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Abstract

We computed the potential connectivity map of all known neuron types in the rodent hippocampal formation by

supplementing scantly available synaptic data with spatial distributions of axons and dendrites from the open-access

knowledge base Hippocampome.org. The network that results from this endeavor, the broadest and most complete

for a mammalian cortical region at the neuron-type level to date, contains more than 3200 connections among 122

neuron types across six subregions. Analyses of these data using graph theory metrics unveil the fundamental

architectural principles of the hippocampal circuit. Globally, we identify a highly specialized topology minimizing

communication cost; a modular structure underscoring the prominence of the trisynaptic loop; a core set of neuron

types serving as information-processing hubs as well as a distinct group of particular antihub neurons; a nested,

two-tier rich club managing much of the network traffic; and an innate resilience to random perturbations. At the local

level, we uncover the basic building blocks, or connectivity patterns, that combine to produce complex global

functionality, and we benchmark their utilization in the circuit relative to random networks. Taken together, these results

provide a comprehensive connectivity profile of the hippocampus, yielding novel insights on its functional operations

at the computationally crucial level of neuron types.
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Introduction
The rodent hippocampus encompasses millions of neu-

rons (West et al., 1991; Hosseini-Sharifabad and Nyen-

gaard, 2007; Bandeira et al., 2009; Fu et al., 2013), each
synapsing with tens of thousands of others (Gulyás et al.,
1999; Megías et al., 2001). Examination and quantitative
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Significance Statement

Brain connectomes are being constructed at two disjointed levels. Microscopically, the wiring of individual

neurons is being accumulated into cumbersome synaptomes; macroscopically, region-to-region projec-

tomes obscure important circuit details. Neuron types provide a fertile middle ground. Using the 122

hippocampal formation types from Hippocampome.org, we augmented sparse connectivity knowledge with

morphological evidence to obtain a full potential connectome. Though this network contains �3200

connections that are not easily amenable to intuitive hypothesis generation and testing, such complexity

can be tackled using graph theory analysis, whereby we investigate the relationship between the circuit’s

connectivity properties and functions. As type-level data grows, the array of analyses detailed here can be

extended to rapidly supplement our understanding of the computational operation of the hippocampus.
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analysis of anatomical connectivity constitute a critical
step toward understanding the circuit function (Sporns
et al., 2005).

Major community efforts such as the BRAIN Initiative
(Insel et al., 2013) and the Human Brain Project (Markram
et al., 2015) are currently attempting to reconstruct the
entire synaptic connectivity of each individual neuron.
These undertakings produce massive datasets, but their
necessary focus on extremely contained anatomical do-
mains cannot comprehensively reveal long-range circuit
architecture (e.g., Mishchenko et al., 2010; Kasthuri et al.,
2015). At the other extreme, approaches such as the
Human Connectome Project (van Essen et al., 2013) and
the Allen Mouse Brain Connectivity Atlas (Oh et al., 2014)
use diffusion tensor imaging or anterograde/retrograde
tractography to map brain-wide regional connectivity (see
also Mitra, 2014; Zingg et al., 2014). However, the limited
spatial resolution and lack of cellular specificity restrict
the utility of these data to inform our understanding of
neuronal computation.

In between these popular synaptome (DeFelipe, 2010)
and projectome (Kasthuri and Lichtman, 2007) levels lies
an arguably more immediately fertile neuron-type circuitry
approach that intuitively harmonizes well with Cajal’s
“neuron doctrine” (Shepherd, 1991). Although neurons
are indeed unique cellular units, they may be readily
grouped according to sets of properties that cluster along
a continuum. Over the past 6 years, we mounted a mas-
sive literature search to catalog all known neuron types in
the rodent hippocampal formation based on their main
neurotransmitter, axonal-dendritic morphologies, somatic
location, molecular expression, and electrophysiological
parameters (Wheeler et al., 2015). All the properties (and
underlying experimental evidence) of the resulting 122
neuron types are collated in a publicly available, highly
curated knowledge base (Hippocampome.org) that is ripe
for analysis along multiple dimensions.

Here, because knowledge about synaptic connectivity
among the types is sparse, we fill the gaps by exploiting
Peters’ rule (Braitenberg and Schüz, 1991), which recog-
nizes axon–dendrite juxtapositions among the types as
potential connections. We then quantitatively examine the
resulting complex network using graph theory (Bullmore
and Sporns, 2009; Rubinov and Sporns, 2010; Wig et al.,
2011; Binicewicz et al., 2015). Through a suite of analy-
ses, we investigate global degree distribution, circuit
modularity, rich club coefficients, absorption, and drift-
ness, as well as local motif composition, to foster intuition

on how the functionality of the hippocampus relates to its
fundamental architectural properties (Sporns et al., 2000).
We also present an interactive, online, open-source tool-
box for exploring the potential neuron-type connectome
in the rodent hippocampal formation.

Materials and Methods

Identification of neuron types
This work focuses on rodent (mouse and rat, of either

sex) hippocampal formation, defined as the dentate gyrus
(DG), CA3, CA2, CA1, subiculum, and entorhinal cortex
(EC). Each of these subregions is divided in layers (e.g.,
CA3 oriens, pyramidale, lucidum, radiatum, and lacuno-
sum-moleculare; or EC L1–L6) giving rise to a total of 26
anatomical parcels. Over a period of several years, we
amassed information on hippocampal formation neuron
types from the century-deep and information-rich body of
literature. However, because neurons are often named on
an ad hoc basis without full mappings to previous names
and descriptors (Hamilton et al., 2016), author-provided
names of types were treated warily. Instead, neuron types
were identified chiefly based on their primary neurotrans-
mitter (i.e., glutamate or GABA) and for having a unique
binary pattern of axonal and dendritic presence or ab-
sence across the 26 parcels (Wheeler et al., 2015). In rare
cases (e.g., fast-spiking/parvalbumin-positive and regular-
spiking/cholecystokinin-positive basket cells, ivy and bis-
tratified cells), aligned molecular marker and electrophys-
iological evidence was sufficiently different to support the
creation of two distinct types out of neurons with the
same morphological pattern and primary neurotransmit-
ter. Type names were then selected, differentiated, com-
bined, or created anew to minimize confusion with the
existing literature and fully mapped to their synonyms
(Hamilton et al., 2016). The complete set of terms, defini-
tions, data, and supporting experimental evidence collec-
tively underlying the identification of the resulting 122
hippocampal neuron types is publicly available in open
access form at Hippocampome.org (RRID: SCR_009023).
Table 1 provides a glossary of neuron types to facilitate
identification in figures throughout this article.

Culling of known connectivity information
All 484 peer-reviewed literature references comprising

version 1.0 of the Hippocampome.org knowledge base
were mined in a first-pass attempt to determine which of
the 14,884 (1222) directed pairs of neuron types are
known to synapse or not to synapse. Information verified
by various methods (e.g., electron microscopy, electro-
physiological paired recordings) was annotated, and rel-
evant quotes and figures were extracted. Future versions
of Hippocampome.org will additionally examine sources
that cite and that are cited by the original references, as
well as search for specific peer-reviewed articles with
neuron-type connectivity information.

Computation of potential connectivity
In the absence of literature evidence for known connec-

tions or nonconnections, information on potential connec-
tivity between types was exploited to achieve a full
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Table 1. Neuron type glossary.

1 Granule

2 Hilar Ectopic granule�

3 Semilunar granule

4 Mossy

5 Mossy MOLDEN�

6 AIPRIM (Aspiny int w/proj. to SMi)

7 DG axo-axonic

8 DG basket

9 DG basket CCK�

10 HICAP

11 HIPP

12 HIPROM (Hilar int w/proj. to SMo)

13 MOCAP (molecular commissural-associational pathway
related)�

14 MOLAX

15 MOPP

16 DG neurogliaform

17 Outer molecular layer�

18 Total molecular Layer

19 CA3 pyramidal

20 CA3c pyramidal

21 CA3 giant

22 CA3 granule

23 CA3 axo-axonic

24 CA3 horizontal axo-axonic�

25 CA3 basket

26 CA3 basket CCK�

27 CA3 BISTRATIFIED

28 CA3 interneuron-specific oriens�

29 CA3 interneuron-specific quad�

30 CA3 ivy

31 CA3 LMR-targeting

32 Lucidum LAX (lucidum axons)�

33 Lucidum ORAX (oriens axons)

34 Lucidum-radiatum�

35 Spiny lucidum

36 Mossy fiber-associated (MFA)

37 MFA ORDEN (oriens-dendrites)

38 CA3 O-LM

39 CA3 quadD-LM

40 CA3 radiatum�

41 CA3 R-LM

42 CA3 SO-SO (oriens-oriens)�

43 CA3 trilaminar

44 CA2 pyramidal

45 CA2 basket

46 CA2 wide-arbor basket

47 CA2 bistratified

48 CA2 SP-SR

49 CA1 pyramidal

50 Cajal-Retzius

51 CA1 radiatum giant

52 CA1 axo-axonic

53 CA1 horizontal axo-axonic

54 CA1 back-projection

55 CA1 basket

56 CA1 basket CCK�

57 CA1 horizontal basket

58 CA1 bistratified

59 CA1 int-specific LMO-O�

60 CA1 int-specific LM-R

61 CA1 int-specific LMR-R

62 CA1 int-specific O-R�

(Continued)

Table 1. Continued

63 CA1 int-spec O-Target QuadD

64 CA1 int-specific R-O�

65 CA1 int-specific RO-O�

66 CA1 ivy

67 CA1 LMR

68 CA1 LMR projecting

69 CA1 neurogliaform

70 CA1 neurogliaform projecting

71 CA1 O-LM

72 CA1 recurrent O-LM

73 CA1 O-LMR

74 CA1 oriens/alveus

75 CA1 oriens-bistratified

76 CA1 O-bistrat projecting�

77 CA1 OR-LM�

78 CA1 perforant path-associated

79 CA1 perforant path quadD

80 CA1 quadrilaminar

81 CA1 radiatum

82 CA1 R-Recv apical-targeting�

83 Schaffer collateral-associated

84 SCR R-targeting�

85 CA1 SO-SO (oriens-oriens)

86 CA1 hipp-subiculum proj ENK�
�

87 CA1 trilaminar

88 CA1 radial trilaminar

89 SUB EC-projecting pyramidal

90 SUB CA1-projecting pyramidal

91 SUB axo-axonic

92 LI-II multipolar-pyramidal

93 LI-II pyramidal-fan

94 MEC LII pyramidal-multiform

95 MEC LII oblique pyramidal�

96 MEC LII stellate

97 LII-III pyramidal-tripolar

98 LEC LIII multipolar principal�

99 MEC LIII multipolar principal�

100 LIII pyramidal

101 LEC LIII complex pyramidal�

102 MEC LIII complex pyramidal�

103 MEC LIII bipolar complex pyr

104 LIII pyramidal-stellate

105 LIII stellate

106 LIII-V bipolar pyramidal

107 LIV-V pyramidal-horizontal

108 LIV-VI deep multipolar

109 MEC LV multipolar-pyramidal

110 LV deep pyramidal

111 MEC LV pyramidal

112 MEC LV superficial pyramidal

113 MEC LV-VI Pyr-polymorph

114 LEC LVI multipolar-pyramidal�

115 LII axo-axonic

116 MEC LII basket

117 LII basket-multipolar int

118 LEC LIII multipolar int

119 MEC LIII multipolar int

120 MEC LIII superficial multiplr int

121 LIII pyramidal-looking int

122 MEC LIII superficial trilayer int

122 types ordered first by subregion, then by primary neurotransmitter, then
alphabetically. Asterisks indicate types that are either not well known or
contain relatively little molecular marker and electrophysiological evidence.
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hippocampal connectome (HC). The coexistence of the
axons of one type with the dendrites of another within any
hippocampal formation parcel indicates relative spatial
proximity and a potential for synapsing. The rows in Fig-
ure 1A show a subset of neuron types and their defining
axo-dendritic patterns. For example, the axons of granule

cells are present in the DG hilus (H), CA3 stratum lucidum
and stratum pyramidale, and CA2 stratum pyramidale.
Therefore, any neuron type with dendrites in any one or
more of these parcels, including mossy-fiber–associated
oriens-dendrite (MFA ORDEN) cells (type 37 in Table 1), is
a potential target of the granule cell axons (Fig. 1B).

Figure 1. Potential connectivity of neuron types. A, Partial matrix showing axonal and dendritic locations for selected DG, CA3, and

CA2 types within certain parcels of the hippocampal formation (full matrix available online at Hippocampome.org/morphology). Bold,

glutamatergic; gray, GABAergic; red boxes with horizontal lines, axons; blue boxes with vertical lines, dendrites; purple boxes with

horizontal and vertical lines, both axons and dendrites; black circles, soma locations; red arrows, potential connections of granule

cells. Parcel abbreviations for DG: SMo, outer stratum moleculare; SMi, inner stratum moleculare; SG, stratum granulosum; H, hilus;

for CA3/CA2: SLM, stratum lacunosum-moleculare; SR, stratum radiatum; SL, stratum lucidum; SP, stratum pyramidale; SO, stratum

oriens. B, Representative illustration of the overlapping spatial distribution (indicative of potential connectivity) of granule cell axons

(right) and MFA ORDEN cell dendrites (left) in CA3 SL and SP (for both neurons: axons in red; dendrites in black). Morphological

reconstruction of the granule cell downloaded from NeuroMorpho.Org (Ascoli et al., 2007), with layers drawn in, from a tracing

originally presented in Bausch et al. (2006). Permission to reprint the MFA ORDEN cell (Vida and Frotscher, 2000) granted by

Proceedings of the National Academy of Sciences of the United States of America (Copyright 2000 National Academy of Sciences,

U.S.A.). C, Screenshot from the novel online toolbox (Hippocampome.org/connectivity) illustrating all information potentially received

(arrows in) and sent (arrows out) by granule cells (black connections excitatory; orange inhibitory).
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Further, types that do not have dendrites in those parcels
are excluded as potential granule cell targets because of
the lack of neurite overlap. This approach was extended
to account for axo-somatic and axo-axonic connections
of basket and chandelier cells, respectively. Mathemati-
cally, 26-dimensional binary vectors were used to encode
the presence or absence across hippocampal parcels of
the axon of each potential presynaptic type and of the
dendrites (or soma or axonal initial segment) of each
potential postsynaptic type. Potential connectivity was
then calculated as the dot-product of these vectors: a
nonzero result indicated a potential connection, whereas
a zero-value dot-product indicated that connectivity was
not possible between the types in question:

Axons of type A� � �a1, a2, �, a26�;

Dendrites of type D� � �d1, d2, �, d26�;

c � A� ·D� .

Many neuron types (101 of 122, not including granule
cells) have axons and dendrites colocated within one or
more parcels, indicating the potential for within-type con-
nectivity; such self-connections are not necessarily indi-
cations of single-neuron autapses.

Web-accessible resource for connectome
visualization

A Java-based online toolbox was developed and
deployed (Hippocampome.org/connectivity; click Launch
or link to Potential Connectivity Map) to assist in the
visualization and exploration of the HC. Glutamatergic
(excitatory) and GABAergic (inhibitory) neuron types are
represented as black and gray circles, respectively, and
are placed randomly within the parcel (or along the parcel
boundary) where their soma is most commonly located.
Hovering over a type reveals its name; clicking on a type
displays all the connections that may be received by its
dendrites (lines with arrows in) or sent by its axons (arrows
out). A snapshot of the toolbox, taken after the selection
of granule cells, is shown in Fig. 1C. Toggles provide the
ability to show or hide additional information, including
connections made by the other (i.e. unselected) types and
schematic illustrations of many of the major cell types and
pathways in the hippocampal circuit.

Graph theory analyses
The Brain Connectivity Toolbox (BCT; brain-connectiv-

ity-toolbox.net; Rubinov and Sporns, 2010) was used to
compute many graph theory measures for the HC. In
certain cases, the Matlab code was modified slightly to
allow (or correct) for the possibility of self-connections of
neuron types along the main diagonal of the connectivity
matrix. In addition, some topological metrics were mea-
sured on the unweighted network, whereas others man-
dated connections weighted by the sign of the primary
neurotransmitter of the presynaptic type: �1 for glutama-
tergic and –1 for GABAergic. To study the robustness of
our results, we also examined a version of the network

wherein connections of the most numerous principal cell
(PC) types, namely DG granule cells, CA3 pyramidal cells,
and CA1 pyramidal cells, were weighted as �10.

Clustering coefficient, characteristic pathlength, and
degree

Certain standard measures, including clustering coeffi-
cient (CC) and characteristic pathlength (CPL), are used to
encapsulate the topology of the graph and are thus com-
puted on a static, binary version of the network that
disregards excitation and inhibition. Briefly, clustering co-
efficient is the fraction of connections among the imme-
diate neighbors of a node (i.e., the set of neuron types that
may receive information directly from that node) relative to
the number of possible connections (Fagiolo, 2007). For
example, granule cells have 33 immediate neighbors that
are interconnected with 476 (of a possible 332

� 1089)
edges; CCgranule � 476/1089 � 0.437. This quantity, com-
puted for each node, is then averaged over all neuron
types to yield a single global value, CCHC.

Characteristic pathlength is defined as the mean of the
shortest directed (i.e., axon to dendrite) path from a node
to every other neuron type in the network. For example,
granule cells and CA1 pyramidal cells are not in direct
contact, so communication requires at least one interme-
diary; in fact, there are five two-step pathways (via types
[19], [20], [44], [46], or [47]). Determining analogous dis-
tances from granule cells to the other types in the network
and averaging gives CPLgranule � 2.11, meaning that they
can send information anywhere in the network in an av-
erage of just over two steps. Then, averaging this quantity
over all 122 types yields a single global value, CPLHC.
Mathematically,

CPLHC �
1

n
� �

i�1

n �1

n
� �

j�1

n

shortest path i, j� ,

where n is the number of nodes in the network, i is the set
of presynaptic types, and j is the set of postsynaptic
types. Neuron types that have axons and dendrites colo-
cated within at least one parcel are self-connected and
have a shortest pathlength to themselves of zero (e.g., the
shortest path from CA1 pyramidal cells to CA1 pyramidal
cells is 0); non–self-connected types require multistep paths
to communicate with themselves (e.g., traveling from gran-
ule cells to granule cells requires two steps).

Node degree is the number of connections made by a
node [out-degree (OD)], to a node [in-degree (ID)], or the
sum of these quantities [total-degree (TD), also called
degree centrality]. Again, granule cells have 33 immediate
neighbors (ODgranule � 33), and they are immediate neigh-
bors to 26 other types (IDgranule � 26); TDgranule � 33 � 26
� 59. Self-connected neuron types thus contribute two
connections to their TD. A related measure, polarity, is
defined as (ID – OD)/TD (Shih et al., 2015).

Topology comparison analysis
For six well-known network types, we generated 1000

random networks identical in size to the HC and com-
pared their CC and CPL. The two metrics were then
combined to measure the overall (i.e., global and local)
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communication cost. Specifically, the cost was computed

as follows:

Communication cost � � log10�CC� � log10�CPL� .

For each network type, the resulting cost was linearly

scaled so that the reference network (HC) was given

unitary value.

The algorithms to produce the Erdös–Rényi (ER), lattice,

ring, Watts–Strogatz (WS), Barabasi–Albert (BA), and Kl-

emm–Eguílez (KE) networks were also implemented in

Matlab (open-source code: github.com/Hippocampome-

Org/GraphTheory) using published pseudocode (Prette-

john et al., 2011). Briefly, an ER network (Erdös and Rényi,

1960) is constrained only by its number of nodes and its

connection density; we used HC network values of 122

and 21.7%. These graphs were constructed by consider-

ing all possible connections among the nodes and insert-

ing them with probability equal to the connection density.

A square lattice network, in contrast, is heavily con-

strained by the number of nodes and edges and the fact

that each node must be connected to its K nearest neigh-

bors (where K is the ratio between HC edges and nodes:

3236/122 � 26.5). A ring network, a one-dimensional

string of nodes “bent” into circular form by joining the

ends, is similarly constrained. Starting from a highly clus-

tered ring graph, WS (Watts and Strogatz, 1998) networks

were created by considering each connection for random

rewiring with constant probability (prewiring � 0.4) to intro-

duce long-distance (i.e., cross-network) edges. For BA

scale-free networks (Barabasi and Albert, 1999), we

started from an initial size of 10 fully connected nodes and

serially attached the remaining 112 nodes to preexisting

nodes chosen with probability proportional to their OD in

the growing network. This preferential addition of new

nodes to higher-degree nodes yields the desired power

law distribution for the final network degree, with the vast

majority of nodes having very small OD and a select few

types having large OD. Finally, KE networks (Klemm and

Eguíluz, 2002) are generated to obtain high CC and low

CPL (like WS networks), along with a scale-free OD dis-

tribution (like BA networks). The algorithm is similar to that

used for BA networks, but attachment of new nodes is

preferentially biased toward high-degree, highly clustered

“active” nodes (Prettejohn et al., 2011).

Modularity

The HC modular, or community, structure was bared by

computationally assigning neuron types into nonoverlap-

ping groups to maximize within-community connectivity

and minimize extramodular cabling. Community assign-

ments are evaluated by a modularity score, Q, which

quantifies the fraction of connections in a module relative

to those expected by chance (Newman, 2004). Practically,

we use BCT code based on a spectral algorithm that

optimizes Q over possible HC divisions (Leicht and New-

man, 2008). The algorithm was run 100 times, and the

detected communities did not change.

Rich club analysis
Rich club (RC) analysis used a modified version of BCT

code to identify cores of nodes that are more highly
connected to each other than expected by chance (Zhou
and Mondragon, 2004; Colizza et al., 2006; McAuley et al.,
2007; van den Heuvel and Sporns, 2011). First, a connec-
tivity fraction (Cf) is computed for each degree level k from
1 to the maximum TD in the network (i.e., 114, for CA3c
pyramidal cells) as the proportion of edges that connect
nodes of degree �k relative to the maximum number of
edges that such nodes might share (Colizza et al., 2006).
These Cf values are then normalized relative to the aver-
age for a given k in a population of 1000 random networks
synthetically generated to have fixed OD and ID distribu-
tions matching the HC. Raw p values were calculated at
each k based on the Cf percentile rank of HC within the
population of 1000 random networks. Normalized Cf val-
ues that were significantly greater than 1 over a range of
k’s with p values smaller than 0.05 after false discovery
rate multiple testing correction (Storey, 2002) were des-
ignated as members of RC tier I. The cutoff for inclusion in
RC tier II was selected based on the relatively large Cf

increase in HC between k � 77 (Cf � 0.630) and k � 78 (Cf

� 0.766).

Absorption and driftness analyses
The shortest pathlengths between neuron types were

again measured using BCT. The number of paths of
length y between all pairs of types may be found simul-
taneously by multiplying the unweighted connectivity ma-
trix, M, by itself y times (e.g., the matrix entries obtained
by calculating M3 are the number of paths of exactly three
steps between types). Absorption and driftness values
(Costa et al., 2011) were also computed in Matlab. The
absorption metric simulates average random walks as a
surrogate for dynamic activity in the network. In a given
random walk from a starting neuron type to a destination,
the walk progresses with equal probability to any of the
connected types and continues until the target is reached.
Averaging a large number of independent random walks
mimics parallel propagation of activity over all possible
paths connecting two neuron types. Driftness is calcu-
lated as the absorption value divided by the CPL for each
pair of neuron types (Costa et al., 2011).

Connectivity superpattern and pattern profiles
At a local level, we investigated the configurations of

connectivity (or lack thereof) for all groupings of three
neuron types. In a circuit with 122 elements chosen three
at a time without regard to order, this equates to a total of
295,240 combinatorial relationships. In one analysis, we
examined connectivity “superpatterns” without distin-
guishing excitatory and inhibitory connections (i.e., the
network was considered directed but unweighted); in a
second, we studied the directed and weighted network
patterns. For the sake of interpretability, self-connections
among types were not considered as differentiators in this
analysis. Superpattern and pattern libraries and detection
algorithms were built from scratch using Matlab (github-
.com/Hippocampome-Org/GraphTheory).
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Excitability scores (ESs) quantify the net counterbal-
ance of excitation versus inhibition occurring within a triad
of neuron types. These scores are computed at each
node in the pattern, then summed over the three nodes. If
a node does not receive a connection from either of the
two other nodes, its score is equal to its sign (�1 if
excitatory node, –1 if inhibitory); this node is not amplified
or dampened by the rest of the pattern. If a node receives
a connection from one or both other nodes in the pattern,
its score equals its sign multiplied by 1.1 for each incom-
ing excitatory connection and by 0.9 for each incoming
inhibitory connection. Explicit examples of this computa-
tion are included in Results.

Patterns may or may not have a unique ES. Thus, for
each ES, we also quantified the relative prevalence within
the detected modules to determine whether the underly-
ing communities tended to use repeatedly certain sets of
excitatory/inhibitory configurations. The relative impor-
tance of these interactions to a module is computed
based on the number of times an ES appears within that
module relative to the overall network.

Detection of motifs and antimotifs
Analogously to the rich club analysis, counts of HC

superpatterns and patterns were compared to a popula-
tion of 1000 random networks to find those that were
significantly over- or underutilized relative to expectancy,
called motifs and antimotifs, respectively (Milo et al.,
2002, 2004). These random networks were generated in
parallel by selective edge swaps chosen stringently and
conservatively so as to maintain the underlying spectrum
of two-node (i.e., dimer) superpatterns and patterns. Spe-
cifically, the random networks preserved the HC number
of excitatory (E) and inhibitory (I) nodes and connections;
the number of E to E, E to I, I to E, and I to I connections;
and the OD and ID of each node. Accordingly, each edge
in the graph had a limited number of valid swap partners
from which a suitable mate was randomly chosen. Fifty
swapping passes were made over all edges to sufficiently
scramble the original network.

The statistics used for the motif/anti-motif analysis were
similar to those of the RC analysis: raw p values for each
pattern were based on the percentile rank of the HC count
within the random population. Patterns with percentile
ranks �95 (meaning that the pattern appeared in the HC
more than in 95% of the 1000 random networks) under-
went multiple testing corrections to determine whether
they constituted statistically significant motifs. Similarly,
patterns with percentile ranks �5 underwent testing to
identify antimotifs. Adjusted p-values were calculated
with the step-down “min P” procedure (Westfall and
Young, 1993), and patterns with corrected values �0.05
were deemed significant.

Pairwise correlation analysis
Pairwise correlations were evaluated among 315 prop-

erties across the 88 neuron types in the DG, CA3, CA2,
and CA1 subregions. In addition to connectivity proper-
ties detailed herein (degree, strength, polarity, and usage
of superpatterns/patterns), we examined morphological
features (e.g., somatic, axonal, and dendritic locations, as

well as the projecting or local nature of axons), molecular
markers (e.g., expression, or lack thereof, of various
calcium-binding proteins, neuropeptides, or receptors),
and assorted passive and spiking electrophysiological
parameters (e.g., input resistance, fast or slow membrane
time constants, action potential width). Neuron types from
subiculum and EC were excluded from this analysis owing
to the scarcity of available molecular and electrophysio-
logical information. Direct and inverse relationships be-
tween properties were detected using 2-by-2 contingency
matrices, and p-values were calculated with Barnard’s
exact test (Lydersen et al., 2009).

Results
In building the neuron type connectome of the hip-

pocampal formation, we extracted information for 167
known connections and 68 nonconnections from the lit-
erature. For the remaining 14,649 type pairs (i.e., 1222 –
235 known connections or nonconnections), we calcu-
lated the spatially based potential connectivity, which
excluded the possibility of connections for 11,580 pairs of
neuron types. Consequently, 3069 potential connections
were combined with 167 known connections to obtain the
HC network explored here: a graph of 38 excitatory and
84 inhibitory neuron types (nodes) interlinked by 3236
edges (1216 excitatory and 2020 inhibitory; full connec-
tivity data may be downloaded from Hippocampome.org/
netlist).

Highly specialized topology
We first compared the HC clustering coefficient and

characteristic pathlength to those of six identically sized,
well-known network types (ER, BA, WS, KE, rings, and
lattices). Because of the relatively small size of the graphs,
CC and CPL showed little variance over the 1000 ran-
domly generated variants of each network type (Fig. 2A).
CC is indicative of the tendency of nodes to gather in
tightly knit groups that may correspond to functional pro-
cessing units, whereas CPL reveals the relative expanse
of the network. Together, these metrics characterize net-
work topology in terms of communication cost: large-
world networks (Boccaletti et al., 2006) contain densely
connected groupings of nearby nodes, but remote nodes
are reachable only by paths with many steps (dark green
background shading in Fig. 2A). At the opposite extreme,
uniform random networks have low CC and CPL because
of the arbitrary placement of their edges (dark gray shad-
ing). Scale-free networks (gold shading) and small-world
networks (blue shading) represent two popular mixed
cases, low CC/high CPL and high CC/low CPL, respec-
tively. HC displays both high CC, analogous to rings and
lattices, and low CPL comparable to ER random net-
works. This suggests that hippocampal neuron types rap-
idly combine information across short pathlengths into
targeted areas, where specialized processing occurs
within tightly interconnected circuits. In fact, not only is
HC classifiable as a small-world network, but its com-
bined global and local communication cost is lower than
any of the other tested networks (Fig. 2B). Moreover,
when PC connections were weighted 10 times more

New Research 7 of 21

November/December 2016, 3(6) e0205-16.2016 eNeuro.org



heavily than other edges, both CPL and the overall com-
munication cost further decreased by 25%.

Significant community structure
The organization of HC connectivity can be visually

inspected on a circular graph (Fig. 3A). The innate com-
munity structure is identified by grouping the 122 neuron
types to maximize intramodular wiring and minimize in-
termodular wiring. The modularity score Q measures the
effectiveness of the resulting grouping, with values of Q �

0 indicating randomness (i.e., the groupings are equally
good or poor), and in practice, Q � 0.3 pointing to note-
worthy community structure (Newman, 2004). The HC
network is optimally subdivided into four modules with Q
� 0.53. Connections between neuron types within one of
these communities account for 81% (2622/3236) of all
graph edges, and the average connection density of the
four modules is 0.675, dwarfing the between-module
connection density of 0.041 (614/3236). Interestingly,
the communities do not themselves partition into
smaller submodules, as the average Q score for each of
the modules is 0.09 (Fig. 3B). Thus, the four detected
communities are the major, high-level processing units
of the network.

Even though axons of neuron types frequently cross
subregion boundaries to form connections (i.e., 33 of 122
types project to different subregions from their soma
location), the detected communities closely aligned with
DG, CA3, CA1, and EC (the first three are shown in Fig.
3C), the most highly studied subregions of the hippocam-
pal formation. These subregions are also the major play-
ers in the trisynaptic loop (TSL) relay (highlighted as thick,
brightly colored chords in Fig. 3A). The DG module iden-
tified by this analysis contained all 18 DG types, along
with one of the CA1 types that projects to DG (CA1
neurogliaform projecting). The CA3 module included all 25
types from CA3 and four of five types from less-
researched CA2. The exception, CA2 bistratified cells,

belonged to the CA1 module, along with the remaining 39
CA1 types and SUB CA1-projecting pyramidal cells. Fi-
nally, the EC module contained all 31 EC types and the
other two subicular neuron types. Notably, this core mod-
ular structure was revealed even without differentially
weighting the PC connections.

Degree distribution and hubs
The numbers of connections made and received by a

neuron type respectively correspond to out- and in-
degrees (Fig. 4A), and types with a relatively high TD may
be generally considered network hubs (van den Heuvel
and Sporns, 2013). The HC OD distribution (thin red col-
umns) has both a more asymmetric and a more heavily
tailed spread than the ID distribution (thick blue columns),
as quantified by skewness and kurtosis values, respec-
tively. Although both distributions have positive skew-
ness, indicating a right-shifted distribution attributable to
the presence of network hubs, the skewness of the OD
distribution is more than four times larger. More strikingly,
the OD kurtosis (2.87) denotes a much heavier tail than is
found with the ID distribution, whose negative value close
to zero indicates near-normal, if not thinner-than-normal,
tails (Pearson, 1905; Westfall, 2014).

Altogether, this evidence points to an axonal architec-
ture that is both anomalous and nonrandom in contrast to
a relatively ordinary dendritic architecture. The peculiarity
in the axonal distribution is accentuated by breaking
down the data by neuron types that project to another
subregion (Hippocampome.org/morphology) versus those
with only local axons (Fig. 4B). The projecting types (thick
green columns; n � 33) show a heavy, right tail versus the
light, left tail of the local types (thin gray columns; n � 89).
These tails indicate, separately, the presence of neuron
types that serve as highly connected hubs and types that
are decidedly particular in the connections they form.

The top and bottom neuron types by TD may be re-
spectively considered global hubs and antihubs (Table 2).

Figure 2. Comparison of the HC to well-known types of equivalently sized random networks. A, Broad categorizations, indicated by

background shading from the four corners, aid in grouping and analyzing network topology along two dimensions of interest: CC and

CPL. Data points for six types of random networks are averaged from 1000-network datasets; standard deviations are illustrated by

the diameter. B, The combination of high CC and low CPL in the HC results in an optimally low overall communication cost in the

network. BA, Barabasi–Albert; ER, Erdös–Rényi; KE, Klemm–Eguílez; Latt, square lattice; WS, Watts–Strogatz.
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Figure 3. Modular structure of the potential hippocampal connectome. A, Chord diagram of the potential connectivity among all 122

types (produced with Circos software: Krzywinski et al., 2009). Thick chords with arrows emphasize the trisynaptic loop (dark green,
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The list signals the importance of the CA3 module and
highlights its central role in the TSL circuit: pyramidal cells
from CA3, CA3c, and CA2 are three of the four most
connected neuron types in the network. The other, CA1
back-projection cells, is an interneuron type in CA1 with
axons that project upstream to CA3 (and DG), opposite to
the TSL flow. Notably, granule cells are not a global hub
based on pure topology (i.e., they are only the 43rd most
connected neuron type), but they become the third most
critical type in the 10� PC weighted network. Thus gran-
ule cells do not influence a large number of neuron types;
rather, their importance in the HC is largely due to their
relative abundance.

Certain neuron types are global hubs because of a
high OD even with a low ID (i.e., they have a dominant
axonal architecture); others are more balanced. The top

four global hubs have OD �� ID (i.e., a large, negative
polarity) and constitute network divergence points.
Global antihubs, with positive polarities, such as axo-
axonic cells, basket cells, and interneuron-specific
cells, indicate selected targets of information conver-
gence. In contrast, provincial hubs, which by definition
do not project outside of their module, are highly con-
nected within the module and serve as critical traffic
directors (van den Heuvel and Sporns, 2013). The top
provincial hubs in the DG, CA3, and CA1 modules
(bottom portion of Table 2) are again not restricted to a
certain polarity. In DG, MOLAX cells tend to funnel
information to specific points within the DG, but CA1
oriens-bistratified cells distribute information widely to
36 of 41 CA1-module types; CA3 bistratified and ivy
cells have relatively balanced, neutral polarities.

Rich and ultrarich clubs
Rich club analysis showed that the global hubs are

significantly more connected among each other than
could be expected by chance. In fact, all nodes with TD �

55 (not just the top global hubs) have statistically higher
interconnectivity than in equivalent random networks (Fig.
5A; normalized data � 1). Although nearly half (56 of 122;

continued

perforant pathway lines; light green, temporoammonic path; red, mossy fibers; blue, Schaffer collaterals; orange, projection from CA1

to EC layer V); other connections are colored randomly to optimize visibility. Types are identifiable by both numbers in brackets

(names provided in Table 1) and axon-dendrite patterning within the subregion of their soma location (colored box convention and

layer ordering from inside-out as in Fig. 1; layers for CA1: SLM, SR, SP, SO; for subiculum: stratum moleculare, SP, polymorphic layer;

for EC: I–VI). Shaded bars in the innermost ring show the total number of (signed) connections made by that type; excitatory types

have outward-facing black bars and inhibitory types inward-facing gray bars. B, Modularity scores (Q) for the entire network and for

the four detected modules. C, The communities correspond closely to the DG (module connection density 75.9%), CA3 (59.3%), CA1

(64.6%), and EC (70.1%; not shown). Numbered types and colored arrows as in A.

Figure 4. Breakdown of degree distribution to isolate neuron

types with unusual connectivity. A, Difference in the axonal and

dendritic architecture is evident in the OD (red data series) and ID

(blue) distributions. B, The two OD tails are respectively attrib-

utable to highly connected hubs within the subset of neuron

types that project to another subregion (green series; positive

skewness) and to certain local neuron types with highly specific

connectivity (gray; negative skewness).

Table 2. Identification of hubs and antihubs with high and

low TD, respectively.

Module Neuron type OD ID TD Polarity

Global hubs

CA3 CA3c pyramidal� 84 30 114 –0.47

CA1 CA1 back-projection† 79 25 104 –0.52

CA3 CA3 pyramidal� 65 33 98 –0.33

CA3 CA2 pyramidal� 79 9 88 –0.80

CA1 CA1 pyramidal� 41 46 87 0.06

CA1 CA1 quadrilaminar† 41 43 84 0.02

CA1 CA1 radial trilaminar† 37 47 84 0.12

CA1 CA1 LMR projecting† 45 35 80 –0.13

EC MEC LV pyramidal� 51 27 78 –0.31

CA3 CA3 trilaminar† 62 13 75 –0.65

Global antihubs

CA1 SUB axo-axonic† 2 15 17 0.76

CA3 CA3 horizontal AA† 2 13 15 0.73

CA3 CA2 basket† 5 9 14 0.29

CA3 CA2 SP-SR† 5 8 13 0.23

Provincial hubs

DG MOLAX† 17 32 49 0.31

CA3 CA3 bistratified† 26 28 54 0.04

CA3 CA3 ivy† 26 25 51 –0.02

CA1 CA1 oriens-bistratified† 36 24 60 –0.20

Polarities quantify the net in/out balance of information flow. �Excitatory;
†inhibitory.
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45.9%) of the neuron types belong to this RC I (both light-
and dark-purple shaded regions of Fig. 5A), the top eight
hubs from Table 2 are also members of a tighter “richest
of the rich” club within (RC II; dark-purple shading only),
boasting the highest edge density of 76% (Fig. 5B). Mem-
bers of RC I consist of types from all four modules (Fig.
5C), but a disproportionate number (42 of 56) come from
CA1 and EC, as these modules are densely connected
and have the most nodes. Interestingly, all RC II types are
located in CA3 and CA1 (Fig. 5D).

Robustness to random failures
Any two neuron types within a network can typically

connect through multiple alternative pathways, providing
redundancy for information flow. The maximum shortest
pathway length in HC, five steps, was found only between
certain DG and EC types, a route that requires upstream
travel against TSL current (Fig. 6A). Approximately two
thirds of all pairs of neuron types are connected by two
steps or fewer, and nearly 95% by three (Fig. 6B, percent-
age labels). Moreover, increasing the length of possible
paths by just a single step raises the number of available
alternates by successive orders of magnitude (Fig. 6B,
blue columns). For example, there are on average 5.81
available two-step pathways in HC between two neuron
types. Although certain pairs have no such pathways
(e.g., from DG to EC), others have many possible two-step
routes at their disposal (Fig. 6C).

The absorption value for a pair of neuron types is the

average length of all paths (the length of a “random walk”)

between them (Fig. 6D). The overall average absorption of

HC is 230.5. Whereas the out-absorption vectors (i.e., the

rows in the matrix) are relatively similar across all nodes,

the in-absorption vectors (columns) are highly specific to

a given node. Therefore, neuron types are activated with

just as much ease or difficulty from any part of the net-

work, depending primarily on the dendritic architecture of

the type and its close neighbors. CA2 and subiculum,

being hard to reach with few connections arriving at a

select few types, and EC, having overall unidirectional

information flow through the TSL, have high in-absor-

ptions. Driftness corresponds to the absorption normal-

ized by the shortest pathlengths between the types (Fig.

6E). Intra-CA2 and intra-EC values are again high, but

those for most other type pairs are low, indicating the

existence of multiple pathways of similar scale to the

shortest path. This feature suggests that the HC network

could continue to operate at near-optimal levels after

insult to random neuron types and connections. Notably,

however, whereas the absorption values are unchanged

when accounting for 10� PC weighting, the overall aver-

age driftness increases from 111.8 to 170.0. Thus, the

“shortest” path between many types (i.e., through the

PCs) is both unique and irreplaceable, and the PCs rep-

resent points of vulnerability.

Figure 5. Nested rich clubs within the HC. A, Top, distribution of nodes by TD; bottom, nodes with TD �55 are members of a densely

interconnected rich club. Eight members of this club are also members of a second “ultra-rich” club level (dark purple shading; light

purple shading indicates members of RC I but not RC II). B, Connection densities of RC I and RC II are elevated compared with the

rest of the network. C, Modular analysis of each RC tier. D, The 56 neuron types of RC I (top) and the subset constituting RC II

(bottom).
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Characteristic connectivity superpattern profile
To examine the local interactions of neuron types, we

considered all 16 possible ways in which three un-
weighted nodes can interrelate: 13 in which all three
nodes directly participate in at least one connection (Fig.
7A, graphs labeled A–M) and three with at least one node
disconnected from the others (labeled –A, –B, and –C).
The frequency of occurrence for these 16 building blocks
constitutes the HC connectivity superpattern profile (Fig.
7B). An absolute majority of the 295,240 trimer occur-
rences in HC (248,118 or 84%) involve at least one dis-
connected type. Of the fully connected trimers, the
superpattern consisting of a single uplinked mutual dyad
(superpattern F; name modified from Milo et al., 2002) and
the single input module (superpattern C; named after

Zaslaver et al., 2004; Alon, 2007) represent nearly a col-
lective one third (15,443 of 47,122; 32.8%). Most interac-
tions take place intermodularly (Fig. 7C) involving
projecting neuron types. In both F and C, a single node
disperses information to two neuron types that do not
interact with each other, with superpattern F receiving
direct feedback from one partner and C containing no
feedback from either partner. In contrast, superpattern I, a
similar structure containing a chain of two mutual dyads in
which both receivers of the dispersed signal provide di-
rect feedback, is one of the least frequent. These obser-
vations point to a strong, net-unidirectional information
flow between modules, often in the TSL direction. Fur-
thermore, as the internal connection densities of trimer
superpatterns increase (i.e., across vertical, black dotted

Figure 6. Alternate pathways between nodes afford resilience to the network. A, Length of the shortest directed route between each

pair of neuron types. Presynaptic types are in rows, postsynaptic types in columns; see Table 1 for type names and ordering. Color

gradient key: yellow, direct connection; orange, red, and dark red, two, three, and four steps, respectively; black, highest pathlength

(five steps). B, Orange labels indicate the percentage of type pairs that can be bridged by a path of a given length, k (shown for k �

5). In addition, at each k, blue columns show the average number of available conduits across all pairs of types. C, For k � 2, peak

height in a three-dimensional plot indicates the number of two-step paths between types. D, Absorption measures the average length

of all routes from (rows) and to (columns) other types. E, Driftness is relatively low for most type pairs, pointing to the availability of

multiple pathways between nodes that are similar in length to the shortest path. Color gradient for D and E as in A.

New Research 12 of 21

November/December 2016, 3(6) e0205-16.2016 eNeuro.org



lines in Fig. 7C), with the exception of F and C, intramodu-
lar utilization also increases, underscoring the importance
of signal fine-tuning for local microcircuit interactions.

Next we analyzed the breakdown of superpatterns
in the CA1 module as used by pyramidal cells versus
interneurons (Fig. 7D, blue line). Although many CA1 in-
terneurons interact primarily with pyramidal neurons,
many others, including calretinin-positive (CR�; Gulyás
et al., 1996) and vasoactive intestinal peptide–positive
(VIP�; Acsády et al., 1996) cells do not, and the interac-
tions of many other interneuron types are unknown. Py-
ramidal cells dominate the usage of all superpatterns
except C, E (a feedforward loop), and K (a double uplinked
mutual dyad). Interestingly, in CA1, such diminution is
specifically attributable to elevated use of these trimers by
perisomatic-targeting (PST) interneurons, namely CA1
axo-axonic cells, horizontal axo-axonic cells, basket cells,
basket CCK� cells, and horizontal basket cells (Fig. 7D,
red dotted line).

Weighted pattern profile and neuron type fingerprint
analysis

The number of distinct connectivity trimers grows sub-
stantially when distinguishing excitatory and inhibitory
nodes. After considering rotational symmetry, 104 possi-
ble interaction patterns exist between three nodes: 86
fully connected and 18 with at least one disconnected

node. For example, eight connectivity patterns corre-
spond to superpattern F, the single uplinked mutual dyad
(Fig. 8A). The ES captures the overall excitatory or inhib-
itory nature of a pattern by accounting for the net ampli-
fication and dampening of each node by their connected
partners. Consider, for instance, pattern F4: a mutually
interacting pair of excitatory and inhibitory types, with the
former being “uplinked” to a second inhibitory type. Every
node in F4 receives a connection from another node and
is scored independently. The score of the inhibitory node
on the right of the pattern (when rotated as in Fig. 8A) is
equal to –1.1 because the original value, –1, is amplified
(i.e., multiplied) by an inbound excitatory signal. The score
of the node at the bottom of the pattern, another inhibitory
type that receives excitation, is identical. At the top of the
pattern, the original value of this excitatory type (�1) is
dampened by an inbound inhibitory edge from the bottom
node, yielding a value of 0.9. Summing the scores from all
three types gives an overall ES � (–1.1) � (–1.1) � (0.9) �

–1.3 for this pattern.
The ES distribution for all 104 trimer patterns has four

narrow peaks determined by the number of excitatory or
inhibitory nodes therein; accordingly, trimer neuron type
patterns may be categorized as strongly inhibitory, mildly
inhibitory (e.g., pattern F4, which has two inhibitory
types), mildly excitatory, and strongly excitatory. The
abundance of inhibitory types over excitatory types in the

Figure 7. Superpatterns and HC usage. A, Connectivity superpattern trimers are unweighted subgraphs of three nodes (disconnected

superpatterns outlined in gray). B, Counts of disconnected and connected superpatterns. C, Percentage of connected superpatterns

localized to a given module or found between modules. D, Within CA1, superpattern usage also varies by cell type, as indicated by

ratios of pyramidal cells to interneurons (blue line) and perisomatic interneurons to dendritic-targeting neurons (dotted red line).
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DG, CA3, and CA1 modules yields higher usages of

strongly and mildly inhibitory patterns, consistent with the

known diversity of GABAergic interneurons (Fig. 8B). Two

patterns, L8 and F4, are particularly prominent in certain

modules. L8, the all-inhibitory version of superpattern L

(Fig. 7A) consisting of a feedback loop between two

mutual dyads, is used ubiquitously in CA1 to fine-tune

inhibition. In contrast, the pervasiveness of F4 in CA3

(and, in fact, the whole HC) is almost entirely due to CA3

pyramidal cells (Fig. 8C), which heavily use this pattern to

disperse information simultaneously to both CA3 in-

terneurons (many of which supply direct feedback) and

CA1 interneurons via the Schaffer collaterals (no direct

feedback). In fact, pattern “fingerprint” profiling reveals

that F4 is by far the dominant class of interactions for CA3

pyramidal cells (Fig. 8D, brown data series; note log radial

scale). The overall HC usage of all 86 connected patterns

(blue shading) is shown for comparison.

Moreover, HC conspicuously underutilizes superpat-

tern G, along with each of the patterns G1–G4 (45 total

interactions of 295,240). Indeed, these patterns, corre-

sponding to a unidirectional feedback loop with no recip-

rocal connections, are avoided in favor of other structural

blocks. When two unidirectional connections transmit sig-

nals forward along a chain in HC, nodes 1 and 3 are rarely

connected by unidirectional feedback as in G (0.5% of

such cases); instead, they are either unconnected in a

three-node chain (superpattern B; 38.5%), connected by

a feedforward link (superpattern E; 49.8%), or connected

by a reciprocal edge that serves both feedback and feed-

forward purposes (superpattern J; 11.2%). This strikingly

uneven distribution is consistent with forward-directional

Figure 8. Weighted trimers analysis based on excitatory/inhibitory neuron type distinction. A, The eight patterns that constitute

superpattern F, the single uplinked mutual dyad. Black lines and nodes are excitatory, gray lines and nodes are inhibitory, and blue

lines indicate reciprocal connections that are excitatory in one direction and inhibitory in the other. ES values are shown in boxes in

which background shading indicates strongly and mildly excitatory and inhibitory patterns; key shown in B. B, Relative importance

of each ES to the DG, CA3, and CA1 modules. C, Pattern F4 is heavily utilized by CA3 and CA3c pyramidal cells; relatively light usage

of this pattern by CA1 pyramidal cells and CA3 interneurons is shown for comparison. D, The CA3 pyramidal cell connected pattern

fingerprint (brown) is plotted on top of the overall HC fingerprint (light blue) using a logarithmic scale.
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circuitry in which feedback tends to be relatively immedi-
ate and curbed (e.g., in the form of a reciprocal edge) or
else drawn out over a more global scale. Comparing the
counts and circuit locations of feedforward and feedback
loops (superpatterns E and G, respectively), along with
specific examples and tabulated interpretations, clearly
illustrates this trend (Fig. 9). Note that, whereas only four
feedback patterns exist due to rotational symmetry, there
are eight feedforward patterns.

Motifs and antimotifs
To identify significantly over- or underrepresented sub-

circuits, we benchmarked the HC networks to random
graphs in which global topology was obliterated, but the

underlying composition of all dimers was preserved. Sur-
prisingly, superpattern topology was the most important
factor in determining whether a pattern was a motif or an
antimotif (Fig. 10A). In other words, most superpatterns
(13 of 16) are either motifs or antimotifs, independent of
the excitatory/inhibitory make-up of their nodes. Only the
three-node chain, the single downlink to a mutual dyad,
and the single uplinked mutual dyad (superpatterns B, D,
and F) contained a mixture of motifs and antimotifs
(stacked green and red columns). For the others, the
connectivity itself was either over- or underutilized relative
to the expectation based on HC dimer distribution. Pat-
terns belonging to D (single downlink to a mutual dyad), G
(feedback loop), and I (chain of two mutual dyads) were

Figure 9. Three-node feedback loops (superpattern G) are generally avoided in HC in favor of other two-step chains, such as

feedforward loops (superpattern E). The excitatory/inhibitory combinations of these patterns are displayed in the right and left

columns along with representative neuron type groupings and a computational interpretation. Black dots and arrows indicate

excitatory types and connections; gray signifies inhibitory types and connections; and blue dots, located at the output of the loop,

are excitatory in one pattern combination and inhibitory in the other. Total network occurrences for each pattern are shown in square

brackets.
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severely underutilized, but patterns –B (disconnected sin-
gle edge), –A (disconnected mutual dyad), E (feedforward
loop), H (double downlink to a mutual dyad), K (double
uplinked mutual dyad), L (feedback with two mutual dy-
ads), and M (fully connected triad) were all strong motifs.
These results were robust to PC weighting. Additionally,
motifs and antimotifs were module specific (Fig. 10B–D).
The DG module contained a mixture of motif and antimo-
tifs for many superpatterns. Less densely connected su-
perpatterns, including simple regulation (Alon, 2007),
three-node chain, single input module, and single down-
link to a mutual dyad (superpatterns A–D) were underuti-
lized in CA3; instead, these superpatterns tended to be

slightly overutilized in CA1, where F and G were anti-
motifs.

Pairwise correlations

For the 88 neuron types not located in EC or subiculum,
we tested the interactions among 315 connectivity, mor-
phological, molecular, and electrophysiological properties
and detected 14,217 (14.3%) significant correlations (p �

0.05). These results fell across a spectrum of novelty, and
the more interesting outcomes are presented here.

As in the motif analysis, subregional differences in the
usage of superpatterns and patterns were revealed. DG
types have high participation (relative to other subregions)
in three-node chains (superpattern B; p � 0.02) but shun
dense, highly connected superpatterns, including I (chain
of two mutual dyads; p � 0.002), J (single point feedfor-
ward and feedback loops; p � 0.006), K (double uplinked
mutual dyad; p � 0.00002), L (feedback with two mutual
dyads; p � 0.00006), and M (fully connected triad; p �

0.0005). Interestingly, CA3 and CA1 do not share parallel
high or low participation in any superpattern or pattern.
Instead, one pattern is highly used in CA1 but avoided in
CA3, and one pattern displays the opposite trend. Pattern
H6, in which an interneuron acts as a single input module
dispersing information to two interneuron recipients with
reciprocal feedback between them, is highly utilized in
CA1 and underutilized in CA3. Contrarily, pattern L3, a
reciprocal edge between two excitatory types, one of
which is connected reciprocally with an interneuron and
the other of which receives unidirectional information from
that interneuron, is avoided in CA1 but highly used in CA3.
This connectivity pattern is especially utilized by CA3 and
CA3c pyramidal cells to communicate with each other
and with a third (interneuron) partner.

Pairwise contingency analysis also detected a set of
characteristics differentiating projecting from local neu-
rons. Projecting types participate highly in superpatterns
in which information converges to a single point onward
through the TSL (p � 0.0003): superpattern A (simple
regulation) and superpattern E (feedforward loops). Con-
versely, projecting types use sparingly superpattern C
(single input module) and particularly pattern C5 (p �

0.0003), which is disperse excitation to two inhibitory
nodes. CA1 back-projection cells, a major GABAergic
projecting type, are the exception. This neuron type pri-
marily interacts with other hippocampal interneurons and
makes use of patterns C6 (inhibitory dispersal to two
other GABAergic types) and F8 (Fig. 8A) more than any
other neuron type.

Last, connectivity was clearly correlated with molecular
expression (Hippocampome.org/markers). Although the
correlation between subcircuits involving only inhibitory
types (e.g., from superpatterns A, D, I, and L) with expres-
sion of VIP� and CR� (two markers of interneuron-
specific interneurons) was expected, other observations
were not. For example, even though somatostatin is not
associated with interneuron-specific interneurons, soma-
tostatin-positive (SOM�) cell types also tend to interact in
groupings with two other GABAergic types (sometimes,
but not always, with interneuron-specific types). More

Figure 10. A, Motifs and antimotifs are largely determined by HC

superpattern topology. Although some superpatterns are neu-

tral, most superpatterns are strong motifs. Only superpatterns D,

G, and I are severely underutilized relative to the population of

random networks. A–D, The motif/anti-motif balance of individ-

ual superpatterns in the network does not necessarily hold for

individual modules (e.g., superpatterns C and J).
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specifically, SOM� types are among the top users of the
all-inhibitory versions of superpatterns D, E, F, H, J, L, and
M. In addition, neurons expressing parvalbumin (including
perisomatic-targeting basket and axo-axonic cells) partic-
ipate copiously in superpattern C (single input module)
but sparingly in superpatterns B (three-node chain), D
(single downlink to a mutual dyad), J (a single point feed-
forward and feedback loop), and M (fully connected triad).

Sensitivity to future additions or subtractions of
neuron types

Finally, to examine the robustness of our results to
reasonable changes in network size and composition, we
reran all analyses on two modified networks. First, we
eliminated 26 of the 122 neuron types (asterisks in
Table 1), along with their connections, that either were not
well known (e.g., described by a single peer-reviewed
publication) or contained no or sparse molecular marker
and electrophysiological evidence. In the second network,
we added 23 new neuron types that are currently being
annotated for inclusion in future versions of Hippocampo-
me.org. Remarkably, analysis of both networks yielded
results very similar to those reported here for the network
of 122 types. Specifically, connection density, CPL, CC,
and scaled communication cost were all within 4% of their
HC values. More complex analyses (e.g., rich club and
motifs) were similarly dependable.

Discussion
Knowledge about synaptic connectivity between iden-

tified neuron types in the hippocampal formation is cur-
rently quite scant: empirical information on the presence
or absence of synapses is available for less than 1.6% of
all possible neuron type pairs. These limited data, however,
can be supplemented by leveraging spatially coaligned ax-
onal and dendritic patterns based on the evidence anno-
tated in Hippocampome.org. Although axonal-dendritic
colocation does not guarantee synaptic presence, apply-
ing the original, neuron-type version of Peters’ rule at least
reveals the potential connectivity of the full hippocampal
circuitry. Although the concept of potential connectivity is
extensible in other parts of the brain, it is particularly
pertinent in the hippocampus because of its superior
structural plasticity (Leuner and Gould, 2010). In particu-
lar, in this region, the lack of synapses between neurons
at any given moment may not necessarily foreshadow the
absence of connection at a different time.

This level of description of the rodent cerebro-hippo-
campal cortex complements (and fills a gap between)
previous large-scale syntheses of tract-tracing studies
(Burns and Young, 2000; van Strien et al., 2009) and
sparse synaptic sampling (Druckmann et al., 2014). In
fact, this effort represents the first comprehensive,
literature-based neuron-type circuitry inventory for a
mammalian cortical region. Thus, we began to unravel the
structural complexity of the hippocampal network through
graph theory analyses, shedding light on the functional
roles of the component neuron types.

Although networks are quantitatively differentiable ac-
cording to myriad metrics, two of the most topologically
illustrative are CC and CPL (Watts and Strogatz, 1998).

We first identified and quantified the specialized topology
that brings about higher efficiency and lower overall com-
munication cost in HC than in any equivalent, well-studied
network type. Small-world networks, in particular, have
been researched and applied fashionably to brain net-
works for decades (Hilgetag and Goulas, 2016), but we
detected significantly higher CC than in equivalent WS
networks. The in-built capacity for rapid response times
and precise processing, common elsewhere in the brain
(Latora and Marchiori, 2001; Bassett and Bullmore, 2006;
Rubinov and Sporns, 2010; Mišić et al., 2014), might be
especially relevant to the demands of the hippocampus,
where the tasks of memory consolidation, retrieval, cog-
nitive navigation, and pathfinding have inherent temporal
and spatial constraints.

Next, we exposed a significant modular substructure
comprising four densely intraconnected communities. It is
worth noting that CA2 and the subiculum, the two hip-
pocampal formation subregions with the fewest known
neuron types (five and three, respectively), are currently
subsumed into communities dominated by other subre-
gions. CA2 types are split into the CA3 and CA1 modules;
subicular types are divided among CA1 and EC. As future
knowledge in these areas increases, presumably hailing a
proliferation in interneuron diversity, one or both of these
subregions might become independent modules.

Regardless, the major high-traffic links between the
subregionally based communities recapitulate the TSL
and various shortcuts through it. This excitatory relay
includes the perforant pathway (PP; grid and border cells
from EC layer II to DG and CA3), the temporoammonic
pathway (head direction and border cells from EC layer III
to CA1), mossy fibers (from DG granule cells to CA3),
Schaffer collaterals (from CA3 pyramidal cells to CA1),
and the nameless projection from CA1 to EC layer V
(Amaral and Lavenex, 2007; van Strien et al., 2009). Al-
though the functional ramifications of these individual
conduits are not yet fully understood, in a loop-heavy
network that lacks discrete beginning and end points, the
detected modules likely act as processing stations regu-
lated by dense intramodular connections (both excitatory
and inhibitory). For example, although most studies of the
PP focus on the well-known glutamatergic-to-gluta-
matergic connections onto granule cell dendrites, feed-
forward inhibition also plays a major role in controlling
information processing in DG (Ferrante et al., 2009). As we
have shown, the PP can also affect DG interneurons such
as MOPP and neurogliaform cells (pattern E2 in Fig. 9).
Under physiological conditions, these parallel routes
might selectively respond to particular oscillatory input
frequencies from EC reflecting different behavioral states
(Tateno et al., 2007; Akam and Kullmann, 2010; Ewell and
Jones, 2010; Jones and McHugh, 2011). Novelty, for
example, induces a slight decrease in granule cell firing
rates concomitant with increased DG interneuron activity
(Nitz and McNaughton, 2004).

Analysis of OD and ID distributions revealed that the
peculiar HC topology was largely due to its axonal archi-
tecture, whereas the dendritic circuitry was fairly unre-
markable. This result is consistent with the recent finding
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that the computational load of neurons is unrelated to
their ID (Timme et al., 2016); instead, neurons that process
large amounts of information tend to receive connections
from high-OD neurons. The axonal distribution further
pointed to antihub and hub neuron types that utilized
highly specific or largely blind targeting, respectively.
Hubs are notable because, by directly connecting to
many neuron types that are themselves neighbors, they
violate typical tenets of wiring minimization (Chklovskii
et al., 2002; Chklovskii and Koulakov, 2004; Chen et al.,
2006; Bullmore and Sporns, 2012). In fact, both the con-
struction of these superfluous, often long-distance con-
nections and the regular handling of a disproportionately
large volume of traffic come at a high cost of energy. At
the same time, these nodes facilitate the integration of
distributed neural activity and are well situated to inte-
grate the network modules. Such a double-edged nature
justifies the “high cost, high value” characterization of
these circuit elements (van den Heuvel and Sporns, 2013).

Whereas quantification of modularity yielded informa-
tive but nonoverlapping groupings of HC neuron types,
the rich club analysis produced a hierarchical ordering of
importance of each type to the network. Rich clubs also
have been detected in other parts of the brain across
several species (van den Heuvel and Sporns, 2011; Har-
riger et al., 2012; Shanahan et al., 2013; Binicewicz et al.,
2015). We identified two nested rich clubs that are likely to
route much of the network traffic (Mišić et al., 2014) within
the hippocampal formation. Like hubs, this feature accen-
tuates a departure from the parsimonious wiring typically
observed in neural systems, but the paths between these
critical types provide a highly efficient network core with
built-in protection against neurodegeneration. Members
of these rich clubs, including the global hubs, are poten-
tially vulnerable to targeted attacks: damaging all neurons
within one of these types could lower network efficiency
and increase processing times, possibly impairing storage
and retrieval functionality. Interestingly, these same types
tend to be particularly abundant in terms of cell numer-
osity, with principal cells present in quantities up to 10
times higher than other neuron types (Bezaire and
Soltesz, 2013), thus providing a certain level of resistance
against random neurodegeneration. More generally, we
showed that the plethora of alternate pathways available
in the circuit serves as a second countermeasure.

Finally, we analyzed the superpattern and pattern build-
ing blocks responsible for the local interactions that
enable global functionality. Three-node subgraphs have
attracted considerable attention for their role in complex
networks across disciplines (Milo et al., 2002, 2004; Shen-
Orr et al., 2002), including neuroscience (Sporns and
Kötter, 2004; Song et al., 2005; Santana et al., 2011;
Binicewicz et al., 2015). They have been specifically stud-
ied in the hippocampus with focus directed at DG mossy
cells and unidentified hilar interneurons (Larimer and
Strowbridge, 2008) and among recurrent connections of
CA3 pyramidal cells (Guzman et al., 2016). Building on
this well-defined framework, we added excitatory/inhibi-
tory weights and identified connectivity pattern relations
among HC neuron types. In truth, the empirical charac-

terization of even simple (e.g., two-node) interactions
between excitatory and inhibitory cells is still vastly in-
complete. Recent recordings from more than 500 pyrami-
dal cells and 1500 GABAergic neurons in the mouse
neocortex delineated 15 interneuron types that could be
grouped based on broad connectivity preferences (Jiang
et al., 2015). One group preferentially formed synapses
with pyramidal neurons; another, referred to as “master
regulators,” connected nonspecifically to all types in prox-
imity of their axons; two additional groups contained
interneuron-specific cells that synapsed primarily with
other interneurons of the same or of different types, re-
spectively. When these interactions are extended to
include a third party (i.e., trimers), the functional implica-
tions are more complex. Interneuron-specific cells, in par-
ticular, have recently been the subject of much study for
their role in disinhibition. Specifically, interneuron-specific
cells can influence principal neurons by inhibiting other
GABAergic interneurons (Pi et al., 2013; Jiang et al.,
2015). In the cortex, this type of circuit control has been
linked to enhanced plasticity (Fu et al., 2015) and shown
to affect social behavior (Yizhar et al., 2011), sensorimotor
integration (Lee et al., 2013), attention (Vogels and Abbott,
2009; Zhang et al., 2014; Sridharan and Knudsen, 2015),
and associative learning and memory (Letzkus et al.,
2011, 2015). The specific involvement of the hippocam-
pus in many of the above functions makes these connec-
tivity patterns particularly worthy of study.

On a related note, the excitability scores computed for
each pattern capture only the overall excitatory/inhibitory
nature of a structurally defined trimer. In actuality, each
trimer can produce multiple functional states that are
affected by the degree of activation, delays in signal
propagation, the surrounding neural context, and the be-
havioral state of the organism (Sporns and Kötter, 2004).
Those various functional states of patterns and superpat-
terns are not analyzed here.

Further meaningful interpretation of our results was
hindered by two main factors, both imputable to data
incompleteness. First, the neuron types identified in HC
are limited to the information available in the literature.
Although certain hippocampal areas are well studied (e.g.,
CA1), other domains, including CA2, subiculum, and ento-
rhinal GABAergic neurons, are still underresearched. Other
parts of the subicular complex, including the prosubiculum,
presubiculum, postsubiculum, and parasubiculum, are not
tracked in version 1.0 of Hippocampome.org. Although mor-
phologically based neuronal-type information was recently
reported for the presubiculum (Nassar et al., 2014), on the
whole, the breadth of knowledge within these additional
areas is relatively narrow. As the scientific community over-
comes these shortcomings, the published evidence and
Hippocampome.org will grow, which will result in additions
and alterations to the connectivity. This accumulating knowl-
edge could affect some of the HC circuit properties de-
scribed herein. To assess and mitigate this issue, we
repeated the analyses on modified (reduced and expanded)
networks, and concluded that the main network properties
of HC are innate to the well-known, constituent neuron types
and unshaken by reasonable additions or deletions.
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The second hindrance is the lack of connection weights
beyond the binary differentiation of glutamatergic and
GABAergic types. A comprehensive solution to this prob-
lem requires quantitatively estimating both the counts for
each neuron type and the corresponding axonal and den-
dritic length distributions. Ideally, cell counts would be
determined from absolute, stereology-derived numbers
for each morphologically defined neuron type, but relative
ratios of molecularly defined subpopulations across ana-
tomical parcels could already be useful. These challeng-
ing experimental tasks are complicated further by
variation across rodent species, strains, ages, sexes, and
anatomical axes. Nevertheless, it is generally assumed
that principal cells dominate the relative abundances of
other neuron types by an order of magnitude (Bezaire and
Soltesz, 2013), with experimental observations ranging
from 89% of the hippocampal neuron population as a
whole (Woodson et al., 1989) to 93% within CA1 (Aika
et al., 1994). Accordingly, we also carried out the graph
theory analyses with principal cell connections weighted
as �10. Remarkably, our conclusions were largely un-
changed, and in many cases detailed herein, their signif-
icance was even amplified. In addition to obtaining counts
for the neuron types, weighting for connections should
also be based on measuring the three-dimensional over-
lap of the neurite trees of each type. However, this ap-
proach is currently not feasible, as three-dimensional
reconstructions (e.g., from NeuroMorpho.Org) are avail-
able for only a small fraction of neuron types. Last, the
expression levels of the primary neurotransmitters, as well
as the prevalence of membrane receptor proteins in dis-
tinct postsynaptic cell types, also play a role in weighting
the connections. Although this information, too, is cur-
rently lacking, appropriate data can be included in the
future to extend potential connectivity analyses beyond
binary values.

With the set of tools deployed in this work, future
updates to the connectome (through addition, merging,
splitting, and weighting of nodes and edges, or through
augmentation of known connectivity) can be analyzed in
relatively short order. Furthermore, as information accu-
mulates about aging and disease states, the analyses can
be repeated with a comparative bent. Extending the foun-
dational results presented here with the expected contin-
uous growth of data will progressively improve our
understanding of how network architecture mediates hip-
pocampal function and dysfunction.
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