f = — (A" —s) "Y*Ec(3)f — (A" —15) 'Z(C — ko)Ec(d), (2.39)

which holds for all f € K.

Next, let[a,b) be a finite interval anddy} a finite system of mutually disjoint intervals
such thatfa,b) = Uxdx. For thosek such thatd, Nspec(C) # 0 pick a pointps, € &N
spec(C). Using R.39 one then finds that

ZE(ab)f=— Y (A —pg) WYEc(d0)f
k:dxNspe¢C)+#0
- Y (A-ks) Z(C— s )Ec(BT. (2.40)

k:dNspe¢C)+#0
The equality 2.34) implies

n-lim (A" —s,)Z(C — pg, )Ec(8k) = 0. (2.41)
max|d|—0y.5,1 spe¢C)-0

Thus, passing inZ.40 to the limit asmkax|6k\ — 0 one infers that

- / (A — )Y Ec(dw f = ZEc([a,b)) . (2.42)
[a,b)ﬂ'spectC)

Since for anyf € K
lim ZE:([ab))f=2,

a— —o

b— +o0
one concludes that the integral on the r.h.s. part2a2§ converges asa — —o and

b — + in the strong operator topology and.28 holds, which gives a unique strong
solution to the dual Sylvester equatichZ7).
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In order to prove the converse statement of (ii), assume that there exists the strong
operator limit
Z= slim / (A" — W) Y*Ec(dy),  ZeB(K,H). (2.43)

E: ;z [a,b)NspecC)
For any finitea andb such that < b we have
ZEc(jab) = - | (A — 1)~ Ec(d). (2.44)
Jspe¢C)n[a,b)
By (2.25 any point{ € spe¢C) belongs to the resolvent set of the opera@nd, hence,
to the one ofA*. Picking such &, ¢ € spedC), the operatorZ.44 can be split into two
parts

ZEc([a,b)) = Ji(a,b) + Jz2(a,b), (2.45)
where
J(ab) = —(A"—)'Y*Ec([a b)), (2.46)
Rab=+A -0 [ @AW VEE.  (247)
spe¢C)Nia,b)

Using the functional calculus for the self-adjoint oper&ane obtains

Rapi=-&-0* [ A& -wYE | et
spe¢C)n[a,b)
for f € dom(C).
Thus, forf € dom(C) one concludes that
Zf= alimm ZEc([a,b))f

b— 4o

= lim J(ab)f+ Ilim J(ab)f
a— —oo a— —o
b— 4o b— 400

— (A* _Z)le*f

R0 [ R YR | C-Of
specc)
That is,
Zf=—(A" - WY f+ (A -0 1z(C-Q)f, fedomC), (2.48)

since
JIRGE =T
speqC)

= sim [ (A - Y E(dY =2 (2.49)

b— +o spe¢C)U[ab)
by (2.43. It follows from (2.48 thatZ f € dom(A*) for any f € dom(C) and, thus,

ran(Z ) C dom(A"). (2.50)

dom(C)
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Applying A* — C to the both sides of the resulting equali®.48 one infers tha is a
strong solution to the dual Sylvester equati@r2{) which completes the proof. O

Corollary 2.15. Assume the hypothesis of Theor2rhd Assume, in addition, that the
Sylvester equation®.3) has a strong solutioX € B(H, X). ThenZ = —X* is a unique
weak solution to the dual Sylvester equat{@rB). Vice versa, iZ € B(X, #) is a strong
solution of the dual Sylvester equati¢8), thenX = —Z* is a unique weak solution to
the equatior(2.3).

Remark 2.16. The proofs of partgi) and (ii) of Theorem2.14 are slightly different in
flavour owning to the fact that the operation of taking the adjoint is not continuous in
the strong operator topology. Hence, in general, we are not able to state that the strong
convergence of the Stieltjes integral (2.26 implies the strong convergence of that in
(2.28 and vice versdcf. Remark2.11).

For the sake of completeness we also present a “weak” version of Th@otdm

Theorem 2.17. Assume the hypothesis of Theor2rhd Then the following statements
are equivalent.
(i) The Sylvester equatioif®.3) has a weak solutioX € B(#, X).
(i) There exists the weak limit
X = w-lim Ec(dpY(A—p)~L. (2.51)
a— —o Jspe¢C)N[a,b)
b— 4o
(iii) The dual Sylvester equatig®.8) has a weak solutio? = —X* € B( K, H).
(iv) There exists the weak limit
Z=— wlim (A* — )~ *Ec(dp). (2.52)
a— —» Jspe¢C)N[a,b)
b— 4+
The statement below concerns the existence of strong and even operator solutions to the
Sylvester equation.

Lemma 2.18. Assume the hypothesis of Theor2iid Assume, in addition, that the con-
dition

sup [[(A—p) Y| <o (2.53)
pe spedC)
holds and the operator has a finiteEc-norm, that is,
[Yllee <o (2.54)

Then the Sylvester equatiof@s3) and(2.8) have unique strong and, hence, unique weak
solutionsX € B(#, K) given by(2.26 andZ € B(X,H) given by(2.28, respectively,
and, moreoverZ = —X*. In representation$2.26) and (2.28 the Stieltjes integrals exist
in the sense of the uniform operator topology.

Assume, in addition, that

sup [[H(A—p) Y < o. (2.55)
pe spe¢C)
Then
ran(X) C dom(C), (2.56)
ran(Z) C dom(A), (2.57)

and, thus X andZ appear to be operator solutions (@.3) and(2.8), respectively.
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Proof. By (2.53, (2.54), and Lemma2.13the operator Stieltjes integrals iR.26) and
(2.28 can be understood in the operator norm topology. TKugiven .26 andY given
by (2.28 are unique strong solutions to the Sylvester equatidr8 &nd @.8) by Theorem
2.14 Therefore, the operato¥sandZ are unique weak solutions add= —X* by Theorem
2.17

In order to prove?.56 it suffices to note that under conditioris§5 and .54 for any
f € # and for anya,b € R, a < b, due to .26) the following estimate holds

WP d(EcX f,X f) = ||CEc([a, b)) X f||?
[ab)nspecc)

= [ (VEc@YHA-p L uA- )
[a,b)NspecC)

2
svéc( sup IIu(A—u)lH) 12
pe specC)

Thus,
| B EXEX) <o,

spe¢C)
which proves thaX f € dom(C) and, hence, the inclusio.66) is proven.

It remains to prove the inclusio 57). Given{ € spe¢C), we represerf Ec([a, b)) for
some finitea,b € R, a < b, in the form @.45 whereJ;(a,b) andJx(a,b) are just the same
ones as inZ.46) and @.47), respectively. Under conditior2(59, by Theoren2.13one
concludes that the operator Stieltjes integraldry) converges aa — —o andb — +o
in the uniform operator topology to some operdibe B(X, H). Then, from 2.45 one
learns that for any € K

Zf= lim ZE([ab))f

a— —ow

b— +oo
= lm J(abf+ Ilim X(ab)f
z:;oo S:;‘X’

= (A" =) WY+ (A =) IMT
and, thusZ f € dom(A) which proves 2.57).
The proof is complete. |

Remark 2.19. If the operatorA is self-adjoint, then the strong solution of the Sylvester
equation, if it exists, can be represented in the form of the repeated Stieltjes integral

) dEA(M)
X= [ dEclY /5 e T (2.58)

If, in addition,Y is a Hilbert-Schmidt operator, then the repeated inted£ab8 can also
be represented in the form of the double Stieltjes integral

B dE(Y dBA(N)
X= //spe¢C)xspe¢A) A—H ’ (2.59)

where the integra(2.59 can be understood as th-norm limit of the integral sums of
the Lebesgue type. It is also worth to mention that by a theorem by Birman and Solomjak
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[11] under condition2.25 we have the estimate
1
X2 < d [Yll2, (2.60)

whered = dist{spe¢A),spe¢C)}. Moreover, the estimaté.60 is sharp in the class of
Hilbert-Schmidt operators.

Remark 2.20. If Y is a Hilbert-Schmidt operator, inequali{2.60 is a considerable im-
provement of the more general estiméel4), the latter being sharp only in the class of
all symmetric normed ideals. We also remark th# i self-adjoint and2.54) holds, then
(2.26 implies the estimate

1
IX[lee < F 1Y llec- (2.61)

3. RICCATI EQUATION

The goal of this section is to develop an approach for solving the operator Riccati equa-
tions based on an applications of Banach’s Fixed Point Principle for transformations of
operator spaces. Putting aside the discussion of the purely geometric approach suggested
and developed by Davis and Kaha®], [20] and by Adams §] as well as the one based
on the factorization technique for operator holomorphic functions by Markus and Matsaev
[49], [50] (see also41] [52], [54], and [67]) we concentrate ourselves on applications of a
purely analytic approach based on the representation theorems of S&ction

Definition 3.1. Assume tha# andC are possibly unbounded densely defined closed oper-
ators in the Hilbert spaceg! and X, respectively, whil® € B(%,’H) andD € B(H, X).
A bounded operato® € B(#, KX) is said to be a weak solution of the Riccati equation

QA-CQ+QBQ=D (3.1)

(QAf,g) - (Qf,C"g) + (QBQf,g) = (Df,9)
for all f € dom(A) andd € dom(C*).

A bounded operatd® € B(#H, X) is said to be a strong solution of the Riccati equation
(3.1 if

ran(Q

) C dom(C), (3.2)
dom(A)
and

QAf—CQf+QBQf=Df forall f e domA). (3.3)

Finally, a bounded operato € B(#, KX) is said to be an operator solution of the
Riccati equation(3.1) if
ran(Q) c dom(C),

the operatorQAis bounded omom(QA) = dom(A) and the equality

QA-CQ+QBQ=D (3.4)
holds as an operator equality, whe@A denotes the closure GJA

However typically the optimal control Riccati equations are associated with the nonself-
adjoint2 x 2 block operator matrices of the form.(Q) and thus they are rather out of the
scope of the present paper.

Along with the Riccati equatior3(1) we also introduce the dual equation

KC* — A*K + KB*K = D*, (3.5)
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for which the notion of weak, strong, and operator solutions is defined in a way analogous
to that in Definition3.1

Example 3.2. (The Friedrichs model22]). Given a nonempty open Borel €et- R, let
H =Cand X =L?(A). LetA=0in # and letC be the multiplication operator ik,

CHMW =pf(Ww
on
domiC) = {f €L?(): [ du(1+B)f (WP <o
Be B(X,#), and, finally,D = B* € B(H, X).

By Riesz representation theorem
Bf = (1.b) = [ duf(WB(H. fex,

for some essentially bounded functibre X = L?(A) and hence

(DY (W) =b(w¢, CeC,
sinceD = B*.
Under the assumptions of this example a bounded ope@torB(#, X) is a weak
solution to the Riccati equatio (1) if and only if Q has the form

QYW =aWi, CeC, (3.6)
whereq is an essentially bounded function, and
—(HA)(W) + (o, b)a(w) =b(p)  fora.e.peA. (B.7)

Moreover, any weak solutio® appears to be a strong solution, that is, any essentially
bounded functiom satisfying 8.7) belongs tadom(C).

Solving 3.7) with respect tog one concludes that the Riccati equatiéh7] has a
weak/strong solution if and only if

there exists av € R such that% e L?(n) (3.8)
and )
b(W)|
w+ [ du——— =0. 3.9
ot (3.9)

If conditions @3.8) and @.9) hold for somew € R, then the solutioQ has the form §.6),
where

QW) = ——, HER, (3.10)

and
w=(q,b).

The next assertion is a direct corollary of Lemghd

Lemma 3.3. Let A and C be densely defined possibly unbounded closed operators in
the Hilbert spacesH and X, respectivelyB € B(%,#H), and D € B(#H,%). Then

Q € B(#H,X) is a weak solution to the Riccati equati¢B.1) if and only ifK = —Q*

is a weak solution to the dual Riccati equati(5).

Throughout the remaining part of the section we assume the following hypothesis.
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Hypothesis 3.4. Assume that/{ and X are Hilbert spacesA and C are possibly un-
bounded self-adjoint operators on domagmm(A) in 4 anddom(C) in X, respectively.
Also assume thd@ € B(K,H) andD € B(H, X).

The representation theorems of S&dor solutions of the Sylvester equation are a
source for iteration schemes which allow one to prove solvability of Riccati equations
by using fixed point theorems. Here we present two of such schemes for the search for
strong or weak solutions to the Riccati equation.

Theorem 3.5. Assume Hypothes&4. Then the following statements hold true.
(i) Assume, in addition to Hypotheds), that

dist{spe¢A),specC)} > 0.

ThenQ € B(H, X) is a weak solution to the Riccati equati¢® 1) if and only if
it is a solution to the equation

Q:Kz@%D—QB@emM“Um7 (3.11)

wherefy is a summable function satisfyifg.13 and the integral in(3.11) exists
in the sense of the weak operator topologyit?{, X).
(i) Assume, in addition to Hypothed <, that

dist{spe¢A+BQ),spe¢C)} > 0. (3.12)
ThenQ € B(H, X) is a strong(weal solution to the Riccati equatiof3.1) if and
only if Q is a solution of the equation
Q= Ec(dwD (A+BQ—p ™, (3.13)
specC)
where the operator Stieltjes integral exists in the sense of the s(roeal oper-
ator topology inB(#, X).
(ili) Assume, in addition to Hypothedst, thatK € B( X, H) and

dist{spe¢A— KB"),spe¢C)} > 0. (3.14)

Then the operatoK is a strong(weak solution to the dual Riccati equatidB.5)
if and only ifK satisfies the equation

K=— [ (A~KB - ) 'D'Ec(dp. (3.15)
JspedC)

where the operator Stieltjes integral exists in the sense of the s(roeal oper-
ator topology.

Proof. (i) The operatoR is a weak solution to3.1) if and only if Q is a weak solution to
the equation
QA-CQ=Y,
where
Y =D—-QBQ
Applying Theoren®.7 completes the proof of (i).
(i) The operatorQ is a strong solution to3(1) if and only if Q is a strong solution to
the equation
QA-CQ=D,
where
A=A+BQ
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Applying Theoren.14(i) completes the proof of (ii).
(iil) The operatoK is a strong solution to3;5) if and only if K is a strong solution to
the equation

KC— AK = D*,
where
A=A—KB".
Applying Theorenm?.14(ii) completes the proof of (iii).
The proof is complete. O

The following statement is a direct consequence of Ler2rd

Theorem 3.6. Assume Hypothes.4 and letD have a finite norm with respect to the
spectral measure of the operatQr that is,

Dl < . (3.16)

Assume, in addition, that an operatq € B(H, KX) is a weak solution of the Riccati
equation(3.1) such that

dist{spe¢A+ BQ),spe¢C)} > 0, (3.17)
and that the condition
sup [[(A+BQ—p) Y| <o (3.18)
pe spe¢C)

holds.

ThenQ is a strong solution t¢3.1) and the operatoK = —Q* is a strong solution to
the dual Riccati equatio(B.5).

The strong solution® andK admit the representations

Q= Ec(dWD (A+BQ-p ™, (3.19)
speqC)

K:_/' (A—KB* — 1)~ *D*Ec(d), (3.20)
JspedC)

where the operator Stieltjes integrals exist in the sense of the uniform operator topology.
Hence, the operator® andK have finiteEc—horm and the following bound holds true

IKllec = IQlles < [IDlles  sup [|(A+BQ—p)~ . (3:21)
pespecC)
If, in this case, instead ¢B.18 the following condition holds
sup [[L(A+BQ—p) | <, (3.22)
pe spe¢C)
then
ran(Q) € dom(C)
and

ran(K) C dom(A)
and, hence, the strong solutio@sand K appear to be operator solutions to the Riccati
equationq3.1) and(3.5), respectively.

In the case where the spectra of the operaoandC are separated, under additional
“smallness” assumptions upon the opera®endD we are able to prove the existence of
fixed points for mappings given b@.(11) and 3.13.
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Theorem 3.7. Assume Hypothes&4 and suppose that

B#0.
Also assume that
d = dist{spec¢A),specC)} > 0. (3.23)
Then:
(i) If the inequality holds
VBT < &, (3:24)

then the Riccati equatiof8.1) has a unique weak solution in the ball

: 4
{Qe 0t 101 < i |-

The weak solutio satisfies the estimate
1 (d d?
<— 1| =—1/=—|B]||D] ]. 2
Q1< 5 (n V==~ Il ||> (3.25)

2
B[+ D]l < —d, (3.26)
then the weak solutio® is a strict contraction, that is,

QI < 1.
(i) If the operatorD has a finiteEc—nhorm and the inequality

d
v IBIHDlec < 5 (3.27)

holds, then the Riccati equatidB.1) has a unique strong solution in the ball

{Qe B2, %) 1 Q) < B (d JIBl ||DEC) } (3.28)

The strong solutioi@ has a finitetEc—norm and one has the estimate

1 (d d?
IQlle < g (2—\/ L D||Ec> - (3.29)

In particular, if

In particular, if

Bl +ID[le: <d, (3.30)
then the strong solutio is a strict contraction in both the uniform operator and
Ec-norm topologies, that is,

QI < [Qllec < 1.

Proof. The proof is based on an application of Banach'’s Fixed Point Theorem.
(i) Let f € LY(R) be a continuous function dR except at zero such that

~ ; 1
f(s) = / e 'S (t)dt = < whenevels| > 1.
R

Introducing the function
fa(t) = f(dt), teR,
by TheorenB.5 (i) any fixed point of the map (Q) given by

FQ = [ ¢°0-QBQe “fu)dt, QeB(ILK), (33D
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where the improper Riemann integral is understood in the weak sense, is a weak solution
to the Riccati equatior3(1). Taking into account that

[1flli2)
Halliawy = —4—>
from (3.31) one concludes that
[ Fllier) )
IF(QIl' = —5— DI+ IBIIQI%), Q& B(%,X) (3.32)
and
[l )

IF(Q1) ~F(Q2)[| = — 5 IIBI ([1Qafl +|Qzl)) (1 QL — Q) (3:33)

QlaQZ € g(}[a 7()
Clearly,F maps the balb, = {Q € B(#, X) : ||Q|| < r} into itself whenever

11l
d
andF is a strict contraction of the bafl, whenever
2/l lIBII
—q r
Since the extremal problem for the Fourier transform, which is to find the infimum of

|| f]|.2 over all functionsf € LY(R) such thatf (s) = 1/sfor |s| > 1, has the solution (cf.
Remark2.8)

(ID[+ 1Bl r?) <r

<1

inf {||fl|lLig : f€ LY(R), f(s) = 1/s whenevers| > 1} = g,

one concludes th& maps the balD; = {Q € B(#, X) : ||Q|| < r} into itself whenever

T
%(HDIHIIBIIrZ)Sr (3.34)
andF is a strict contraction o, whenever
B
e,y 639

Solving inequalities3.34) and @.35 one concludes that if the radiu®f the ball0; is
within the bounds

d /& _Ibj_ __d
mBl @B B = " mB|’
thenF is a strictly contractive mapping of the bal} into itself. Applying Banach’s Fixed

Point Theorem proves assertion (i).
(ii) Givenr € (0,d||B|| 1), under Hypothesis3(23 we have the identity

(A+BQ-p t=(1+(A-p'BQ) (A-p Y, (3.37)
pe spec¢C), Qe O,

(3.36)

which implies the estimate
1

sup [[(A+BQ-pw Y < sup - A—p)
i P IS e oA w e A
1 1 1

< — = .
SI_EFd a— (B (3.39)
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whenevelQ € 0.
Since .39 holds and the operat@ has a finiteEc-norm, the mapping

F(Q) = Ec(dWD(A+BQ—p) %,
spe¢C)

where the integral is understood in the strong sense, is well defined on the domain
domF) = O.
Since forQ € O; one clearly has the estimate
dist{spe¢A+BQ),spe¢C)} > d —||B||r > 0,

any fixed point of the map is a strong solution to the Riccati equatidhl) by Theorem
3.5(ii).
Using 3.38 we have the following two estimates

IFQI < IIF(Qllec < IIDllec sup [[((A+BQ—pw~|

pespedC)
< WPl oeq, (3.39)
d—|BJlr

and

[F(Q1) —F(Q2)ll
< |IF(Q1) — F(Q2)llec

‘ Ec(dD(A+BQ:—1) *B(Q2 Q) (A+BQ— )

spe¢C

Ec
D
< (d””BEfr)ZHQz—QﬂL Q1,Q2€ 0. (3.40)
Clearly, by 8.39 F maps the balD; into itself whenever
D]
< (3.41)
d—|[B]r
and by 8.40 F is a strict contraction o®; whenever
IDI[ec
— < 1. (3.42)
(d—B|r)?

Solving inequalities3.41) and (3.42 simultaneously, one concludes that if the radius of
the ball O; is within the bounds

1 d d?2 1
||B||<2 4B”||D||Ec>§f<”5||(d ||B|||D||Ec), (3.43)

thenF is a strictly contracting mapping of the bal} into itself. Applying Banach'’s Fixed
Point Theorem we infer that equatioB. {3 has a unique solution in any bal whenever
r satisfies 8.43). Therefore, the fixed point does not depend upon the radii satisfgiag) (
and hence it belongs to the smallest of these balls. This observation proves the estimate

1 (d d?
IRl < Il (2 —\/ 7 I8l ||DEC> : (3.44)
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Finally, using 8.39, for the fixed poinQ one obtains the estimate

||D||Ec
Qle. = |FQ)|lg. < —1—2=__. (3.45)
Then (.44 yields
D 1 (d d?
IQlle < —Plee 2 (2\/4”8” ||D||EC>,
4+ V%~ Bl IDllec
which completes the proof. O

Remark 3.8. Part (ii) of the theorem extends results obtained5H], [56], and[52]. In

case where the self-adjoint operatGris boundedD is a Hilbert-Schmidt operator, B is
bounded, and is possibly unbounded densely defined closed non-self-adjoint operator,
the solvability of the equatio(8.19 under condition(3.23 has recently been studied in
[4].

Remark 3.9. Under the hypothesd8.23 and(3.24) or (3.27) the fixed poinQQ depends
continuously(in the operator norrpupon the operator8 and D, which follows from a
result(see, e.g.[33] Ch. XVI, Theorem 3)concerning the continuity of the mapping in
Banach’s Fixed Point Theorem with respect to a parameter.

Remark 3.10. In general, hypothesi€.23 in Theoren3.7 can not be omitted. In order
to see this assume thaAt= R in Example3.2 and, thus(3.23 does not hold. Assume, in
addition, that the functiom(-) in this example is a strictly positive continuous function.
Then the necessary conditi¢®.8) for the solvability of the Riccafi3.7) is violated.

In order to complete the discussion of the results of The@ahwe need the following
illustrative statement based on ExamBl&

Lemma 3.11. Assume the hypothesis of Exampl2for
A= (~0,~d) U(d, +)
and somal > 0.
If be L?(A) and
Ib]l < v2d, (3.46)
then the Riccati equatiof8.7) has a weak/strong solution. Moreover, the constd@tin
(3.46) is sharp.

Proof. Under the hypothesi§(46) we have the inequalities

||b||2 / b(W* _ [bl?
= <d.
/dd_ Dy <d  and dduu+d<2d_d
The Herglotz function
W
F(w) w+/du f
is a strictly increasing continuous function ¢ad,d) and
o b

f(-d-0)=limf(~d—g)<—d+ [ du- "= <0,

u+d

2
f(d+0)=lim f(d-+¢) >d+/ du u( )d| -0,
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not withstanding the possibility for the one-sided limfts-d — 0) and f (d + 0) to turn
into —eco and+-oo, respectively. Therefore, the equation

f(w)=0
has a unique roatp € (—d,d), the function
b(w)
= € A7
(k) wy M

is an element of?(A), and, hence, the Riccati equatidq) has a weak/strong solution,
since the existence criterioB.g), (3.9) is satisfied.

In order to prove that the constay® in the upper bound3(46) is sharp, it suffices to
show that for any > 1 there exists a functioh € L?(A) such that

Ibll = v2cd

and the Riccati equatior8(7) has no solutiong € L?(A).
Letw e LY(R ) be a positive continuous function ¢ «) such that

/ w(t)dt = 1.
JO
Givene > 0, introduce the functions
wx(t) =e tw(t/e), t>0,

and
arctarid + pcor/3(d — , u<—d,
e “(H—d), n>d.
One infers
. 27
lim 191" =
and ] 2
- 1Pe()]= /*"" | (K 1
'é?é‘ </_oo p+d du+ u+d ad’ (3.48)
Hence for anyc > 1, one can find algp > 0 such that the following inequality holds
) 19eo (W[ |2 /+°° |eo (W) 1
o 2 ([ [ Bl [ Rl gy L a9
Introducing
o) = v2ea 2o e n— (e, —d]Ufd,e0),
1ol
one obviously concludes that
|b]| = v2cd.

Meanwhile, 8.49 implies the estimate
¢ [b(p) = [b(w[?
du>d.
/M u+d “Jr/ p+d H
Therefore, the Herglotz functiofi(w) given by

—d ‘b +oo
—we [ [

does not vanish op-d, d) (note thatf (w ) — +o0 asw T d) and hence:{.9) is violated for
all we [—d,d). Sinceb(-) is a continuous function and it does not vanish(enw,d) U
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[d,), the condition 8.8) is violated for allw € (—,d)U[d,). Hence, the Riccati
equation 8.7) has no weak/strong solutions in this case since the existence critdrgn (
(3.9 is violated. O

Remark 3.12. The result of Lemma&.11 combined with that of Theoref7 shows the
following.
(i) There is a constart > 0 such that the condition@.23 and
IB|| < cdist{specA),spedC)}, (3.50)
imply the existence of a weak solution to the Riccati equation
QA-CQ+QBQ=DB".
(ii) In general, the “smallness” requirement @ (3.50 can not be omitte¢cf. (3.24)

and(3.27)).
(i) The sharp value of the constamin (3.50) is within the bounds

Egcg\fz.
Tt

4. THE SPECTRAL SHIFT FUNCTION

The main purpose of this section is to recall the concept of the spectral shift function
[36], [37], [38], [39], [40], [45], [46] associated with a pair of self-adjoint operators and to
extend this concept to the case of pairs of closed operators that are similar to self-adjoint
operators.

The spectral shift functio(A,H,A) for a pair of self-adjoint operatordH,A) in a
Hilbert space# is usually associated with the Lifshits-Krein trace formula

tr(O(H) —0(A) = [ A EAH.A). @)

The trace formula4.1) holds for a wide class of functions: R — C, includingCy (R),
provided that the self-adjoint operatdisandA are resolvent comparable in the sense that

H-2t—(A-2teBi(H), Im(z)#0. (4.2)

The trace formula4.1) determines the spectral shift function up to an arbitrary complex
constant. This constant may, however, be chosen in such a way that makes the spectral shift
function to be real-valued.

In case of trace class perturbations, i. e., if

H—Aec Bi(H),
the additional requirement that
&(-H.A) eLY(R)
determines the spectral shift function uniquely. Being chosen in this way, the spectral shift
function&(A,H,A) can be computed by Krein's formula via the perturbation determinant
&\ H,A) :% Iilmo argdet((H — A —ig)(A—A—ig)™1) 4.3)
€

fora.e.A e R.

In the case of resolvent comparable perturbati@ng)(the spectral shift function can
be computed via the generalized perturbation determir3aht[[39]

Dyja(2) =det((H+i) " (H —2)(A—2)"1(A+i)), Im(2) #0
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by the representation

ENH,A) = (arghy /a(A +ig) —arghy (A —ig)) (4.4)
fora.e.A eR.

Here the branch odrgAy /a(2) is arbitrary forlm(z) > 0, but forim(z) < 0 the argument

of Ay /a(2) is fixed by the conditiorrgAy /a(—i) = 0. In this case

- RAHAL
/Rd)\W< . (4.5)

The spectral shift functiog(A,H,A) in (4.4) is determined up to an integer and there is in
general no natural way to choose this integer uniqug8g]. Moreover, the requirement

of continuity of the spectral shift functiofiA,H,A) (as an element of the weighted space
LY(R; (1+A2)~1d))) with respect to the operator parameterr A (in an appropriate
operator topology) leads to the conclusion: the spectral shift funégidbrH,A) can not

be introduced uniquely as a function of the pgit,A). Given a continuous path of op-
eratorsHi, t € [0,1] connecting the end poinsandH from the same linearly connected
component (in the metric space of self-adjoint operators that are resolvent comparable
with A, equipped with the metrip(H,H’) = ||(H —i)~* — (H' = i) *||5,(s)), the func-

tion {(A,H,A) should be considered to be either a (path-dependent) homotopy invariant,
or to be a path independent but multi-valued (moddjdunction of the spectral param-
eterA (see [L4], [62], and [69 for details). In either case, the spectral shift function is
uniquely introduced moduld in such a way that for any pait$i, A), (H,H), and(H,A)

of self-adjoint operatora, H, andH in #, satisfying @.2), the following chain rule holds

ENH,A) =& H,H)+&A,H,A) (modZ) fora.eAeR. (4.6)

The extension of a concept of the spectral shift function to the case of operators similar
to self-adjoint needs additional considerations.
We start with a definition of a zero trace commutator class.

Definition 4.1. Let 4(#) be the set of all bounded operatdrsc B(H) possessing the
property:

1 lim
2T €]0

tr(VR—RV) =0 4.7)
wheneveR € B(#) and
VR—RV € Bi(H). (4.8)
The set4(#) is called thezero trace commutator class

In the case of an infinite-dimensional Hilbert spatle(4.8) does not imply 4.7) in
general. For example, |€ be a one-dimensional orthogonal projection. Then there is a
partial isometrySsuch thaSS =1 andS'S=1 — P. TakingR= S* andV = Sone obtains
VR—RV =P e B(H), buttr VR—RV) = 1, and, thus, 4.7) fails to hold despite4.8)
holds true. Therefore, the zero trace commutator cisK)) is a proper subset @B(#)
if the Hilbert space# if infinite-dimensional.

Lemma 4.2. Assume thaR V € B(#) and at least one of the following conditions holds:
(i) V € B(H);
(il VRandRV are trace class operators;

INotice that the trace formulat(l) itself determines the spectral shift function up to an arbitrary constant.
The condition 4.5 does not change the matters and only the reladio) Gormalizes the spectral shift function
up to an integer constant.
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(ii) V is a normal operator andR € B,(H);
(iv) V is a self-adjoint operator an® € B..(H);
(v) V is a self-adjoint operator having no absolutely continuous spectral subspaces;
(vi) V is a normal operator with purely point spectrum;
(vii) Re By(#) andV € Bq(#) with § + 5 = 1.
Thentr(VR— RV) = 0whenevel R— RV is a trace class operator.

Remark 4.3. The part(i) is obvious. The partii) follows from Lidskii’'s theorem. The
statementiii) is due to G. Weisf6g]. Assertion(iv) has been proven by J. Helton and

R. Howe[31]. The part(v) immediately follows from a result by R. W. Carey and J. D. Pin-
cus[16] which states that any self-adjoint operator having no absolutely continuous spec-
tral subspace is the sum of an operator with purely point spectrum and a trace class one
with arbitrary small trace norrh The resultgvi) and (vii) have recently been proven by

V. Lauric and C. M. Pearcj43).

Lemma4.2 shows that the zero trace commutator clag${) is a rather rich set. In
particular,4(#) contains all the trace class operators, that is,
B(H) C A(H).
More generally, any operator of the form
V=V+T, VeAaH), TeB(H),

is an element of2(#). The class4(#) also contains all normal bounded operatdrs
with purely point spectrum and all self-adjoint bounded operators having no absolutely
continuous spectrum and, therefore, in this casé d4f4 () andV has a bounded inverse,
thenvV— c 4(H) as well.

Definition 4.4. LetH be a possibly unbounded densely defined closed operatér am
dom(H) with spe¢H) C R. The operatoH is said to be admissible if there exists a self-
adjoint operatorH such that

(i) H is similar toH, i.e.,

H =V AV on domH) =V ~*(dom(H))
for someV € 4(#) such thatv ~1 € B(H);
(i) H andH are resolvent comparable, i. e.,
H-—2'—(H-2teB(#H), Im(z) #0. (4.9)

We will call the operatoi a self-adjoint representative of the admissible operator

Clearly, any self-adjoint operator is admissible. Moreover, an admissible operator may
have different self-adjoint representatives.

Lemma 4.5. LetH be an admissible operator artd any self-adjoint representative bi.
Then R
tr(H-2'~(H-271) =0, Im(z)#£0. (4.10)

Proof. By the definition of an admissible operator, the difference of the resolvertis of
andH is a trace class operator and the following representation holds for\éame(#)
such tha 1 € B(H)

H-21-H-2 1=V iH-2"WW-(H-21

2\We are indebted to Vadim Kostrykin who has attracted our attention to this fact.
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=NV I H-2" YW -VN Y H-2 e B (H), Im(z2)+#0, (4.11)
which implies @.10), sinceV € 4(#H). O

Corollary 4.6. Let H be an admissible operator iftf and H; and H; its self-adjoint
representatives from Definitioch4. ThenH; andH; are resolvent comparable and

E(\;Hy,H2) =0 (modZz) fora.eAeR, (4.12)

where&(\;Hy, Hy) is the spectral shift function associated with the p@ii, Ho) of self-
adjoint operators.

Now we are ready to extend the concept of the spectral shift function to the case of pairs
of admissible operators.

Definition 4.7. Let (H,A) be a pair of resolvent comparable admissible operatorgfin
and(H,A) a pair of their self-adjoint representatives from Definitiéd. Define the spec-
tral shift functiong(A; H, A) associated with the paifH,A) by

E\H,A) =E\;H,A) (modZ) fora.e.AeR,

where€ (A;H, A) is the spectral shift function associated with the f#ir A) of self-adjoint
operators.

The result of Corollaryt.6 combined with the chain rule4(6) for the pairs of self-
adjoint operators shows that the spectral shift function associated with &Hay of
resolvent comparable admissible operators is well-defined m&uhat is, it is indepen-
dent of the choice of the self-adjoint representatil?eand,& for the operatordd andA,
respectively. In particular, we have arrived at the following result.

Lemma 4.8. Assume thaH and A are self-adjoint operators and,V~1 € B(#) such
that

Ve A(H), (4.13)
(H-—2'—(A—2)Ye B (), Im(2)#0, (4.14)
(VIAV —2) 1= (A—2) L e Bi(H), Im(z) #0, (4.15)

thenthe stability propertyholds
ENVTIHV,A) = E(\;H,A) (modZ) fora.e.AeR. (4.16)

The next example shows that the requireme#t$4) and @.15 by themselves do not
imply (4.16), if condition @.13 is violated.

Example 4.9. LetH be the closure of the operatbly = f% onL?(R) initially defined on

the domairdom(Ho) = C&(R) andH the operator which acts ih?((—c,0)) & L2((0,))

and corresponds to the Dirichlet boundary condition at zero. The differécez) ! —
(H—2)"1,Im(2) #0, is rank one and, thereforé{ is a resolvent comparable perturbation
ofH. The operatorgd and H are obviously unitary equivalent and, therefore, there exists
a unitary operatolV such thatd =V*HV. The spectral shift function associated with the
pair (H,H) is known[27] to be a half on the essential spectrum and zero otherwise,

ENHH) = %xpm) (A) (modZ) fora.eA€R,
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wherexa(A) denotes the characteristic function of the Borel&eTherefore,

0= E(\H.H) £EAV'HV.H) = ~X (V) (4.17)

on a set of positive Lebesgue measure. Represeni@tivr) shows that the stability prop-
erty (4.16 for the spectral shift function does not hold in this case.

The concept of a spectral shift function associated with a pair of admissible operators
turns out to be rather useful in the context of not only additive but also multiplicative theory
of perturbations. The following theorem illustrates such an application to the multiplicative
theory of perturbations in case where the spectral shift function can be computed via the
perturbation determinant. The corresponding representation appears to be an immediate
analog of Krein’s formula4.3) in the self-adjoint case. The precise statement is as follows.

Theorem 4.10. Let A be a possibly unbounded self-adjoint operatorFifiwith domain
dom(A), B = B* a trace class self-adjoint operator,

B e Bi(H), (4.18)
andV a bounded operator with a bounded inverse such that
| -V € By(H). (4.19)
Assume, in addition, that
ran(l —V) c dom(A), (4.20)
the domairdom(A) is V-invariant
V dom(A) = dom(A), (4.21)

and the commutatofV — VA, initially defined ondom(A), is a closable operator and its
closure is a trace class operator, that is,

AV —VAE B (H). (4.22)
Then for the operatoH defined by
H=V1A+BV on domH)=domA) (4.23)

the following holds true.

(i) The operatoH is admissible. Moreover, the spectral shift functiii; H,A) is
well defined and

EANH,A) =&NA+B,A) (modZ), fora.e.AeR. (4.24)
(ii)
(H-2)(A+B—21—1 e B(H), Im(2)#0, (4.25)
and, hence, the perturbation determinant
Dhi/(ace)(2) = det(H—2)(A+B—2)Y), Im(2) £0,
is well defined and, moreover,

Dh/(a+8)(2) =1.



30 ALBEVERIO, MAKARQV, MOTOVILOV

(iii) The perturbation determinamy /a(2) is well defined

Di/a(2) = det(H —2)(A-2)"), Im(2) £0,
and the spectral shift function for the admissible pair, A) can be computed via
the perturbation determinant as follows

EH,A) =t Ii?(] argDy /a(A +ig)  (modZ) (4.26)
€
fora.e.A e R.
Proof. (i) Hypothesis 4.19 implies that
a)VeAaA(H)
and

b) the operatorsl andA+ B are resolvent comparable.

Thus,H is an admissible operator. B¥.(L8 the operato’A+ B is a trace class per-
turbation ofA and henceH and A are resolvent comparable. Thereforé¢,2d) holds by
the definition of the spectral shift function for a pair of resolvent comparable admissible
operators, which proves (i).

(i) We start with the representation

(A+B—2V(A+B—2"1=1+W(2), Im(2) #0,
where
W(2) = (A+B-2)(V-1)(A+B-2"1 Im(2) #0, (4.27)
makes sense by (20. By (4.27)
W(2) =V — | + (AV - VA)(A+B-2)~*
+(BV-VB)(A+B-2"1, Im(2) #0,
which proves that
W(z) € Bi(H), Im(z)#0, (4.28)
by (4.18), (4.19 and @.22. Therefore, the Fredholm determinant of the opergtoer B—
2V(A+B—2)~1is well defined and
det((A+B—2V(A+B-2?)
=det(l + (A+B-2)(V-1)(A+B-21), Im(z) #0. (4.29)
Since @.20 holds, the operatofA+ B —2z)(V —1) is well defined on the whole Hilbert
space/{ as a closed operator being the product of two closed operators. H&ne® —
z)(V —1) is bounded by the Closed Graph Theorem. In particular, the following represen-
tation holds
(A+B—2 Y(A+B-2)(V-1)]=V —1I. (4.30)
Using @.29, (4.30), and the fact that
detl +ST)=detl + TS, ST, TSe Bi(H),

one proves
def{(A+B—-2V(A+B—21)=detV), Im(z2)#0. (4.31)

Further, using definition4.23 of H one computes
H-2(A+B-2 =V Y{A+B-2V(A+B-21), Im(2)#0, (4.32)

which by @.27) and @.28 proves ¢.25. Moreover, .32 and @.31) yield
de{(H —2)(A+B—2)"1) =detV 1)defA+B-2V(A+B—-2})
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=detVY)det(V) =1, Im(z)#0,
which completes the proof of (ii).
(iii) One infers
H-2A-21=H-2(A+B-2 Y A+B-2)(A-21, Im(z2) #0.
Hence
H—2(A—21—1 € Bi(H), Im(z)#£0,
by (4.25 and the fact that
(A+B—2)(A—2 11 € B(H), Im(2)#0,

sinceB € B, (#), which proves that the perturbation determinBp(2) is well defined.
Moreover,

Dr/a(2) = Dyy(a+B)(2)D(a+B)/A(2) = D(arB)/a(2),  Im(2) #0. (4.33)
By Krein’s formula @.3) we have

E\A+BA) = n’lli?g argD(ap)/a(A+ig)  (modZ),
€
and hence4.26 holds by 4.33. O

Remark 4.11. The idea of introducing the spectral shift function associated with a pair of
operators similar to self-adjoint operators via the perturbation determinant (in the frame-
work of the trace class perturbations theory) goes back to V. Adamjan and H. LEijger
The proof of Theorem.10contains some fragments of their original reasoning.

5. GRAPH SUBSPACES AND BLOCK DIAGONALIZATION OF OPERATOR MATRICES

In this section we collect some results related to existence of invariant graph subspaces
of a linear operator and to the closely related problem of block diagonalization of the
operator in terms of such subspaces.

First, we recall the definition of a graph subspace.

Definition 5.1. Let A’ be a closed subspace of a Hilbert spatleand Q € B(N, \(1).
The set

G(N,Q) = {x€ H : Py X=QPyx}
is called the graph subspace @éf associated with the paif\/, Q), whereP,, and PaL
denote the orthogonal projections omg and A\( -, respectively.

It is easy to check that

GNQ)" =GN+, —Q"). (5.1)

From the analytic point of view, the search for invariant/reducing graph subspaces for
a linear self-adjoint operator ifif is equivalent to the problem of solving the operator
Riccati equations studied in details in Sect®n

We adopt the following hypothesis in the sequel.

Hypothesis 5.2. Assume that the Hilbert spad¢ is decomposed into the orthogonal sum
of two orthogonal subspaces

H = Hoe H, (5.2)
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the self-adjoint operatoH reads with respect to the decomposit{@m2) as a2 x 2 opera-
tor block matrix

B
H:(Qﬁo A°i> (5.3)
whereA;, i = 0,1, are self-adjoint operators i# with domainsdom(A;) while Bjj; €
B(H;,H), j = 1—1i, are bounded operators arRho = By,;. Thus,
H=A+B, (5.4)
dom(H) = dom(A), (5.5)
whereA is the diagonal self-adjoint operator,
A = <Q° A?), (5.6)
dom(A) = dom(Ag)®dom(Ay),
and the operatoB = B* is an off-diagonal bounded operator
0 B
B= ( Bio 08 > (5.7)

We start with a criterion of existence of the invariant graph subsp&ces, Q;i) (Qji €
B(H;,H;)), i =0,1, j = 1—1i, associated with th& x 2 block decomposition.3) of a
self-adjoint operatoH.

Lemma 5.3. Assume Hypothesis2 The graph subspaag = G(#,Qji) for someQji €
B(H;,#H;),i=0,1, j =1—1i, is a reducing subspace for the operaterif and only if the
operator Riccati equation

QA -AQ +QBQ =B, (5.8)
has a strong solutio® which reads with respect to the decomposit{brp) as
0 Qum
= 5.9
o= go B) (5.9
with
Qo1 = —Qio- (5.10)
Proof. If Q given by 6.9), (5.10 is a strong solution ofH.8), this means that
ran{ Q C dom(A), (5.11)
dom(A)

and
QAf—AQf+QBQf =Bf foranyf edomA). (5.12)
Under hypothese$(9), (5.10, and 6.11) we have the inclusions

ran (Q ji
dom(A))

Moreover, the Riccati equatioB.(L2) splits into a pair of the equations
jSAjf—Aijif—i-jSBiijif :Bjif forall f EdOI’T’(Aj), (5.14)
i=01 j=1-i.
Rewriting these equations in the form
Qji (A +BijQji) f = (Bji +AjQ;ji)f  forall f € dom(A) (5.15)

)Cdor’r‘(Aj), i=0,1, j=1-i. (5.13)
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one immediately observes th&. {5 combined with §.13 is equivalent to invariance of
the subspaces; = G(#4,Qji),i =0,1, j = 1—i, for the operatoH. In turn, 6.10 implies
the invariance of the subspage = g(}[,—Q]‘i), i=0,1, j=1-—i, for H, which proves
the lemma. O

Remark 5.4. Example3.2 shows that, in general, the Riccati equatigfasl4) are not
always solvable and, thus, the invariant graph subspaces may not always exist either.

If the operator block matri¥d has reducing graph subspaces, then the block diagonal-
ization problem can be solved explicitly.

Theorem 5.5. Assume HypothesBs.2 Assume, in addition, that the graph subspaces
Gi = G(#,Qji) for someQji € B(H, H;),i=0,1, j =1—1i, satisfying(5.10 are reducing
subspaces for the operatét. Then:

(i) The operatoV =1 +Q with Q given by(5.9), (5.10 has a bounded inverse.

(i) The operato’v—1HV is block diagonal with respect to the decomposit{sr®).

That is,
N Bo1Q10 0
v-iHy = ( fotBa 5.16
( 0 A1 +B10Qo1 (5-16)
where
dom(A@JrBiiji):dom(A,-), i=01 j=1-i. (5.17)

(iif) The operatotJ*HU, whereU is the unitary operator from the polar decomposition

V = U|V|, is block-diagonal with respect to the decomposii{r2). That is,
siny_ ( Ho O
U*HU _( 0 H ) (5.18)
with
- “0:VY2(A LB O i)~ 1/2
Hi —('g-g-i-QJ.QJl) (A|+B|JQJ|)(|}4+QI|QJI) ) (5.19)
i=01 j=1-i,
dom(Hi) = (I +QjiQji)*/*(dom(Ay)), (5.20)

wherel 5, stands for the identity operator ifi.

Proof. (i) By (5.10 Q* = —Q and, thus, the spectrum Qf is a subset of the imaginary
axis. This means that zero does not belong to the spectri¥n-of + Q and, hencey has
a bounded inverse.

(ii) Since by (i)V has a bounded inversé.{6 is equivalent to the representation

_ Ao+ Bo1Q10 0
HV_V( 0 A1 + B10Q01 )’
which, in turn, taking into accounb(17), is equivalent to the Riccati equatios.§). Then,
applying Lemm&b.3, the validity of 6.16—(5.17) is equivalent to the fact that the graph
subspaceg; = G(#,Qji), i =0,1, j = 1—1i, are reducing subspaces.
(i) Taking into account$.10, by inspection one gets

, , lo +Qo1Qp1 0
VW*=V*V = . 5.21
< 0 l1+ Q10Q7o (5-21)

SinceV = U|V| and|V| = (VV*)¥2, the validity of 6.18—(5.20) is an immediate conse-
quence of$.16—(5.17). |
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6. INVARIANT GRAPH SUBSPACES AND SPLITTING OF THE SPECTRAL SHIFT
FUNCTION

Itis convenient to study spectral properties of the perturbed block operator tdatak
only in terms of the perturbatioB = H — A in itself, but also in terms of the angular op-
eratorQ associated with the reducing graph subspaces, provided that they exists. The next
(conditional) result throws light upon thguantitativeaspects of the perturbation theory
for block operator matrices in this context.

Theorem 6.1. Assume Hypothes.2 and let the Riccati equatiofb.8) have a strong
solutionQ of the form(5.9). Assume, in addition, that

(i) Q is a Hilbert-Schmidt operator,
(i) BQ(A —2)~Lis atrace class operator fdm(z) # 0,
(i) H andA are resolvent comparable.

ThenA +Bj;jQji, i = 0,1, j = 1—i, are admissible operators. Moreové, + B;; Q;; and
A, i=0,1 j=1-i, are resolvent comparable. For the spectral shift func&dh, H,A)
associated with the pair of self-adjoint operatgt$, A) we have the decomposition

EAH,A) =&(A; Ao+ Bo1Q10,A0) + &(A; A1 + B10Qo1,A1)  (modZ), (6.1)

fora.e.A e R.
In particular, the operator matri¥d can be block diagonalized by a unitary transformation

(5.2
U*HU:< "(')0 131 >
whereU is the unitary operator from the polar decomposition
I+Q=U|l +Q|,
and
EAH,A) = &(A;Ho, Ao) +&(A;H1, A1) (modZ), (6.2)
fora.e.A e R.

Proof. By Theorem6.1 (i) the normal operato¥ = | + Q has a bounded inverse. Due to
the assumption (i) the spectrum\éfis purely point. Thus, by Lemm@2(vi)

Ve A(H), (6.3)

where4(#) is the zero trace commutator class introduced by DefinitiénBy Theorem
5.5(ii) one concludes
V~IHV = A +BQ. (6.4)

Therefore, since by hypothesis (ii) the oper&Qr is a relatively trace class perturbation of
A, one concludes that the operatdfs'HV andA are resolvent comparable. By condition
(i) H andA are also resolvent comparable, and, therefore i) the operatol/ ~1HV

is admissible with the self-adjoint representativeThus, the stability property holds

EAVIHV,A) =E(\;H,A) (modZ), fora.e.\€R, (6.5)

by the definition of the spectral shift function for resolvent comparable admissible opera-
tors.

Next, letV = U|V| be the polar decomposition &f. By Theoremb.5 (iii) the operator
VV* is diagonal with respect to the decompositiéi?f. Using representatiorb(21) one
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infers thatvV* — 1 is a trace class operator, sinQds the Hilbert—Schmidt operator by the
hypothesis. Therefore,

V=1 € By(H), (6.6)
where|V| = (VW*)¥2, and, hencelV| € 4(H) by (6.6). The operatoV ~*HV is similar
to the self-adjoint operatdy*HU:

V7IHV = |V|(U*HU)|V| L. (6.7)
Using (6.6) and 6.7), one concludes that —*HV andU*HU are resolvent comparable.

Therefore, taking into account tha¥| € 4(#) one infers thalU*HU is a self-adjoint
representative of the admissible operatofHV and, hence,

E()\;V’lHV,A) =&\ U'HU,A) (modZ), fora.e.AeR, (6.8)
by Lemma 4.8). By Theoremb.5 (iii) the operatorU*HU is diagonal with respect to

decomposition§.2)
w1 Ho O
U*HU = ( 0 H >

whereH;, i = 0,1, are self-adjoint operators in the Hilbert spagési = 0, 1, introduced by
(5.19 and 6.17). SinceU*HU is a block-diagonal operator, by additivity of the spectral
shift function associated with a pair of self-adjoint operators with respect to direct sum
decompositions (which follows from the definition of the spectral shift function by the
trace formula 4.1)) one obtains that

1
ENUVULA) = EOE(A;Hi,Aa)- (6.9)
i=

By Theoremb.5 (i) the operatolV ~1HV is diagonal with respect to the decomposition

(5.2
. Ao+ Bo1Q10 0
VIHV =
( 0 A1+ B10Qoz ) ’
whereA +B;j;jQji,i =0,1, j = 1—i, are operators similar to self-adjoint operatygiven
by (5.19:
Hi = (I + Q5 Qi) (A +B Qi) (I +QjiQs) Y2 1=01, j=1-i.

HereQjj, i =0,1, j = 1—i, are the entries in the matrix representation for the opefator

_( 0 Qo
Q= ( Qo O )
By hypothesis (iXQ is a Hilbert-Schmidt operator, which proves that
(g + Q5 Qji) Y% — 1y € Bu(H)
i=0,1 j=1-i.
Therefore, the operators +B;jQji, i = 0,1, j = 1—i, are admissible with the self-adjoint

representativebl;. SinceV~1HV andA are resolvent comparable, 80+ B; iQji andA;,
i=0,1, j=1—1i, are. Hence, we have the following representation by Lerr@a

EAHILA) =8N A+BiQji,A), (modZ), fora.eAeR, (6.10)
i=01 j=1-i.
Combining 6.5),(6.8), (6.9), and 6.10 proves 6.1). |
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Remark 6.2. If the operatorQ is a trace class operator, the conditioti§ and (iii) hold
automatically. Therefore, they are redundant in this case.

7. FURTHER PROPERTIES OF THE SPECTRAL SHIFT FUNCTION

Throughout this section we assume that the spectra of the main diagonal Aptied
A; of the operator matrixy.3) are separated. More specifically, we will adopt one of the
three following hypotheses.

Hypothesis 7.1. Assume Hypothests2 and suppose that the separation condition
dist{specAo),spe¢A1)} =d >0 (7.1)

holds true. Assume, in addition, thBfy has a finite norm with respect to the spectral
measure of\g or/andA; and, moreover,

. d?
1Bos|imin{|[Boxlles, , [1Bollea, } < - (7.2)

Hypothesis 7.2. Assume Hypothes&?2 and suppose that the separation condit{@nl)
holds true. Assume, in addition, that both operatdgsand A; are bounded and

d
[|Bos|| < =t (7.3)

Hypothesis 7.3. Assume Hypothess.2 Assume, in addition, that the operat8y is
semibounded from above,

Ao <ag < +oo,
the operatorA; is semibounded from below,

Ap>ag > —oo,
and

ap < az.

Theorem 7.4. Assume Hypothesia1l Then the block operator matrid has two(or-
thogonal to each othg¢meducing graph subspaces = G(#,Qji), i =0,1, j =1—1,
associated with angular operatof®; € B(#;, ;) such that

Qo= —Qél
and
d d2 . d
183 Qiill < 5 =1/ - — IBlloxmin{|[BosllEa, [Boxlles, } < 5 (7.4)
i=01, j=1-i

Moreover, the graph subspacés i = 0, 1, are the spectral subspacestéfand Go® G1 =
H.

Proof. Assume, for definiteness, that the operd&gy has a finite norm with respect to the

spectral measure of the diagonal emigyof H and the inequality holds

d2

Z.

Recall that by defil’litiOIMBloHEAl = HBTOHEAl and henceH BlO”EAl = ||801||EA1-
By Theorem3.7 (ii) the Riccati equation

QAo —A1Q+ QBp1Q = B1o (7.6)

[Boa | [|Brollga, < (7.5)
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has a unique strong soluti@@e B(Hp, H;). Therefore, the dual Riccati equation
KA1 — AgK + KB1oK = Boz (7.7)

has a unique strong solutidhe B(#;) by TheorenB.6, and, moreovel = —Q*. Intro-
ducing the notation®190 = Q andQp; = K, equations.6) and (7.7) can be rewritten in
the form
QjiA —AjQji +Q;iBijQj = Bji, 1=0,1,j=1-i. (7.8)
Therefore, the Riccati equatioB.g) has a strong solution of the forns.9). Applying
Lemma5.3one proves that the subspaags= G(#,Qji), i =0,1 j = 1—1i, are reducing
subspaces fdfl, which proves the first assertion of the theorem under hypothe§js (
In the case wher®;o has a finite norm with respect to the spectral measure of the
diagonal entrfg and the inequality
d2
1Boa[lI[Brollen, < -
holds, the proof can be performed in an analogous way.
Applying TheorenB.7 (i) (eq. (3.29) proves estimater(4) which, in turn, proves that

dist{spe¢Ao + Bo1Q10),Spe¢Ar +B10Qo1) } > 0.

The last assertion of the theorem is a corollary of Theosesn
The proof is complete. O

Remark 7.5. Under Hypothesig.1, if
sup [|i(Ai+B;jQji — )t <o
e specA;)

for somei = 0,1, j = 1—1i, then the strong solutions of the Riccati equati¢ns), (7.7)
turn out to be the operator solutions by Theorgré

Under Hypothesig.2one has a similar result.

Theorem 7.6. Assume Hypothesia2 Then the block operator matrid has two(or-
thogonal to each othg¢meducing graph subspaces = G(#,Qji), i =0,1, j =1—1i,
associated with the strictly contractive angular operat@gs € B(H, #;), ||Qjil| < 1,
such that

Q10 = —Qp1-
Moreover, the graph subspacgs i =0, 1, are the spectral subspacestéfand Go® G1 =
H.

Proof. The proof is analogous to that of Theor@m. The only difference is that now we
refer to part (i) of TheorerB.7, since for boundedy € B(#), i = 0,1. the concepts of the
weak, strong and operator solutions of the Riccati equatiti@s ¢oincide. O

The following statement has been proven3h [

Theorem 7.7. Assume Hypothes&3 Then for anyBo; € B(#, Hp) and Big = Bf; the
open interval(ap,a;) appears to be a spectral gap fot. At the same time the spectral
subspaces of the operatbt corresponding to the intervals—,ag] and [a;, +) admit
representation in the form of graph subspaces associated with the pHi®Q10) and
(#4,Qo1) for someQ;; € B(Hj,#),i=0,1, j =1—i. Thatis,

ran(EH ((—oo,aoJ)) ~ G(%6,Qu) (7.9)
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and
ran(EH<[a1,+oo>)) — G(.,Q0), (7.10)

whereEy (A) denotes the spectral projectionidfassociated with the Borel satC R. The
angular operatorQ;; are strict contractions||Q;; || < 1, possessing the proper@io =
~Qio.

Moreover, the projection& ((—e,ag]) and Ex ([a1,+)) can be expressed in terms
of the operatoiQ = Qo1 = Qj in the following way

wan_ ( (0+QQ)  —(Io+QQ)'Q
B (- aao])‘< ~Q (lo+QQ) Q*(Io+QQ*>‘1Q>
and
[ Qi+QQ QY Qi+QQ)t
Eﬂﬁﬁmﬁ—<aﬁqwrb* m1@®* )

Corollary 7.8. Assume Hypothes&3. Then for anyBo; € B(H1, Hpg) andByo = B, the
Riccati equation
Q10A0 — A1Q10+ Q10B01Q10 = B1o (7.11)

has a strong contractive solutioQio € B(Hp, 1), ||Q1oll < 1, and Qo1 = —Qj, is the
strong solution to the dual Riccati equation

Qo1A1 — AoQo1 + Qo1B10Qo1 = Bos1. (7.12)

For the spectra of the operatofs) + Bp1Q10 with dom(Ag + Bp1Q10) = dom(Ag) andA; +
B10Qo1 with dom(A; + B1pQo1) = dom(A;) the following inclusions hold true:

spe¢Ao + Bp1Q10) C (—,8] and spe¢A; +Bi1oQo1) C [ag, +). (7.13)

Proof. Any spectral subspace fét is its reducing subspace. Thus, by Theorémthe
subspaces?(9) and (7.10 are reducing graph subspaces f#6r Then Lemmdb.3implies
that the angular operato€@p1 andQip from the r. h.s. parts of formulag @ and (7.10
are strong solutions to equatiorisX1) and (7.12), respectively. A proof of{.13 can be
found in [3]. O

Remark 7.9. Under Hypothesig.3 the case where one of the self-adjoint operatdgs

or A1 is bounded has been treated firs{2]. Recently this case has been revisite{dh
where sufficient conditions implying uniqueness of the strictly contractive solutions to the
operator Riccati equations have been found.

Lemma 7.10. Assume at least one of the Hypothegels 7.2, and 7.3, Then the block
operator matrix
Hi=A+tB, te[0,1]
has two(orthogonal to each oth&reducing graph subspaces
g(ﬂ‘ﬂ,jS(t)), i=0,1,j=1—i,t€[0,1],

associated with angular operato;i (t) € B(#,H;) which continuously depend dre
[0,1] in the norm of the spacB(#, #;). In addition, under Hypothesig.1 the following
holds true:

d d2 . d
1B Qi = 5 — \/4 ~ IIBlloxmin{[[Boxlley. [Boxlles, } < 5
i=0,1, j=1—i,te[0,1].
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Under Hypotheses.2 or 7.3the operatorQji (t) are strict contractions,
Qi <1, i=01 j=1-i, tel0].

Proof. Under Hypothesig.1 or 7.2 this assertion is an immediate consequence of Theo-
rems7.4or 7.6respectively, and Remafk9.

Therefore, assume Hypothe$is3. Since the operatds is bounded, and the interval
(ap,a1) does not contain points of the spectrumHgffor all t € R, by a result by Heinz
[30] (see also34], Theorem 5.12) the spectral projection

E(t) = En ((—.,30]), teR

continuously depends dne R in the uniform operator topology. By Theorem? the
projectionE(t) admits matrix representation with respect to the direct sum of the Hilbert
spacesHy ® Hy

_( 0o+QQ)" - —(lo+QQ)'Q
=0=( Qo) Glhrog) 1o ) <R

whereQ; = Qoi(t), t € R. In particular, the continuity of the familyE(t) }tcg implies the
continuity of the families of operator§(lo + QQf) ~*}ter and{(lo + Q) *Qt}ter in
the uniform operator topology of the spac®&Hy) and‘B(#, Hp), respectively. Since the
family {(lo+ QQ;) 1}ter is continuous, the family (1o + QQ;) }ter is also continuous.
Multiplying the operatoflo+Q:Q;) ~1Q: by lo+ Q:Q; from the left proves the continuity
of the angular operatog; as a function of in the uniform operator topology. Recalling
now thatQio(t) = —Qo1(t)* = —Qf proves the continuity of the famil@;j(t), i = 0,1,

j =1—1i, as a function of the parametee R in the uniform operator topology. The proof
is complete. |

To a large extent, the angular operafrbeing a strong solution to the Riccati equation
(5.8), inherits some properties of the operaBor-or instance, iB belongs to a symmetric
ideal, so doe®), provided that the certain spectra separation conditions are fulfillethfor
andA;. In fact, we have the following result (for simplicity, formulated using the scale of
Schatten—von Neumann ideals).

Theorem 7.11. Assume Hypothesks2 and let the Riccati equatio(b.8) have a strong
solutionQ of the form(5.9) with respect to the decompositidit = Ho ® H;. Assume, in
addition, that either conditiof7.1) is valid or the condition

dist{spe¢A + B;jQji),spe¢A;j)} >0 forsome,j=0,1, i# ], (7.14)
holds. Then iB € B,(#) for somep > 1, thenQ € By(H).

Proof. We recall that the strong solvability of the Riccati equatiér8 under constraint
(5.9 is equivalent to the strong solvability of the following pair of equations
QjiA —AQj = Bji —Q;iBijQji, i=01 j=1-i. (7.15)

Therefore, the assumptidh e Bp(H ) for somep > 1impliesB;; € By(H;,#;) i = 0,1,
j =1—i. Hence, the r.h.s. of7(15 is an element of the spacBy(H,#;). Under
hypothesis 7.1) one concludes tha®ji € By(#,H;) by Theorem2.7 (in particular by
estimate 2.14), and, thusQ € B,(#), since 6.9) holds.

Further, assume that.(l4 holds for somé = 0,1, j = 1—i. By Theorem %.5) the
operatorA +B;;Qji, i = 0,1, j = 1—1i, is similar to a self-adjoint operatdt;. That is, the
representation holds

A+BjQj=VHV =01 j=1-i, (7.16)
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for someV; € B(#;) such thal&/i‘1 € B(#H;) (see b.19). Therefore, T.15 can be rewritten
in the form
QjiViHV, ' — AjQji =B
and, hence, the operatd; = Q;iVj is a strong solution to the Sylvester equation
XiHi —AjXji =BV, =01, j=1-i.
By (7.14 and (7.16) one infers

dist{spec¢Ao + Bp1Q10),SpecAsr)} > 0.

Meanwhile, the assumptioB € By(H) for somep > 1 implies B € Bp(#, #;) and,
hence,B;Vi € By(#H,H;), i =0,1, j =1—i. Applying Theorem2.7 once more, one
deduces thaKj € By(#, ;). Hence,Qj = TV, ! € By(#,9), i =0,1, j=1—1i.
Finally, by (6.9) one concludes tha@ € B, (H).

The proof is complete. O

In what follows we need one abstract result of a topological nature.

Lemma 7.12. LetLy, t € [0,1] be a one-parameter family of self-adjoint operators such
thatL; and Lo are resolvent comparable for al<c [0,1] and the differencéL; —z)~1 —
(Lo—2)7%, Im(2) # 0, is a continuous function dfe [0,1] in the trace class topology.
Assume, in addition, that

[a,bjNspe¢l:) =0 forallte[0,1]

for somea, b€ R, a< b. Then for the unique family of the spectral shift functi§fsL:, Lo)
continuous irt € [0,1] in the topology of the weighted spac&R; (1+A?)~1) with the
weight(1+A?)~! one has

&E(A;Li,Lo) =0fora.e.A e [ab], te][0,1]. (7.17)

Proof. The existence of the one-parameter family of the spectral shift fundieris, Lo),
t € [0,1] that is continuous in the topology of the weighted sph&R; (1+A?)"1) is
proven in B9). Next, since[a,b] belongs to the spectral gap bf for anyt € [0,1], the
spectral shift functiorf(A;Lt,Lo) is a constanh(t) € Z a.e. on the intervala,b]. In-
tegrating the difference(t) — n(s) overA < [a,b] with the weight(1+4A?)~! yields the
estimate

_ 1€(-5Lt,Lo) — &(-5 Ls, Lo) L1 (ry(1402)-1)

t)— t 0,1
In() —n(s)] < arctar{b) — arctar{a) » Lse[01),
which proves than(t) is a continuous integer-valued functiontaf [0, 1]. Sincen(0) =0,
it follows thatn(t) = Ofor all t € [0,1]. O

Now we are prepared to present the main result of the paper.

Theorem 7.13. Assume Hypothesi2 and at least one of Hypotheséd, 7.2, and7.3.
Then the Riccati equatiofs.8) has a strong solutio® € B(H) of the form

_( 0 Qo -
Q - ( QlO O ) ) Qlo - _QO]_ S Qg(%a-‘]{l);
written with respect to the decompositid = Ho & #H; and hence the operatdd has
reducing graph subspaces = G(#,Q;ji), i =0,1, j=1—i. If H andA are resolvent
comparable andB is a Hilbert-Schmidt operator, theA; + B;jQ;ji, i = 0,1, j =1—1,

are admissible operators. Moreovéy, + B;;Q; andA;, i =0,1, j = 1—i, are resolvent
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comparable. For the spectral shift functidiA,H,A) associated with the pair of self-
adjoint operatorgH,A) one has the decomposition

EH,A) =&(A\; Ao+ Bo1Q10,A0) + E(A; AL+ B10Qo1,A1)  (modZ), (7.18)
fora.e.A € R.

Moreover, the spectral shift functiod$A; A + B;; Qji,Ai) associated with the pairgh +
BijQji,A),i=0,1, j =1—i, can be chosen in such a way that

ENA +BijQji,A) =0 fora.e.A € specA)), (7.19)
i=01 j=1-i.

Proof. Under the assumptions of the theorem the existence of a strong sdQutidB( )
of the Riccati equatior(8) is guaranteed by Lemnta3and Theoren7.4, Theoreny.6or
Corollary7.8. Since, by hypothesi® € B,(#), one infersQ € B,(# ) by Theorem7.11
Thus, the assumption (i) of Theoretnl holds. ThereforeBQ is a trace class operator,
and hence the assumption (ii) of Theorér holds. The assumption (iii) of Theore@nl
holds by hypothesis and, therefofe+Bi;jQji,i = 0,1, j = 1—i, are admissible operators,
A +BjjQj andA;, i =0,1, j = 1—1i, are resolvent comparable and the decomposition
(7.18 takes place by Theorefl

Introducing the familyH; = A +tB, t € [0,1], by Lemma7.100ne infers the existence
of the operator®) (t) € B(H, #;) that continuously depend dre [0, 1] in the topology
of the spaceB(#, H;) and are such such th, t € [0,1] has reducing graph subspaces

Gi(t)=G(#,Q;(t)), i=01j=1-ite[0,1].

Therefore, by Lemma.3the Riccati equation

QA —AQ: + Q¢ (tB)Q: =tB, te]0,1], (7.20)
has a strong solutio®; which reads with respect to the decompositibre) as
0  Qout)
= tel0,1 7.21
Qt ( QlO(t) 0 ) € [ ) ]7 ( )

andQji (t) = —[Qij (t)]*, t € [0,1]. Hence, each entr@;i(t), t € [0,1], in (7.2]) is a strong
solution of the Riccati equation

Qji ()A — AjQ;i(t) =tBji —tQ;i (1)B;;Q;i(t), te[0,1]. (7.22)
SinceQji(t) is continuous in the norm operator topology, the r.h.s. 7022 depends
continuously ort € [0,1] in the topology of the spac#,(#, #;). Therefore, by Theorem
2.7 (estimate 2.14) the pathQji(t), t € [0,1], is continuous in the topology of the space
Bo(H;, 7), and, thus, the familytBi; Qji (t) }ejo,1, | = 0,1, j = 11, is continuous in the
topology of the space, (#, H;).
Clearly, the map

t— (A+tBjQji(t) —2) " — (A -2 ") e Bu(H), te[0,1],  (7.23)
i=0,1, Im(z)#0.
is continuous in the topology of the spae(#£), i = 0,1. Taking into account that the
family Qj; (t)Qji(t) is continuous in the topology @y (#4), i = 0,1, and introducing the

self-adjoint representatives of the admissible operap#stB;;Qji(t), i = 0,1, j = 1—i,
te0,1],

Hi(t) = [15¢ + Qi () Qji ()] 2(A +1Bij Qji (1)) [1yg + Qi (1)Q;i (1)] /2, (7.24)
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t €[0,1],
one concludes that the map
t— Mt -2 '~ (A -2 e B(H) te01], (7.25)
is also continuous in the topology & (#£),i =0, 1.
Let
{A: dist{A,spe¢A)} > d/2}, if Hypothesis7.1holds,
A = ¢ {A\: dist{A,spe¢A)} > d/mt}, if Hypothesis7.2holds,
R\ convex hull(spec¢A;)), if Hypothesis7.3 holds,
i=0,1
Obviously
specAj) C A, i=01, j=1-i. (7.26)
Our claim is thaty;, i = 0,1, belongs to the resolvent set bi(t), i = 0,1, for all
t €[0,1], that s,
AjnspedHi(t)) =0, i=0,1,t€]0,1]. (7.27)

Under HypothesiZ.3the statement/(27) is a consequence of Theorén¥ (Eq. (7.13).
Assume, therefore, either Hypothe§esor Hypothesed.2
Under Hypothesig.1, applying Theoren7.4 one obtains the following uniform bounds

d

[[tBij Qji (t)[| < >

Thus, one concludes that
{A: dist{A,specA)} > d/2} () spe¢Ai +B;jQji(t)) =0 forallt € [0,1],
i=01 j=1-i.

Under Hypothesig.2the operatoQji(t),i =0,1, j =1—i,t € [0,1], is a strict contraction
by Theoremv.6. Therefore,

te[0,1, i=01, j=1—i.

d . . .

B Qi (V) < - te[01, =01 j=1-i,

and
{A: dist{A,specAi)} > d/n}ﬂ sped¢A +1BijQ;i(t)) =0 forallte [0,1],
i=01 j=1-i.
By (7.24 the operatorsi;(t) andA +tB;jQji(t), i = 0,1, j =1—i,t € [0,1], are similar
to each other, which prove%.@7) under Hypotheseg.1 or/and7.2
Applying Lemma7.12 one proves that there is a family of spectral shift functions

&(+;Hi(t),A) }tejo,y, | = 0,1, continuous in the topology of the weighted Spaéer; (1+
A?)~1) such that

S\ Hi(t),A)=0fora.e.A € [a,b], tel0,1], i=0,1, (7.28)
for any interval[a;,bi] C A;, i =0,1. By (7.25 the operatorgH;(t) andA;, i =0,1,t €
[0,1], are resolvent comparable and, hence, by Lemr8ane has the representation

E()\vAl —|—tB|JQJ|(t),A|):E()\,H|(t),A|)f0raeAER, tE[O,l], i:0717

sinceH;(t) are self-adjoint representatives of the admissible oper&{ersB;; Q;i(t), i =
0,1, j=1—i,t € [0,1]. It follows that the spectral shift functiorlgA; A + Bj; Qji, Ai)



GRAPH SUBSPACES AND THE SPECTRAL SHIFT FUNCTION 43

associated with the paifg\ + B;jQ;ji,A)) i = 0,1, j = 1—1i, can be chosen in such a way
that for any intervala;,bj] C 4;,i =0,1,

ENA +BijQji,A)=0 fora.e.A € [a,b]CA (7.29)
i=01 j=1-i,
which, in particular, implies assertiofi.(9), since {.26) holds. O

Remark 7.14. Assertion(6.2) under Hypothesig.3in the case wher8 is a trace class
operator has been proven by Adamjan and Landér Therefore, the main result of the
paper[1] in its part related to the existence of the spectral shift function and to the validity
of the representatio(6.2) is a particular case of our more general considerations.

Corollary 7.15. Assume the hypothesis of Theoréh3 Then
(i) the operator matriH can be block-diagonalized by a unitary transformat{ér)

x _ HO 0
UHU—( 0 Hl)’

whereU is the unitary operator from the polar decomposition
l+Q=U[1+Q[;
(i) for the spectral shift functiog(A; H,A) the following splitting formula holds
ENH,A) = &(A;Ho, Ao) +E(A;H1, A1) (modZ),
fora.e.A e R;
(iii) the spectral shift function&(A; Hi, A, i = 0,1, can be chosen in such a way that
&N\ Hi,A)=0 fora.e.AespecA;_i), i=0,1 (7.30)
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