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ABSTRACT

We propose a highly compact two-part representation of a
given graph G consisting of a graph summary and a set of
corrections. The graph summary is an aggregate graph in
which each node corresponds to a set of nodes in G, and
each edge represents the edges between all pair of nodes in
the two sets. On the other hand, the corrections portion
specifies the list of edge-corrections that should be applied
to the summary to recreate G. Our representations allow
for both lossless and lossy graph compression with bounds
on the introduced error. Further, in combination with the
MDL principle, they yield highly intuitive coarse-level sum-
maries of the input graph G. We develop algorithms to con-
struct highly compressed graph representations with small
sizes and guaranteed accuracy, and validate our approach
through an extensive set of experiments with multiple real-
life graph data sets.

To the best of our knowledge, this is the first work to
compute graph summaries using the MDL principle, and use
the summaries (along with corrections) to compress graphs
with bounded error.
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1. INTRODUCTION
Graphs are a fundamental abstraction that have been em-

ployed for centuries to model real-world systems and phe-
nomena. Today, numerous large-scale systems and appli-
cations need to analyze and store massive amounts of data
that involve interactions between various entities – this data
is best represented as a graph; for instance, the link structure
of the World Wide Web, group of friends in social networks,
data exchange between IP addresses, market basket data,
etc., can all be represented as massive graph structures. Be-
low, we look at some of these application domains.

• World Wide Web. The Web has a natural graph struc-
ture with a node for each page and a directed edge for
each hyperlink. This link structure of the Web has
been exploited very successfully by search engines like
Google [4] to improve search quality. Other con-
temporary research works mine the Web graph to find
dense bipartite cliques, and through them Web com-
munities [21] and link spam [12]. Recent estimates
from search engines put the size of the Web graph at
around 3 billion nodes and more than 50 billion arcs
[3]. (Note that these are clearly lower bounds since the
Web graph has been growing rapidly over the years as
more of the Web gets discovered and indexed.) Thus,
the Web graph can easily occupy many terabytes of
storage.

• Social Networking. Popular social networking websites
like Facebook, MySpace and LinkedIn cater to millions
of users at a time, and maintain information about
each user (nodes) and their friend-lists (edges). Mining
the social network graph can provide valuable informa-
tion on social relationships between users, the music,
movies, etc. that they like, and user communities with
common interests.

• IP Network Monitoring. IP routers export records con-
taining source and destination IP addresses, number
of bytes transmitted, duration, etc. for each IP com-
munication flow. Recently, Iliofotou et. al. [14] pro-
posed the idea of extracting Traffic Dispersion Graphs

(TDGs) from network traces, where each node cor-
responds to an IP address and there is an edge be-
tween any two IP addresses who sent traffic to each
other. Such graphs can be used to detect interesting
or unusual communication patterns, security vulnera-
bilities, hosts that are infected by a virus or a worm,
and malicious attacks against machines. These graphs,



however, can be large – it has been reported in [7] that
the AT&T IP backbone network alone generates 500
GB of IP flow data per day (about ten billion fifty-byte
records).

• Market Basket Data. Market basket data contains in-
formation about products bought by millions of cus-
tomers. This is essentially a bipartite graph with an
edge between a customer and every product that he
or she purchases. Mining this graph to find groups of
customers with similar buying patterns can help with
customer segmentation and targeted advertising.

A common theme in all of the above applications is the
need to analyze large graphs with millions and even bil-
lions of nodes and edges. Visualizing such massive graphs
is clearly a major challenge due to the difficulty of getting
everything to fit in a single screen. Furthermore, develop-
ing graph mining algorithms that can scale to such gigantic
proportions is another non-trivial challenge, especially when
the graph is too large to fit entirely in main memory.

In this paper, we propose information-theoretic techniques
for computing compressed graph representations. Our graph
representation R has two parts: the first is a graph summary
S (much smaller than the input) that captures the impor-
tant clusters and relationships in the input graph, while the
second is a set of corrections C that helps to recreate the
original graph, if necessary. Moreover, if the user is will-
ing to tolerate a certain amount of error in the recreation
process, we also show how to exploit this leeway to get fur-
ther reduction in the size of the representation, and strike a
trade-off between accuracy and memory.

Our graph representation has the following benefits:

• The summary S is itself a graph with substantially
fewer nodes and links that can easily fit in memory.
Thus, it is amenable to visualization and other graph
analysis techniques (e.g., finding communities, customer
segments); specifically, it provides insight into the high-
level structure of the graph, and the dominant relation-
ships among the various node clusters. Unlike cluster-
ing algorithms [17, 8] that group nodes based on their
similarity or distances, our summary is computed us-
ing information-theoretic principles.

• Our representation allows for a high degree of compres-
sion to be achieved for general graphs. In addition, it
supports a tunable ǫ parameter that can be used to
achieve lossy compression, but with bounded errors.
Essentially, the ǫ parameter allows us to trade accuracy
for higher compression. Thus, with our highly space-
efficient representations, approximate graphs can be
stored in main memory and efficiently analyzed using
graph algorithms. In contrast, most of the existing
proposals [1, 30, 3] only support lossless compression
for Web graphs.

1.1 A Generic Graph Representation
Given a graph G = (VG, EG), our representation for it

R = (S, C) consists of a graph summary S = (VS , ES) and a
set of edge corrections C (see Figure 1). The graph summary
is an aggregated graph structure in which each node v ∈ VS ,
called a supernode, corresponds to a set Av of nodes in G,
and each edge (u, v) ∈ ES , called a superedge, represents the
edges between all pair of nodes in Au and Av. The second

part of the representation is a set of edges of the original
graph G, which are annotated as either positive (′+′) or
negative (′−′).

The intuition behind the structure of the graph summary
S is to exploit the similarity of the link structure present in
the nodes of many practical graphs to realize space savings.
For instance, it is well known that in Web graphs, because of
link copying between Web pages, there are clusters of pages
with very similar adjacency lists [27, 26]. Similarly, com-
munities in social networks and the Web frequently contain
nodes that are densely inter-linked with one another [21].
Now, in such graphs, if two nodes have edges to the same
set (or very similar set) of other nodes, then we can collapse
them into a supernode and replace the two edges going to
each common neighbor with a single superedge. Clearly,
this will significantly reduce the total number of edges that
need to be stored, and lead to much smaller space over-
heads. Generalizing further, if there is a complete bi-partite
subgraph, then we can collapse the two bi-partite cores into
two supernodes and simply replace all the edges with a su-
peredge between the supernodes, thus reducing the memory
requirement dramatically. Similarly, we can collapse a com-
plete clique to a single supernode with a self-edge.

Next, let us look at the correction part, C. Note that
we can reconstruct G by “expanding” the summary S, as
follows: for each supernode v ∈ VS , create the nodes in
the set Av, and for each superedge (u, v) ∈ ES , add edges
between all node pairs (x, y) s.t. x ∈ Au and y ∈ Av. But
it is possible that only a subset of these edges were actually
present in G; to fix this, we keep the set of corrections C,
which contains the list of edge-corrections that need to be
applied to the graph constructed using S to recreate the
original graph G. Specifically, for the superedge (u, v), C

contains entries of the form ′ − (x, y)′ for the edges that
were not present in G, while if the same superedge was not
added to S, C will contain entries of the form ′ + (x, y)′

for the edges that were actually present in G. We define the
function g(R) that maps a representation R to the equivalent
graph G s.t. an edge (x, y) is present in G iff either (a) C

contains an entry ′ + (x, y)′, or (b) S contains a superedge
(u, v) s.t. x ∈ Au and y ∈ Av and C does not have an entry
′ − (x, y)′.

So while S is a compact graph summary of G that high-
lights the structure and key patterns, the corrections C allow
the user to reconstruct the entire graph. Observe that re-
computing the original graph (or a specific subgraph within
it) from our representation can be performed very efficiently
since reconstructing each node in G requires expanding just
one supernode and reading the corresponding entries in C.
Before going into the details of our problem formulation, we
first give a simple example of how the graph summaries plus
corrections can be used to recover the original graph.

Example 1. Figure 1 shows a sample graph (left) and
its representation (right). Note that the graph is compressed
from size (number of edges) 11 to 6 (4 edges in graph sum-
mary and 2 edge corrections). The neighborhood of a node
(say g) in the graph is reconstructed as follows. First, find
the supernode (y) that contains g, then add edges from g to
all the nodes in a supernode that is a neighbor of y. This
gives the edges {(g, a), (g, d), (g, e), (g, f)}. Next, apply the
corrections to the edge set, that is, delete all edges with a ′−′

entry (edge (g, d)), and add edges with a ′+′ entry (none in
this example). This gives the set of edges in the neighbor-
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Figure 1: The two part graph representation. The
LHS shows the original graph, while the RHS con-
tains the graph summary (S), corrections (C), and
the supernode mapping.

hood of g as {(g, a), (g, e), (g, f)}, which is the same as in

the original graph. This can be repeated for all nodes in VG

to recover the original graph.

Our graph representations have similarities to the S-Node
representations for Web graphs proposed in [26]. However,
there are some differences. First, we allow supernodes to
have self-edges which are not present in [26]; these, as we
saw above, can be very effective for coalescing dense cliques
into a single supernode. Instead, in [26], the graph struc-
ture within each supernode is compressed using a different
reference encoding scheme. Second, [26] stores a (positive)
superedge between supernodes u and v if there is even a
single edge between nodes in Au and Av in the graph. In
contrast, we store a superedge between supernodes u and v
only if the nodes in Au are densely connected to nodes in Av

(see MDL representation below). Thus, our representations
are less cluttered, smaller in size, and more suitable for vi-
sual data mining. Finally, our representations allow for lossy
compression and are computed using information-theoretic
techniques. On the other hand, [26] uses URL-specific infor-
mation to carry out lossless compression of Web graphs.

Note that our representations are equally applicable to di-
rected as well as undirected graphs. However, for simplicity
of exposition, we will only consider undirected graphs in the
remainder of the paper.

1.2 MDL Representation
Rissanen’s Minimum Description Length (MDL) princi-

ple [28] has its roots in information theory. It roughly states
that the best theory to infer from a set of data is the one
which minimizes the sum of (A) the size of the theory, and
(B) the size of the data when encoded with the help of the
theory.

In our setting, the data is the input graph G, the theory is
the summary S, and the corrections C essentially represent
the encoding of the data in terms of the theory. We define
the cost of a representation R = (S, C) to be the sum of
the storage costs of its two components, that is, cost(R) =
|ES | + |C|. (We ignore the cost of storing the mappings
Av for supernodes v ∈ VS since this will generally be small
compared to the storage costs of the edge sets ES and C.)
In the cost expression, the first term |ES | corresponds to (A)

and the second term |C| corresponds to (B). Thus, if R̂ =

(Ŝ, Ĉ) denotes the minimum cost representation, then the

MDL principle says that Ŝ is the “best possible” summary

of the graph. In other words, R̂, in addition to being the
most compressed representation of graph G, also contains
Ŝ which is the best graph summary. We will refer to the
minimum cost representation R̂ as the MDL representation.

Interestingly, the edge sets ES and C, and as a conse-
quence the cost of a representation R, are determined solely
based on the supernodes contained in VS . To understand
how these are computed for a fixed VS , consider any two su-
pernodes u and v in VS . We define Πuv as the set of all the
pairs (a, b), such that a ∈ Au and b ∈ Av; this set represents
all possible edges of G that may be present between the two
supernodes. Furthermore, let Auv ⊆ Πuv be the set of edges
actually present in the original graph G (Auv = Πuv ∩ EG).
Now, we have two ways of encoding the edges in Auv using
the summary and correction structures. The first way is to
add the superedge (u, v) to S and the edges Πuv−Auv as neg-
ative corrections to C, and the second is to simply add the
edges in the set Auv as positive corrections to C. The mem-
ory required for these two alternatives is (1+|Πuv−Auv|) and
|Auv|, respectively. We will simply choose the one with the
smaller memory requirements for encoding the edges Auv.

Based on the above discussion, the cost of representing
the edge set Auv between supernodes u and v in the repre-
sentation is cuv = min{|Πuv| − |Auv| + 1, |Auv|}. Further,
the superedge (u, v) will be present in the graph summary
S iff Auv > (|Πuv| + 1)/2; the positive and negative cor-
rections are then chosen accordingly. Notice that given the
set of supernodes VS , the cost of the representation can be
computed by looking at every supernode pair and making a
simple choice as described above. However, finding the best
set of supernodes for the MDL representation R̂ is a much
harder problem which we tackle in Section 3.

Problem Statement: Given a graph G, compute its MDL
representation R̂.

Because of the MDL principle and since our graph rep-
resentation R includes a summary S, a by-product of com-
puting the most compressed graph representation is that we
get the best possible graph summary for free. Our approach
is unique in this regard, since other compression schemes
do not generate such graph summaries. Of course, the best
graph summary is a subjective notion, and so it is difficult to
capture precisely. But intuitively, it is something at a much
higher level of abstraction that provides an insight into the
coarse-level structure of the graph, the main groupings, and
the important relationships between the groups.

Also, note that in our representation, each node in G be-
longs to exactly one supernode in S; hence nodes in VS form
disjoint subsets of nodes whose union covers the set VG.
There may be other approaches which can take advantage of
overlapping subsets (supernodes) to get better compression
(similar to the minimum clique cover or minimum complete
bipartite subgraph cover problems [11]); however, we will
only consider the disjoint case because we want S to be a
graph that is easy to visualize. Observe that the disjoint case
is conceptually similar to graph clustering, where the aim is
to divide the nodes into (disjoint) clusters by putting similar
nodes into the same cluster. However, clustering methods
do not follow an information-theoretic approach like ours
which seeks to find the MDL summary Ŝ with the minimum
space requirements to represent the input graph.



1.3 Approximate Representations
Thus far, we have discussed representations that repro-

duce the original graph G exactly. However, for many of
the applications described earlier, recreating the exact graph
may not be necessary; rather, finding a reasonably accurate
reconstruction may be good enough. To be more concrete,
consider the following key graph operation required by all of
the applications: Given a node, find the set of all its neigh-
bors in graph G. Now, instead of the exact set of neighbors,
if we were to return an approximate neighbor set that is rea-
sonably close to the exact set, then that should be accept-
able in most cases. For example, with bounded errors in the
neighbor set, we should still be able to discern communities
in Web graphs and social networks, and suspicious commu-
nication patterns in IP flow graphs. Similarly, we should
be able to obtain good PageRank approximations for Web
pages knowing only an approximate set of pages that each
page points to. And finally, in our market basket data ap-
plication, we should still be able to cluster customers with
similar purchasing habits or compute most of the frequent
itemsets even with partial knowledge of the items bought by
each customer.

We now proceed to define an ǫ-approximate representa-
tion, denoted by Rǫ, that can recreate the original graph
within a user-specified bounded error ǫ (0 ≤ ǫ ≤ 1). The
structure of Rǫ is identical to representation R discussed
earlier; thus, it too consists of a (summary, corrections) pair
(Sǫ, Cǫ). But unlike R, it provides the following weaker guar-
antee for the reconstructed graph Gǫ = g(Rǫ): For every
node v ∈ G, if Nv and N ′

v
denote the set of v’s neighbors in

G and Gǫ, respectively, then

error(v) = |N ′

v
− Nv| + |Nv − N ′

v
| ≤ ǫ|Nv| (1)

where, N ′

v
− Nv is the set difference operation. Here, the

first term in the equation represents the nodes included in
the approximate neighbor set N ′

v
but were not present in

the original neighbor set Nv, while the second term rep-
resents vice-versa. In other words, for each node in G, the
ǫ-representation Rǫ retains at least (1−ǫ) fraction of the orig-
inal neighbors correctly, while erring in (adding or deleting)
at most ǫ fraction of neighbors. The motivation here is that
since an ǫ-representation Rǫ is permitted to contain some
error, it will be more compact than the exact representation
for the same graph. Thus, to get the highest compression
ratio, we want to find an Rǫ with the smallest cost.

Problem Statement: Given a graph G and 0 ≤ ǫ ≤ 1,
compute the minimum cost ǫ-representation.

Observe that the MDL representation R̂ is essentially a
representation R0 with error parameter ǫ = 0 that has the
minimum cost. Thus, one approach to compute a minimum
cost Rǫ is to first compute R̂, and then delete edges from Ĉ
or Ŝ that do not violate Equation (1) for any node v ∈ G.
As ǫ increases, we can remove more edges from both the
graph summary and corrections, and reduce the cost of the
representation even further.

Example 2. Consider the graph in Figure 1 and suppose
ǫ = 1/3. From the corrections C, if we remove the entry
+(a, e), then the approximate neighbor sets for a and e would
be N ′

a
= {b, c, g, h} and N ′

e
= {g, h}. Since the neighbor sets

for a and e in the original graph G are Na = {b, c, e, g, h}

and Ne = {a, g, h}, the approximate neighbor sets N ′

a
and

N ′

e
satisfy Equation (1). So we can remove +(a, e) from C

and reduce its size without violating the error bounds.

Notice that the edge corrections (that we remove) can be
both positive and negative; hence the final neighbor set may
miss some true neighbors of v and also contain some nodes
that are not in Nv. Further, note that both edge corrections
in Ĉ and superedges in Ŝ may be removed without violating
the ǫ guarantee. In Section 4, we present a scheme for finding
the set of edges to remove from R̂ that gives the maximum
cost reduction.

1.4 Our Contributions
The main contributions of our work are as follows.

• We present a representation for graphs as a (summary,
corrections) pair. Our graph representations are highly
compact, and allow for both lossless and lossy graph
compression with bounds on the introduced error. In
combination with the MDL principle, our represen-
tations yield highly intuitive coarse-level graph sum-
maries.

• We develop two parameter-less algorithms, Greedy

and Randomized, to compute the MDL representa-
tion with small size. Greedy repeatedly picks the
best pair of nodes to merge in the entire graph and
outputs a highly compressed representation. On the
other hand, Randomized performs the best merge on
a randomly selected node–it loses out on compression
but is substantially faster in practice.

• We also devise two schemes (ApxMdl and ApxGreedy)
to compute the minimum cost ǫ-representation Rǫ. The
first uses a matching algorithm to remove the maxi-
mum possible correction edges from the MDL represen-
tation while still satisfying the accuracy constraints.
The second incorporates the ǫ error constraint into
each step of Greedy used to compute the MDL rep-
resentation.

• Through extensive experimental evaluation on real life
graph data sets from various domains, such as WWW
and RouteView, we show the effectiveness of our schemes
in practice. Our results show that we get representa-
tions that are less than 30% and 40% of the original
size, respectively; and with ǫ = .1, the size further
reduces by 10% of the size of the exact representation.

To the best of our knowledge, this is the first work to
compute graph summaries using the MDL principle, and use
the summaries (along with corrections) to compress graphs
with bounded error.

2. RELATED WORK
The graph compression problem, in one form or another,

has been studied in a number of diverse research areas.
Web Graph Compression. The most extensive literature
exists in the field of Web graph compression, which aims to
optimize the space overhead of the link structure between
billions of pages. Much of the work has focused on lossless
compression of Web pages so that the compact Web-graph
representations can then be used to calculate measures such



as PageRank [4] or authority vectors [19]. Several studies [1,
3, 27, 30, 26] take advantage of well-established properties of
the Web graph, e.g., pages largely pointing to other pages on
the same host, and new pages adding links by copying links
from an existing page. These Web pages with similar adja-
cency lists are encoded using a technique called reference en-
coding in which the adjacency list of one page is represented
in terms of the adjacency list of the other. In [1], the refer-
ence encoding costs between pages are captured in an affin-
ity graph, and a minimal spanning tree is then computed to
determine the optimal reference encodings. Most of these
papers, however, only focus on reducing the number of bits
needed to encode a link, and none compute graph summaries
since the compressed representation is not really a graph.
Therefore, these methods do not provide any insight into
the structure of the graph. An exception here is [26] which
computes graph summaries by grouping Web pages based
on a combination of their URL patterns and k-means clus-
tering [9]. In contrast, our summaries are computed using
the MDL principle, which has sound information-theoretic
underpinnings.

In a very different setting, [20, 12] devise algorithms to ex-
tract large dense subgraphs from the Web graph, since these
typically correspond to online communities or link spam.
Thus, the objective in [20, 12] is very different from ours –
we are primarily interested in finding a grouping of nodes
that minimizes the space required to represent the graph.
Clustering. In the data mining community, graph cluster-
ing has been widely used as a tool for summarization and
trend analysis [9]. The general theme of clustering is to
group similar nodes in a cluster, while making sure that
nodes in two separate clusters are not similar. In our set-
ting, the similarity among (unlabeled) nodes can be defined
using standard measures like the min-hop distance, the Jac-
card Coefficient [9] on their neighbor sets, or linear matrix
transformations [2]. Although clustering algorithms may
give meaningful insights into the dominant patterns in the
graph, they typically employ distance- or similarity-based
metrics to compute the clusters containing similar nodes.
In contrast, we use information-theoretic metrics to group
nodes such that the graph representation is as compact as
possible. Another problem with many of the widely-used
clustering algorithms, such as METIS [17], Graclus [8], k-
means and spectral clustering [24], is that they require the
user to specify the number of partitions beforehand, which
is typically hard to estimate and not required in our setting.

Like us, AutoPart [5] uses the MDL principle to compute
disjoint node groups such that the number of bits required
to encode the graph’s adjacency matrix is minimized. How-
ever, [5] proposes a top-down scheme that iteratively splits
node groups starting with a single node group. In our ex-
periments, we found that AutoPart’s top-down scheme gives
very little compression, and performs much worse than our
bottom-up approach based on greedily merging node groups.
Further, Autopart only does lossless compression – so its
performance relative to our Greedy scheme degrades even
further when the compressed graph is permitted to have
bounded error. In [22], the authors apply the MDL princi-
ple to summarize cells of interest in OLAP data by means of
a covering with regions. However, their methods exploit the
inherent data hierarchy and spatial properties of database
tables, and thus cannot be generalized to compress general
graph structures.

XML Synopsis Construction. Many recent papers [25,
18, 23] have proposed path-index structures for XML data
graphs to estimate the selectivities of complex path expres-
sions over XML documents. The basic idea is to group iden-
tically labeled element nodes in the data graph into coarser
index-graph nodes based on the set of incoming label paths
at each data element. These indices, while effective at cap-
turing the path structure in XML graphs, are ill-suited for
summarizing the structure of general graphs. This is be-
cause, unlike XML graphs where labels are frequently re-
peated across element nodes, nodes in general graphs have
distinct labels. For example, in a Web graph, every node
has a distinct URL; similarly, social network and IP net-
work graph nodes correspond to different users and IP ad-
dresses, respectively. As a result, the path-index construc-
tion schemes of [25, 18, 23] will not coalesce any of the nodes,
and will output a final graph summary that is identical to
the original graph. Furthermore, although path indices are
good for estimating path selectivities, they cannot be used to
determine the (approximate) neighbors of an element node
or recreate the original graph with bounded errors on neigh-
bor sets like we do.

Approximate Query Processing. There is a vast body of
work on maintaining synopses like samples [13], histograms
[15], and wavelets [6] to provide approximate answers to re-
lational queries. However, these have limited applicability
to our graph scenario for the following reasons. First, many
of the approximation techniques like sampling are more suit-
able for generating estimates for aggregate quantities (e.g.,
counts or averages) as opposed to set-valued answers (e.g.,
a node’s neighbors). Second, many of the real-world graphs
are typically sparse, which complicates the task of synopses
construction. And finally, histograms and wavelets do not
produce high-level graph summaries that can be visualized
to find interesting patterns. We would also like to point
out here that since graphs are traditionally represented as
a two-column relation with one tuple per edge (that stores
its two vertex endpoints), relational compression techniques
like fascicles [16] will not work well for graphs.

Network Visualization. In a recent paper [14], graph
structures called Traffic Dispersion Graphs (TDG), extracted
from network traffic on a router, were proposed as a means
to detect unknown applications on a network. However, the
aim in [14] is solely to extract the relevant data at network
speeds and display it as a graph, which is complementary to
our work. In [31], the authors use neighbor-similarity based
clustering techniques to classify hosts into groups (having
similar “roles”, e.g., mail-servers), and to visualize these
groups for hosts on a network domain. However, their main
focus is on performing this role-classification, and not to
achieve compression.

3. COMPUTING MDL REPRESENTATIONS

In this section we present two algorithms for finding the
MDL representation R̂. The first algorithm, called Greedy,
iteratively combines node pairs that give the maximum cost
reduction into supernodes. The second algorithm, called
Randomized, is a light-weight randomized scheme that, in-
stead of merging the globally best node pair, randomly picks
a node and merges it with the best node in its vicinity.



Algorithm 1 Greedy(G)

1: /* Initialization phase */
2: VS = VG; H = ∅;
3: for all pairs (u, v) ∈ VS that are 2 hops apart do

4: if (s(u, v) > 0) then insert (u, v, s(u, v)) into H;
5: end for

6:
7: /* Iterative merging phase */
8: while H 6= ∅ do

9: Choose pair (u, v) ∈ H with the largest s(u, v) value;
10: w = u ∪ v; /* merge supernodes u and v */
11: VS = VS − {u, v} ∪ {w};
12: for all x ∈ VS that are within 2 hops of u or v do

13: Delete (u, x) and (v, x) from H;
14: if (s(w, x) > 0) then insert (w, x, s(w, x)) into H;
15: end for

16: for all pairs (x, y), such that x or y is in Nw do

17: Delete (x, y) from H;
18: if (s(x, y) > 0) then insert (x, y, s(x, y)) into H;
19: end for

20: end while

21:
22: /* Output phase */
23: ES = C = ∅;
24: for all pairs (u, v) such that u, v ∈ VS do

25: if (|Auv| > (|Πuv| + 1)/2) then

26: Add (u, v) to ES ;
27: Add −(a, b) to C for all (a, b) ∈ Πuv − Auv;
28: else

29: Add +(a, b) to C for all (a, b) ∈ Auv;
30: end if

31: end for

32: return representation R = (S = (VS , ES), C);

3.1 The Greedy Algorithm
We now present our first scheme, called Greedy. To

understand the intuition behind this approach, recall that
in a graph there may be many pairs of nodes that can be
merged to give a reduction in cost. Typically, any two nodes
that share common neighbors can give a cost reduction,
with more number of common neighbors usually implying
a higher cost reduction. Based on this observation, we de-
fine the cost reduction s(u, v) (see below) for any given pair
of nodes (u, v). In Greedy, we iteratively merge the pair
(u, v) in the graph with the maximum value of s(u, v) (the
best pair).

As Greedy progresses, we maintain a set of supernodes
VS , that constitute the supernodes in the graph summary
S. For any supernode v ∈ VS , we define the neighbor set Nv

to be the set of supernodes u ∈ VS , s.t. there exists an edge
(a, b) in graph G for some node a ∈ Av and b ∈ Au. Recall
that the cost of the superedge (v, x) from supernode v to
a neighbor x ∈ Nv is cvx = min{|Πvx| − |Avx| + 1, |Avx|}.
We will define the cost cv of supernode v to be the sum of
the costs of all the superedges (v, x) to its neighbors x ∈ Nv.
Now, given pair (u, v) of supernodes in VS , the cost reduction
s(u, v) is defined as the ratio of the reduction in cost as a
result of merging u and v (into a new supernode w), and the
combined cost of u and v before the merge.

s(u, v) = (cu + cv − cw)/(cu + cv) (2)

The reason to pick the fractional instead of the abso-
lute cost reduction is that the latter is inherently biased
towards nodes with higher degrees, since it basically selects
the node pair with the highest number of common neighbors.
These nodes can, however, have a large number of uncom-
mon neighbors as well, which implies that they should have a
lower precedence than two lower degree nodes with an iden-
tical set of neighbors. The fractional cost reduction ensures
that such cases do not occur by normalizing the cost reduc-
tion with the original cost. It is important to observe that
such normalization does not make the cost of any pair switch
from positive to negative (or zero), or vice-versa. In other
words, if merging a pair gives some cost reduction, then s(·)
will not prevent us from picking it eventually (but can only
change the order in which it is considered). Notice that the
maximum value that s(u, v) can take is .5, when the neigh-
bor sets of the two nodes are identical; on the other hand,
its minima can actually be a very large negative value, but
we are of course not interested in node pairs with a cost
reduction value that is below zero.

We are now ready to describe the Greedy algorithm (Al-
gorithm 1). The algorithm can be subdivided into three
phases—Initialization, Iterative merging, and Output. In
the Initialization phase, we compute all the node pairs that
have a positive cost reduction; we examine all the nodes in
VS that are 2 hops apart, and compute their s(·) value. The
reason we only consider nodes that are 2 hops apart is based
on the observation that any two nodes having no common
neighbor cannot possibly give a cost reduction, and hence,
the pairs with a positive cost reduction must be at most two
hops apart (due to the presence of a 2-hop path through a
common neighbor). To efficiently pick the node pair with
the maximum s(·) value, we use a standard max-heap struc-
ture H to store all the pairs in the graph with s(u, v) greater
than 0. We add all the pairs computed in the initialization
step to H, and use it later to determine the node pair with
the maximum cost reduction in constant time.

During the Iterative merging phase, we first pick the pair
(u, v) with the maximum s(·) value from the heap. We then
remove supernodes u and v from VS , merge them into a new
supernode w, and add w to VS . Since u and v are no longer
in the graph, we remove all pairs in H containing either one
of them, and then insert into H the pairs containing w with
a positive cost reduction. Observe that there may still be
some more pairs (not containing u, v or w) whose s(·) values
may have changed. Consider the supernode x ∈ Nw which
was previously a neighbor of u or v (or both). The cost of
representing the edge (x, u) (and/or (x, v)) may change due
to the merge of u and v. This, in turn, could change x’s cost
(cx), and the cost reduction of any pair containing x. So we
must recompute the costs of all the pairs containing x ∈ Nw

and update them in the heap (this may require both adding
pairs to, and removing pairs from, the heap). The following
example illustrates the steps of the Greedy algorithm on a
simple graph.

Example 3. Figure 2 shows the steps of the Greedy al-
gorithm on the graph shown in Figure 1. For the sake of
simplicity, we refer to the supernode formed due to merg-
ing nodes x and y as the concatenated string “xy”. In the
first step, we merge the pair (b, c), which has the highest cost
reduction of .5 (since both b and c have two edges incident
on them, each has a cost of 2, and supernode bc also has a
cost of 2 because of a self-edge and a superedge to a; hence
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Figure 2: The steps (clockwise) for the Greedy algo-
rithm. We show the summary S and the corrections
C at the end of each step.

the cost reduction for (b, c) is .5). The other top contend-
ing pairs are (g, h) with an s(·) value of 3/7 and (e, f) with
s(e, f) = 2/5. To see why s(g, h) = 3/7, lets derive the costs
of nodes g and h before and after they are merged. Nodes
g and h have 3 and 4 incident edges, respectively, and so
cg = 3 and ch = 4. After g and h are merged to form su-
pernode gh, we will have 3 superedges between supernode gh
and nodes a, e and f , and one correction +(h, d). Thus,
cgh = 4 and s(g, h) = (cg + ch − cgh)/(cg + ch) = 3/7.

In the next 3 steps, we merge the pairs (g, h) with cost
reduction 3/7, (e, f) with cost reduction 1/3 (since ce = 2,
cf = 1, and cef = 2 because of a superedge between ef and
gh, and a correction +(a, e)), and (d, ef) with cost reduction
0. Note that the last merge does not decrease the cost, but
only reduces the number of supernodes in the summary S re-
sulting in a more compact visualization. After these merges,
the cost reduction is negative for all pairs, and so Greedy

terminates.

During the Output phase, we create the summary edges
and correction entries for all the pairs (u, v) of neighbor su-
pernodes in VS . Recall that the superedge (u, v) will be
present in the graph summary if |Auv| > (|Πuv| + 1)/2, in
which case we add correction entries ′ − (a, b)′ for all pairs
(a, b) ∈ Πuv − Auv; otherwise, we add the corresponding
′ + (a, b)′ entries for all pairs (a, b) ∈ Auv. This completes
the construction of the representation R = (S, C).

Time Complexity. During every merge step in Greedy,
we look at each neighbor x of the supernode w, and re-
compute the costs of all the pairs containing x. The num-
ber of such pairs is roughly equal to the number of nodes
that are at most 2-hops away from x (lets call this number
2Hop(x)). Now, summing for all the neighbors of w, this
becomes roughly equal to 3Hop(w). Further, recomputing
the cost requires iterating through all the edges of both the
nodes (adding another hop), and updating each pair in H
takes O(log |H|) time. If G contains n nodes, then the size of
the heap |H| = n·2Hop(w). Hence, the total time complex-
ity of each merge step is O(4Hop(w) + 3Hop(w)·(log n+log

2Hop(w))). Assuming an average degree of dav ≤ n for each
node, this becomes O(d3

av(dav + log n + log dav)).

Optimizations. In our experiments, we found that, due to
its large size, the time to update the heap structure dom-
inates the running time. We can reduce this processing
time by running the Greedy algorithm in rounds as fol-
lows. Suppose we fix a threshold τ and only process the
node pairs whose cost reduction s(·) > τ . Thus, the heap H
will only contain the pairs with cost reduction greater than
the threshold, but we will still process these pairs in the same
order as Greedy. Now, starting with the first round with
a high value of τ (say .5), we run this thresholded Greedy

procedure and keep reducing τ in successive rounds until in
the final round τ is equal to zero. This reduces the size of
the heap considerably, and allows us to avoid entire heap
operations for most of the pairs with low cost reductions
that are initially inserted into the heap but never merged
anyways. Observe that at the start of every round, we also
have to run the Initialization phase, which would process the
entire graph; hence having too many rounds can also slow
down the overall processing. In our experiments, we found
that starting with τ = .25 and reducing it by .05 in subse-
quent rounds gives good results. Note that such processing
in rounds will produce strictly the same output as the (origi-
nal) Greedy procedure since it merges node pairs in exactly
the same order, but reduces the running time drastically due
to faster heap operations.

3.2 The Randomized Algorithm
We will next describe our Randomized scheme which is a

very light-weight randomized merging procedure. The moti-
vation for this scheme is to trade off the cost of the computed
summary for reduced computational complexity. Greedy

has a high running time because it updates the cost reduc-
tions for all node pairs in the 3-hop neighborhood of the
merged pair. These updates cannot be avoided in Greedy

because it chooses the (globally) best pair to merge in each
step, and any of the updated pairs could potentially be the
best pair. To reduce computational complexity, in Random-

ized, instead of merging the globally best pair of nodes, we
randomly select a node and merge it with the best node in
its 2-hop neighborhood. This makes it much faster than
Greedy and enables it to scale to very large input graphs.
However, the representation R returned by Randomized

may not be as compact as Greedy. Note that Random-

ized does not require any heap structure, which makes the
merge operations considerably faster than Greedy.

The Randomized algorithm (Algorithm 2) iteratively
merges nodes to form a set of supernodes VS ; these supern-
odes are divided into two categories, U (unfinished) and F
(finished). The finished category tracks the nodes which do
not give any cost reduction with any other node (that is,
s(·) value is negative for all pairs containing them), while
the unfinished category contains the remaining nodes that
are considered for merging by the Randomized algorithm.
Initially, all the nodes are in U . In each step, we choose a
node u uniformly at random from U , and find the node v
such that s(u, v) is the largest among all pairs containing u.
If merging these nodes gives a positive cost reduction, we
merge them into a supernode w. We then remove u and v
from VS (and U), and add w to VS (and U). However, if
s(u, v) is negative, we know that merging u with any other



Algorithm 2 Randomized(G)

1: U = VS = VG; F = ∅;
2: while U 6= ∅ do

3: Pick a node u randomly from U ;
4: Find the node v with the largest value of s(u, v) within

2 hops of u;
5: if (s(u, v) > 0) then

6: w = u ∪ v;
7: U = U − {u, v} ∪ {w};
8: VS = VS − {u, v} ∪ {w};
9: else

10: Remove u from U and put it in F ;
11: end if

12: end while

13: /* Output phase is same as Greedy */

node will only increase the cost; hence, we should not con-
sider it for merging anymore and so we move u to F . We
repeat these steps until all the nodes are in F . Finally, the
graph summary and corrections are constructed from VS ,
similar to the Greedy algorithm.

Time Complexity. In each merge step, we compute the
cost reductions for all the 2Hop(v) pairs containing v; this
requires a total of O(3Hop(v)) time. Again, assuming an av-
erage degree of dav, this becomes O(d3

av). This reduced time
complexity makes Randomized much faster than Greedy

in practice.

4. COMPUTING ǫ-REPRESENTATION
In this section, we will present two algorithms to compute

a low-cost ǫ-representation Rǫ. The first algorithm, called
ApxMdl, takes the (exact) MDL representation (computed
in Section 3), and deletes correction and summary edges
while still satisfying the approximation guarantee. In the
second algorithm, called ApxGreedy, we build the
ǫ-representation directly from the original graph, keeping
in mind the ǫ constraint at each step.

4.1 The ApxMdl Algorithm
Let us consider the representation R = (S, C) constructed

by one of the algorithms in Section 3. In ApxMdl (Algo-
rithm 3), starting with R, we compute an ǫ-representation
Rǫ of reduced size by throwing away edges from C and S that
do not violate the approximation guarantees of Equation (1)
for any node v ∈ G. The algorithm can be divided into two
steps, (1) to remove unwanted edge-corrections from C, and
(2) to remove edges from S. We first describe step (1) (Algo-
rithm 3, lines 1-3). However, to give the intuition behind our
approach, we first look at a similar problem on the original
graph.

Given a graph G, suppose we construct a new approxi-
mate graph G′ with VG′ = VG and EG′ ⊆ EG, such that
(a) the neighbor set N ′

v for every node v in G′ satisfies
Equation (1), and (b) G′ has the minimum size (number
of edges). Then, one possible strategy is to find the set
M ⊆ EG of maximum size such that removing M from the
graph does not violate the approximation guarantee for any
node. Further, if we denote the degree of a node v in G

as nv, then we know that at most ⌊ǫnv⌋ edges incident on
v can be present in M . We observe that this problem is

Algorithm 3 ApxMdl(G, R = (S, C))

1: Construct a graph H, with VH = VG and EH = C;
2: Compute the maximum b-matching M for H with bv =

⌊ǫnv⌋;
3: Sǫ = S; Cǫ = C − M ;
4: for all superedges (u, v) ∈ Sǫ (in order of increasing

|Πuv| value) having no entry in Cǫ do

5: if removing (u, v) does not violate ǫ guarantee for any
node in Au ∪ Av then

6: Remove the edge (u, v) from Sǫ;
7: end if

8: end for

9: return Rǫ = (Sǫ, Cǫ);

same as the maximum b-matching problem, defined as fol-
lows: Given a vector b = {b1, b2, ..., b|VG|}, find the largest
set M ⊆ EG (called a b-matching) s.t. the number of edges
in M incident on the node v is at most bv. It is easy to see
that with bv = ⌊ǫnv⌋, constructing the graph G′ is equiv-
alent to finding the maximum b-matching M in G. (When
all bv = 1 (ǫnv = 1), then this reduces to the standard max-

imum matching problem.) The b-matching problem can be
solved in O(m · min{m log n, n2}) time using Gabow’s algo-
rithm [10] – here n in the number of nodes and m is the
number of edges in G.

In our setting, we will remove the corrections in C by
converting it into an instance of the b-matching problem.
We construct a new graph H with VH = VG and with the
set of edges present in C. Specifically, for any (positive or
negative) edge correction (a, b) ∈ C, we add an edge between
nodes a and b in H. Now, we set bv = ⌊ǫnv⌋ (nv = |Nv| is
the number of neighbors of v in G). The b-matching M in
this new graph H corresponds to the maximum number of
edge corrections in C that can be removed without violating
the approximation guarantees. This is because each edge
correction contributes an error of 1 to the neighbor sets of its
two endpoints. We remove all the corrections in M from C to
get Cǫ. Note that the graph H is typically much smaller than
the original graph, since it has much fewer edges (strictly less
than |EG|).

In our experiments, we found that the corrections C typi-
cally constitute a major portion (70-80%) of the representa-
tion R. Thus, reducing the corrections from C to Cǫ already
gets us substantial savings in space. We now describe step
(2) of ApxMdl (Algorithm 3, lines 4-8), which is to reduce
the size of the graph summary S. Interestingly, unlike for
the corrections, finding the best superedges to remove from
S turns out to be very hard. The problem is that remov-
ing a superedge corresponds to a bulk removal of all the
edges incident on the nodes contained in the corresponding
supernodes. Furthermore, since each node has a different
constraint, based on its original degree and the number of
corrections already removed, deleting the superedge may vi-
olate the approximation guarantee for a subset of nodes in
the supernodes. Due to these reasons, removal of edges in
S does not map cleanly to an instance of the b-matching
problem.

To remove edges from summary S, we instead apply a sim-
ple greedy approach. For each superedge (u, v) ∈ ES , we can
find out whether removing it will violate the ǫ-constraint of
any node in Au ∪Av (it cannot obviously violate constraints
on any other node). If deleting edges in Πuv do not vio-



late any node neighborhood constraints, then the superedge
can be removed from S. We make a pass through all the
superedges in ES in order of increasing |Πuv|, and keep re-
moving edges whose removal do not violate any constraint.
Our rationale for considering superedges in increasing order
of |Πuv| is that this is a good estimate of the total error that
will be introduced when superedge (u, v) is removed, and
so we pick the superedge that will introduce the least extra
error at every step. Note that when we decide to remove a
superedge from S there cannot be any corrections for that
superedge in Cǫ. This is because if there was such a correc-
tion (a, b), then the error at node a or b must have already
reached its maximum value (⌊ǫna⌋ or ⌊ǫnb⌋), otherwise we
would have removed (a, b) while processing the corrections.
Using this observation, we can further reduce the computa-
tion time by only checking superedges for removal that have
no corrections in Cǫ.

Time Complexity. In ApxMdl (Algorithm 3), we first
process the corrections and then the summary. Due to [10],
we get that the time complexity of the first step is
O(|C|2·log |VG|). Further, the second step requires O(|ES | ·
|VG|) time in the worst case to check for every superedge
whether deleting it will violate the error constraint of any
node in the two supernodes it is incident on.

4.2 The ApxGreedy Algorithm
In the previous section, we described how to compute the

ǫ-representation from a given (exact) MDL representation.
The main advantage of our ApxMdl scheme is that during
a majority of the processing (to compute the MDL repre-
sentation), the algorithm is oblivious of ǫ; thus, it provides
a flexible and light-weight method to compute approximate
representations for different ǫ values. However, for exactly
the same reason (being oblivious to ǫ), ApxMdl fails to
take the maximum advantage of the leeway provided by the
approximation constraints.

In our next scheme, called ApxGreedy, we compute the
approximate representation starting with the original graph
itself, while keeping in mind the approximation guarantees.
The steps of ApxGreedy are exactly the same as Greedy,
the only difference is in the way we compute the node costs
cv. Basically, we exploit the knowledge of ǫ to compute the
(new) cost c′v of approximately representing a node v, where
we only count the minimum number of edges in S and C
that are required to satisfy v’s ǫ-constraint. Let us first look
at an example of how this cost is different from what we
computed in the previous section.

Example 4. Consider again the graph in Figure 1. For
ǫ = 1/3, the new cost for the node h is c′h = 3 (instead of
ch = 4), because we can remove up to 1 incident edge on h
and still satisfy the ǫ-constraint. Furthermore, for supernode
y, the new cost will be c′y = 2 (down from cy = 3) since the
correction −(g, d) in C can be deleted, as it does not violate
ǫ-constraint of g or d. On the other hand, any edge deletion
from f or w will violate the ǫ-constraint of these nodes (in
the case of supernode w, the constraint of the nodes b and c
contained in it); hence, the costs remain 2 for both of them,
the same as before.

In general, the cost c′v of approximately representing a
supernode v is the minimum total cost of representing (a
subset of) its graph edges while satisfying the approximation

guarantee of all nodes in Av. The cost reduction s′(u, v)
when two nodes u and v are merged into a new supernode w
is then given as before by (c′u+c′v−c′w)/(c′u+c′v); thus s′(u, v)
is the difference in the cost of approximately representing
nodes u and v when separate, and when merged together. In
our ApxGreedy procedure, we run exactly the same steps
as the Greedy algorithm, but using this new cost reduction
value s′(·) instead of s(·) to select the next node pair to
merge.

Now, lets look at how to compute the cost c′v for a supern-
ode v. The complication here is that deleting a correction
edge (a, b) affects the ǫ-constraints of both nodes a and b;
thus, when deleting correction edges that are incident on
nodes in Av, we also need to consider the impact it has on
the error constraints of v’s neighbors. However, to ensure
that c′v can be computed efficiently, we will ignore the ǫ-
constraints of v’s neighbors when deciding which correction
edges incident on nodes in Av can be deleted. While this
will result in a slight underestimate for cost c′v, it will help
to speed up its computation considerably.

Recall that the cost cv is the cost of exactly representing
all the graph edges incident on nodes in Av. Our strategy for
computing c′v for a supernode v is to deduct from its exact
cost cv the number of correction edges incident on nodes Av

that can be deleted without violating their ǫ-constraints. So
if ea represents the number of correction edges that can be
deleted for node a ∈ Av, then c′v = cv −

∑
a∈Av

ea. Clearly,
ea ≤ ǫna since deleting more than ǫna correction edges will
cause node a’s constraint to be violated. Thus, ea is the
minimum of ǫna and the total number of correction edges
involving node a.

It is important to observe that we do not actually re-
move the unwanted edges during ApxGreedy, since to re-
move them we have to also consider constraints on the other
(neighboring) nodes. When ApxGreedy finishes, we have
the set of supernodes VS which we use to compute an exact
MDL representation R similar to Greedy. We then run
the ApxMdl algorithm on R to get the final approximate
representation. The key difference here is that ApxGreedy

takes into account the ǫ-constraints when computing the ex-
act representation R that is fed to ApxMdl.

5. EXPERIMENTS
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We now present the experimental evaluation of our tech-



Figure 6: Visual comparison of CNR-10k graph (left) and its summary (right) S computed by Greedy. The
size of a supernode in S is proportional to the number of nodes included in it. The dataset contains a bipartite
subgraph (shown in middle) with a large set of nodes connecting to a single other node, which is hard to
identify in the original graph; however, these nodes are condensed into a single (large) supernode in the
summary that distinctly stands out.
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niques. The goal of these experiments is to evaluate our
techniques in the following three objectives. First (Section
5.1), to study the compression quality and anatomy of the
representation R and also evaluate the effectiveness of S as
a compact summary highlighting important trends. Second,
we compare our algorithms with existing graph compression
techniques (Section 5.2). And finally (Section 5.3), we dis-
cuss the performance of the approximate representation.

We first briefly explain the experimental set-up. We have
implemented the proposed algorithms for finding both the
exact (Greedy and Randomized) and approximate (ApxMdl)
MDL representations. We ran the Greedy algorithm in
rounds, starting with τ = .25 and reducing it by .05 in sub-
sequent rounds. The results for Randomized are averaged
over 10 seeds for the random number generator (although
we saw very little variation in both cost and running times
for different seeds). All the experiments involving running
times were run on a Linux server with Intel Core-2 Duo pro-
cessor and 2 GB RAM. We compare our techniques against
the following existing algorithms.

• Reference Encoding (REF) [3]: This has been a
very successful and popular technique for web-graph
compression. It basically consists of two logical parts,
the first of which reduces the size of the neighbor lists
for each node, and the second generates compressed
representations of these lists using complex bit-level
encodings. For a fair comparison, we disabled all the
bit-level encodings while running this algorithm. It
should be noted that the same encodings can be used
to represent our graph and correction summaries, how-
ever, that comparison is not considered as it is not the
main focus of this study.

• Graclus (GRAC) [8]: This is a graph clustering al-
gorithm that divides the nodes of a given weighted
graph into clusters such that the sum of weights of the
inter-cluster edges is minimized. We ran it on a new



derived graph having the same set of nodes as G, while
edges exist between any two nodes with a non-zero cost
reduction and the weight on the edge equal to the cost
reduction s(·). Although GRAC does not explicitly
focus on reducing the representation cost, by setting
weights same as cost reductions we ensure that it also
tries to minimize the cost. We compute the cost of
representation by creating supernodes from the clus-
ters generated by GRAC, and then summing costs of
the superedges between these supernodes. GRAC also
requires the number of clusters (k) as an input, which
we vary in the range ±10% of the number of supern-
odes returned by Greedy; the results shown are for
the value of k that gave the maximum compression.

• Sampling (SAMP): We used a simple edge sampling
scheme to compare against the approximate MDL rep-
resentation. In this scheme, we chose a fixed number
M (equal to the cost of the approximate representa-
tion) of edges uniformly at random from the input
graph. The (sub-) graph induced by these M edges
is taken as an approximation to the original graph,
which is compared against the approximate represen-
tation computed by ApxMdl.

In our experiments, we used the following datasets to eval-
uate the compression ratio and running times of various ap-
proaches.

• CNR dataset1: This web-graph dataset was extracted
from a crawl of the CNR domain. We replaced each di-
rected edge by an undirected edge. To view the varia-
tion of running time and compression ratio, we also ran
experiments with subgraphs of this dataset. Specifi-
cally, the dataset CNR-x is the subgraph induced by
the node indices [0, x) (e.g. CNR-5k has node indices
from 0 to 4999 along with all their edges to each other).
The largest dataset, CNR-100k has 100k nodes and
405, 586 edges.

• RouteView2: This is a graph that represents the au-
tonomous system topology of the Internet. Here each
node is an autonomous system, and two nodes are con-
nected by an edge if there is at least one physical link
between them. This dataset is collected by the Uni-
versity of Oregon Route Views Project, and consists of
about 10, 000 nodes and 21, 000 edges.

• WordNet3: WordNet is a large lexical database of
English words often used in natural language process-
ing applications. We extract a graph from the data
where nodes correspond to English words, and an edge
(u, v) exists if u is a hypernym, entailment, meronym,
or attribute of v, or if u is similar or causal to v (or
vice-versa). This graph has 76, 853 nodes and 121, 307
edges.

• Facebook4: This dataset was extracted in 2005 from
a crawl of the Cornell University community of the

1Laboratory for Web Algorithmics
(http://law.dsi.unimi.it/).
2http://www.routeviews.org/
3http://vlado.fmf.uni-lj.si/pub/networks/data/
4http://www.facebook.com/
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Figure 7: Comparison of graph compression algo-
rithms. % Compression is defined as the ratio of the
summary cost and the original cost (lesser % implies
better compression). Clearly, Greedy beats all other
algorithms.

Facebook social networking website, and consists of
14, 562 nodes and 601, 735 edges. Here, nodes are pro-
files of students at Cornell, and an edge exists between
two students who are friends.

5.1 Analysis of MDL Representations
We first study the quality of compression of the two schemes.

In Figure 3, we plot the cost of representation produced by
Greedy and Randomized, with varying size of the CNR
graph. Our results show that Greedy gives the best com-
pression, consistently computing representations with cost
roughly 10% lower than Randomized. Next, in Figure 4,
we compare the running times of these schemes for differ-
ent graph sizes. Observe that as predicted, Randomized is
much faster than Greedy, finishing in about half the time
required for the latter on the same graph. This gives a clear
trade-off between the two: the user should use Greedy to
get the best compression, while Randomized if he wants to
compress the graph quickly, with comparable compression.

In our next experiment (Figure 5), we show the breakup
of the cost of the representation. The representation has
three kinds of entries, namely supernodes, superedges, and
corrections. We plot the number of these entries as we vary
the size of the dataset. Notice that the size of corrections is
the dominant factor in the cost of the representation; only
about 20% of the representation cost is due to the summary.

The small sizes of superedges and supernodes (about 10%
of the original graph) indicates the usefulness of the sum-
mary for visualization and trend analysis. Figure 6 shows a
visualization (constructed using the Cytoscape tool [29]) of
the original input and the corresponding summary S for the
CNR-10k dataset. Apart from being much smaller in size
and hence less cluttered, there are many interesting patters
that stand out. One such example is shown in the middle
zoom-in boxes, where a large bipartite subgraph is extracted
in the summary. In the original graph, this subgraph is
barely visible as a cluster of nodes surrounding (and con-
nected to) one node in the center; while in the summary it
is extracted as a large supernode (displayed in the middle)
connected to just one other node via a superedge.

5.2 Comparison with Graph Compression
We now compare our techniques against Reference Encod-

ing (REF) and Graclus (GRAC). We present the cost reduc-
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tion of various schemes in Figure 7, where y-axis shows the
cost of the compressed representation as the percentage of
the original cost (lower is better). Clearly, Greedy obtains
the highest compression among all the schemes, especially
for the RouteView and CNR datasets (here CNR refers to
the CNR-100k dataset), where its compression ratio is more
than twice that of REF or GRAC. Randomized also per-
forms better than REF and GRAC on all datasets.

Notice that on the Facebook dataset, no scheme gets bet-
ter than 80% compression. We believe the reason is that
it is not possible to compress this dataset much further us-
ing graph compression techniques. This is because although
users form communities in social networks, their variety of
individual tastes makes their friend-lists (neighbor set) suffi-
ciently different from those of other users, allowing for lesser
commonality than, for example, web-graphs. Among other
schemes, REF mostly gets good compression on the com-

pressible graphs such as CNR and RouteView, but performs
even worse than Graclus on the Facebook dataset. We be-
lieve the reason for this is that the techniques of REF are
tailored for finding nodes with similar neighbor lists among
nodes with neighboring indices (matching urls), which are
of course not present in Facebook.

5.3 Approximate MDL Representations
We now discuss the effectiveness of the approximate rep-

resentations in reducing the cost. We ran the ApxMdl al-
gorithm on a fixed dataset (CNR-40k), and varied the value
of ǫ in the range [0, .5]. Figure 8 shows the cost of the ap-
proximate representation for different values of ǫ. Note that
with ǫ = 0, the cost is same as the exact MDL represen-

tation. However as ǫ is increased, the cost reduces almost
linearly, down to almost 50% of the exact MDL when ǫ = .5.
Unfortunately, due to time constraints we were not able to
implement the ApxGreedy algorithm. All results shown
here are for ApxMdl .

The next study details the comparison of ApxMdl with
the random sampling scheme (SAMP). In Figure 9, we show
the % errors, defined as the ratio of error(v) (Equation 1)
and |Nv|, in neighbor sets of the nodes of the reconstructed
graph, for Rǫ and SAMP. The x-axis shows the costs of the
approximate representation, while y axis plots the average
(shown as the line) and maximum (shown as the error-bars)
% errors. For a fair comparison, we fixed the sample size in
SAMP to be same as the cost of Rǫ. As expected, SAMP
does not guarantee any bound on the maximum error, which
is 100% in almost every case. Moreover, even the average
error of ApxMdl is considerably lower than that of SAMP.

6. CONCLUSIONS AND FUTURE WORKS
In this paper, we have presented a highly compact two-

part representation R(S, C) of the input graph G based on
the MDL principle. In this representation, S is an aggre-
gated graph structure that gives a high level graph summary

of G, and C is a set of edge corrections using which one can
recreate G. We have shown how to compute representa-
tions that allow for both lossless and lossy reconstruction of
graphs with bounds on the introduced error. We have also
presented algorithms to compute these representations with
the minimum cost, and shown their effectiveness in com-
pressing the input graph through experimental evaluation
on multiple real life graph datasets.

As for future work, we noticed that in many real life
graphs, the edges and nodes also contain various attributes.
For example, nodes in webgraphs have urls, edges (transac-
tions) in market basket data have weights (monetary value),
packets in IP traffic have multiple attributes such as port-
numbers and type of traffic, etc. We would like to investigate
if our two-part representation can be extended to compress
graphs containing node and edge attributes.

We have presented two heuristics in this paper, called
Greedy and Randomized, which perform very well in prac-
tice, effectively beating every other algorithm that we com-
pared with. Proving either the optimality of these algo-
rithms, or conversely a hardness result on computing the
minimum cost representation, are definitely other interest-
ing areas of future research.
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