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Graph topology plays a determinant role
in the evolution of cooperation

F. C. Santos1,2, J. F. Rodrigues2 and J. M. Pacheco2,3,*
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We study the evolution of cooperation in communities described in terms of graphs, such that individuals

occupy the vertices and engage in single rounds of the Prisoner’s Dilemma with those individuals with

whom they are connected through the edges of those graphs. We find an overwhelming dominance of

cooperation whenever graphs are dynamically generated through the mechanisms of growth and

preferential attachment. These mechanisms lead to the appearance of direct links between hubs, which

constitute sufficient conditions to sustain cooperation. We show that cooperation dominates from large

population sizes down to communities with nearly 100 individuals, even when extrinsic factors set a limit

on the number of interactions that each individual may engage in.
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1. INTRODUCTION

Cooperation is an essential ingredient of evolution. Simple

organisms have cooperated to produce more complex

organisms throughout evolutionary history. Similarly,

we know that animals cooperate in families to raise their

offspring, and in groups to hunt, as well as to reduce the

risk of predation. In spite of its relevance, understanding

the evolution of cooperation remains one of the most

fundamental challenges to date (for a recent overview, see

Hammerstein 2003), tackled by scientists from fields as

diverse as anthropology, biology, sociology, ecology,

economics, psychology, political science, mathematics,

physics, etc., who often adopt Evolutionary Game Theory

(Maynard-Smith 1982; Gintis 2000) as a common

mathematical framework and the prisoner’s dilemma

(PD) as a metaphor for studying cooperation between

unrelated individuals (Axelrod & Hamilton 1981;

Nowak & May 1992). In the simple, one-shot PD,

individuals are either cooperators or defectors, acting

accordingly whenever two of them interact. They both

receive R upon mutual cooperation and P upon mutual

defection. A defector exploiting a cooperator gets an

amount T and the exploited cooperator receives S, such

that TOROPOS (Mesterton-Gibbons 2001). As a result,

in a single round of the PD it is best to defect, regardless of

the opponent’s decision, which in turns makes cooperators

unable to resist invasion by defectors whenever evolution

under replicator dynamics (Gintis 2000) takes place in

well-mixed populations. Such an extreme scenario is

somewhat alleviated, however, whenever the PD is played

in a spatially structured population (Nowak & May 1992),

such that individuals are then constrained to play solely

with their nearest neighbours. Recent experiments
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(Kerr et al. 2002) have nicely demonstrated the impact

of topological constraints on the evolution dynamics of

three different strains of the bacteria Escherichia coli.
2. GAMES ON GRAPHS
In the language of graph theory, both scenarios—well-

mixed populations and spatially structured populations—

correspond to regular graphs, in which individuals occupy

the vertices and the network of contacts (NOCs) between

them is defined by the edges linking the vertices. Spatial

structure, in turn, is typically implemented on so-called

two-dimensional lattices, such as a square lattice (Nowak

& May 1992), also associated with a regular graph.

Indeed, all these types of regular graphs exhibit the same

single-peak shape for the degree distribution d(k), defined

for a graph with N vertices as d(k)ZNk/N, where Nk gives

the number of vertices with k edges (Albert & Barabási

2002; Dorogotsev & Mendes 2003).

Recently, it has been recognized that regular graphs

constitute rather unrealistic representations of real world

NOCs, in which local connections (spatial structure)

coexist with long-range connections (or shortcuts).

Indeed, these features have been recently identified as

characteristic of a plethora of natural, social and

technological NOCs (Barabási & Albert 1999; Amaral

et al. 2000; Albert & Barabási 2002; Dorogotsev &

Mendes 2003), which often exhibit a power-law depen-

dence on their degree distributions. Indeed, much effort

has been invested in obtaining the exponent g characteriz-

ing a given d(k)wkKg power-law distribution, which

typically lies between 2 and 3. The scale-free (SF)

networks of Barabási & Albert (1999) provide the best-

known model leading to such distributions with gZ3.

In this model, graphs are generated via the combined

mechanisms of growth and preferential attachment, this
q 2005 The Royal Society
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Figure 1. Frequency of cooperators on different NOCs.
Results for the PD shown as a function of the cheating
advantage b. Results for (a) regular NOCs and different
values of the average connectivity z; (b) scale-free NOCs and
different values of z. In all cases, NZ104. Cooperation hardly
dominates on regular networks, but clearly dominates for all
values of b on scale-free NOCs generated including growth
and preferential attachment.
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latter mechanism being the well known ‘rich get richer’

effect in economics (Simon 1955), which is also known as

the ‘Matthew effect’ in sociology (Merton 1968).

Together, these two mechanisms lead to the appearance

of few vertices of high connectivity (so-called hubs), which

are both interconnected and also connected to many

others of low connectivity. Indeed, starting with a small

number (m0) of vertices, at every time step (in units of

discrete graph generation time) one adds a new vertex with

m%m0 edges that link it to m different vertices (growth).

To choose the m vertices one assumes that the probability

pi of linking to vertex i depends on its degree ki :
piZki=

P
ki (preferential attachment). After t time steps

this algorithm produces a graph with NZtCm0 vertices

and mt edges, with an average connectivity

zZ
P

kkdðkÞZ2m, in which the ‘older’ vertices in the

graph generation process are those which tend not only to

exhibit larger values of the connectivity, but also to

become naturally interconnected, leading to the appear-

ance of strong ‘age-correlations’ between vertices

(Albert & Barabási 2002).

The heterogeneity of NOCs is known to have a strong

impact in different fields, notably epidemiology, the case of

AIDS constituting a paradigmatic example (May et al.

2001). In SF NOCs, the strong heterogeneity leads to a

dramatic increase in the likelihood of epidemic outbreaks.

Furthermore, the presence of correlations in the NOCs

has been investigated recently, both in an epidemiological

context (Keeling et al. 1997; Read & Keeling 2003), and

also in what concerns the evolution of altruism in viscous

populations, by means of the pair correlation method (van

Baalen & Rand 1998).
3. SIMULATIONS
In the following, we study the impact of NOCs associated

with graphs of SF type on the evolution of cooperation as

encapsulated in the PD. To this end, we follow common

practice and adopt the parameterization introduced by

Nowak & May (1992) for the game parameters, such that

2OTZbO1, RZ1 and PZSZ0, where b, the only

parameter of the game, represents the cheating advantage

of defectors over cooperators. We have checked that the

results do not change if we make SZK3!0 (3/1) in

order to strictly enforce a PD setting. The evolution of

cooperators and defectors is carried out implementing the

following transition probabilities, which constitute the

finite population analogue of replicator dynamics (Gintis

2000; Hauert & Doebeli 2004), to which simulation

results converge in the limit of well-mixed populations.

During each generation (which constitutes our unit of

discrete evolutionary time), all pairs of directly connected

individuals, x and y, engage in a single round of the game,

their accumulated payoff being stored as Px and Py,

respectively, representing the fitness of each individual at

the end of one generation. This means that during one

generation, there will be as many rounds of the game as

edges in the NOCs. At the end of each generation, after all

individuals have played once with all their partners, all

strategies are updated synchronously. To update a strategy

located in vertex x, a neighbour y is drawn at random

among all kx neighbours. The strategy associated with the

neighbouring vertex y replaces that of vertex x with a

probability given by pZmaxf0; ðPyKPxÞ=½kOðTKSÞ�g,
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where kO is the larger of kx and ky, ensuring that

0%p%1. The present results are very robust with respect

to changes in the detailed form used for strategy update.

No qualitative changes occur if we adopt an asynchronous

updating of strategies (Hauert & Doebeli 2004) or if we

replace the denominator kO(TKS ) in p by, for example,

kmax(TKS), where kmax is the maximum degree of

connectivity of the network. Simulations were carried

out on graphs with NZ104 vertices, in which equilibrium

frequencies of cooperators and defectors were obtained,

for each value of b, by averaging over 1000 generations

after a transient time of 10 000 generations (we confirmed

that averaging over larger periods or using different

transient times did not change the results). Furthermore,

final data results from an average over 100 realizations of

the same type of NOCs (10 runs for each of 10 different

realizations of the same class of NOCs) specified by the

appropriate parameters (N and z). All simulations start

with an equal percentage of strategies (cooperators and

defectors) randomly distributed among the elements of

the population. Moreover, even when graphs are gener-

ated via growth and preferential attachment, the evolution

of cooperation is studied in graphs generated beforehand,

their topology remaining frozen throughout evolution.
4. EVOLUTION OF COOPERATION
Figure 1a shows the results of our simulations for the PD

evolving on regular ring-graphs (we used periodic

boundary conditions) for different values of the average

connectivity z, which not only confirm results obtained

previously (Nowak & May 1992) on two-dimensional

lattices, but also show how z influences the evolution of

cooperation on this type of graph. Deviations from the

well-mixed population limits are more pronounced the

smaller the value of z, whereas the well-mixed limit is

nicely recovered for sufficiently large z. Figure 1b shows
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Figure 2. Impact of growth, preferential attachment and
vertex correlations on the evolution of cooperation. Com-
parison of results obtained using as NOCs graphs generated
according to the model of Barabási and Albert (circles), the
growth and uniform attachment model (triangles) and the
configuration model (squares) shows that cooperation
dominates for 1!b!2 only when both growth and prefer-
ential attachment are used simultaneously. In all cases, the
size is NZ104 and the average connectivity is zZ4.
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the corresponding results for SF NOCs, constructed

according to the growth and preferential attachment

rules for zR4. The SF NOCs were generated for

mZm0R2 and the same number NZ104 of vertices.

In sharp contrast with figure 1a, we now obtain the result

that cooperation dominates over the entire range of b. Contrary

to what is observed for regular graphs, dominance of

cooperation increases with increasing z, up to a critical

value (Pacheco & Santos 2005) above which one quickly

approaches the well-mixed population limit. We have

confirmed that the results in figure 1 remain valid both for

larger populations with up to NZ106, as well as for small

communities down to NZ128; below this, stochastic

extinction of cooperators or defectors happens for

particular realizations of a given NOCs, as such preclud-

ing a clear cut result for the evolution of cooperation. This

feature is a size effect that clearly disappears for larger

values of N.

In the following, we discuss the mechanisms that

contribute to the startling results shown in figure 1b.

From figure 1, it is clear that the topology of the NOCs

strongly affects the evolution of cooperation. The features

of the Barabási and Albert model (Barabási et al. 1999)

allow us to assess separately the relative roles played by

growth and preferential attachment in promoting

cooperation to the unprecedented levels obtained. Indeed,

both growth and preferential attachment contribute to

establish the power-law degree distribution associated

with SF NOCs. If we modify the rules of construction of

the SF NOCs by replacing the preferential attachment

rule by a uniform attachment rule, we change the pattern

of connections in the population, replacing a power-law

degree distribution by an exponential degree distribution,

reflecting the fact that the formation of large hubs is now

inhibited under uniform attachment, although corre-

lations are still present, albeit to a lesser extent.

Furthermore, any type of correlations between vertices

can be completely eliminated if we generate SF NOCs

according to the configuration model (Molloy & Reed

1995), since this model ensures a maximally random

graph compatible with a pre-defined degree distribution,

for which we naturally choose those obtained as a result of

the Barabási and Albert construction.

Figure 2 shows the impact of these new NOCs on the

evolution of cooperation, for NZ104 and zZ4. In all

cases, cooperation is enhanced with respect to what one

obtains on regular NOCs. Nonetheless, only the NOCs

including both growth and preferential attachment are able

to sustain cooperation for 1!b!2. Furthermore, com-

parison between the results obtained using the Barabási

and Albert and the Configuration Models clearly shows

that the correlations built up between individuals due to

growth and preferential attachment are responsible for the

dominance of cooperation for large values of b.

Furthermore, the heterogeneity intrinsic to SF NOCs

also contributes to the enhancement of cooperation

obtained in figure 1b. Indeed, the fact that in hetero-

geneous NOCs, individuals interact different numbers of

times per generation means that cooperators may increase

their relative fitness by maximizing the number of

cooperator neighbours. Defectors, however, may also

increase their fitness by exploiting more cooperators.

The results in figure 1b show that cooperators are those
Proc. R. Soc. B
who profit from the heterogeneity of the NOCs, as

explained in the following.

From an individual perspective, a defector is best

surrounded by cooperators (the opposite strategy), since

these are the interactions which will maximize his relative

fitness. As such, defectors occupying hubs exploit and may

easily invade most of their cooperator neighbours.

However, in doing so, the number of neighbour co-

operators will decrease in subsequent generations, which

in turn acts to reduce the relative fitness of such defector

hubs. Whenever their fitness becomes comparable to that

of a cooperator neighbour, invasion may occur. Once

cooperators invade a hub, the situation changes

profoundly. Indeed, and contrary to defectors, coopera-

tors benefit most by interacting with cooperators (the same

strategy). Therefore, a cooperator occupying a hub will

tend to increase the fraction of cooperator neighbours, in

turn maximizing his own fitness. In other words, once

invading a hub, a cooperator becomes so successful that it

is very difficult for defectors to ‘strike back’, as evidenced

by the results shown in figures 1 and 2. The picture

emerging from this discussion is one in which evolution

favours cooperators to become the most connected

individuals, in this way succeeding in outperforming

defectors. Such a picture is entirely corroborated by the

results shown in figure 3, in which we plot the fraction of

defectors which populate vertices of the NOCs sorted by

degree and grouped into four major degree intervals.

Initially, the relative fraction of defectors for each interval

is approximately 50% (cross-hatched bars). Whenever the

stationary regime is reached, defectors initially occupying

the highly connected sites are wiped out by cooperators,

managing to survive in vertices of moderate connectivity.

In keeping with this discussion, it is also clear how

preferential attachment ensures cooperation dominance

for large b. On such NOCs, hubs become directly

interconnected, a feature which helps to sustain

cooperation. Conversely, cooperation dominance is

suppressed whenever the edges which directly intercon-

nect hubs are artificially removed.
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Figure 4. Results for the evolution of cooperation in NOCs
exhibiting SF and truncated SF degree distributions accord-
ing to the models described in main text. In all cases, the size
is NZ104 and the average connectivity is zZ4. The results for
the Barabási and Albert model (solid circles) are compared
with those obtained with the minimal model of Dorogotsev
et al. (2001; solid squares) and the truncated Barabási and
Albert model, imposing cut-offs of 20 (open triangles), 40
(dashed line) and 60 (open squares) for the maximum
connectivity. In all cases, vertex correlations built up during
the generation of the graphs due to growth and preferential
attachment ensure that cooperation dominates for 1!b!2.
As one continues to reduce the cut-off for maximum vertex
connectivity, a sudden collapse of cooperation takes place, the
behaviour resembling closely that obtained for the evolution
of cooperation on regular networks.
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Figure 3. Evolution of defectors by degree. The figure
provides a typical scenario for the change in the distribution
of defectors by degree, occurring as a result of evolution
under natural selection. The cross-hatched bars show the
fraction of vertices initially occupied by defectors (z50%),
for each degree-range specified by the intervals shown.
Evolution leads to a stationary regime, with a distribution
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efficiently wiped out from those vertices with largest
connectivity, managing to survive as moderately connected
individuals (results obtained for NZ103, zZ4 and bZ1.7).
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5. MINIMAL MODEL
How realistic are the SF NOCs studied so far? Empirical

evidence gathered to date (Dorogotsev & Mendes 2003)

indicates that, in social and biological NOCs, (i) vertices

of highest connectivity exhibit degrees substantially lower

than those produced with the simple Barabási and Albert

model and (ii) display values for the cluster coefficient

which are larger than those obtainable with that model

(the cluster coefficient provides a measure of the extent to

which direct neighbours of a given vertex are direct

neighbours of each other, being roughly proportional to

the number of such triangular connections). Furthermore,

one may argue that the single-round PD best suits

interactions between simple organisms (Kerr et al. 2002)

unable either to retain memory of past encounters or to

anticipate future encounters. For such organisms, growth

can be easily envisaged as an active mechanism during the

generation of NOCs, whereas preferential attachment

seems too sophisticated as a rule, since the model of

Barabási and Albert implicitly requires the cognitive

capacity to process a significant amount of information

(Mossa et al. 2002), being as such unlikely for simple

organisms and/or large communities. On the contrary,

these organisms most probably adopt local rules of

attachment, in reaction to local properties of the NOCs,

and independent of its global topology.

In this context, the minimal model of SF NOCs recently

developed (Dorogotsev et al. 2001) provides a nice means

of overcoming these difficulties. Not only does the minimal

model lead to NOCs exhibiting the same power-law degree

distribution d(k)wkK3, but these new NOCs also exhibit

large values for the cluster coefficient. In the minimal

model, during growth each new vertex attaches to both

ends of a randomly chosen edge. As such, this rule favours

the creation of triangular relations between individuals,

thereby greatly enhancing the cluster coefficient of the

NOCs. In what concerns the present study, it is worth

investigating the evolution of cooperation on graphs
Proc. R. Soc. B
generated according to this model. The results are shown

in figure 4 with solid squares, for NZ104 and zZ4 (note

that, by definition, these graphs share the same number of

edges as the corresponding Barabási and Albert graphs), in

which overall cooperation can be seen to become further

enhanced with respect to the results of the Barabási and

Albert model. It is noteworthy that the cluster coefficient in

Barabási and Albert NOCs is of the order of 10K3, whereas

for the minimal model one has values around 0.7 (with a

maximum of 1 for a complete graph, in which a single

defector wipes out all cooperators). In other words, the

present results reinforce the evidence that growth and

preferential attachment, even if implemented in a different

fashion, lead to a clear dominance of cooperation,

independently of the presence (or not) of a significant

amount of such triangular relations.
6. EVOLUTION UNDER EXTRINSIC CONSTRAINTS
Up to now, we have tacitly assumed that individuals have

no limitations in what concerns the number of interactions

they engage in per generation. This assumption will

generally depend on what type of individuals are at stake

and the kind of cooperation one is modelling, but it is

reasonable to conceive communities in which extrinsic

factors limit the interacting capacity of individuals. What

is the impact of this effect on the evolution of cooperation?

Let us imagine that individuals engaging in a PD round

with a neighbour expend a certain energy. Finite resources

may impose, therefore, an upper limit to the number of
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connections that individuals in a population may sustain,

which in turn imposes constraints on the topology of the

NOCs. A simple means of modelling this feature is by

introducing a cut-off in the degree distribution such that

whenever the connectivity of an individual reaches the cut-

off limit, no further connections to this individual may be

established from that moment on during graph generation.

The Barabási and Albert model leads to typical values

for the maximum connectivity well above 200, for NZ104

and zZ4. In figure 4, we show the result of introducing

such cut-offs in the Barabási and Albert model, for

different values of the cut-off parameter (a more socially

motivated mechanism leading also to the truncation of the

degree distribution has been proposed by Mossa et al.

(2002)). It is noteworthy that, in spite of limiting the

maximum connectivity of the vertices, growth and

preferential attachment still remain active and determi-

nant mechanisms in the generation of the NOCs. Clearly,

figure 4 shows that cooperation dominates even when the

connectivity of each node is severely truncated down to

values of the order of 20. These are impressive results

which evidence the robustness of these mechanisms in

sustaining cooperation.

As one imposes cut-offs below 20 (for NZ104 and

zZ4), cooperation collapses to a behaviour which first

approaches that obtained with the growth-only model,

shown in figure 2. This is a clear signal that below a certain

critical cut-off value, preferential attachment is no longer

effective during graph generation. Subsequent reduction of

the cut-off limit leads to further hindrance of cooperation.

However, since the resulting degree distributions remain

heterogeneous, cooperation is still enhanced when

compared to the behaviour obtained on, for example

regular graphs. This is not surprising, and reflects the fact

that heterogeneity promotes cooperation.
7. CONCLUSIONS
The present results show how different topologies of

NOCs determine different dynamics for the evolution of

cooperation. Graphs generated via growth and (different

flavours of) preferential attachment provide sufficient

conditions for cooperation to dominate, even in small

communities with finite communication resources, and

may help us understand why cooperation is so widespread

and evolutionary competitive. It is likely that, throughout

evolution, the topology of the NOCs itself has evolved.

Moreover, NOCs relevant for anthropological studies of

cooperation may be different from those most relevant to

economics, political science or behavioural ecology.

The combination of evolutionary game theory and graph

theory provides the flexibility for carrying out more

realistic simulations, retaining the unifying nature of this

mathematical framework in such a wide and interdisci-

plinary endeavour.

The authors thank Nelson Bernardino for stimulating
discussions and two anonymous reviewers for many con-
structive comments and suggestions.
REFERENCES
Albert, R. & Barabási, A. L. 2002 Statistical mechanics of

complex networks. Rev. Mod. Phys. 74, 47–97. (doi:10.
1103/RevModPhys.74.47.)
Proc. R. Soc. B
Amaral, L. A. N., Scala, A., Barthelélémy, M. & Stanley,
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