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ABSTRACT

We introduce Tukey and Tukey scagnostics and develop graph-
theoretic methods for implementing their procedure on large
datasets.
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1 INTRODUCTION

Around 20 years ago, John and Paul Tukey developed an ex-
ploratory visualization method called scagnostics. While they
briefly mentioned their invention in [42], the specifics of the method
were never published. Paul Tukey did offer more detail at an IMA
visualization workshop a few years later, but he did not include the
talk in the workshop volume he and Andreas Buja edited [7].

Scagnostics was an ingenious idea. Jerome Friedman and
Werner Stuetzle, in a paper assessing John Tukey’s lifetime con-
tributions to visualization [13], say the following:

Draftman’s views (scatterplot matrices) lose their ef-
fectiveness when the number of variables is large. Using
a projection index similar to that in projection pursuit,
the computer could find the most interesting scatterplots
to be presented to the user. John had proposals for a wide
variety of scagnostic indices to judge the usefulness of
scatterplot displays. The widespread use of cognostics
and scagnostics has not yet materialized in routine data
analysis. These approaches are perhaps among the po-
tentially most useful of John’s yet to be explored sug-
gestions.

Scagnostics have yet to be explored by others, despite this en-
couragement. This may be due to the lack of published details. In
any case, this paper summarizes the Tukeys’ idea and offers a new
approach that we believe follows the spirit of their method. Our
approach is based on recent advances in graph-theoretic summaries
of high-dimensional scattered point data. We believe our method
improves the computational efficiency and extends the scope of the
original idea.

We will begin with a brief summary of the Tukeys’ approach,
based on the first author’s recollection of the IMA workshop and
subsequent conversations with Paul Tukey. Then we will present
our graph-theoretic measures for computing scagnostic indices. Fi-
nally, we will illustrate the performance of our methods on real
data.
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2 TUKEY AND TUKEY SCAGNOSTICS

A scatterplot matrix, variously called a SPLOM or casement plot
or draftman’s plot, is a (usually) symmetric matrix of pairwise scat-
terplots. An easy way to conceptualize a symmetric SPLOM is
to think of a covariance matrix of p variables and imagine that
each off-diagonal cell consists of a scatterplot of n cases rather
than a scalar number representing a single covariance. This display
was first published by John Hartigan [19] and was popularized by
Tukey and his associates at Bell Laboratories [9]. Figure 1 shows a
SPLOM of measurements on abalones using data from [27]. Off the
diagonal are the pairwise scatterplots of nine variables. The vari-
ables are sex (indeterminate, male, female), shell length, shell di-
ameter, shell height, whole weight, shucked weight, viscera weight,
shell weight, and number of rings in shell.

Figure 1: Scatterplot matrix of Abalone measurements

As Friedman and Stuetzle noted, scatterplot matrices become un-
wieldy when there are many variables. First of all, the visual res-
olution of the display is limited when there are many cells. This
defect can be ameliorated by pan and zoom controls. More critical,
however, is the multiplicity problem in visual exploration. Looking
for patterns in p(p−1)/2 scatterplots is impractical when there are
many variables. This problem prompted the Tukeys’ approach.

The Tukeys reduced an O(p2) visual task to an O(k2) visual
task, where k is a small number of measures of the distribution
of a 2D scatter of points. These measures included the area of
the peeled convex hull [40] of the 2D point scatters, the perime-
ter length of this hull, the area of closed 2D kernel density isolevel
contours [35], [33], the perimiter length of these contours, the con-
vexity of these contours, a modality measure of the 2D kernel den-
sities, a nonlinearity measure based on principal curves [21] fitted
to the 2D scatterplots, and several others. By using these measures,



the Tukeys aimed to detect anomalies in density, shape, trend, and
other features in the 2D point scatters.

After calculating these measures, the Tukeys constructed a scat-
terplot matrix of the measures themselves. This step amounted to
a level of indirection, like a pointer, in which each point in the
scagnostic SPLOM represented a scatterplot cell in the original
data SPLOM. With brushing and linking tools, unusual scatterplots
could be identified from outliers in the scagnostic SPLOM.

In his IMA talk, Paul Tukey mentioned an additional step we
might take. The scagnostic SPLOM can be thought of as a visu-
alization of a set of pointers. We can therefore construct a set of
pointers to pointers. In doing so, we can locate unusual clusters of
measures that characterize unusual clusters of raw scatterplots.

3 GRAPH-THEORETIC SCAGNOSTICS

There are two aspects of the Tukeys’ approach that can be im-
proved. First, some of the Tukeys’ measures, particularly those
based on kernels, presume an underlying continuous empirical or
theoretical probability function. This is appropriate for scatters
sampled from continuous distributions, but it can be a problem for
other types of data. Second, the computational complexity of some
of the Tukey measures is O(n3). Since n was expected to be small
for most statistical applications of this method, such complexity
was not expected to be a problem.

We can ameliorate both these problems by using graph-theoretic
measures. Indeed, the Tukeys used a few themselves. First, the
graph-theoretic measures we will use do not presume a connected
plane of support. They can be metric over discrete spaces. Second,
the measures we will use are O(n log(n)) in the number of points
because they are based on subsets of the Delaunay triangulation.
Third, we employ adaptive hexagon binning [8] before computing
our graphs to further reduce the dependence on n.

There is a price for switching to graph-theoretic measures, how-
ever. They are highly influenced by outliers and singletons. When-
ever practical, the Tukeys used robust statistical estimators to down-
weight the influence of outliers. We will follow their example by
working with nonparametric and robust measures. Further, we will
remove outlying points in the minimum spanning tree before com-
puting our graphs and the measures based on them.

We next introduce some notation for the projections underlying
the scagnostics idea.

3.1 Scagnostic Projections

• Let πi denote the projection

Rp −→ R, x→ xi

on the ith coordinate.

• Let πi×π j denote the projection

Rp −→ R2, x→ (xi,x j).

• Given a set X ⊂Rp, let X[i, j] denote the set (πi×π j)(X)⊂R2.

We will be interested in the p(p− 1)/2 different data sets X[i, j]
formed by varying i, j = 1, . . . , p where i < j.

To define the scagnostics transform, we first need to fix k mea-
sures c1, . . ., ck defined on sets X in R2. For example, c1 can be a
measure of the central location of the points, c2 can be a measure
of the dispersion of the points, and so on.

Given a data set X containing n points in Rp, the scagnostics
transform τ(X) is the data set of p(p−1)/2 points in Rk containing
the following points:

(c1(X[i, j]), . . . ,ck(X[i, j])) ∈ Rk, i, j = 1, . . . , p, i < j.

Remark 1. Given a data set X ⊂ Rp containing n points, we are
interested in the scatterplot matrix of X and the scatterplot matrix
of τ(X).

Remark 2. Note that the same definition works for k measures
defined on projections in higher dimensional spaces. For example,
we can work with projections in three space, with X[i, j,k] denoting
the set (πi×π j×πk)(X)⊂ R3.

We next introduce and define the graphs we will use as bases for
our measures and then we discuss the measures themselves.

3.2 Geometric Graphs

A graph G = {V,E} is a collection of a set of vertices V and a
set of edges E. An edge e(v,w), with e ∈ E and v,w ∈ V , is an
unordered pair of vertices. A geometric graph G? = [ f (V ),g(E),S]
is an embedding of a graph in a metric space S that maps vertices
to points and edges to line segments connecting pairs of points.
We will omit the asterisk in the rest of this paper and assume all
our graphs are geometric. We will also restrict our candidates to
geometric graphs that are:

• undirected (edges consist of unordered pairs)

• simple (no edge pairs a vertex with itself)

• planar (there is an embedding in R2 with no crossed edges)

• straight (embedded eges are straight line segments)

• finite ( V and E are finite sets)

See [12] for alternatives.
Figure 2 shows instances of the geometric graphs on which we

will compute our measures. The points are taken from one of the
cells in the abalone SPLOM. In this section, we define the geomet-
ric graphs that are the bases for our measures.

Figure 2: Graphs used as bases for computing scagnostics measures

3.2.1 Convex Hull

A polygon is a closed planar region with n vertices and n−1 faces.
The boundary of a polygon can be represented by a geometric graph
whose vertices are the polygon vertices and whose edges are the
polygon faces. A hull of a set of points X in R2 is a collection of
one or more boundaries of polygons that have a subset of the points
in X for their vertices and that collectively contain all the points in
X . This definition includes entities that range from the boundary
of a single polygon to a collection of boundaries of polygons each
consisting of a single point.

We now define the convex hull. A set of points X in R2 is convex
if it contains all the straight line segments connecting any pair of its
points. The convex hull of X is the boundary of the intersection of
all convex sets containing X . This definition implies that the convex
hull is the boundary of a convex polygon and that its vertices consist
of points in X .



There are several algorithms for computing the convex hull [36].
Since the convex hull consists of the outer edges of the Delaunay
triangulation, we can use an algorithm for the Voronoi/Delaunay
problem and then pick the outer edges. Its computation thus can
be O(n log(n)). We will use the convex hull, together with other
graphs, to construct measures of convexity.

3.2.2 Nonconvex Hull

A nonconvex hull is a hull that is not the convex hull. This class in-
cludes simple shapes like a star convex or monotone convex hull [3],
but it also includes some space-filling, snaky objects and some that
have disjoint parts. In short, we are interested in a general class of
nonconvex shapes.

There have been several geometric graphs proposed for repre-
senting the “shape” of a set of points X on the plane. Most of these
are proximity graphs [23]. A proximity graph (or neighborhood
graph) is a geometric graph whose edges are determined by an in-
dicator function based on distances between a given set of points in
a metric space. To define this indicator function, we use an open
disk D. We say D touches a point if that point is on the boundary
of D. We say D contains a point if that point is in D. We call the
smallest open disk touching two points D2; the radius of this disk is
half the distance between the two points and the center of this disk
is halfway between the two points. We call an open disk of fixed
radius D(r). We call an open disk of fixed radius and centered on a
point, D(p,r).

We considered several candidates for a shape-revealing proxim-
ity graph on a set of planar points. Some of them are subsets of the
Delaunay triangulation:

• In a Delaunay graph, an edge exists between any pair of
points that can be touched by an open disk D containing no
points. The external edges of the Delaunay triangulation are
the convex hull. This means that the external edges of the De-
launay graph cannot be used to represent non-convex hulls.

• In a Gabriel graph [15], an edge exists between any pair of
points that have a D2 containing no points.

• In a relative neighborhood graph [39], an edge exists between
any pair of points p and q for which r is the distance between
p and q and the intersection of D(p,r) and D(q,r) contains no
points. This intersection region is called a lune.

• In an alpha shape graph [10], an edge exists between any pair
of points that can be touched by an open disk D(α) containing
no points.

Others are not subsets of the Delaunay:

• In a distance graph, an edge exists between any pair of points
that both lie in a D(r). The radius r defines the size of the
neighborhood. This graph is not always planar and is there-
fore not a subset of the Delaunay.

• In a k-nearest neighbor graph (KNN), a directed edge exists
between a point p and a point q if d(p,q) is among the k small-
est distances in the set {d(p, j) | 1 ≤ j ≤ n, j 6= p}. Most
applications restrict KNN to a simple graph by removing self
loops and edge weights. If k = 1, this graph is a subset of the
MST. If k > 1, this graph is not always planar.

• In a sphere of influence graph [5], an edge exists between
a point p and a point q if d(p,q) ≤ dnn(p) + dnn(q), where
dnn(.) is the nearest-neighbor distance for a point.

• A beta skeleton graph [25] is a close relative of the relative
neighborhood graph. It uses a lune whose size is determined
by a parameter β .

We have chosen the alpha hull for deriving our measures of
shape. An alpha hull is a nonconvex hull derived from the bound-
ary of an alpha shape graph. There are several reasons behind our
choice. First, the alpha shape is relatively efficient to compute be-
cause it is a subset of the Delaunay triangulation with a simple in-
clusion criterion. Second, it is an erosion method. This aspect of
the algorithm suits statistical data because we are interested in re-
ducing the influence of outlying points on a shape.

A problem with using the alpha hull for a shape detector is
choosing the value of the α parameter (the radius of the disk that is
used to delete edges in the Delaunay triangulation). We choose α to
be the value of the ω parameter (discussed below). The ω parame-
ter is the cutoff value for identifying outlying edges in the minimum
spanning tree. We choose this value because we wish to erase edges
in the Delaunay triangulation that are longer than outlying edges in
the original MST.

3.2.3 Minimum Spanning Tree

A tree is an acyclic, connected, simple graph. A spanning tree is an
undirected graph whose edges are structured as a tree. A minimum
spanning tree (MST) is a spanning tree whose total length (sum
of edge weights) is least of all spanning trees on a given set of
points [24]. The edge weights of a geometric MST are computed
from distances between its vertices.

The MST is a subgraph of the Delaunay triangulation. There
are several efficient algorithms for computing an MST for a set of
points in the plane [28], [31].

3.3 Measures

We are interested in assessing five aspects of scattered points: out-
liers, shape, trend, density, and coherence. Our measures are de-
rived from several features of geometric graphs:

• The length of an edge, length(e), is the Euclidean distance
between its vertices.

• The length of a graph, length(G), is the sum of the lengths of
its edges.

• A path is a list of vertices such that all pairs of adjacent ver-
tices in the list are edges.

• A path is closed if its first and last vertex are the same.

• A closed path is the boundary of a polygon.

• The perimeter of a polygon, perimeter(P), is the length of its
boundary.

• The area of a polygon, area(P) is the area of its interior.

• The diameter of a graph, diameter(G), is the longest shortest
path in G.

All our measures are defined to be in the closed unit interval. To
compute them, we assume our variables are scaled to the closed
unit interval as well.



3.3.1 Outliers

Tukey [40] introduced the use of the peeled convex hull as a mea-
sure of the depth of a level set imposed on scattered points. For
points on the 1D line, this amounts to successive symmetric trim-
ming of extreme observations. Tukey’s idea can be used as an out-
lier identification procedure. We compute the convex hull, delete
points on the hull, compute the convex hull on the remaining points,
and continue until (one hopes) the contours of successive hulls do
not substantially differ.

We have taken a different approach. Because we do not assume
that our point sets are convex (that is, comparably dense in all sub-
regions of the convex hull), we cannot expect outliers will be on the
edges of a convex hull. They may be located in interior, relatively
empty regions. Consequently, we have chosen to peel the MST in-
stead of the hull. We consider an outlier to be a vertex with degree
1 and associated edge weight greater than ω .

There are theoretical results on the distribution of the largest
edge for an MST on normally distributed data [30], but we decided
to work with a nonparametric criterion for simplicity. Following
Tukey [41], we choose

ω = q75 +1.5(q75−q25)

where q75 is the 75th percentile of the MST edge lengths and the
expression in the parentheses is the interquartile range of the edge
lengths.

• Outlying

This is a measure of the proportion of the total edge length due
to extremely long edges connected to points of single degree.

coutlying = length(Toutliers)/length(T )

3.3.2 Shape

The shape of a set of scattered points is our next consideration. We
are interested in both topological and geometric aspects of shape.
We want to know, for example, whether a set of scattered points on
the plane appears to be connected, convex, inflated, and so forth. Of
course, scattered points are by definition not these things, so we are
going to need additional machinery (based on our graphs that we fit
to these points) to allow us to make such inferences. The measures
that we propose will be based on these graphs.

In the formulas below, we use H for the convex hull, A for the
alpha hull, and T for the minimum spanning tree. In our shape
calculations, we ignore outliers.

• Convex

This is the ratio of the area of the alpha hull and the area of
the convex hull. This ratio will be 1 if the nonconvex hull and
the convex hull have identical areas.

cconvex = area(A)/area(H)

• Skinny

The ratio of perimeter to area of a polygon measures, roughly,
how skinny it is. We use a corrected and normalized ratio so
that a circle yields a value of 0, a square yields 0.12 and a
skinny polygon yields a value near one.

cskinny = 1−
√

4πarea(A)/perimeter(A)

• Stringy

A stringy shape is a skinny shape with no branches. The
stringy measure is based on the π index, which is the ratio
of width to length of a network. If the longest shortest path
through a minimum spanning tree is almost as long as the sum
of all the edges in the tree itself, then the tree is path-like or
stringy.

cstringy = diameter(T )/length(T )

• Straight

The spanning ratio or dilation of a geometric graph is the
maximum ratio (over all pairs of vertices) of the shortest path
(geodesic) between two vertices and the Euclidean distance
between same vertices. Because it jumps to nearest neighbors,
the MST has a dilation of O(n) [11]. For a perfectly linear ge-
ometric graph (all points in general position), the MST has a
spanning ratio of 1.

We invert this ratio so that a straight graph has a value of 1
and other graphs have a smaller value. We modify this ratio
further, however. Our ratio is the Euclidean distance between
the points at the ends of the longest shortest path of the MST
divided by the longest shortest path itself (the diameter of the
MST). Even if the Pearson correlation is zero, our straightness
index will be large for a set of points lying near a straight line.
We will leave it to our monotonicity index to pick up scatters
that are straight and highly correlated. Thus, our measure is

cstraight = dist(t j, tk)/diameter(T )

where t j and tk are the vertices in T on which the diameter is
defined.

3.3.3 Trend

The following index helps reveal whether a given scatter is
monotonic.

• Monotonic

If a set of scattered points is functional on x (plus error), a
monotonicity coefficient should assess whether that function
is monotonic. We have chosen the squared Spearman corre-
lation coefficient, which is a Pearson correlation on the ranks
of x and y (corrected for ties). We square the coefficient to ac-
centuate the large values and remove the distinction between
negative and positive coefficients. We assume investigators
are most interested in strong relationships, whether negative
or positive.

cmonotonic = r2
spearman

This is our only coefficient not based on a subset of the De-
launay graph. Because it requires a sort, its computation is
O(n log(n)).

3.3.4 Density

The following indices detect different distributions of points.

• Skewed

The distribution of edge lengths of a minimum spanning
tree gives us information about the relative density of points
in a scattered configuration. Some have used the sample



mean, variance, and skewness statistics to summarize this
edge length distribution, e.g., [1]. However, theoretical re-
sults [37], [30] show that the MST edge-length distribution
for many types of point scatters can be approximated by an
extreme value distribution with fewer parameters. Other the-
oretical results [17] suggest that the mean MST edge length
for a geometric graph on the unit square depends more on
the number of points than on the distribution of points. Our
Monte Carlo simulations using the distributions in Figure 3
found little variation in mean MST edge length for fixed n.
By contrast, the skewness of the histograms of the MST edge
length distributions for these points varied considerably. Con-
sequently, we use a simple measure of skewness based on a
ratio of quantiles of the edge lengths.

cskew = (q90−q50)/(q90−q10)

This statistic is relatively robust to outliers.

• Clumpy

An extremely skewed distribution of MST edge lengths does
not necessarily indicate clustering of points. For this, we turn
to another measure based on the MST: the Hartigan and Mo-
hanty RUNT statistic [20]. This statistic is most easily un-
derstood in terms of the single-linkage hierarchical clustering
tree called a dendrogram. The runt size of a dendrogram node
is the smaller of the number of leaves of each of the two sub-
trees joined at that node. Since there is an isomorphism be-
tween a single-linkage dendrogram and the MST [18], we can
associate a runt size (r j) with each edge (e j) in the MST, as
described by Stuetzle [38]. The runt graph (R j) corresponding
to each edge is the smaller of the two subsets of edges that are
still connected to each of the two vertices in e j after deleting
edges in the MST with lengths less than length(e j).

Our runt-based measure emphasizes clusters with small intra-
cluster distances relative to the length of their connecting edge
and ignores runt clusters with relatively small runt size.

cclumpy(T ) = max
j

[
1−max

k
[length(ek)]/length(e j)

]
where j indexes edges in the MST and k indexes edges in each
runt set derived from an edge indexed by j.

3.3.5 Coherence

We define coherence in a set of points as the presence of rel-
atively smooth paths in the minimum spanning tree. Smooth
algebraic functions, time series, and curves (e.g., spirals) fit
this definition. So do points arranged in flows or vector fields.

There are numerous diagnostic measures for time series. Most
of these involve conditioning on a model and examining resid-
uals for lack of independence. For stochastic series, diagnos-
tics usually assume stationarity in order for the tests to be
valid. Stationarity implies that the mean, variance and au-
tocorrelation structure of a process are defined and do not
change over time. Verifying this can be problematic and time
consuming.

We have chosen an alternative approach by devising a robust
measure of coherence. This measure is not intended to be a
time series detector. Not every time series is smooth. For
example, moving average processes such as MA(1) may os-
cilllate at frequencies that are higher than the resolution of the

mesh on x. Nor will it detect large negative autocorrelation
structures, for similar reasons. Instead, we expect this mea-
sure to have large values when a series is relatively smooth.
Furthermore, our measure does not assume a path is single-
valued on x.

• Striated

The bottom scatterplot in Figure 3 shows points on parallel
lines. We could recognize this pattern with a Hough trans-
form [22]. Other configurations of points that represent vec-
tor flows or striated textures might not follow linear paths,
however. We are interested in a more general measure. Rec-
ognizing that almost all of the adjacent edges in the MST on
these points are collinear. Graham Wills (personal communi-
cation) proposed the following measure, which sums angles
over all adjacent edges. Let V (2) ⊆V be the set of all vertices
of degree 2 in V . Then

cstriate(T ) =
1

|V (2)| ∑
v∈V (2)

|cosθe(v,a)e(v,b)|

3.4 Binning

We use hexagon binning [8] to improve performance. We begin
with a 40 by 40 hexagon grid for each scatterplot. If there are more
than 250 nonempty cells, we reduce the bin size by half and rebin.
We continue this process until there are no more than 250 nonempty
cells.

We examined by Monte Carlo simulation the effect of binning
on our measures. Because we designed the measures to minimize
this effect, the only one that showed a substantial trend with bin
size was the stringy index. Not surprisingly, substantially larger bin
sizes produce a higher index. Small edges are lost in larger bins,
so the denominator of the index decreases with increase in bin size.
We tried several adjustments to the index, including estimating the
within-bin size of edges and adding this estimate to the denom-
inator. All of the adjustments we tried substantially reduced the
sensitivity of the measure, so we decided to leave the stringy index
unadjusted.

4 PERFORMANCE

Figure 3 shows the results of our graph-theoretic measures appled
to 11 different scatter patterns. We notice that the red or orange
rectangles align with patterns the respective measures are designed
to flag.

We can get a graphical idea of the sensitivity and specificity
of the measures by examining the first two principal components
of these measures applied to these patterns. Figure 4 shows a bi-
plot [16] of the measures and patterns. We find that the measures
fill the space and are near the patterns they target. The clumpy mea-
sure has a short vector in the plot because it loads heavily on a third
component. The scree (plot of eigenvalues against factor indices) is
smoothly descending with no clear elbow, so the dimensionality of
these measures on the selected point sets is not low.

4.1 Time

Because we use binning and efficient triangulation, computation
time is roughly O(np2). On a Macintosh G4 PowerBook running
Java 1.4.2, computing the measures on 100,000 random cases dis-
tributed uniformly on 10 variables requires approximately 10 sec-
onds. Computing the measures on 100,000 cases and 25 variables
requires approximately 75 seconds. Large, uniformly distributed



Figure 3: Scaled graph-theoretic measures (blue=low, red=high) for
eleven scatter patterns

point sets tend to increase computation time because of the need
for rebinning. Datasets with compact, nonuniform distributions are
considerably faster to compute.

5 EXAMPLES

Figure 5 shows a scagnostics SPLOM for the Abalone dataset. We
have highlighted a point in the SPLOM that represents one unusual
scatterplot. The linked plot is shown in the upper right of the figure.
From what we see in the SPLOM, we can characterize this scatter-
plot as relatively high in outliers, skewed in edge lengths, clumpy,
nonconvex, striated, and stringy.

Figure 6 shows a scagnostics SPLOM of 17 variables from a
dataset based on statistics for selected countries compiled by the
World Health Organization and the United Nations [43]. We have
highlighted a point in the graph-theoretic SPLOM to give an ex-
ample of the type of anomalies that scagnostics can uncover. The
red point is clearly an outlier in most of the panels. The scatterplot

Figure 4: Biplot of measures and scatters

corresponding to this point is shown in the upper right of the fig-
ure. We were surprised to find that we had included two versions
of a categorical variable measuring the type of government – one
recoded to have fewer categories. Because these two artifactually-
related variables are not perfectly correlated, they would have not
have induced a singularity in a statistical analysis and might have
been undetected in a thoughtless automated data mining.

Figure 7 shows a scagnostics SPLOM of 62 variables from a
microarray dataset [2]. The SPLOM shows the high degree of
homogeneity in the 2D marginal distributions of the 62 cell lines
in the array. The linked scatterplot shows a typical 2D distribu-
tion, evidently not bivariate normal. The authors identified clus-
ters of non-cancerous and cancerous cells in these data. We must
remember that lack of evidence for clusters in the 2D scatters is
not evidence for lack of clusters in higher dimensions. Instead, the
scagnostic SPLOM lends some support to the authors’ findings by
downweighting the possibility that clusters might be due to mea-
surement artifacts (e.g., mixing discrete and continuous variables
in the analysis). This application illlustrates the appropriate focus
of scagnostics as a preliminary screening method.

Figure 8 shows a SPLOM of weather data. The data comprise
hourly meteorological measurements over a year at the Greenland
Humboldt automatic weather station operated by NASA and NSF.
These measurements are part of the Greenland Climate Network
(GC-Net) sponsored by these federal agencies. We have sorted
the variables in the SPLOM using the size of the loadings on the
first principal component of the scagnostic measures. The sorting
clearly segregates the discrete and continuous variables and clusters
similar marginal 2D distributions.

6 CONCLUSION

As we have seen, scagnostics offers the possibility of detecting
anomalies in large scatterplot matrices. There is more to do, how-
ever. First, we can construct multivariate models from these and
other graph-theoretic measures and apply them to the more gen-
eral pattern detection problem in high-dimensional space. This
approach follows those taken by the manifold learning commu-
nity [32], [4], [6]. Second, we can use these methods to sort scatter-
plot matrices in order to make them more accessible to lensing and



Figure 5: Scagnostics SPLOM of Abalone measurements

other focus methods [14], [26], [29], [34].
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