
Received May 30, 2019, accepted July 5, 2019, date of publication July 15, 2019, date of current version July 31, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2928467

Graph Theory-Based Approach to Accomplish
Complete Coverage Path Planning Tasks
for Reconfigurable Robots

KU PING CHENG1, RAJESH ELARA MOHAN 1, NGUYEN HUU KHANH NHAN2,
AND ANH VU LE 1,2
1ROAR Laboratory, Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore 487372
2Optoelectronics Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam

Corresponding author: Nguyen Huu Khanh Nhan (nguyenhuukhanhnhan@tdtu.edu.vn)

This work was supported by the National Robotics Program Office (NRPO), Singapore, to the Engineering Product Development at the

Singapore University of Technology and Design under Grant RGAST1702.

ABSTRACT Extensive studies regarding complete coverage problems have been conducted, but a few

tackle scenarios where the mobile robot is equipped with reconfigurable modules. The reconfigurability

of these robots creates opportunities to develop new navigation strategies with higher dexterity; however,

it also simultaneously adds in constraints to the direction of movements. This paper aims to develop a valid

navigation strategy that allows tetromino-based self-reconfigurable robots to perform complete coverage

tasks. To this end, a novel graph theory-based model to simulate the workspace coverage and make use

of dynamic programming technique for optimal path searching and adaptive robot morphology shifting

algorithms is proposed. Moreover, the influence of algorithms starting variables on workspace coverage

outcome is analyzed thoughtfully in this paper. The simulation results showed that the proposed method

is capable of generating navigation paths throughout the workspace, which ensures complete workspace

coverage while minimizing the total number of actions performed by the robot.

INDEX TERMS Complete coverage path planning, self-reconfigurable robots, graph theory, dynamic

programming, Dijkstra algorithm.

I. INTRODUCTION

Complete Coverage Path Planning (CCPP) algorithms focus

on the task of determining a path that passes through every

region in the workspace while avoiding obstacles. These

algorithms have been extensively studied andmany have been

integrated to a wide range of real-world robotic platforms,

such as cleaning robots [1], painter robots [2], demining

robots [3], [4], lawnmowers [5], [6], and so forth.

Based on whether any prior knowledge regarding the

workspace is being stored in the system, coverage path plan-

ning algorithms can be categorized into online (or called

sensor-based) approaches and off-line approaches. Online

approaches rely on data feed from onboard sensors on the

robot to construct environment maps and to direct the cov-

erage operation [7]. These approaches focus on coverage

The associate editor coordinating the review of this manuscript and
approving it for publication was Vivek Kumar Sehgal.

navigation tasks of unknown spaces and decisions of robot

actions are being made at each time instant based on robot

surroundings, making these algorithms powerful dealing with

workspaces with the presence of dynamic obstacles. Never-

theless, due to the limitations of sensor readings in terms of

sensor reach and accuracy, an optimal solution with complete

coverage of the workspace is not always guaranteed [7]. Off-

line approaches, on the other hand, assume that workspaces

are static and fully observable, implying that the path planner

can be executed and the navigation path can be generated in

advance. Generally, off-line approaches yield solutions with

better workspace coverage and more optimized paths, but

the approaches may be unrealistic to be put into practice

if space is unknown. Popular CCPP algorithms that have

been developed previously include spanning-trees [8], [9],

spiral filling paths [10], [11], and neural networks [12]. The

genetic algorithms [13], [14] are powerful meta-heuristic

approaches that excel at searching for the shortest path that

94642
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-6504-1530
https://orcid.org/0000-0002-4804-7540

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

fulfills certain conditions. However, the nature of complete

coverage optimization problems is quite different from the

shortest path optimization. The objective functions in shortest

path optimization problems are usually continuous functions

and will eventually converge to particular optima (whether

it is local or global). However, in complete coverage path

planning problems as presented in this paper, the maximum

coverage is a harsh constraint to the objective functions and

heuristic approaches does not workwell in this situation as the

result of the objective function is easily influenced by single

changes in robot agent action sequence. This is the reason

we have provided an alternative approach to deal with this

particular optimization problem. Under the assumption that

all algorithms can achieve maximum workspace coverage,

the efficiency of a CCPP algorithm can be evaluated by

the time elapsed [15], or by the total power consumption

throughout the navigation process [16].

Space decomposition technique is a crucial element of

many of the CCPP algorithms. Selecting an adequate space

decomposition technique simplifies the construction of the

system model and may significantly reduce the compu-

tational complexity of the algorithms to be implemented.

Among all decomposition techniques, grid-based decompo-

sition is a popular candidate that has been adopted in the

spiral filling path, genetic algorithms, and some heuristic-

based coverage algorithms [17]. Grid-based decomposition

methods represent the free space as a union of smaller regions

called cells, where all cells are identical in size and shape

without any overlapping area between cells. Rectangular cells

are commonly used for most navigation applications, while

triangular cells [18] are sometimes adopted for flexible robot

platforms to operate at higher efficiency. The cell sizes cho-

sen for grid-based methods determine the resolution of the

map. A high-resolution grid map provides a better estima-

tion of workspace and obstacle boarders and yields a higher

workspace coverage as it allows the robot to navigate to

free spaces that could potentially be recognized as obsta-

cle cells in a low-resolution grid map. In most CCPP task

scenarios, the grid size of a cell is approximately equal to

the sweeping width of the robot for better overall workspace

coverage.

Since the early 1980s, reconfigurable robots have received

increasing attention and platforms with a wide variety of

reconfigurable mechanics have been deployed. Reconfig-

urable robot platforms can be categorized into three major

types [19]: intra-reconfigurable, inter-reconfigurable, and

nested reconfigurable. An intra-reconfigurable robot has

the ability to change its internal morphology without the

requirement of external assembly or disassembly. An inter-

reconfigurable robot consists of a congregation of homoge-

neous or heterogeneous robots and is capable of forming a

variety of morphologies through assembly and disassembly

process. A nested reconfigurable robot involves platforms

that are capable of performing inter-reconfigurations with

its individual modules being intra-reconfigurable. The high

dexterity and dynamic flexibility reconfigurable robots allow

them to accomplish a wide variety of tasks under controlled

environments.

Nevertheless, few currently existing reconfigurable robots

are designed to tackle complete area coverage tasks. The

primary concern to develop an intra-reconfigurable platform

suitable to accomplish CCPP tasks is regarding the robustness

of the robot. A large portion of CCPP tasks, such as lawn

mowing, harvesting, and demining, usually involve a larger

workspace with few obstacles. A heavy-duty robot with a

fixed shape is considered a better candidate compared to

reconfigurable robots in those environments. The planned

paths in these scenarios are simple, so implementing recon-

figurability in the robots by trading off robustness for motion

dexterity does not yield better outcome in these scenarios.

On the other hand, CCPP tasks that emphasize area cov-

erage in complicated areas, like indoor cleaning missions,

would require robot platforms with higher dexterity to avoid

obstacles scattered within the environment and to provide

precise motion and direction control. Hinged-tetro (or hTetro)

developed by Prabakaran et al. [20] is an example of a

cleaning robot equipped with the reconfigurability to shape-

shift into several transformations. The team presented a tiling

theory-based algorithm [21] to demonstrate the feasibility

of covering an area by utilizing several morphologies of

a similar reconfigurable robot platform, hTetro. With the

shape-shifting ability, the hTetro robot is capable of access-

ing narrow areas within the workspace. High levels of area

coverage performance can be observed in the experimental

results demonstrated in the aforementioned paper. This paper

expands on the previous work of hTetro and focuses on the

implementation of coverage path planning algorithms of the

platform.

To construct a valid path planning strategy for reconfig-

urable robots, we put the emphasis on graph theory-based

CCPP algorithms. Extensive graph theory-based searching

algorithms have been developed for robot platforms, most

of which focus on shortest path problems and make use of

heuristics like Randomized Search [22], A* Algorithms [23],

D* Lite [24], etc. To achieve maximum area coverage,

however, would require fundamentally different approaches.

A valid strategy is to formulate the problem as the longest

path problem (LPP). Solutions generated by LPP simple path

algorithm can achieve maximum area coverage provided that

every edge in the graph has a positive weight. However, it is

worth mentioning that LPP is an NP-Complete class problem

as it is trivially a generalization of the Hamiltonian path

problem. LPP has been proven to be unsolvable in polynomial

time unless P = NP [25], [26]. Due to the computational

complexity that lies in the nature of LPP problems, it is not

the main concern of this paper to propose an algorithm that

outperforms current existing LPP algorithms while yielding

an optimal solution. Instead, the goal is to propose a rea-

sonable fast path searching approach that can successfully

navigate the robot from the start configuration to the end

configuration while ensuring maximum area coverage of

the space. To achieve this goal, approaches including graph

VOLUME 7, 2019 94643

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

partitioning and dynamic programming are being imple-

mented to simplify the problem and to speed up the compu-

tational time.

Rest of the paper is organized as follows. Section II

describes the reconfigurable robot platform that is beingmod-

eled. Section III develops the graph theory-based model and

formulates the complete coverage problem. In Section IV,

the proposed complete coverage path planning algorithm for

reconfigurable robots is being presented. Section V shows the

simulations and results of the proposed algorithm. Finally,

Section VI presents the conclusions along with a note of

future developments.

II. HINGED-TETRO PLATFORM

This section introduces the robot platform selected for the

system and presents the system model setup of the proposed

complete coverage path planning algorithm.

A. HTETRO ROBOT PLATFORM

The workspaceW ⊂ R
2 is the environment in 2-D Cartesian

space where robot agent A navigates. The reference frames

of W and A are denoted as FW and FA [27].

This paper considers hTetro [20] as the selected robot

agent, which is a chain-type modular self-reconfigurable

(MSR) floor cleaning robot that consists of four blocks

connected by three active hinges. The geometries of the

four hTetro blocks are denoted as B1,B2,B3,B4. All hTetro

blocks are in a square shape of width dblock .The hinge relative

connections between hTetro blocks are shown in Figure 1,

which results in the following mechanical movement

constraints:

0 ≤ θB1 − θB2 ≤ π

0 ≤ θB2 − θB3 ≤ π

0 ≤ θB4 − θB3 ≤ π

where θBn (n = 1, . . . , 4) represents the angle rotated

from workspace frame to local frame of Bn, with the

convention of counterclockwise rotation as the positive

direction.

In the proposed model, robot local frame FA is being

attached to the center of the second block in hTetro (B2). Con-

sider all possible angle combinations of θBn that fulfills hinge

constraints of θBn ∈ {0,
pi
2
, π, 3π

2
} while FA is fixed, a total

of seven robot shapes can be configured. These shapes form

the seven basic morphologies of hTetro, as shown in Figure 2.

The ability to shape-shift into any of the seven tetromino

morphologies allows the hTetro robot to efficiently navigate

with the ideal shape according to the perceived terrain and

obstacles.

Each hTetro Block is equipped with four omnidirectional

wheels, with a pair of wheels being placed perpendicularly to

the other pair. This mechanical design allows a hTetro block

to instantly change its direction of motion by 90. Differential

wheeled robots, on the other hand, are required to perform

a U-turn to conduct a direction change in robot motion.

FIGURE 1. hTetro system model.

FIGURE 2. 7 basic morphologies of hTetro.

Therefore, instead of controlling the revolutions per minute

(RPM) values of each motor in hTetro blocks, the commands

implemented to control hTetro block linear motions are sim-

ply ’Forward’, ’Backward’, ’Left’, ’Right’. Since a hTetro

robot is composed of four different blocks, the combinations

of the four commands sent to each block allow them to

perform motions with high complexity cooperatively, such as

making pivot turns or performing orientation auto-correction

when a deviation in hTetro block heading is detected.

B. ROBOT CONFIGURATION

Most robots with fixed shapes describe their configura-

tions with three parameters: the x and y coordinates in the

workspace, and a heading angle. Nevertheless, due to the

reconfigurable nature of hTetro robots, this representation

is insufficient to describe shape-shifting motions and the

different morphologies of an hTetro robot in the environment.

Therefore, the revised definition of robot configuration is

being presented as follow.

Definition 1 (Robot Configuration): The configuration q

of a hTetro robot is a six-element array

q = [x, y, θB1 , θB2 , θB3 , θB4]T (1)

94644 VOLUME 7, 2019

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

where:

(x, y) = coordinate of hTetro Block 2 (B2) center in

workspace frame F
W

θBk = angle rotation of local frame in Bn(n = 1, . . . , 4)

with respect to the global frame

C. WORKSPACE MODEL

In this paper, the grid-based method is being implemented to

formulate the mathematical system model for our algorithm.

Through approximate cellular decomposition technique pro-

posed by Choset [7], a collection of uniform grid cells in

the workspace can be determined, where each grid contains

variables stating whether space is free or being occupied by

obstacles [28]. This section introduces the construction of the

grid map of the workspace and the variable that stores grid

information.

This work considers a rectangular-shaped workspace W

that could be fully decomposed into square-shaped grids with

grid width dgrid . Let nrow and ncol be the total number of rows

and columns after the cellular decomposition. Grid position

is then defined as follow.

Definition 2 (Grid Position): A grid position represents

the coordinate vector of the grid which locates at i-th row

and j-th column. gWi,j is the grid position with respect to

the workspace frame FW ; whereas g
Bn
i,j represents the grid

position with respect to the frame where hTetro block Bn

locates.

gWi,j =
[

xWi,j yWi,j

]T
(2)

g
Bk
i,j =

[

x
Bk
i,j y

Bk
i,j

]T
= R(θBk)T (vBk)gWi,j (3)

where:

R(θ) = a 2-dimensional rotation matrix rotating through

angle θ counterclockwise about the origin.

T (v) = a 2-dimensional translation matrix along vector v.

Since the workspace frame is fixed throughout the experi-

ment, gWi,j will remain constant whereas the value of g
Bk
i,j will

constantly be changing.

In the proposed model, obstacles are being introduced in

the workspace W . Through approximate cellular decompo-

sition, all grids with overlapping areas with the interior of

obstacles within the workspace form an obstacle set O.

With the grid model being constructed, a variable is being

introduced to store the grid information at each time instance,

which is called ‘‘grid activity’’. The activity of a grid keeps

track of whether the obstacle is and the coverage of the grid

at each time instance, which is defined as follow.

Definition 3 (Grid Activity): The activity of a grid located

at i-th row and j-th column at time t is represented by ai,j(t).

A grid activity set A consists of all grid activities within the

workspace. The grid activity is updated at each time instance

based on the previous grid activity value, which is defined by:

ai,j(t + 1) =

1 , if ai,j(t) = 1 or ∃g
Bk
i,j , k ∈ {1, . . . , 4}

s.t. |x
Bk
i,j | ≤

dgrid
2
∧ |y

Bk
i,j | ≤

dgrid
2

−1 , if gWi,j ∈ O

0 , otherwise

(4)

Based on Definition 3, all grids with obstacle presenting

will have grid activity of −1; whereas the grid activity of

other grids remains 0 until it is being covered by any of the

hTetro blocks. Once a grid is being covered, the grid activity

will be a constant number of 1 throughout the entire naviga-

tion process. The workspace W is considered fully covered

at time t if all grids have a grid activity of 1 or−1, providing

that no unaccessible grids are presented in the workspace.

D. HTETRO ROBOT NAVIGATION STRATEGY

This paper proposes a robot navigation strategy based on

roadmap method. A roadmap R consists of a series of ideal

robot configurations q, which specifies the desired position,

heading, and shape of hTetro robot in a particular sequence

that results in maximum area coverage of the workspace. The

calculation and optimization of the maximum area covered

are achieved by utilizing graph theory-based path planner,

which will be introduced in section III and IV.

Once a roadmap is being constructed, the navigation sys-

tem will estimate the positions and heading angles of each

hTetro block based on onboard sensor readings. A series

of commands which include linear motions in four direc-

tions and adjustments in hinge angles will then be sent

to each hTetro block in order to clear the configurations

assigned to the robot. A configuration is considered cleared

once the robot arrives at the coordinate with exact hTetro

block angles specified. A new configuration will then be

assigned to the robot, and the navigation process will con-

tinue until all configurations in the roadmap are being

cleared.

In order to reduce unblocked areas that could potentially

be identified as obstacle grids during the grid decomposition

process, the minimal grid size is defined to match the size of

a hTetro block (dgrid = dblock), which provides the highest

resolution of the grid map with each grid being geometrically

coverable by hTetro blocks. The hTetro robot can perform

either linear motion or angle adjustment within each time

step. Performing a linear motion moves all hTetro blocks

simultaneously in one of the four directions for a grid length

dgrid with respect to the workspace frame FW . An angle

adjustment of a block changes the orientation of the block by

90 degrees with respect to the blocks’ reference frames. In the

hTetro model, the robot frame FA is attached to the second

block, indicating that block 1 and block 3 will be taking

block 2 as reference frame and rotate 90 degrees within a time

step, block 4 will be taking block 3 as its reference frame, and

VOLUME 7, 2019 94645

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

TABLE 1. hTetro configuration command table.

block 2will be taking the workspace frame as reference frame

instead. For angle adjustments that cannot be finished within

a single time step, the process will continue until the heading

angles of all blocks are identical to those specified in the

next robot configuration. Combining the linear motions and

orientation adjustments hTetro can perform, a total of 13 com-

mands are being defined to control the movements of the plat-

form, which forms a configuration command table as shown

in Table 1. A configuration command array set Qc consists

of several configurations commands qc that correspond to

specific input string commands. The robot configuration at

the next time instance can be updated based on the command

received and the current configuration through the equation

below:

q(t + 1) = q(t) + qc (5)

III. GRAPH MODEL OF COMPLETE COVERAGE PROBLEM

Searching algorithms have been extensively studied in graph

theory. By modeling the system as a graph, an optimal solu-

tion is guaranteed to be found, though the problem might not

be solvable within polynomial time [26]. Applying heuris-

tics to the problem has been a common approach to tackle

graph-based problems; however, to reduce the time con-

sumed to solve the problem, some of these approaches might

make compromises on the accuracy of the solution [29].

The approach this paper proposed creates partitions of

the workspace graph based on heuristics and performs

exhaustive searches within the partitioned subgraphs to

ensure accuracy and to accomplish full coverage of the

area.

This section formulates the graph model of the workspace

based on the hTetro model developed in section II. The

definitions of morphology layer sets and stripe layer sets

that are used to construct the graph model is then intro-

duced. An auxiliary graph will then be constructed based

on the graph partitioning results, and searching algorithms

will be implemented to generate the optimal path to traverse

within the stripe layer sets. The details of the navigation

FIGURE 3. An illustration of hTetro workspace graph G.

algorithms within stripe layer sets are further introduced

in section IV.

A. CONSTRUCTION OF HTETRO WORKSPACE GRAPH

A morphology layer set is being defined to construct a graph

theory based representation of the workspace. A morphol-

ogy layer set specifies the vertices where the hTetro robot

with certain morphology can navigate. The hTetro workspace

graph, consisting of several morphology layer sets, in then

defined. The definitions are shown as follow.

Definition 4 (Morphology Layer Set): Amorphology layer

setMLs is a set that consists of a total of nrow×ncol elements:

MLs = {vsi,j|i, j ∈ N, i ≤ nrow, j ≤ ncol} (6)

where:

s = (θB1 , θB2 , θB3 , θB4) a tuple with four heading angles

which represents a specific hTetro morphology.

vsi,j = vertex that correspond to the grid at i-th row and j-th

column in morphology s

Definition 5 (hTetro Workspace Graph): A hTetro work-

space graph G is defined as a weighted graph with vertex

set V, edge set E, and morphology set S. A morphology

set S represents the set of all hTetro morphologies s that are

allowed throughout the navigation. V and E can be written

as:

3V =
(

⋃

s∈S

MLs
)

E

= {(vsi,j, v
s′

i,j)|s, s
′ ∈ S, s 6= s′, i, j ∈ N, i ≤ nrow, j ≤ ncol}

∪{(vsi,j, v
s
i+1,j|s ∈ S, i, j ∈ N, i ≤ nrow − 1, j ≤ ncol}

∪{(vsi,j, v
s
i,j+1|s ∈ S, i, j ∈ N, i ≤ nrow, j ≤ ncol − 1}

Figure 3 illustrates the definition of a workspace, which

consists of threemorphology layer sets (MLs1 ,MLs2 ,MLs3).

94646 VOLUME 7, 2019

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

The vertices of the workspace graph are the union of vertices

in all available morphology layer sets. The edge connections

within a morphology layer set represent possible robot linear

movements within the workspace with fixed robot morphol-

ogy. In Figure 3, the edge connectivity of vertex v
s2
i,j is being

highlighted. The linear motion is limited to four different

directions, while a connection between two morphology

layers represents a shift in robot morphology with the grid

position being fixed.

Assuming that the total number of morphologies in S is

set to nshape, the workspace graph will consist of a total of

nrow × ncol × nshape vertices, which makes exhaustive search

approach throughout the entire graph unpractical; therefore,

graph partitioning and dynamic programming techniques are

introduced to simplify the problem.

B. GRAPH PARTITIONING AND DYNAMIC

PROGRAMMING

This subsection introduces the attempt to utilize graph par-

titioning method to separate the graph into several stripes.

Graph partitioning is a commonly used algorithmic operation

that significantly reduces the time complexity of a graph [30]

and is a crucial prerequisite for efficient large-scale parallel

graph algorithms [31].

The core idea to implement graph partitioning method to

the hTetro workspace graph is to divide it into several ‘‘stripe

layer subgraphs’’. Each stripe layer subgraph covers a small

portion of the workspace area, where the recursive backtrack-

ing algorithm is implemented to search for a path that covers

the subgraph area. The details of the recursive backtracking

algorithm are introduced in section IV. Assuming that all

grids in a striped layer subgraph are covered and the action

costs of all stripe layers have been calculated, one remaining

task of the algorithm is to provide an optimized path between

the stripe layer subgraphs such that the total action cost for the

overall area coverage mission is minimized. The optimization

problem is being solved by implementing Dijkstra searching

algorithm in our algorithm.

The stripe layer set and stripe layer graph in the graph

partition model is defined as follow.

Definition 6 (Stripe Layer Set): A stripe layer set SLk is a

set that consists of all vertices in the k-th stripe layer set, with

a total of ncol × nstrk elements:

SLk={vi,j|i, j ∈ N, i≤ncol,

k−1
∑

n=1

nstrk < j≤

k
∑

n=1

nstrk } (7)

where:

nstrk = number of columns within stripe layer k . (nstrk ∈ N,
∑

k

nstrk = ncol)

Definition 7 (Stripe Layer Graph): A stripe layer graph

SLGk is a vertex-induced subgraph of G, which shares the

vertex set SLk and all corresponding edges in workspace

graph G.

FIGURE 4. hTetro workspace graph G with O- and horizontal I-shape
morphology layer sets. The cut-edges between stripe layer sets are being
highlighted.

In the proposed algorithm, reasonable values chosen for

stripe column widths nstr are between 2 to 4, which creates

stripes with similar size with the hTetro robot. When the

robot navigates within in a stripe layer subgraph, due to

the constrained column direction movement, the robot will

generally be moving in either +xW or −xW direction. The

shortest path that connects all stripe paths can be found when

the positive direction and negative direction stripes are placed

alternately, forming a boustrophedon-patterned motion [32].

The robot will navigate to the next stripe layer subgraph

once all accessible grids in the current subgraph are being

covered. The stripe layers are being connected by one or sev-

eral directed cut-edges. Within a morphology layer set, each

transition between stripe layer subgraphs will be assigned a

cut-edge to provide the robot with the flexibility to navigate to

the following stripe layer with different robot morphologies.

Take the scenario demonstrated in Figure 4 for example,

which illustrates a simple workspace graph partitioned into

three stripe layer sets SLk (k = 1, . . . , 3) with different

colors. In the example, graph morphology set S consists of

two elements: O-shape (s1 = (0, 0,−π,−π)) and hori-

zontal I-shape (s2 = (−π/2,−π/2,−π/2,−π/2)). During

the initialization of the algorithm, the start configuration

(denoted as qS), goal configuration (denoted as qG), and the

partitions of the stripes have to be determined. In Figure 4,

the start and goal configurations are being marked as the

letter ’S’ and ’G’ with O-shaped starting morphology. The

algorithm will generate a path from qS that covers the area

under the first stripe layer before entering one of the cut-

edges that connects to the second stripe layer, which is either

(v
SL1

1 , v
SL2

1) or (v
SL1

2 , v
SL2

2) in Figure 4. The row positions of

cut-edges might differ between morphologies based on the

position of the second block B2 of hTetro. For instance, in the

first morphology layer (O-shape) of the presented scenario,

the cut-edge is located at the second-to-last row since placing

it at the last row will result in several hTetro blocks going

beyond the workspace boundary. The idea also applies to all

other morphology layers. Within a morphology layer, only a

single cut-edgewill be formed to connect two different stripes

layers.

VOLUME 7, 2019 94647

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

FIGURE 5. A quotient graph of hTetro workspace graph in Figure 4 after
graph partitioning.

With the workspace graph defined, we now focus on the

simplification of the computational complexity of the prob-

lem through dynamic programming, which is a commonly

used algorithmic paradigm for approaching a complex prob-

lem by breaking it into several subproblems and make use of

the memoization technique to cache the results of subprob-

lems and directly reuse them when the same computation

is required again [33]. In the proposed model, the coverage

tasks within each stripe layer subgraphs are the subproblems;

while the minimization of the number of actions required

is the main problem. To prevent re-calculation of the cost

required to cover each stripe layer, the total action cost of each

stripe layer will be memorized by the dynamic programming

scheme. It is essential to take note that the total action cost is

not guaranteed to be constant within each stripe layer due to

the combinations of selected start and goal vertices. Different

start and goal vertex not only represent different hTetro mor-

phologies but might also suggest different geometry positions

of the second block B2 of hTetro in the workspace. To tackle

the aforementioned issue, the concept of the auxiliary vertex

is introduced and defined as follow.

Definition 8 (Auxiliary Vertex): An auxiliary vertex v
Ek
n

is a vertex that is introduced between the n−th cut-edge

(v
SLk
n , v

SLk+1
n) that runs between stripe layer sets SLk and

SLk+1. The newly formed edges that replace the original cut-

edge will become (v
SLk
n , v

Ek
n) and (v

Ek
n , v

SLk+1
n).

Figure 5 demonstrates a quotient graph which illustrates

the auxiliary vertices and their connections between each

stripe layer sets. The three different colors represent the three

stripe layer sets in Figure 4. To minimize the total cost of the

entire navigation process, the costs of all stripe layer sets and

cut-edges have to be known. The definition of the costs is as

follow.

Definition 9 (Cut-Edge Cost): A cut-edge cost c
Ek
n is the

weight of cut-edge (v
SLk
n , v

′SLk+1
n).

Definition 10 (Stripe Layer Set Cost): A stripe layer set

cost cSLk (A → B) is the total action cost for the robot to

travel from vertex A to vertex B in stripe layer set SLk . For the

first stripe layer set, the starting vertex is considered as ’S’,

and the goal vertex in the last stripe layer is denoted as ’G’.

The value of the stripe layer set cost is calculated by function

GetStripeLayerCost in Algorithm 5, which will be introduced

in section IV-C.

Since a cut-edge is separated into two edges after auxiliary

vertices are introduced, the original cut-edge cost c
Ek
n will

be shared by the two edges, with one of them inheriting the

original cut-edge cost while the cost of the other edge is set

FIGURE 6. Auxiliary graph of Figure 4. Each vertex v corresponds to the
auxiliary vertex in Figure 5 which stands for a connection between two
subgraphs.

to 0. In Figure 5, two extra vertices, vS and vG, are being

introduced. Vertex vS is attached to the original starting ver-

tex; while vertex vG is attached to the goal vertex, both with

an edge cost of 0. All newly introduced vertices in Figure 5

form a directed acyclic graph (DAG) in a higher hierarchy

level, which is referred to as an auxiliary graph as shown

in Figure 6. The edge weight w of a directed edge e in the

auxiliary graph is the sum of all edge costs that run between

the two vertices in Figure 5. The calculation of w takes the

path costs of stripe layer sets defined in Definition 10 into

account, and the equation can be written as follow.

w(e) =

cSL1 (S → n′)+ c
E1
n , if e = (vS , v

E1
n′
)

cSLk (n→ n′)+ c
Ek
n , if e = (v

Ek
n , v

Ek+1
n′

)

cSLk (n→ G) , if e = (v
Ek
n , vG)

(8)

With the hTetro auxiliary graph model constructed and

weights known, Dijkstra algorithm with priority queue [34]

is being implemented to calculate the shortest path of the

graph as shown in Algorithm 1. The best solution found

will determine the shape morphologies and positions for the

robot to traverse between stripes that result in the minimum

overall action cost. Dynamic programming is introduced to

memorize the calculated stripe layer set costs to prevent re-

calculations from speeding up the computation process.

With the start and goal hTetro configurations known and

the auxiliary graph fully defined, Algorithm 1 is being

implemented, and it will return the optimal path, and the

corresponding path cost throughout the entire auxiliary

graph, which shows the best hTetro morphologies to traverse

between the stripe layer sets. However, to construct a full

roadmap R for the robot to follow, the paths within the stripe

layer graphs are still required.

IV. STRIPE LAYER SUBGRAPH COMPLETE COVERAGE

PATH PLANNING

This section introduces a recursive backtracking algorithm

that solves the coverage problem within a stripe layer graph

SLGk with start and goal configurations given. During the

recursive backtracking searching process, the validity of

robot action is checked continuously, and optimization tech-

niques are being implemented to speed up the computation

time. Coverage checking criteria are being introduced to

ensure maximum coverage of the workspace after the nav-

igation process terminates. The proposed CCPP algorithm

94648 VOLUME 7, 2019

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

Algorithm 1 Dijkstra Algorithm With Priority Queue and

Memoization
1: function DijkstraPQ(G, vS , vG)

2: Create edge weight table WT for memoization, dis-

tance array dist, and path array path

3: Create priority queue PQ, add every vertex v as ele-

ments and dist[v] as keys to PQ.

4: WT[vi, vj] ← ∞ for all vi, vj ∈ N, vi ≤ nrow, vj ≤

ncol
5: dist[v]←∞ for all vertex v ∈ VG ; dist[vS]← 0

6: path[v]← [vS] for all vertex v ∈ V
G

7: while PQ not empty do

8: u← PQ.ExtractMin() // Remove and returns the

element with smallest key in PQ.

9: for all edges e = (v, v′), e ∈ EG do

10: we← LookupWeightTable(WT, v, v′)

11: if dist[v′] > dist[v]+ we then

12: dist[v′] = dist[v]+ we
13: path[v′] = path[v].Append(v′)

14: PQ.DecreaseKey(v′,dist[v′]) // Decrease

the value of v′.key to dist[v′].

15: end if

16: end for

17: end while

18: return {dist[vG],path[vG]}

19: end function

20:

21: function LookupWeightTable(WT, v, v′)

22: vi, vj← row, column value of vertex v in grid map.

23: if WT[vi, vj] <∞ then

24: return WT[vi, vj]

25: else

26: WT[vi, vj]← w(e),where e = (v, v′)

27: return WT[vi, vj]

28: end if

29: end function

will determine the value of stripe layer set cost as defined

in Definition 10 while being invoked in Algorithm 1 and

will save vertices in the optimal paths into a stripe subgraph

path table (SPT) for memorization. The roadmap R will

eventually be generated based on the stored path in SPT.

The pseudocode for the proposed complete coverage path

planning algorithm is shown in Algorithm 2.

A. ACTION VALIDITY FOR RECONFIGURABLE ROBOTS

A major challenge that lies in the implementation of CCPP

algorithms for reconfigurable robots is the modeling process

of motion constraints based on different robot morphologies.

CCPP algorithms developed for fixed-morphology robots

consider only the fixed geometry of the robot modules and

their orientations. A common approach for these algorithms

to simplify obstacle avoidance tasks in the path planner is

to decompose the workspace with the grid size matching

Algorithm 2 Complete Coverage Path Planning Algorithm

Input: Workspace grid map of size nrow × ncol , stripe

columnwidthsNstr , viablemorphologies set S, starting and

goal configurations (qS ,qG).

Output:RoadmapR that stores all configurations in a path

1. Generate a valid angle adjustment table AAT between

all morphologies in S which stores all invalid relative grid

positions (xrel, yrel).

2. Create stripes based on Nc, identify the cut-edges

between all stripes, and generate hTetro auxiliary graph G.

3. Create following tables for memoization: i) valid action

table (VAT), ii) action cost table (ACT), iii) stripe subgraph

path table (SPT)

4. Determine start and goal vertices (vS , vG) from start and

goal configurations (qS ,qG).

5. Calculate auxiliary graph {dist,path} ← DijkstraPQ

(G, vS , vG) from Algorithm 1.

6. Create empty roadmap R

for all v ∈ path do

R.Append(SPT[v])

end for

the robot size. Assuming that a robot action is considered

as ‘‘valid’’ if the assigned action does not result in any col-

lision between the robot and the terrain, the path planning

algorithms for fixed-morphology robots would only require

the system to examine the clearance of the following grids

based on the robot’s direction of motion. However, for a

reconfigurable robot to perform a valid action, it is crucial

to ensure that the geometries of all robot modules during the

transition phase of robot actions are not colliding or inter-

secting with obstacles in the workspace. In the proposed

algorithm, the validity of each action that can be performed by

the robot is being evaluated and modeled independently and

serves as an essential constraint in the recursive backtracking

function.

In the case of hTetro, the task is to model the valid-

ity of every action listed in the configuration command

table (Table 1). The three types of actions in the config-

uration command table include stop, linear motions, and

rotations or shape-shifting. The platform will not be per-

forming any motion once a stop command is being received,

so apparently, no extra constraints would be added. Linear

motion would translate the four blocks in a specific direction

regardless of their individual headings. Since a hTtro block

size is identical to the grid size in our model, the algorithm

has to checkwhether any of the four blocks collidewith obsta-

cles during the translation process, which can be achieved

by simply checking the clearance of the four grids at the

goal configuration. For the hTetro platform to accomplish a

rotation or shape-shifting, however, will require clearance for

extra grids as some of them are being covered by rotating

hTetro blocks due to the change in angles of the hinges.

VOLUME 7, 2019 94649

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

FIGURE 7. Examples of invalid hTetro motions. In the figures,
the black-colored areas represent obstacles, while gray-colored areas
represent the space being swept during the robot motion. Collision
occurs whenever the two different colored areas overlap during the
transition phase of the action.

An illustration of the validity of a hTetro action is shown

in Figure 7. During the initialization process of the algorithm,

the relative positions of all swept grids when these actions

are being performed will be calculated and saved in a valid

action table VAT for memoization; during the path searching

process, the VAT will be constantly utilized to determine the

validity of robot angle adjustment commands.

B. GRAPH PARTITIONING IN STRIPE LAYER GRAPH

The k-th stripe layer subgraph SLGk is an undirected graph

with nrow× nstrk × nshape vertices, which is a relatively small

number compared to number of vertices in hTetro workspace

graph. Nevertheless, conducting exhaustive searches in an

undirected graph like a stripe layer graph SLG would poten-

tially be time-consuming once the number of rows nrow
or number of morphologies allowed nshape increases. In order

to reduce the time complexity in the algorithm, we propose

an approach similar to section III-B, where graph partition

and dynamic programming techniques are used to simplify

the problem.

When the program initializes, all grids in the workspace

are being evaluated utilizing the grid validity check technique

introduced previously to find grids that can be only able to

be cleared by one or few morphology layers. These con-

figurations are considered as ‘‘intermediate configurations’’

throughout the navigation process within a stripe layer sub-

graph. By identifying the intermediate configurations set QI

Algorithm 3 hTetro Waypoint Navigation Strategy

1: function zigzagSeq(WP[], nrow, ncol, nwid)

2: curX , seq← 1

3: dir ← 1

4: WPzigzag[]← (1, 1)

5: while curX < nrow do

6: if dir = 1 then

7: coli← 1; colf ← ncol
8: else

9: coli← ncol; colf ← 1

10: end if

11: for curY ← coli to colf do

12: for curW ← 0 to nwid − 1 do

13: for all (R,Q) ∈ Wp[] do

14: if (curX + curW = Q.X ∧ curY =

Q.Y) then

15: WPzigzag[].push(seq,Q)

16: seq← seq+ 1

17: end if

18: end for

19: end for

20: end for

21: dir ←−1× dir

22: curX ← curX + nwid
23: end while

24: end function

in the stripe layer, an auxiliary graph will be constructed

similar to Section III-B. Algorithm 1 will then be used to

calculate the best path within the stripe layer, which will sig-

nificantly speed up the computation process since we are only

required to focus on optimization problems in graphs with

much smaller size. These graphs between the intermediate

configurations are referred to as ‘‘regions’’. The realization of

the idea is demonstrated in Algorithm 4, where we introduce

nver that represents the total number of vertices that are cov-

ered by all morphologies at the same grid. A new intermediate

configuration will only be added to QI if the nver is equal

to or smaller than a predetermined number, which is denoted

as nver,max . In this paper, nver,max = 1 is chosen, which

implies that whenever the best route is found within a region,

it will directly become a portion of the navigation path within

a stripe layer.

C. RECURSIVE BACKTRACKING

With the navigation setup within a stripe layer determined,

a simple backtracking algorithm is being implemented to find

a valid path. Backtracking is a modified depth-first search

(DFS) algorithm which will perform DFS traversal of the

tree and incrementally build candidates. If a non-promising

candidate is reached, the candidate will be abandoned while

the system backtracks to its state before the decision is

made [35]. The proposed recursive backtracking algorithm is

demonstrated in Algorithm 5.

94650 VOLUME 7, 2019

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

Algorithm 4 Determination of Intermediate Configurations

1: function GetIntermediateConfig(S,A)

2: QI ,Gvis,Gcov← []

3: for all {(s, row, col)| s ∈ S, row, col ∈ N, row ≤

nrow, col ≤ ncol} do

4: if isGridValid(row, col,A) then

5: Gvis[s, row, col]← 1

6: for all g
Bk
row,col , k = 1, . . . , 4 do

7: for all ai,j ∈ A do

8: if ai,j = 0 AND (area of hTetro block

at g
Bk
row,col) ∩ (area of grid at gWi,j) 6= ∅ then

9: Gcov[s, row, col]← (i, j)

10: end if

11: end for

12: end for

13: else

14: Gvis[s, row, col]← ∅

15: end if

16: end for

17: for all {(row, col)| row, col ∈ N, row ≤ nrow, col ≤

ncol} do

18: nver ← 0

19: for all s ∈ S do

20: if Gcov[s, row, col] 6= ∅ then

21: nver ← nver + 1

22: end if

23: end for

24: if nver ≤ nver,max then

25: (i, j)← Gcov[s, row, col]

26: QI .Append((i, j, s))

27: end if

28: end for

29: end function

The recursive backtracking function RBT in the proposed

algorithm will loop through all elements within the configu-

ration command table set Qc as defined in section II-D. The

algorithm will visit nearby nodes based on the commands

in Qc. The weights of the edges are determined based on

the number of commands required for the hTetro platform to

perform the assigned action. The cost of a linear action is one

as only one command is required. However, for the robot to

visit vertices in different morphology layer sets, the number

of commands in Table 1 required might differ. For instance,

for the robot to visit horizontal I-shape (s = (0, 0,−π,−π))

layer set from vertical I-shape (s = (0, 0, 0, 0)), a single

command ’2r’ would be sufficient; while to visit O-shape

(s = (0, 0,−π,−π)) layer set from vertical I-shape, two

consecutive ’3r’ commands are required for the action to be

accomplished. Since the action costs for angle adjustments,

which includes rotations and shape-shifting, are determined

based on the total number of commands required, formulating

the cost function based on robot commands will reflect on

the total time taken of the entire navigation process. It is

Algorithm 5 Stripe Layer Cost Determination

1: function GetStripeLayerCost(SLG, qS ,qG)

2: QI ← [qS ,qG] ; Qtot ← [] ; costtot = 0 ;m← 1

3: G← SLG

4: A← grid activities of all vertices in G

5: while m 6= size(QI)− 1 do

6: ccur ← 0; copt ←∞; Qcur ,Qopt ← []

7: RunRBT function betweenQI [m] andQI [m+1].

8: if Qopt 6= [] then

9: Qtot . Append(Qopt) ; costtot ← costtot +copt
10: m← m+ 1.

11: else

12: Check all ai,j = 0∀a ∈ A ∧ gi,j ∈ G.

13: Determine valid q at grid (i, j) and insert

14: it to (m+ 1)-th position of QI .

15: If no valid grid found, nstrk ← nstrk + 1

16: G← subgraph of current region

17: A← grid activities of all vertices in G

18: end if

19: end while

20: SPT [SLG]← Qtot ; ACT [SLG]← ctot
21: return ctot
22: end function

23:

24: function RBT(G, q,qG,A, ccur , copt ,Qcur ,Qopt)

25: for all qc ∈ Qc do

26: if isValidAction(q,qc,A) then

27: Cache value of A, ccur , and Qcur

28: t ← t + 1 ;q′← q+ qc
29: Update grid activity A with Equation 4.

30: Qcur ← Qcur .Append(q
′)

31: caction← action cost between q,q′ in Table 1.

32: cprev← ccur + caction
33: if (q′ = qG) AND (ccur < copt) AND (ai,j =

34: 1 ∧ IsGridValid(i, j,A)∀a ∈ A)

35: Qopt ← Qcur ; copt ← ccur
36: else

37: Run RBT function between q′ and qG.

38: end if

39: Restore cached value of A, ccur , and Qcur

40: t ← t − 1

41: end if

42: end for

43: return A, ccur , copt ,Qcur ,Qopt

44: end function

worth noting that defining the cost function based on the

energy consumption of actions or other strategies might yield

different optimization results.

The overview of the recursive function that achieves maxi-

mum region coverage while minimizing total action cost is

demonstrated as follow. The function first iterates through

all feasible actions Qc that can be taken by the robot. If the

selected action is considered as valid in Algorithm 6 and the

VOLUME 7, 2019 94651

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

FIGURE 8. A workspace example with the area separated into a 16 × 7 grid map. Figure 8a shows the initial workspace and the start and goal hTetro
configurations; while Figure 8b demonstrates the final path generated by the proposed complete coverage algorithm. (Green arrows: horizontal
I-shape; blue arrows: O-shape).

next vertex has not yet been visited, the path and action cost

will be cached before a new recursive function is called at

the next vertex. When all feasible actions are being explored

by a vertex, it will backtrack to its parent vertices while

undoing the previous actions. If the goal vertex is reached,

the coverage of the stripe layer will be calculated to check

whether the candidate path fulfills maximum coverage and

outperforms previously cached optimal path by having a

smaller action cost. If the candidate path fulfills the criteria

above, the optimal will be updated, and the algorithm will

continue to explore the remaining portion of the tree.

D. ASSURANCE OF COMPLETE AREA COVERAGE

In Algorithm 6, we deliberately introduce the constraint

which prevents the robot from revisiting any vertices. The

idea is to create a simple path which does not contain repeat-

ing vertices so that the searching algorithm will not be stuck

in indefinite loops during the search. The disadvantage of

the constraint, however, is that several vertices might be

unvisitable due to the action limitations. Consider a scenario

in which the robot has to move in to cover a narrow area

and move out afterward. The robot is unable to perform the

simple action mentioned in this scenario due to the restriction

of revisiting the same nodes. To tackle this issue, a check

will be conducted once the tree in the region has been fully

explored. If none of the paths suggests complete area cov-

erage while the areas are reachable by any of the allowed

morphologies, an extra intermediate vertex will be added.

The vertex will separate the region into two smaller ones in

which the searching algorithm resumes. Several vertices will

be shared by both regions, which allow a small portion of

grids being re-visited throughout the process. In situations

where no path exists between the start and goal configurations

due to obstacle placements, the stripe column width nstr will

be gradually increased until a valid path is found.

V. SIMULATIONS RESULTS

In this section, the simulated path planning results of the

proposed algorithm are being presented. The simulations are

being conducted using MATLAB Simulink software.

Algorithm 6 Grid Validity Check

1: function isValidAction(q,qc,A)

2: if VAT[q,qc] 6= ∅ then

3: return VAT[q,qc]

4: end if

5: q′← q+ qc
6: if qc[0] 6= 0 OR qc[1] 6= 0 then

7: (row, col)← (q′[0],q′[1])

8: VAT[q,qc]← isGridValid(row, col,A)

9: return VAT[q,qc]

10: else

11: for all (xrel, yrel) ∈ AAT do

12: (row, col)← (q[0]+ xrel,q[1]+ yrel)

13: if ! isGridValid(row, col,A) then

14: VAT[q,qc]← false

15: return VAT[q,qc]

16: end if

17: end for

18: VAT[q,qc]← true

19: return VAT[q,qc]

20: end if

21: end function

22:

23: function isGridValid(row, col,A)

24: for all g
Bk
row,col , k = 1, . . . , 4 do

25: for all ai,j ∈ A do

26: if ai,j = −1 AND (area of hTetro block at

g
Bk
row,col) ∩ (area of grid at gWi,j) 6= ∅ then

27: return false

28: end if

29: end for

30: end for

31: return true

32: end function

Figure 8 to Figure 12 illustrate an example which demon-

strates the core working principles of the proposed com-

plete coverage path planning algorithm for reconfigurable

94652 VOLUME 7, 2019

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

FIGURE 9. Transition validity check between O-shape and horizontal
I-shape hTetro morphologies.

FIGURE 10. Coverage path obtained within the first stripe area
in Figure 8a, which demonstrates how maximum area coverage is
reached by introducing intermediate vertices.

FIGURE 11. Coverage path obtained within the last stripe area
in Figure 8a, which demonstrates how maximum area coverage is
achieved by increasing stripe column width.

robots. Figure 8a shows the empty workspace before nav-

igation and Figure 8b demonstrates the final CCPP result.

The simulated workspace is decomposed into a grid map

with 16 rows and 7 columns, with grids that are occupied

by obstacles shaded in black in the figure. Two morpholo-

gies, O-shape (s = (0, 0,−π,−π)) and horizontal I-shape

(s = (−π/2,−π/2,−π/2,−π/2)) are being allowed in

this simulation. Figure 9 demonstrates the swept area when

shape-shifting between the two morphologies occurs. The

figure indicates that the clearance of four nearby grids are

required for a valid shape-shifting action. These grids are

being checked in Algorithm 6 during the robot reconfig-

uration. In this simulation, the columns are separated into

3 stripes with nstr1 = 2, nstr2 = 3, nstr3 = 2.

A. DEMONSTRATION OF STRIPE LAYER COVERAGE

Figure 10 shows the coverage path planning algorithm of

the first stripe (k = 1) with stripe column width nstr of 2

and demonstrates the strategy to ensure maximum stripe area

coverage by introducing intermediate vertices. The numbers

in the figure represent the sequence of the configuration

queue qqueue, which the robot will attempt to clear accord-

ingly once the navigation process begins. The grid that a

number locates at indicates the position of the second hTetro

block, and the shape of the configuration at the position is

being directly illustrated in the figure, with O-shapemorphol-

ogy colored in blue and horizontal I-shape colored in green.

The generated path is represented in arrows, where blue and

green colored arrows represent movement paths of O-shaped

and horizontal I-shaped hTetro, respectively. In Figure 10a,

the simple path that is first generated by Algorithm 5 has five

grids that are unvisited since re-visiting the same vertex is

prohibited. The unvisited grids are marked with ’X’ in the

figures. Since the stripe is not fully covered by the path gener-

ated, Algorithm 4will search for configurations that cover the

unvisited grids and set them as intermediate configurations.

In the presented scenario, the four unvisited grids at the right

side of the figure can be covered by a horizontal I-shaped

hTetro, so an intermediate configuration is being inserted

into qqueue. The single unvisited grid at the left, however,

cannot be covered by any of the allowed configurations.

These grids are not in the scope of the complete coverage task

we aim to accomplish, so once no viable configurations can

be found that covers the grids, the grids will be left unvisited

while the algorithm moves on to clear the next stripe layer

set. Figure 10b demonstrates the path generated after the

horizontal I-shaped intermediate configuration is added as

the second configuration to be cleared during the navigation

process. As shown in this example, by introducing inter-

mediate configurations that separate the stripe into different

regions, the algorithm is able to search for the simple path

independently and ensure maximum area coverage within the

stripe layer by allowing several grids with overlapping paths.

Figure 11 demonstrates the last stripe layer (k = 3)

at the top with stripe column width nstr of 2. As shown

in Figure 11a, the stripe is being blocked by obstacles and

neither hTetromorphologies are able to navigate to the ending

configuration of the stripe. If no valid path is found during

the process, the stripe width will be gradually increased

until a valid path is found. In Figure 11b, a column (gray

colored grids) that has been fully covered previously is being

borrowed by the current stripe, and traveling to vertices on

this column is being permitted. With the extra column intro-

duced, as shown in the figure, the algorithm is now able to

generate a path that avoids the obstacle and reaches the goal

configuration.

B. DEMONSTRATION OF ROADMAP CONSTRUCTION

After all edge costs in the auxiliary graph are cached in

the memoization table in Algorithm 1, Dijkstra algorithm

is being implemented to determine the optimal cut-edge

vertices between all stripe layer sets that results in min-

imal overall action cost. The process is being illustrated

in Figure 12, where the costs of all stripe layer sets and

cut-edges are being listed. In this example, the generated

VOLUME 7, 2019 94653

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

FIGURE 12. Dijkstra searching process of auxiliary graph of workspace example shown in Figure 8a. The generated optimal path is shown in Figure 8b
with a total cost of 73.

FIGURE 13. A workspace example with the area separated into a 16 ×

16 grid map. The two stripe separating methods (Nstr ,1, Nstr ,2) are shown
in the figure.

optimal path takes path with the following vertices in the

auxiliary graph: (vS → v
E1
1 → v

E2
1 → vG). The total

action cost is calculated by summing up all the stripe layer

set costs and cut-edge costs the path passes by, which equals

to 73.

The last step in Algorithm 5 attempts to generate the final

roadmap R which stores all robot configurations within the

workspace according to the action sequence. The roadmap

is generated by concatenating the paths of all stripe layer

sets which is stored in the stripe path table (SPT). Once the

roadmap stores all robot configurations within the workspace

in sequence, the CCPP task is completed and the robot

is ready to start its navigation in the workspace. By con-

necting the paths in the generated roadmap, the final result

of the algorithm shown in Figure 8b. In this figure, all

intermediate vertices are being drawn to better illustrate

the moving patterns and the morphologies of the hTetro

robot.

C. ALGORITHM STARTING VARIABLES

In the proposed algorithm, adjustable variables that deter-

mine algorithm performance include stripe column widths

nstr and the allowed hTetro morphologies S. Since the final

path outcome is affected by the starting variables, the main

objective of this subsection is to propose promising starting

variables so that the algorithm will function properly regard-

less of the size of the workspace and the quantity of obstacles.

The efficiency of predetermined starting variables will be

evaluated based on following criteria: i) whether the setup

yields a path that achieves complete coverage ii) total action

cost iii) total overlapping area. A new workspace example

is being introduced as shown in Figure 13 with grid size of

16 × 16 for the analysis, and the proposed CCPP algorithm

will be implemented to calculate the optimal path for different

starting variables setups.

The first criterion being checked is the capability of the

algorithm to generate a complete coverage path with the

assigned starting variables. Several combinations of starting

variables might not work well in workspaces with com-

plicated obstacle layout or with inadequate stripe column

widths chosen. For instance, the workspace demonstrated

in Figure 8a has nstr of several stripe layers set to 2, which

significantly restricts the possible morphologies that can be

utilized within the layers. The placement of obstacles creates

narrow regions which limit the transformation space of the

robot, resulting in shape-shifting into certain morphologies

becoming a sub-optimal strategy in the algorithm.

Once a valid path is generated, the total action cost is

calculated based on the optimization result of the proposed

algorithm, and the overlapped area is being evaluated based

on the time elapsed for a robot to cover the workspace.

As defined in section II-D, a linearly moving hTetro block

94654 VOLUME 7, 2019

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

FIGURE 14. Navigation result of workspace in Figure 13 with stripe column width set Nstr ,2 and allowed morphology set to O-shape.

will cover an entire grid area within a single time instance.

The overlapped area analysis decomposes a single grid into

10 × 10 pixels and calculates the time each pixel is being

covered by hTetro blocks throughout the entire navigation

process. The time step is being set to 0.1 in this analysis to

provide coverage estimation with higher accuracy for robot

motions. The average coverage time will then be calculated

based on the average time spent on each pixel.

The starting variables chosen for the analysis make use of

three different hTetro morphologies, namely, O-shape, ver-

tical I-shape, and horizontal I-shape. Simulations have been

conducted which experiment with different combinations of

hTetro morphologies and column stripe width S. In the anal-

ysis, two different profiles of stripe column widths are tested,

which are Nstr,1 and Nstr,2. They are defined as follow:

Nstr,1=

{

3 , k=1, . . . , 4

4 , k=5
;Nstr,2=4, k=1, . . . , 4 (9)

A visualization of the two stripe column sets is shown

in Figure 13, whereNstr,1 generally makes use of stripes with

column width of 3 and Nstr,2 with column width of 4.

After the proposed CCPP algorithm is being implemented

on different hTetro morphology sets and stripe column width

sets, the results including the successes of complete coverage,

action cost, and average coverage time of different morphol-

ogy sets are recorded as shown in Table 2, where hTetro

O-shape morphology is simplified as ’O’; vertical I-shape

simplified as ’vI’; and horizontal I-shape simplified as ’hI’.

According to the table, with all three morphologies selected

and Nstr,2 chosen, the algorithm demonstrates the best per-

formance with the lowest action cost and lowest average

coverage time. Scenarios where Nstr,1 is selected generally

do not perform well compared to Nstr,2 since most hTetro

morphologies struggle to fully cover the entire workspace

with small stripe column widths. The table also suggests

that by increasing the number of morphologies allowed,

the performance of the path planning algorithm is improved

accordingly. A comparison between starting variables with

different allowed morphology sets is shown in Figure 14 and

Figure 15. Figure 14 demonstrates an example with stripe

column width set Nstr,2 and with only O-shaped allowed;

whereas in the example of Figure 15, all three morphologies

are allowed. Figure 14a and Figure 15b show the path gener-

ated by the proposed algorithm. Figure 14b and Figure 15b

illustrate the coverage result of the path, showing the time

spent for the robot to cover each pixel. A yellow colored pixel

shows that the total coverage time is around 1 unit time, while

longer coverage time yields a darker color at the pixel. The

distribution histograms of the time spent on each pixel are

shown in Figure 14c and Figure 15c. Even though both exam-

ples yield a rather close total action cost according to Table 2,

with more hTetro morphologies allowed, the average grid

coverage time is greatly reduced from 1.994 to 1.770. The

reason being that the robot can easily switch to morphologies

that effectively cover areas at large and open spaces, where

the upper and lower right area yields covering the time of

nearly one as shown in Figure 15b.

Therefore, for practical implementations of the proposed

algorithm in the real world, which generally consists of a

larger workspace and obstacles with regular shapes, the fol-

lowing starting variable setup for the hTetro workspace graph

is suggested:

3nstrk = 4 , ∀nstrk ∈ Nstr

S = {(0, 0, 0, 0), (0, 0,−π,−π),

(−π/2,−π/2,−π/2,−π/2)}

This starting variable setup is capable of efficiently clearing

most unobstructed areas with vertical I-shaped hTetro mor-

phology and makes use of O-shaped and horizontal I-shaped

morphologies to achieve obstacle avoidance. The proposed

CCPP algorithm with this setup yields an optimal navigation

strategy that minimizes the total number of vertices being

revisited while achieving full area coverage and shows its

VOLUME 7, 2019 94655

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

FIGURE 15. Navigation result of workspace in Figure 13 with stripe column width set Nstr ,2 and allowed morphology set to O-, vertical I-, and horizontal
I-shape. (Red arrows: vertical I-shape; green arrows: horizontal I-shape; blue arrows: O-shape).

TABLE 2. Starting variables performance table.

strong potential to be implemented in real-world reconfig-

urable robots to tackle complete coverage tasks with high

dexterity and efficiency.

VI. CONCLUSIONS

This paper presents a novel off-line approach that focuses

on complete coverage path planning tasks for self-

reconfigurable robots using graph theory based searching

algorithms and optimization techniques. In the presented

algorithm, the workspace is modeled as a graph with multiple

morphology layers sets and can be decomposed into several

stripe layer sets. The navigation strategy focuses on full

coverage within each individual stripe layer set, where the

algorithm takes the cost of all robot actions into account and

generates a path with minimal action cost through recursive

backtracking. The stripe layer costs will then be calculated

and memorized.With the stripe layer costs and cut-edge costs

identified, an auxiliary graph is created where the Dijkstra

algorithm is being implemented to determine the final path

with the optimal configuration sequence between stripe layer

sets. Finally, this paper analyzes the performance of different

algorithm starting variables and proposes an ideal setup for

real-world reconfigurable robot implementation.

Potential future research areas are as follow. (1) Improve-

ment of graph partitioning strategies. By splitting the original

workspace graph into subgraphs of wisely designed shapes

instead of simple stripes may reduce revisited vertices and

yield better solutions. (2) Alternative optimization goals, such

as minimum energy cost or the minimum number of grids that

are covered by hTetro blocks multiple times. (3) Extension of

current work to different self-configurable robots and adap-

tion of the algorithm to the new platforms accordingly.

REFERENCES

[1] M. Waanders, ‘‘Coverage path planning for mobile cleaning robots,’’

in Proc. 15th 20th Student Conf. IT, Enschede, The Netherlands, 2011,

pp. 1–10.

[2] Z. Bo, F. Fang, S. Zhenhua, M. Zhengda, and D. Xianzhong, ‘‘Fast and

templatable path planning of spray painting robots for regular surfaces,’’

in Proc. 34th Chin. Control Conf. (CCC), Jul. 2015, pp. 5925–5930.

doi: 10.1109/chicc.2015.7260567.

[3] M.Ðakulovic and I. Petrovic, ‘‘Complete coverage path planning ofmobile

robots for humanitarian demining,’’ Ind. Robot, Int. J., vol. 39, no. 5,

pp. 484–493, 2012. doi: 10.1108/01439911211249779.

[4] R. N. De Carvalho, H. A. Vidal, P. Vieira, and M. I. Ribeiro, ‘‘Com-

plete coverage path planning and guidance for cleaning robots,’’ in Proc.

IEEE Int. Symp. Ind. Electron. (ISIE), Jul. 1997, pp. 677–682. doi: 10.

1109/isie.1997.649051.

[5] B.-M. Shiu and C.-L. Lin, ‘‘Design of an autonomous lawn mower with

optimal route planning,’’ in Proc. IEEE Int. Conf. Ind. Technol., Apr. 2008,

pp. 1–6. doi: 10.1109/icit.2008.4608497.

[6] P.-M. Hsu and C.-L. Lin, ‘‘Optimal planner for lawn mowers,’’ in Proc.

IEEE 9th Int. Conf. Cyberntic Intell. Syst., Sep. 2010, pp. 1–7. doi: 10.

1109/ukricis.2010.5898126.

[7] H. Choset, ‘‘Coverage for robotics—A survey of recent results,’’ Ann.

Math. Artif. Intell., vol. 31, nos. 1–4, pp. 113–126, Oct. 2001. doi: 10.1023/

A:1016639210559.

[8] Y. Gabriely and E. Rimon, ‘‘Spanning-tree based coverage of continuous

areas by a mobile robot,’’ in Proc. IEEE Int. Conf. Robot. Automat. (ICRA),

May 2001, pp. 1927–1933. doi: 10.1109/robot.2001.932890.

[9] Y. Gabriely and E. Rimon, ‘‘Competitive on-line coverage of grid environ-

ments by a mobile robot,’’ Comput. Geometry, vol. 24, no. 3, pp. 197–224,

2003. doi: 10.1016/s0925-7721(02)00110-4.

[10] Y.-H. Choi, T.-K. Lee, S.-H. Baek, and S.-Y. Oh, ‘‘Online complete cover-

age path planning for mobile robots based on linked spiral paths using con-

strained inverse distance transform,’’ in Proc. IEEE/RSJ Int. Conf. Intell.

Robots Syst., Oct. 2009, pp. 5788–5793. doi: 10.1109/iros.2009.5354499.

94656 VOLUME 7, 2019

http://dx.doi.org/10.1109/chicc.2015.7260567
http://dx.doi.org/10.1108/01439911211249779
http://dx.doi.org/10.1109/isie.1997.649051
http://dx.doi.org/10.1109/isie.1997.649051
http://dx.doi.org/10.1109/icit.2008.4608497
http://dx.doi.org/10.1109/ukricis.2010.5898126
http://dx.doi.org/10.1109/ukricis.2010.5898126
http://dx.doi.org/10.1023/A:1016639210559
http://dx.doi.org/10.1023/A:1016639210559
http://dx.doi.org/10.1109/robot.2001.932890
http://dx.doi.org/10.1016/s0925-7721(02)00110-4
http://dx.doi.org/10.1109/iros.2009.5354499

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

[11] E. Gonzalez, O. Alvarez, Y. Diaz, C. Parra, and C. Bustacara, ‘‘Bsa:

A complete coverage algorithm,’’ inProc. IEEE Int. Conf. Robot. Automat.,

Apr. 2005, pp. 2040–2044. doi: 10.1109/robot.2005.1570413.

[12] S. X. Yang and C. Luo, ‘‘A neural network approach to complete coverage

path planning,’’ IEEE Trans. Syst., Man, Cybern., B (Cybern.), vol. 34,

no. 1, pp. 718–724, Feb. 2004. doi: 10.1109/tsmcb.2003.811769.

[13] M. A. Yakoubi and M. T. Laskri, ‘‘The path planning of cleaner robot for

coverage region using genetic algorithms,’’ J. Innov. Digit. Ecosyst., vol. 3,

no. 1, pp. 37–43, 2016. doi: 10.1016/j.jides.2016.05.004.

[14] T. R. Schäfle, S. Mohamed, N. Uchiyama, and O. Sawodny, ‘‘Coverage

path planning for mobile robots using genetic algorithm with energy

optimization,’’ in Proc. Int. Electron. Symp. (IES), Sep. 2016, pp. 99–104.

doi: 10.1109/elecsym.2016.7860983.

[15] A. Janchiv, D. Batsaikhan, B. Kim, W. G. Lee, and S.-G. Lee, ‘‘Time-

efficient and complete coverage path planning based on flow networks for

multi-robots,’’ Int. J. Control, Autom. Syst., vol. 11, no. 2, pp. 369–376,

2013. doi: 10.1007/s12555-011-0184-5.

[16] S. Dogru and L. Marques, ‘‘Towards fully autonomous energy efficient

coverage path planning for autonomous mobile robots on 3D terrain,’’

in Proc. Eur. Conf. Mobile Robots (ECMR), Sep. 2015, pp. 1–6. doi: 10.

1109/ecmr.2015.7324206.

[17] H. H. Viet, V.-H. Dang, M. N. U. Laskar, and T. Chung, ‘‘Ba*: An online

complete coverage algorithm for cleaning robots,’’ Appl. Intell., vol. 39,

no. 2, pp. 217–235, 2012. doi: 10.1007/s10489-012-0406-4.

[18] J. S. Oh, Y. H. Choi, J. B. Park, and Y. F. Zheng, ‘‘Complete coverage

navigation of cleaning robots using triangular-cell-based map,’’ IEEE

Trans. Ind. Electron., vol. 51, no. 3, pp. 718–726, Jun. 2004. doi: 10.1109/

tie.2004.825197.

[19] N. Tan, N. Rojas, R. E. Mohan, V. Kee, and R. Sosa, ‘‘Nested reconfig-

urable robots: Theory, design, and realization,’’ Int. J. Adv. Robot. Syst.,

vol. 12, no. 7, p. 110, 2015. doi: 10.5772/60507.

[20] V. Prabakaran, M. R. Elara, T. Pathmakumar, and S. Nansai, ‘‘hTetro:

A tetris inspired shape shifting floor cleaning robot,’’ in Proc. IEEE Int.

Conf. Robot. Automat. (ICRA), May/Jun. 2017, pp. 6105–6112. doi: 10.

1109/icra.2017.7989725.

[21] V. Prabakaran, R. E. Mohan, V. Sivanantham, T. Pathmakumar, and

S. Kumar, ‘‘Tackling area coverage problems in a reconfigurable floor

cleaning robot based on polyomino tiling theory,’’ Appl. Sci., vol. 8, no. 3,

p. 342, 2018. doi: 10.3390/app8030342.

[22] J. Bruce and M. Veloso, ‘‘Real-time randomized path planning for

robot navigation,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,

Sep./Oct. 2002, pp. 2383–2388. doi: 10.1109/irds.2002.1041624.

[23] F. Duchoň, A. Babinec, M. Kajan, P. Beňo, M. Florek, T. Fico, and L.

Jurišica, ‘‘Path planning with modified a star algorithm for a mobile

robot,’’ Procedia Eng., vol. 96, pp. 59–69, 2014. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S187770581403149X.

doi: 10.1016/j.proeng.2014.12.098.

[24] K. Al-Mutib, M. Alsulaiman, M. Emaduddin, H. Ramdane, and E. Mattar,

‘‘D* lite based real-time multi-agent path planning in dynamic environ-

ments,’’ in Proc. 3rd Int. Conf. Comput. Intell., Modelling Simulation,

Sep. 2011, pp. 170–174. doi: 10.1109/cimsim.2011.38.

[25] D. Portugal, C. H. Antunes, and R. Rocha, ‘‘A study of genetic algorithms

for approximating the longest path in generic graphs,’’ in Proc. IEEE

Int. Conf. Syst., Man Cybern., Oct. 2010, pp. 2539–2544. doi: 10.1109/

icsmc.2010.5641920.

[26] A. Björklund, T. Husfeldt, and S. Khanna, ‘‘Approximating longest

directed paths and cycles,’’ in Automata, Languages and Programming

(Lecture Notes in Computer Science). Berlin, Germany: Springer, 2004,

pp. 222–233. doi: 10.1007/978-3-540-27836-8_21.

[27] J.-C. Latombe, Robot Motion Planning. Norwell, MA, USA: Kluwer,

2010.

[28] E. Galceran and M. Carreras, ‘‘A survey on coverage path planning for

robotics,’’ Robot. Auton. Syst., vol. 61, no. 12, pp. 1258–1276, 2013.

doi: 10.1016/j.robot.2013.09.004.

[29] E. Ippoliti, Heuristic Reasoning. London, U.K.: Springer, 2015.

[30] L. Kuvcera, ‘‘Expected complexity of graph partitioning problems,’’ Dis-

crete Appl.Math., vol. 57, nos. 2–3, pp. 193–212, 1995. doi: 10.1016/0166-

218x(94)00103-k.

[31] H. Meyerhenke, P. Sanders, and C. Schulz, ‘‘Parallel graph partitioning for

complex networks,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp.,

May 2015, pp. 1055–1064. doi: 10.1109/ipdps.2015.18.

[32] H. Choset and P. Pignon, ‘‘Coverage path planning: The boustrophedon

cellular decomposition,’’ in Field and Service Robotics. London, U.K.:

Springer, 1998, pp. 203–209. doi: 10.1007/978-1-4471-1273-0_32.

[33] F. S. Hillier and G. J. Lieberman, Introduction to Mathematical Program-

ming. New York, NY, USA: McGraw-Hill, 1996.

[34] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms. Cambridge, MA, USA: MIT Press, 2009.

[35] J. Edmonds, ‘‘Recursive backtracking,’’ inHow to Think About Algorithms.

New York, NY, USA: Cambridge Univ. Press, 2008, pp. 251–266. doi:

10.1017/cbo9780511808241.019.

KU PING CHENG received the B.Sc. degree in

computer engineering from the Singapore Univer-

sity of Technology and Design, in 2017, where

he is currently a Research Officer in autonomous

robotics with the Engineering Product Develop-

ment Pillar. His research interests include robotics

and automation, intelligent robots, control sys-

tems, and computer vision.

RAJESH ELARA MOHAN received the B.E.

degree from Bharathiar University, India, in 2003,

and the M.Sc. and Ph.D. degrees from Nanyang

Technological University, in 2005 and 2012,

respectively. He is currently an Assistant Professor

with the Engineering Product Development Pillar,

Singapore University of Technology and Design.

He is also a Visiting Faculty Member with the

International Design Institute, Zhejiang Univer-

sity, China. He has published over 80 papers in

leading journals, books, and conferences. His research interest includes

robotics with an emphasis on self-reconfigurable platforms as well as

research problems related to robot ergonomics and autonomous systems. He

was a recipient of the SG Mark Design Award, in 2016 and 2017, the ASEE

Best of Design in Engineering Award, in 2012, and the Tan Kah Kee Young

Inventors’ Award, in 2010.

NGUYEN HUU KHANH NHAN defended his

Ph.D. thesis at the Institute of Research and Exper-

iments for Electrical and Electronic Equipment,

Moscow, Russian. He is currently a Lecturer with

the Faculty of Electrical and Electronic Engineer-

ing, Ton Duc Thang University, Ho Chi Minh City,

Vietnam. His research interests include VLSI,

MEMS and LED driver chips, robotics vision,

robot navigation, and 3D video processing.

ANH VU LE received the B.S. degree in elec-

tronics and telecommunications from the Ha Noi

University of Technology, Vietnam, in 2007, and

the Ph.D. degree in electronics and electrical engi-

neering from Dongguk University, South Korea,

in 2015. He is currently with the Optoelectronics

Research Group, Faculty of Electrical and Elec-

tronics Engineering, Ton Duc Thang University,

Ho Chi Minh City, Vietnam. He is also a Post-

doctoral Research Fellow with the ROAR Labora-

tory, Singapore University of Technology and Design. His current research

interests include robotics vision, robot navigation, human detection, action

recognition, feature matching, and 3D video processing.

VOLUME 7, 2019 94657

http://dx.doi.org/10.1109/robot.2005.1570413
http://dx.doi.org/10.1109/tsmcb.2003.811769
http://dx.doi.org/10.1016/j.jides.2016.05.004
http://dx.doi.org/10.1109/elecsym.2016.7860983
http://dx.doi.org/10.1007/s12555-011-0184-5
http://dx.doi.org/10.1109/ecmr.2015.7324206
http://dx.doi.org/10.1109/ecmr.2015.7324206
http://dx.doi.org/10.1007/s10489-012-0406-4
http://dx.doi.org/10.1109/tie.2004.825197
http://dx.doi.org/10.1109/tie.2004.825197
http://dx.doi.org/10.5772/60507
http://dx.doi.org/10.1109/icra.2017.7989725
http://dx.doi.org/10.1109/icra.2017.7989725
http://dx.doi.org/10.3390/app8030342
http://dx.doi.org/10.1109/irds.2002.1041624
http://dx.doi.org/10.1016/j.proeng.2014.12.098
http://dx.doi.org/10.1109/cimsim.2011.38
http://dx.doi.org/10.1109/icsmc.2010.5641920
http://dx.doi.org/10.1109/icsmc.2010.5641920
http://dx.doi.org/10.1007/978-3-540-27836-8_21
http://dx.doi.org/10.1016/j.robot.2013.09.004
http://dx.doi.org/10.1016/0166-218x(94)00103-k
http://dx.doi.org/10.1016/0166-218x(94)00103-k
http://dx.doi.org/10.1109/ipdps.2015.18
http://dx.doi.org/10.1007/978-1-4471-1273-0_32
http://dx.doi.org/10.1017/cbo9780511808241.019

	INTRODUCTION
	HINGED-TETRO PLATFORM
	HTETRO ROBOT PLATFORM
	ROBOT CONFIGURATION
	WORKSPACE MODEL
	HTETRO ROBOT NAVIGATION STRATEGY

	GRAPH MODEL OF COMPLETE COVERAGE PROBLEM
	CONSTRUCTION OF HTETRO WORKSPACE GRAPH
	GRAPH PARTITIONING AND DYNAMIC PROGRAMMING

	STRIPE LAYER SUBGRAPH COMPLETE COVERAGE PATH PLANNING
	ACTION VALIDITY FOR RECONFIGURABLE ROBOTS
	GRAPH PARTITIONING IN STRIPE LAYER GRAPH
	RECURSIVE BACKTRACKING
	ASSURANCE OF COMPLETE AREA COVERAGE

	SIMULATIONS RESULTS
	DEMONSTRATION OF STRIPE LAYER COVERAGE
	DEMONSTRATION OF ROADMAP CONSTRUCTION
	ALGORITHM STARTING VARIABLES

	CONCLUSIONS
	REFERENCES
	Biographies
	KU PING CHENG
	RAJESH ELARA MOHAN
	NGUYEN HUU KHANH NHAN
	ANH VU LE

