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In this study we examined changes in the large-scale structure of resting-state brain networks in patients with Alzheimer’s

disease compared with non-demented controls, using concepts from graph theory. Magneto-encephalograms (MEG) were

recorded in 18 Alzheimer’s disease patients and 18 non-demented control subjects in a no-task, eyes-closed condition. For

the main frequency bands, synchronization between all pairs of MEG channels was assessed using a phase lag index (PLI,

a synchronization measure insensitive to volume conduction). PLI-weighted connectivity networks were calculated, and char-

acterized by a mean clustering coefficient and path length. Alzheimer’s disease patients showed a decrease of mean PLI in the

lower alpha and beta band. In the lower alpha band, the clustering coefficient and path length were both decreased in

Alzheimer’s disease patients. Network changes in the lower alpha band were better explained by a ‘Targeted Attack’ model

than by a ‘Random Failure’ model. Thus, Alzheimer’s disease patients display a loss of resting-state functional connectivity

in lower alpha and beta bands even when a measure insensitive to volume conduction effects is used. Moreover, the large-scale

structure of lower alpha band functional networks in Alzheimer’s disease is more random. The modelling results suggest

that highly connected neural network ‘hubs’ may be especially at risk in Alzheimer’s disease.

Keywords: Alzheimer’s disease; functional connectivity; MEG; synchronization; small-world networks

Abbreviations: EEG = electro-encephalography; MEG = Magneto-encephalography; MMSE = mini mental state examination;
PLI = phase lag index; SL = synchronization likelihood

doi:10.1093/brain/awn262 Brain 2009: 132; 213–224 | 213

Received May 5, 2008. Revised September 12, 2008. Accepted September 18, 2008. Advance Access publication October 24, 2008

� The Author (2008). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved.

For Permissions, please email: journals.permissions@oxfordjournals.org

 at K
atholieke U

niversiteit on July 9, 2012
http://brain.oxfordjournals.org/

D
ow

nloaded from
 

http://brain.oxfordjournals.org/


Introduction
A central question in cognitive neuroscience is how cognitive func-

tions depend upon coordinated and integrated activity of specia-

lized, widely distributed brain regions. There is strong support

that a network perspective on the brain is required in order to

understand higher brain functioning (Varela et al., 2001; Le van

Quyen, 2003). How do functional interactions between brain

regions take place, and how can this be measured and assessed?

For answering these questions an important idea is the so-called

functional connectivity that refers to linear or nonlinear statistical

interdependencies between time series of physiological signals

recorded from different brain regions (Aertsen et al., 1989;

Friston, 2001; Lee et al., 2003; Fingelkurts et al., 2005).

Functional connectivity is assumed to reflect functional interactions

between the underlying brain regions.

The concept of functional connectivity has become very impor-

tant in the study of brain mechanisms underlying disturbed cogni-

tion in Alzheimer’s disease, the most frequent cause of dementia

in the western population (van der Flier and Scheltens, 2005).

Alzheimer’s disease is characterized by degeneration of neurons

starting in the hippocampus, later spreading to the temporal

and parietal cortex, and finally involving most cortical areas.

Loss of neurons, involvement of white matter as well as

disturbed synaptic transmission, e.g. due to decreased levels of

acetylcholine (Osipova et al., 2003), account for abnormal func-

tional interactions between cortical regions. It has even been

suggested that Alzheimer’s disease can be viewed as a disconnec-

tion syndrome (Delbeuck et al., 2003). Support for this concept

comes from a number of EEG and magneto-encephalography

(MEG) studies using conventional coherence as a measure of

functional connectivity (Leuchter et al., 1992; Besthorn et al.,

1994; Dunkin et al., 1994; Jelic et al., 1996; Locatelli et al.,

1998; Berendse et al., 2000; Knott et al., 2000; Stevens

et al., 2001; Adler et al., 2003; Hogan et al., 2003; Jiang 2005;

Koenig et al., 2005; Pogarell et al., 2005). In most of these

studies a consistent decrease of coherence in the alpha and beta

band was reported, whereas results for other bands were more

variable. Abnormalities of functional connectivity have also been

demonstrated with nonlinear synchronization methods (Jeong

et al., 2001; Stam et al., 2002, 2006; Pijnenburg et al., 2004;

Babiloni et al., 2004). While these studies in general support

the hypothesis of a disconnection syndrome in Alzheimer’s dis-

ease, two problems need further attention: (i) assessment of func-

tional connectivity with EEG and MEG can be biased by volume

conduction, which may yield spurious correlations between nearby

sensors and hence render interpretation unreliable; (ii) connectivity

studies in Alzheimer’s disease are generally very descriptive and

lack a more robust framework to discriminate between normal

and abnormal networks in the brain.

Nearby EEG electrodes or MEG sensors are likely to pick up

activity of identical sources, resulting in strong correlations

between recorded signals that reflect simple volume conduction

rather than true functional connectivity (Nunez et al., 1997;

Srinivasan et al., 2007). Two approaches have been submitted

to overcome this problem. First, one may study interdependencies

between time series of reconstructed sources rather than signals

of recording electrodes or sensors (Gross et al., 2001; David et al.,

2002; Tass et al., 2003; Amor et al., 2005; Hadjipapas et al.,

2005; Lehmann et al., 2006). While this approach has certainly

the added benefit of dealing with interactions between anatomi-

cally well-defined brain regions, a major pitfall is the absence of

a unique definition of the corresponding source space. Different

assumptions may lead to different source models and, hence,

different results. However, to date there is no reliable way to

decide which model is the proper choice. Second, one may look

for time series analysis techniques that extract interdependencies

between signals which are not or at least unlikely due to volume

conduction. This measure therefore reflects true interactions.

An early attempt in this direction was summarized in a study

by Nunez and colleagues (1997) who proposed to subtract a

baseline random coherence from the measured coherence in

order to obtain a reduced, task-related coherence, which is less

influenced by volume conduction effects. More recently Nolte

and colleagues (2004) proposed to use the imaginary part of the

(complex-valued) coherency between two signals. Indeed volume

conduction cannot give rise to imaginary coherency, but the mag-

nitude of the imaginary part does not appear to be a proper value

to quantify synchronization, since it mixes information on coupling

strength and coupling delay. As an alternative, a so-called phase

lag index (PLI) was introduced, which reflects the consistency

with which one signal is phase leading or lagging with respect

to another signal (Stam et al., 2007b). The PLI was shown to

be less affected by volume conduction than more traditional mea-

sures like coherence, and by the same token, it is rather sensitive

to true changes in synchronization. Here we will exploit this capa-

city to address possible changes in functional connectivity due

to Alzheimer’s disease, as we see an advantage of PLI to ‘reduced

coherency’. Although the latter method might represent an

improvement over traditional coherence, it does rely on several

a priori assumptions such as stationarity and linearity, and is still

sensitive to signal amplitude. PLI is sensitive to non-linear data

and can handle non-stationary data, at least to a large degree.

The theoretical framework for understanding large-scale net-

works is given by ‘modern network theory’ (for a review see

Boccaletti et al., 2006), a branch in graph theory, in which net-

works are represented by a set of nodes (vertices) and connections

(edges). See Fig. 1 for an explanation of the basic principles of

graph theory used in this study.

In recent years, graph theory has been introduced to the study

of anatomical and functional networks in the central nervous

system (Bassett and Bullmore, 2006; Stam and Reijneveld,

2007c). Graph theory provides models of complex networks in

the brain, and allows one to better understand the relations

between network structure and the processes taking place on

those networks. It can also provide a concept of an ‘optimal’

network (for example in terms of balancing segregation and

integration, performance and cost), and offers scenarios of how

complex networks might develop, and how they might respond

to different types of damage. Watts and Strogatz (1998) intro-

duced so-called ‘small-world’ networks, which have a balance

between local specialization and global integration that is optimal

for information processing, and they showed that several real-life

networks possess small-world features. Small-world networks have
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a relatively high amount of so-called ‘local clustering’, meaning

that nodes are often connected to their neighbours, combined

with relatively short ‘path lengths’, which means that from any

node it takes just a few steps to reach any other node in the

network. There is now accumulating evidence that different

types of structural brain networks display a ‘small-world’ type net-

work organization characterized by a combination of high local

clustering as well as short path lengths (Watts and Strogatz,

1998; Hilgetag et al., 2000; He et al., 2007; Iturria-Medina

et al., 2008). A similar approach has also been used to study

networks of functional connectivity. In several fMRI studies of

healthy subjects, small-world patterns were found (Salvador

et al., 2005; Achard et al., 2006; Supekar et al., 2008). The pre-

sence of small-world type functional networks in healthy subjects

was also confirmed in numerous EEG and MEG studies (Stam,

2004; Bassett et al., 2006; Smit et al., 2007; Stam et al.,

2007a). However, only a few studies have yet shown that brain

pathology may interfere with the normal small-world architecture.

According to Bartolomei et al. (2006) brain networks in patients

with low-grade glioma’s are more random compared with healthy

controls. A similar change in network structure was reported in

patients with schizophrenia and in patients with epilepsy during

the interictal state (Micheloyannis et al., 2006; Ponten et al.,

2007; Rubinov et al., 2007). In a recent pilot study on

Alzheimer’s disease a loss of the normal small-world architecture

was reported (Stam et al., 2006). In view of these findings one

might speculate that brain disease in general gives rise to a devia-

tion from the normal, optimal small-world configuration of brain

networks. It is not clear, however, how such network changes

come about.

As mentioned above two questions were addressed in the pre-

sent study: (i) is it possible to confirm previous EEG and MEG

reports of decreased resting state functional connectivity in

Alzheimer’s disease using a method that is less affected by

volume conduction? (ii) can graph analysis reveal abnormalities

in the large-scale topology of functional connectivity networks in

Alzheimer’s disease, and can such network changes be explained

by modelling?

Materials and Methods

Patients and controls
Subjects and recordings were identical to Stam et al. (2006). The study

involved 18 patients (mean age 72.1 years, SD 5.6; 11 males; mean

MMSE 19.2, range: 13–25) with a diagnosis of probable Alzheimer’s

disease according to the NINCDS-ADRDA criteria (McKhann et al.,

1984) and 18 healthy control subjects (mean age 69.1 years, SD

6.8; seven males; mean MMSE 29, range: 27–30), mostly spouses of

the patients. Patients and controls were recruited from the Alzheimer

Centre of the VU University Medical Centre. Subjects were assessed

according to a clinical protocol, which involved history taking, physical

and neurological examination, blood tests, MMSE (Folstein et al.,

1975) neuropsychological work up (administration of a battery of

neuropsychological tests), MRI of the brain according to a standard

protocol and routine EEG. The final diagnosis was based upon a con-

sensus meeting in which all the available clinical data and results of the

ancillary investigations were considered. As reported in Stam et al.

(2006), six patients used cholinesterase inhibitors, which was found

to have no influence on functional connectivity. In the control and

patient group both benzodiazepine and anti-depressive drug use was

reported by one person. The study was approved by the Local

Research Ethics Committee and all patients or their caregivers had

given written informed consent. Since subjects were included years

ago, medical files were checked again recently to verify initial diagno-

sis; no notable changes (besides disease progression) were discovered.

MEG recording
Magnetic fields were recorded while subjects were seated inside

a magnetically shielded room (Vacuumschmelze GmbH, Hanau,

Germany) using a 151-channel whole-head MEG system (CTF

Systems Inc., Port Coquitlam, BC, Canada). Average distance between

neighbouring sensors in this system was 3.1 cm. A third-order software

gradient (Vrba et al., 1999) was used after online band-pass filtering

between 0.25 and 125 Hz. Sample frequency was 625 Hz. For techni-

cal reasons two channels had to be omitted yielding 149 channels

or sensors for analyses. Fields were measured during a no-task,

eyes-closed condition. At the beginning and at the ending of the

recording the head position relative to the coordinate system of the

helmet was recorded by leading small alternating currents through

three head position coils attached to the left and right pre-auricular

points and the nasion on the subject’s head. Head position changes

during the recording up to �1.5 cm were accepted. During the MEG

recording, persons were instructed to sit comfortably, close their eyes

and reduce eye movements, but remain awake as much as possible.

During the recordings, the investigator and MEG technician checked

the signal on-line for visual signs of drowsiness (e.g. slow eye move-

ment activity) and observed the patient using a video monitor.

Fig. 1 Representation of a network as a graph. Black dots

represent the nodes or vertices, and the lines connecting

the dots the connections or edges. The left panel shows an

unweighted graph. The shortest path length (L) between

vertices A and B consists of three edges, indicted by the

striped lines. The clustering coefficient (C) of a vertex is the

likelihood that its neighbours are connected. For vertex C,

with neighbours B and D, the clustering coefficient is 1.

When weights are assigned to the edges, the graph is weighted

(right panel). Here the weights of the edges are indicated

by the thickness of the lines. Figure taken with permission

from Stam and Reijneveld. Graph theoretical analysis of

complex networks in the brain. Non-linear Biomedical

Physics 2007c; 1: 3.

Random brain networks in Alzheimer’s disease Brain 2009: 132; 213–224 | 215

 at K
atholieke U

niversiteit on July 9, 2012
http://brain.oxfordjournals.org/

D
ow

nloaded from
 

http://brain.oxfordjournals.org/


As a filtering process, offline frequency analysis is performed on the

raw data, using a Fourier transformation. In the obtained frequency

spectrum all frequencies outside the studied bands are set to zero,

and using an inverse Fourier transformation the filtered signal is then

obtained, with preservation of all phase information of the original

data. For the subsequent off-line processing the recordings were con-

verted to ASCII files and down-sampled to 312.5 Hz. For each subject

care was taken to find and select exactly three artifact-free epochs

of 4096 samples (13.083 s) by two of the investigators (BFJ and IM).

MEG registrations were converted to datafiles with a coded filename

before epoch selection, so the investigators were blind to the subjects’

diagnosis during this process. Typical artifacts were due to (eye) move-

ments, drowsiness or technical issues. Visual inspection and selection

of epochs was realized with the DIGEEGXP software (CS). Epochs

were band-pass filtered for the commonly used frequency bands: delta

(0.5–4 Hz), theta (4–8 Hz), lower alpha (8–10 Hz), upper alpha

(10–13 Hz), beta (13–30 Hz) and gamma (30–45 Hz), and all further

analyses were performed for these bands separately.

Phase lag index
The PLI is a measure of the asymmetry of the distribution of phase

differences between two signals. It reflects the consistency with which

one signal is phase leading or lagging with respect to another signal

(Stam et al., 2007b). The PLI performs at least as well as the synchro-

nization likelihood (SL) (Montez et al., 2006) in detecting true changes

in synchronization but it is much less affected by the influence

of common sources. A more detailed explanation is offered in the

Supplementary material to this article.

Beside a global, mean PLI calculation a more regional approach

was used. For this analysis MEG sensors were grouped into five

regions (frontal, temporal, central, parietal and occipital) for each

hemisphere, and average PLI for all sensors within a region (local)

or between two regions (long distance) were computed following

the procedure described in Stam et al. (2006).

Graph analysis
In principle, networks can be represented by graphs, which are sets

of vertices and corresponding sets of edges (Boccaletti et al., 2006;

Stam and Reijneveld, 2007c). One may say that an edge or connection

either exists or not but one may also assign a certain weight to an

edge that reflects the importance or strength of the relation between

two vertices. While the first one yields unweighted graphs in that

edges have values of either 0 or 1, the latter produces so-called

weighted graphs. To define the corresponding weights a matrix

of correlations between signals recorded at different electrodes is

generally suitable. We denote the matrix’ coefficients as wij, i.e.

they connect vertex i with vertex j and specified their values using

the afore-explained PLI. That is we defined a network of 149 vertices

(matching the 149 available MEG channels) and used the matrix of

PLI values between all pairs of MEG channels as edge weights.

Graphs can be characterized by various measures. Two fundamental

ones are the clustering coefficient, which denotes the likelihood

that neighbours of a vertex will also be connected to each other,

and the average path length, i.e. the average number of edges of

the shortest path between pairs of vertices (Fig. 1).

Well ordered networks are strongly clustered and show large path

lengths. In contrast, random networks are weakly clustered with

small path lengths. Neither ordered nor random networks are good

candidates for real networks like the human brain. Hence, Watts

and Strogatz (1998) suggested a new type of networks, so-called

small-world networks, which have both large clustering coefficients

as well as small path lengths. Interestingly, these networks can be

designed to be scale-free by having very short path lengths and a

power law degree distribution (Barabási and Albert, 1999). Both

small-world and scale-free networks are optimal in the sense that

they allow efficient information processing with a minimal number

of connections. By now it has been shown that many types of network

ranging from metabolic and genetic to social are either small-world or

scale-free (Amaral and Ottino, 2004; Boccaletti et al., 2006).

The clustering index Ci of a vertex i generally represents the like-

lihood that other vertices j that are connected to the vertex i will

also be connected to each other. This notion can be adopted for use

with weighted graphs in various ways (Boccaletti et al., 2006). Here

we propose a simple definition, closely related to the proposal of

Onnela et al. (2005), which only requires symmetry (wij = wji) and

that 04wij4 1 holds. Indeed, both conditions are readily fulfilled

when using PLI as weight definition. The (weighted) clustering index

of vertex i is then defined as

Ci ¼

P
k 6¼i

P
l 6¼i
l 6¼k

wikwilwkl

P
k 6¼i

P
l 6¼i
l 6¼k

wikwil
ð1Þ

Notice that in all sums in (1) terms with k = i, l = i or k = l are skipped.

In the special case in which wij equals either 0 or 1, this definition

is equivalent to the classical definition for unweighted graphs (Watts

and Strogatz, 1998). For isolated vertices, i.e. vertices that do not have

any connections, all weights wij vanish, and the clustering index is

defined as Ci = 0 (Newman, 2003). The mean clustering coefficient

of the entire network can be determined via (1) as

Cw ¼
1

N

XN

i¼1

Ci ð2Þ

Watts and Strogatz (1998) also defined the path length of unweighted

graphs. We extend this definition to weighted graphs building on

the approach of Latora and Marchiori (2001). In detail, we define

the length of an edge as the inverse of the aforementioned edge

weight, i.e. Lij = 1/wij if wij 6¼ 0, and Lij = +1 if wij = 0; recall that wij

is positive because we use the PLI as edge weight. The length of

a weighted path between two vertices is then defined as the sum of

the lengths of the edges of this path. The shortest path lij between

two vertices i and j is the path between i and j with the shortest

length. Analogously to definition (2) the average weighted path

length of the entire graph is computed as

Lw ¼
1

1=N N � 1ð Þð Þ
PN

i¼1

PN

j 6¼i

1=Lij

� � ð3Þ

Notice that instead of the arithmetic mean we here employed the

harmonic mean (Newman, 2003), so that we can handle infinite

path lengths between disconnected edges, i.e. 1/1 ! 0.

By definition, both values of Cw and Lw depend on edge weights

and network structure but also on network size. In order to obtain

measures that are independent of network size, the mean edge weight

Ĉw ¼ Cw= CðsurrogateÞ
w

� �
and the mean path length L̂w ¼ Lw= LðsurrogateÞ

w

� �

were computed, in which CðsurrogateÞ
w

� �
and LðsurrogateÞ

w

� �
denote weighted

clustering coefficient and path length averaged over an ensemble of

50 surrogate random networks that were derived from the original

networks by randomly reshuffling the edge weights. The steps
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involved in weighted graph analysis of the MEG data are illustrated

schematically in Fig. 2.

Modelling network damage
To understand the general mechanisms underlying network changes in

Alzheimer patients two models were compared, adopted from Albert

and Barabási (2002). The first model (Random Failure) assumes that

network changes are due to a random decrease in strength of edges.

The second model (Targeted Attack) assumes that edges connecting

high degree vertices (‘hubs’) will be more vulnerable to attack than

edges connecting low degree vertices. The models were implemented

by taking the PLI data of a control subject, selecting an edge at

random, and then decrease its weight by a factor 2 with probability

1 (Random Failure model), or a probability that depended on the

degree of both vertices connected by the edge (Targeted Attack

model). This procedure was repeated until the average PLI of the

network was decreased to the average PLI of the Alzheimer group

(Figure 3). Data of all control subjects were treated in a similar way.

This resulted in two new data sets, one for each model, which were

subjected to the same graph analysis as the original control and

Alzheimer data sets.

Statistical analysis
Statistical analysis was done with SPSS for MS-Windows (version 15).

Group differences in respectively gender distribution and PLI and

were tested with ANOVA (analysis of variance) and two-tailed

t-tests for independent samples (not assuming equal variance). Since

graph measures showed a non-Gaussian distribution, group differences

were tested with Mann–Whitney U-tests for independent samples.

The effect of and medication use on PLI and network measures was

assessed using Kruskal–Wallis tests. Associations between cognitive

status (MMSE) and PLI or network-derived measures were assessed

with Spearman’s bivariate correlation test. A significance level of

�50.05 was used.

Results

Subject characteristics
No effect of gender distribution in the groups on PLI values and

network measures was found. In the Alzheimer’s disease patient

Fig. 2 Schematic illustration of the steps involved in weighted graph analysis of MEG recordings. At each of the MEG sensors,

illustrated in (A), MEG signals are recorded. Epochs of MEG data are filtered, as shown in (B), and correlations between all pairs of

channels are determined with the phase lag index. This results in a weighted graph, with the strength of the synchronization between

pairs of sensors indicated in colour (blue low, red high PLI), as shown in (C). From each graph the weighted clustering coefficient Cw

and the weighted path length Lw are computed. Also, from each graph, and ensemble of random graphs is generated by randomly

shuffling the connection weights (D). The Cw and Lw of each of the random graphs is determined and the mean values for the

ensemble, CðsurrogateÞ
w

� �
and LðsurrogateÞ

w

� �
, are determined. Finally, the ratios Ĉw and L̂w are computed (E).
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group, six persons used cholinesterase inhibitors (rivastigmine or

galantamine). However, use of this medication did not produce a

significant effect on PLI or network measure outcomes. This was

also the case for the use of other psychoactive drugs in both the

patient and control group (see Patients and controls section).

Phase lag index
The average networks for Alzheimer’s disease patients and con-

trols computed with PLI in six different frequency bands are

shown in Fig. 4.

Visual inspection already suggested differences between the two

groups, especially in the 8–10 Hz and 13–30 Hz bands. Group

differences in mean PLI for each frequency band were tested

with two-tailed t-tests for independent samples. The results are

shown in Fig. 5.

The mean PLI was significantly lower in the Alzheimer’s disease

group in the 8–10 Hz band (P = 0.022) and in the 13–30 Hz band

(P = 0.036). A non-significant trend in the same direction was

found in the 10–13 Hz band (P = 0.112). No clear differences

could be observed in other bands. By way of illustration, for the

two frequency bands with a significant mean difference in PLI

more detailed, regional results are shown in Fig. 6.

Fig. 5 Mean PLI averaged over all pairs of MEG sensors for

Alzheimer’s disease patients and controls in six frequency

bands. Error bars are SDs. The mean PLI was significantly lower

in Alzheimer’s disease patients compared to controls in the

lower alpha band (two-tailed t-test, P50.022) and the beta

band (two-tailed t-test, P = 0.036).

Fig. 4 Average weighted graphs of Alzheimer’s disease patients and controls in six frequency bands. The value of the PLI for all

individual pairs of MEG sensors is indicated in colour (blue: low PLI; red: high PLI).

Fig. 3 Damage modelling procedure. The mean PLI of a

control subject network is lowered by randomly weakening

edges in the network, until it reaches the same value as in a

Alzheimer’s disease patient network. The effect of this damage

is then examined by comparing the network characteristics of

the damaged network to the Alzheimer’s disease patient net-

work characteristics. RF = Random Failure, TA = Targeted

Attack, Cw = mean weighted clustering coefficient, Lw = mean

weighted path length.
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For the 8–10 Hz band, Alzheimer’s disease patients

had significantly lower left fronto-parietal (P = 0.026), fronto-tem-

poral (P = 0.007), parieto-occipital (P = 0.025) and temporo-occipi-

tal (P = 0.009) PLI. Local left frontal (P = 0.034), temporal

(P = 0.011) and right parietal (P = 0.021) PLI were also decreased

in the Alzheimer’s disease group. For the 13–30 Hz band, Alzhei-

mer’s disease patients showed a decrease in interhemispheric fron-

tal (P = 0.032), right fronto-parietal (P = 0.041) and local right

(P = 0.020) and left (P = 0.046) frontal PLI.

Network analysis
Results of the weighted graph analysis are shown in Table 1.

The non-parametric Mann–Whitney U-test for independent

samples revealed that Cw was lower in Alzheimer’s disease

subjects in the 8–10 Hz band (U = 89.5; P = 0.022), but not in

the 13–30 Hz band (U = 107.0; P = 0.081). Lw was higher in

Alzheimer’s disease subjects in the 8–10 Hz band (U = 82.0;

P = 0.011). In the 8–10 Hz band Alzheimer’s disease patients had

a lower Ĉw (U = 76.0; P = 0.006) and a lower L̂w (U = 86.0;

P = 0.016).

Modelling of network changes
Modelling with the Random Failure and the Targeted Attack

model was applied to the data of the 8–10 Hz band since this

band showed the most consistent differences in graph measures

between the two groups. The average PLI graphs for Alzheimer’s

disease patients, controls and both models are shown in Fig. 7. On

visual inspection, both models look quite similar to the average

network in the Alzheimer’s disease group. Please note that, by

definition, the average PLI of both models is the same as the

average PLI of the Alzheimer’s disease data.

Further analysis of the model data compared with the real data

is shown in Fig. 8. For the Random Failure model the Ĉw was not

different from the control data, and significantly higher than Ĉw of

the Alzheimer’s disease group (Mann–Whitney U-test, U = 76.5;

P = 0.007). In contrast, Ĉw of the Targeted Attack model was

not significantly different from the Alzheimer’s disease group,

but significantly lower than Ĉw of the control group (U = 87.0;

P = 0.018). The weighted path length L̂w showed a decreasing

trend going from controls to Random Failure, Targeted Failure

and controls (Fig. 8, right panel). L̂w of both models did not

differ significantly from control data.

Correlation with MMSE
No significant correlations between MMSE and PLI or network

measures were found in the Alzheimer’s disease patient group

(Fig. 9). When correlation with MMSE was analysed for all subjects

(Alzheimer’s disease and control) put together in one group,

we found significant effects between MMSE and mean PLI in the

beta band (Spearman’s r = 0.570, P = 0.001) and between MMSE

and Ĉw in the lower alpha band (Spearman’s r = 0.475, P = 0.008).

Table 1 Results of weighted graph analysis for Alzheimer’s disease patients and controls in six frequency bands

Cw Lw Ĉw L̂w

Alzheimer’s
disease

Control Alzheimer’s
disease

Control Alzheimer’s
disease

Control Alzheimer’s
disease

Control

0.5–4 Hz 0.12
(0.10–0.32)

0.12
(0.10–0.17)

4.05
(1.69–4.40)

3.92
(2.89–4.59)

1.04
(1.03–1.12)

1.04
(1.02–1.11)

1.09
(1.06–1.33)

1.08
(1.05–1.34)

4–8 Hz 0.11
(0.09–0.20)

0.10
(0.09–0.15)

4.23
(2.48–4.99)

4.44
(3.22–5.01)

1.05
(1.03–1.17)

1.04
(1.03–1.13)

1.14
(1.04–1.41)

1.15
(1.05–1.43)

8–10 Hz 0.15
(0.12–0.21)

0.17
(0.13–0.29)

3.27
(2.25–3.76)

2.69
(1.80–3.73)

1.04
(1.02–1.12)

1.07
(1.04–1.13)

1.08
(1.05–1.32)

1.19
(1.07–1.30)

10–13 Hz 0.12
(0.11–0.14)

0.13
(0.11–0.22)

3.83
(3.28–4.36)

3.72
(2.36–4.30)

1.04
(1.03–1.10)

1.04
(1.03–1.21)

1.10
(1.05–1.35)

1.12
(1.04–1.45)

13–30 Hz 0.06
(0.05–0.06)

0.06
(0.05–0.08)

7.97
(6.44–9.24)

7.61
(5.18–9.35)

1.04
(1.02–1.07)

1.04
(1.03–1.16)

1.11
(1.05–1.50)

1.12
(1.04–1.50)

30–45 Hz 0.05
(0.05–0.09)

0.05
(0.05–0.08)

8.70
(5.17–9.07)

8.54
(6.06–9.14)

1.02
(1.02–1.07)

1.02
(1.02–1.07)

1.09
(1.06–1.33)

1.04
(1.02–1.30)

Values are medians, with range printed between parentheses. Cw = mean weighted clustering coefficient; Lw = mean weighted path length; Ĉw = mean normalized
average weighted clustering coefficient (see Materials and Methods section), L̂w = mean normalized average weighted path length. Significant differences between
Alzheimer’s disease and controls with non-parametric testing (Mann–Whitney U-test, P50.05) are given in bold.

Fig. 6 Schematic illustration of significant differences in long

distance (indicated by arrows) and short distance (indicated by

filled squares) PLI in the 8–10 Hz and 13–30 Hz band.

Alzheimer’s disease patients had lower left sided fronto-

temporal, fronto-parietal, temporo-occipital and parieto-

occipital PLI in the 8–10 Hz band. Local left frontal and tem-

poral, and right parietal PLI were also decreased in Alzheimer’s

disease patients (A). For the 13–30 Hz band, Alzheimer’s dis-

ease patients had lower inter hemispheric frontal, right fronto-

parietal and bilateral frontal PLI (B).
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Discussion
The present study showed that resting-state functional connectiv-

ity of MEG is decreased in Alzheimer’s disease patients in the

lower alpha and beta bands using a recently developed measure,

the PLI that appears invariant against volume conduction. This

finding supports the concept of Alzheimer’s disease as a discon-

nection syndrome. Moreover, changes in functional connectivity in

Alzheimer’s disease patients did not involve all brain regions to the

same extent, suggesting a heterogeneous disruption of overall net-

work structure. This idea was confirmed by graph analysis of the

functional connectivity data, which revealed lower normalized

clustering coefficients and path lengths in the Alzheimer’s disease

group in the lower alpha band. This type of change suggests that

brain networks in Alzheimer’s disease patients are closer to

random networks than those of non-demented control subjects.

The modelling results suggest that this change was brought about

by a preferential decrease of connections between high degree

nodes (‘hubs’), rather than a non-specific decrease of connection

strength.

Volume conduction
A decrease of resting state functional connectivity in Alzheimer’s

disease patients in the alpha and often also in the beta band

has been reported in many EEG and MEG studies (Leuchter

et al., 1992; Besthorn et al., 1994; Dunkin et al., 1994;

Jelic et al., 1996; Locatelli et al., 1998; Knott et al., 2000;

Stevens et al., 2001; Adler et al., 2003; Hogan et al.,

2003; Jiang 2005; Koenig et al., 2005; Pogarell et al., 2005).

However, a major point of criticism is that such studies were

done on the raw EEG and MEG time series. It is well known

that estimates of statistical interdependencies in EEG and MEG

may be biased by the effects of volume conduction and, in the

case of EEG, by the influence of the reference electrode (Nunez

et al., 1997; Guevara et al., 2005). More specifically, nearby EEG

Fig. 7 Comparison of real and modelled networks in the

8–10 Hz band. Top left: average PLI for the Alzheimer patients.

Top right: average PLI for the control subjects. Bottom left:

average PLI after application of the ‘Targeted Attack’ model to

control data. Bottom right: average PLI after application of the

‘Random Failure’ model to control data.

Fig. 8 Comparison of normalized weighted clustering coefficient (left panel) and path length (right panel) for Alzheimer patients,

Targeted Attack model, Random Failure model and controls in the 8–10 Hz band. Box plots show median, interquartile range

and extremes.
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electrodes or MEG sensors are likely to pick up activity of the

same source, and thereby to display spuriously high correlations

between their time series. This problem can be solved to a large

degree by acknowledging that spurious couplings due to volume

conduction or active reference electrodes cannot give rise to

phase delays between channels. The PLI is only sensitive to

phase synchronization between two channels when one is consis-

tently leading or lagging in phase with respect to the other. That

is, with PLI any coupling with a phase difference which centres

around 0 mod � are discounted. Put differently, our finding of

a significant decrease of PLI in the lower alpha and the beta

band cannot be explained by volume conduction but strongly

supports the idea that resting-state functional connectivity is

decreased in Alzheimer’s disease. Since the PLI results are largely

in line with the previous studies we can conclude that the influ-

ence of volume conduction and reference electrode in these

studies may have been smaller than has sometimes been sug-

gested. However, a detailed comparison of our study with a pre-

vious study, in which the same data were analysed with several

linear and nonlinear measures, does display a few differences

(Stam et al., 2006). For example, if we compare Fig. 6 of the

present study with Figs 3, 4 and 7 of Stam et al. (2006),

one finds that the PLI in the beta band only showed decreases

in the Alzheimer’s disease group, whereas coherence and SL also

showed centro-parietal increases. A possible explanation could

be that the increases in connectivity reported for SL and coherence

might be influenced by volume conduction, while the decreases

seems to be confirmed by the PLI and may reflect true loss of

connectivity, but this should be subject to further study.

Resting state
Functional connectivity can be determined in relation to tasks as

well as during a resting state. More recently there has been a

growing interest in resting state functional connectivity because

it appears that in particular memory-related brain networks are

consistently activated during this state (Gusnard and Raichle,

2001; Laufs et al., 2003; Damoiseaux et al., 2006). Moreover,

resting state functional connectivity has a strong genetic compo-

nent, and shows characteristic changes in various psychiatric and

neurological disorders (Posthuma et al., 2005; Stam, 2005, 2006).

Network analysis
In the present study Cw was decreased in the lower alpha and

beta band and Lw was increased in the lower alpha band in

the Alzheimer’s disease group. It should be stressed that these

changes in Cw and Lw are likely to be influenced by changes in

the PLI. A lower mean level of PLI will decrease the estimate

of Cw, irrespective of changes in network structure. Similarly, a

lower PLI will give rise to longer weighted path lengths. These

results should be compared to Fig. 5 in Stam et al. (2007a).

Here Cw and Lw were compared between controls and

Alzheimer’s disease patients for the same threshold, showing a

non-significant trend to a lower Cw and a significant increase of

Lw in the Alzheimer’s disease group. By using the same threshold

for both groups, differences in mean PLI could have influenced the

results. Thus changes in Cw and Lw in both studies are consistent,

but cannot be taken as ‘pure’ measures of changes in network

Fig. 9 In the left panel the correlation of mean PLI in the lower alpha band and MMSE is shown (Spearman’s r = 0.570, P = 0.001), in

the right panel the correlation of the mean clustering coefficient with MMSE in the beta band (Spearman’s r = 0.475, P = 0.008).

Alzheimer’s disease and controls group were combined for this analysis.
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structure as they are likely to be influenced by the lower mean

level of connectivity in the Alzheimer’s disease group.

In contrast, the normalized coefficients Ĉw and L̂w are corrected

for differences in mean PLI between subjects, since each network

is compared to its own random counterpart. The most important

result is thus the decrease of Ĉw and L̂w in the Alzheimer’s disease

group in the lower alpha band. Within the framework of the

Watts and Strogatz model this suggests that network architecture

in Alzheimer’s disease patients is significantly closer to that of

random networks. However, Ĉw was very close to one in both

groups, and much lower than reported in other studies, where

Ĉw was usually around two (Stam, 2004; Salvador et al., 2005;

Achard et al., 2006; Bassett et al., 2006; Stam et al., 2007a). It is

possible that correlations between nearby sensors due to volume

conduction could have produced spuriously high estimates of Cw

in previous EEG and MEG studies.

Damage modelling
Modelling was used to investigate whether the observed network

changes in Alzheimer’s disease in the 8–10 Hz band could be

explained by a general mechanism. In the literature on complex

networks generally two types of network damage are considered:

Random Failure, where edges and/or vertices are lost randomly,

and Targeted Attack, where damage mainly affects high degree,

critical vertices and/or edges (section 3 in Boccaletti et al., 2006,

for a more practical application see Kaiser et al., 2007). In our

study the Targeted Attack model performed better than the

random error model in explaining the network changes

in Alzheimer’s disease, in particular with respect to the clustering

coefficient (Fig. 7). While both models lowered the mean PLI to

the level observed in the Alzheimer’s disease group, only the

Targeted Attack model produced a clustering coefficient as low

as in the patients, whereas the Random Failure model did not

change the clustering coefficient at all. These results suggest

that the disease process in Alzheimer’s disease may specifically

affect association fibres connecting brain areas that are highly

connected to the rest of the brain, that is: higher order association

areas. The distribution of amyloid plaques in Alzheimer’s disease is

in agreement with this suggestion (Nordberg, 2007).

Several studies have investigated the nature of network changes

in different types of brain pathology. In the case of brain tumours,

schizophrenia and interictal recordings of patients with epilepsy

pathological networks were characterized by a smaller Cw and a

smaller Lw (Bartolomei et al., 2006; Micheloyannis et al., 2006;

Ponten et al., 2007; Rubinov et al., 2007). Considering the model

of Watts and Strogatz, where the edges of a fully ordered network

with degree K (number of edges per vertex) are rewired randomly

with a certain probability P, a lower Cw and Lw would correspond

with a higher value of the rewiring probability, and a more

random network. The findings in the Alzheimer’s disease group

in the present study seem to fit in the same scheme: decrease

of both Cw and Lw, and a more random network in the patient

group. Moreover, the values were close to (although significantly

different from) 1, which indicates that the difference between real

and random networks was very small. The one finding that does

not fit in this pattern is the increase in beta band path length for

Alzheimer’s disease patients reported in the previous pilot study

(Stam et al., 2007a). This result was obtained only for some values

of degree K, with K identical for both groups (Fig. 5 in Stam et al.,

2007a). One explanation could be that in the EEG pilot study

disconnected points (which occur already for values of K = 3)

were excluded from the computation of the path length, whereas

in the present study they were included (see formula in Materials

and methods section). This is an essential difference, excluding or

including disconnected points may decrease or increase the esti-

mated path length considerably. The lower alpha band, which was

the only band to show clear changes in normalized clustering

coefficient and path length in the current MEG study, was not

investigated in the EEG study. Therefore, the evidence in favour

of more random network topology in Alzheimer’s disease seems

to be stronger, and in line with changes in other disorders. To be

able to find a disease-specific ‘network change profile’ probably

requires further exploration of this network approach and its rela-

tion to clinical features of Alzheimer’s disease. Possibly ‘network

randomization’ may be a final common pathway for different

types of brain damage, resulting from loss of neurons and con-

nections as well a random outgrowth of new connections. A

related concept of increased entropy relating to ageing and

Alzheimer’s disease has recently been formulated by Drachmann:

‘Increasing entropy, manifest through a complex network of inter-

acting age related changes, is seen as the fundamental driving

cause of neural and cognitive decline in the elderly, as well as

the overriding etiologic principle in further transition to sporadic

Alzheimer’s disease’ (Drachmann, 2006). It would be of consider-

able interest to study how different types of treatment will inter-

fere with this process of network randomization, and how the

network parameters relate to disease severity and cognitive

performance.
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Supplementary material is available at Brain online.
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