

Delft University of Technology

Graph transformation based simulation model generation

Huang, Yilin; Verbraeck, Alexander; Seck, M

DOI
10.1057/jos.2015.21
Publication date
2016
Document Version
Accepted author manuscript
Published in
Journal of Simulation

Citation (APA)
Huang, Y., Verbraeck, A., & Seck, M. (2016). Graph transformation based simulation model generation.
Journal of Simulation, 10, 1-27. https://doi.org/10.1057/jos.2015.21

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1057/jos.2015.21
https://doi.org/10.1057/jos.2015.21

Graph Transformation Based Simulation Model Generation

Yilin Huang, Alexander Verbraeck

Delft University of Technology, Faculty of Technology, Policy & Management

Systems Engineering & Simulation

Mamadou Seck

Old Dominion University, Batten College of Engineering & Technology

Engineering Management & Systems Engineering

The graph transformation based method presented in this paper can automatically generate simulation

models assuming that the models are intended for a certain domain. The method differs from other meth-

ods in that: the data used for model generation does not contain specifications of the model structures to

be generated; the generated simulation models have structures that are dynamically constructed during

the model generation process. Existing data typically has quality issues and does not contain all types of

information, particularly in terms of model structure, that are required for modeling. To solve the problem,

transformation rules are designed to infer the required model selection and structure information from the

data. The rules are specified on meta-models of the original data structure, of intermediate structures and

of the simulation model. Graph patterns, pattern composites and graph pattern matching algorithms are

used to define and identify potential model components. Model composite structures are represented by

hypergraphs according to which simulation models are generated using model components as building

blocks. The method has been applied practically in the domain of light-rail transport.

Keywords: simulation model generation; graph transformation; hypergraph; model component

1 Introduction

One of today’s challenges in the field of Modeling and

Simulation (M&S) is to model and simulate increasingly

larger and more complex systems (Crosbie, 2010). It cur-

rently takes too long to develop and experiment with

models not to mention the high cost and human resource

involved (Fowler and Rose, 2004; Banks et al., 2010).

Many examples can be found in production and manu-

facturing (Fowler and Rose, 2004), supply chains (Longo,

2011), air transportation (Wieland and Pritchett, 2007),

health care (Mielczarek and Uzialko-Mydlikowska, 2012),

to name just a few. There is a rich history of efforts to

improve the effectiveness and efficiency of the modelling

process, e.g., developing simulation languages and user

interfaces for modelling, and developing domain specific

simulators (Fowler and Rose, 2004). While they signifi-

cantly reduced the time and effort in modelling, there is

still considerable room for improvement (ibid.).

One opportunity is to use the available data of a system

to automatically or semi-automatically generate simu-

lation models (Fowler and Rose, 2004; Bergmann and

Strassburger, 2010). Regardless of whether modeling is

performed by humans or by automation, data sources in-

clude those acquired by observation and measurement,

as well as documents about a system (Shannon, 1975).

This article is based on Huang (2013).

The former type of data can be used to determine model

input distributions and to validate simulation output; the

latter type can be used to define and configure simula-

tion models. The availability of both types of data has

increased along with the advances in sensor technology

as well as the more popular use of computer-aided tech-

nologies such as CAD (Computer Aided Design), CAE

(Computer Aided Engineerin), ERP (Enterprise Resource

Planning) and MES (Manufacturing Execution Systems)

systems (Glotzer et al., 2010). This has rendered automa-

tion more attractive. The increased availability of data

allows for a higher degree of automation since more in-

formation becomes accessible in digital forms. At the

same time, the increased amount of data often requires

automation because the data can no longer be handled

manually in an effective and efficient manner (ibid.).

1.1 State of the Art

In this paper, we discuss Automated Model Generation

(AMG). The goal of our study is to develop a method that

can automatically generate simulation models assuming

that the models are intended for a certain domain. AMG

is a relatively new research field with early works dat-

ing around 1990s1. Many works in AMG use circuit de-

1Some literature calls it Automated Modeling (Amsterdam, 1993;

Nayak, 1995; Xia and Smith, 1996; Granda and Montgomery, 2003).

1

sign schematics (Wasynczuk and Sudhoff, 1996; Eecke-

laert et al., 2004; Little et al., 2010), SysML (Cao et al.,

2012; Johnson et al., 2012), or bond graphs (Granda and

Montgomery, 2003; Umesh Rai and Umanand, 2009; Roy-

choudhury et al., 2011; Tian et al., 2012; Zupančič and

Sodja, 2013) to generate simulation models for physical

systems such as circuits, hydraulics and mechatronics,

or for biochemical processes and manufacturing (Fer-

ney, 2000; Thomaseth, 2003; Mueller, 2007; Roman and

Selisteanu, 2012). Those models are generated based

on model-like descriptions that already contain the re-

quired structure information. Gelsey (1990, 1995); Levy

et al. (1997) apply advanced reasoning methods to deter-

mine model structures (i.e., the relations of components)

based on pre-specified component descriptions. In these

works, the input for AMG, i.e., the systems specification,

is prepared for the AMG, where the pre-specified parts or

structures match the model parts and structures. Such

approaches are not always applicable to large and com-

plex models. Some recent works use existing data for

AMG. They define general/generic models or model tem-

plates such that specific model instances can be created

through parameter configuration; e.g., Brause (2004) can

select differential equation models of minimum descrip-

tion length by parameter pruning (i.e., unnecessary pa-

rameters become zero). Harrison et al. (2004); Lucko et

al. (2010) use data to configure parameters such as the

amount of resources and time in workflow process mod-

els. In Wang et al. (2011), automobile general assembly

plant models can be generated based on physical layout

data and production data. AMS (2013) presents a prag-

matic approach to AMG of automobile engine production

process models using performance data.

To our knowledge, there has not been works of AMG

that can generate simulation models with flexible struc-

tures using existing data (assuming that these simulation

models are intended for a certain domain). By generating

simulation models with flexible structures, we mean that

models are not generated by parameter-based configura-

tion on a pre-specified model structure but have struc-

tures that are dynamically constructed according to the

existing data during AMG. Model structure variations can

be achieved through parameter-based approaches (e.g.,

Brause, 2004; Wang et al., 2011). In such cases, possi-

ble model structures have to be pre-specified, which is

not convenient and can be impractical when models are

complex and/or large-scale. The ability to dynamically

construct structure variations provides more flexibility.

Using existing data for AMG is very different from using

data that is specifically prepared for the purpose of model

generation. In the latter case, the data already contains

the right content and structure of information required

for AMG (e.g., Ferney, 2000; Granda and Montgomery,

2003; Mueller, 2007; Roman and Selisteanu, 2012). In ex-

isting data, however, the information that can be directly

used for model generation is often not readily available

(COBP, 2002). The data may need to be transformed in

content and structure. The transformation should even-

tually lead to a model structure according to which a

simulation model can be generated. How to use formal

methods to achieve this objective is the aim of our re-

search. To summarize, the method presented in this pa-

per differs from previous works in at least two aspects: (1)

the data used does not contain specifications of model

structures; (2) the generated models have structures that

are dynamically constructed during the AMG.

1.2 Research Background

Many organizations are facing a twofold problem. They

often need simulation models which take a long time

to develop and incur high costs (Wieland and Pritchett,

2007; Longo, 2011). At the same time, although increas-

ingly more data has become available which could pro-

vide useful information for M&S, much of the data is

unused due to cost-effectiveness reasons (Glotzer et al.,

2010). To benefit from the data for M&S, there is a need

for a method that can automatically use the existing data

to generate simulation models.

The running example we use in this paper is de-

signed for HTM, an example of such organizations. The

company operates a light-rail transport network in The

Hague2 (Veldhoen, 2009). Every year, a number of M&S

studies is initiated by HTM3. New simulation models are

needed to study the design and operation of new or dif-

ferent parts of the network. The models are different in

the sense that they have different infrastructure layouts,

services and timetables, etc.; yet they share similar un-

derlying concepts. Developing the simulation models is

labor intensive and time consuming: three to six months

for small projects and over a year for large ones. The com-

pany possesses a large amount of data, from infrastruc-

ture design, service plans and timetables to (sensor col-

lected) passenger counts and GPS data. Using the data

for modeling could provide useful information about the

system and help improve the validity of models. However,

the more data modelers use, the longer it takes to develop

the models. Constrained by time and cost, a large part of

the data is unused.

There are huge interests from those organizations to

improve such situations. Because the underlying goals of

simulation projects within an organization (or a depart-

ment) can be often similar (in case of HTM it is to study

the infrastructure, control strategies and timetables in re-

lation with, e.g., the quality, reliability and robustness of

services), it is desirable to develop some automated rou-

tine that can generate the simulation models with differ-

ent structures and to reuse some previous modeling so-

2HTM (www.htm.net) is a public transport operator based in The

Hague, the Netherlands. Its light-rail network covers over 150 km2 with

fourteen scheduled tram lines, 140 km tracks and 540 stops.
3For example, the infrastructure and control at intersections

(Kanacilo and Verbraeck, 2006, 2007); the design of new infrastructure

and operation (Kamerling, 2007; Huang et al., 2010); the depot capacity

and vehicle planning on deadhead-kilometers (non-value added trips)

(Cai, 2011); the strategies in the design of infrastructure networks, ser-

vice networks and timetables (van Oort, 2011).

2

http://www.htm.net

lutions. The availability of data in those organizations

makes this kind of automation possible.

Model Components The AMG method proposed in this

paper uses a component-based approach4. The AMG

process shall automatically combine model components,

instantiate and configure them according to existing data

so that they together constitute a simulation model. As

a prerequisite for the AMG process, model components

need to be developed in the first place. We choose DEVS

(Zeigler et al., 2000) as the underlying modeling formal-

ism mainly based on two criteria (de Lara et al., 2004;

Vangheluwe, 2000, 2008; Wainer, 2009)4: (1) DEVS pro-

vides strong support for hierarchical component-based

modeling, and (2) DEVS can embed and represent many

other formalisms.

The model component specifications can be divided

into two related parts: (I) the specification of (the behav-

ior of) model components at the elementary composi-

tional level, and (II) the definition of permissible (struc-

ture of) model compositions at the non-elementary com-

positional levels. The former provides the basic units (or

building blocks) in constructing hierarchical component-

based models which subsequently generate the overall

model behavior. In DEVS, model behaviors at the ele-

mentary level are specified in atomic models by means

of transition functions, time advance functions, etc. The

behavior of a composed model is determined by the col-

lective (interactive) behavior of its constituent compo-

nents (or sub-components). Not only the behavior of the

sub-components but also the alterable composite struc-

ture alter the behavior of the composed model. In DEVS,

compositions are specified in coupled models. Following

the concept of closure under coupling in DEVS, the resul-

tant of coupling is also a DEVS model, which can be again

used for recursive composition.

“The definition of the permissible model composi-

tions” advocates generic definitions of model compos-

ites in order to allow for certain flexibility of composi-

tion under predefined constraints. In this sense, such

definitions are not classic DEVS coupled model specifi-

cations. They are defined by patterns of DEVS coupled

models through meta-models, and are accompanied by

necessary functions that can create (classic) DEVS cou-

pled models with permissible compositions (Section 4).

For the case studies used in our research, we developed

a model component library called LIBROS (L
¯

i
¯

b
¯

rary for R
¯

ail

O
¯

peration S
¯

imulation) in collaboration with HTM. LIBROS

started forming in 2008 and is progressively developed

and extended along with more studies for this research.

Atomic models in LIBROS include rolling stocks (hereafter

called vehicles), track segments, sensors, switches, sig-

nals5 and control units. Coupled models include (com-

4Component-based modeling is founded on a paradigm that is

common to all engineering disciplines: complex systems can be ob-

tained by assembling components (Gössler and Sifakis, 2005). It is a

promising modeling concept from both systems theory perspective and

M&S perspective (Huang, 2013).
5Sensors are used to refer to different vehicle detection and track

posed) infrastructure components such as stations and

intersections.

Steps in An AMG Process Starting from existing data

to a simulation model as a final outcome, a complete

AMG process shall (1) execute model transformation def-

initions specified on the data models and the domain

meta-model, (2) generate (or instantiate) a simulation

model using predefined components, and (3) perform

model calibration after the initial generation of the sim-

ulation model. Accordingly, we propose to divide a com-

plete AMG process into three steps: Model Transforma-

tion, Model Instantiation and Model Calibration (Fig-

ure 1). This paper focuses only on the first two steps —

model transformation and model instantiation — after

which a simulation model is generated with default (non-

calibrated) parameter configuration6.

Model transformation is the automatic generation of a

target model from a source model according to a trans-

formation definition (Kleppe et al., 2003; Mens and van

Gorp, 2006); see Figure 2. The source (or input) model

and target (or output) model conform to a source meta-

model and a target meta-model respectively. A trans-

formation engine reads the source model, executes the

transformation definition, and writes the target mode,

i.e., model transformations are performed on concrete

models (Czarnecki and Helsen, 2006). A transformation

definition is specified on the source and target meta-

models (ibid.). It is composed of a set of transformation

rules that together describe how a model in the source

language can be transformed into a model in the target

language (Kleppe et al., 2003; Mens and van Gorp, 2006).

Each rule describes a small unit used to specify a transfor-

mation (Czarnecki and Helsen, 2006). Model transforma-

tion may have multiple source and target models (Mens

and van Gorp, 2006). In AMG, it is possible and likely to

have multiple source models which are data from differ-

ent sources, but the target model is in principle a single

Data

Hierarchical

Graph

Simulation

Model

Calibrated

Simulation

Model

Model

Components

Model

Instantiation

Model

Calibration

Model

Transforma‐
tion

Figure 1: Proposed steps in a complete AMG process

clear detection devices used in rail operations and controls (Pachl, 2002;

Theeg and Vlasenko, 2009). Switches (also called switchpoints or points)

are movable track elements that are used to transfer rolling stocks from

one track to another (Theeg and Vlasenko, 2009). Signals indicate if a

movement may enter the section of track behind (i.e., beyond) the sig-

naling equipment (Pachl, 2002).
6Readers who are interested in the final step Model Calibration may

refer to Huang (2013, Chapter 6).

3

Source

Meta‐Model

conformsTo

Target

Meta‐Model

Transformation

Definition

Source

Model

Target

Model

conformsTo

refersTo refersTo

writesreads Transformation

Engine

executes

Figure 2: Basic elements in model transformation (Czar-

necki and Helsen, 2006)

simulation model (for each referent of interest).

For our case studies, the (first) source meta-model is a

data model, and the (last) target meta-model is a light-

rail domain meta-model. We use the CAD infrastructure

data provided by HTM as a basis for model structure to

generate light-rail simulation models. The CAD data was

originally produced as light-rail infrastructure blueprints

of the Haaglanden region (The Hague and surroundings).

Figure 3 shows a simple example which is a plot of a “Y”

tram crossing. The plot visually resembles the infrastruc-

ture layout of the crossing but the CAD dataset itself only

contains a list of geometric primitives that describe each

CAD entity. An urban network may potentially contain

hundreds of crossings that have different layouts. How to

transform such flat-structured data into rich-structured

simulation models was what we studied.

The main idea of the AMG method is to predefine pat-

terns that could associate certain data structures to a set

of predefined (meta-models of) simulation model com-

ponents, and then use model transformation algorithms

to find those patterns in the data (graph) and to replace

them with the predefined components. The matching

and replacement need to be performed systematically

such that the whole data graph can be eventually trans-

formed into a simulation model. Since this is often a

complex process, we divided it into a few sub-steps and

how to perform these steps are discussed in our paper.

The CAD Dataset:

Entity 1: line, start point, end point, color, ...;

Entity 2: line, start point, end point, color, ...;

Entity 3: arc, start point, end point, center, radius, ...;

Entity 4: circle, center, radius, color, name, ...;

...

Entity n : line, start point, end point, color, ...;

Figure 3: The CAD drawing of a “Y” tram crossing

The transformation engine (called Model Generator

in Section 5) we developed reads the input data, exe-

cutes the transformation rules to construct a hierarchi-

cal graph that is homomorphic (or isomorphic) to the

simulation model to be generated. Since we use hier-

archical component-based modelling and DEVS formal-

ism, model composition can be conveniently represented

by directed hierarchical graphs. In such cases, theoretical

works in graph transformation are applicable to model

transformation, i.e., model transformation can be treated

as graph transformation. Based on the hierarchical graph

as a blueprint, a simulation model can be constructed us-

ing the predefined model components as building blocks.

The rest of this paper presents the AMG process in

detail. Since graph theory and graph transformation in

particular are applied for the steps, the related theory

is presented in Section 2. In the model transformation

step explained in Section 3, transformation rules are exe-

cuted on the input data in order to construct a hierarchi-

cal graph that represents the compositional structure of

the simulation model to be generated. The rules are de-

fined on the meta-models of the original data structure,

of the intermediate structures, and of the domain simu-

lation model. In the model instantiation step explained in

Section 4, a simulation model is generated using the do-

main model components based on the hierarchical graph

generated from the previous step. In Section 5, we sum-

marize the steps and sub-steps discussed.

2 Graph Theory and Graph Transfor-

mation

In the AMG process, graphs are used to represent struc-

tures in data and model composition, to perform trans-

formation step by step from the former to the latter, and

to generate simulation models based on the latter.

2.1 Model Structure Representation with

Graphs

Data can be structured, semi-structured or unstructured.

Simulation models are often structured. The models dis-

cussed in this paper have hierarchical structures. This

hierarchical structure refers to a Compositional Contain-

ment Hierarchy (CCH), which is a strictly nested compo-

nent inclusion hierarchy. For example, component A is

composed of components B and C , where C is composed

of D and E while B , C , D and E do not directly belong to

any other components. This structure is a Model Com-

posite Tree (MCT). Using a tree to represent CCH does not

convey information about the coupling relations among

the model components. For this purpose, a hierarchical

graph is needed.

4

2.1.1 Graph and Graph Pattern

A common mathematical notion of a graph is a finite set

of nodes (or vertices) among which some pairs are con-

nected by edges (or links). An enrichment of this notion

is to type and/or attribute the vertices and/or edges. The

following definitions are based on Ehrig et al. (2006a,b);

Gallagher (2006); Fan et al. (2010).

A directed graph (or digraph) is an ordered pair G =

(V, E) where V is a finite set of vertices and E ⊆ V ×V is

a set of edges where e = (v, v ′) ∈ E denotes an edge from

vertex v to v ′ ∈ V . A similar definition is a 4-tuple G =

(V, E , s , t) where E is a set of edges without indications

of the (source and target) vertex pairs. They are specified

by the source and target functions s and t such that s , t :

E → V . A path p in a graph G is a sequence of vertices

(v1, v2, · · · , vn) such that e i∈[1,n−1] = (vi , vi+1)∈ E ∈G .

A typed graph TG = (G , TV , TE , tV , tE)has typed vertices

and/or typed edges, where G is a graph, TV and TE are

two finite sets of vertex types and edge types, and tV and

tE are vertex type function and edge type function such

that tV : V → TV and tE : E → TE . A data graph DG =

(TG , AV , AE ,aV ,aE) is a typed attributed graph, where TG

is a typed graph, AV and AE are two finite sets of vertex

and edge attributes, and aV and aE are the vertex attribute

and edge attribute functions such that aV : V × AV → R

and aE : V ×AE → R. This means that a vertex v ∈ V can

have a number of vertex attributes a i ∈ AV , i ∈ [1, n] each

of which has an attribute value c i ∈ R, i.e., aV (v, a i) = c i .

Likewise, an edge e ∈ E can have a number of edge at-

tributes a j ∈ AE , j ∈ [1, m] each of which has an attribute

value c j ∈R, i.e., aE (v, a j) = c j . Thus, a vertex or edge can

be assigned with attributes and values to carry the con-

tent such as label, rating, weight, and identifier.

Graphs can represent not only structure instances, e.g.,

social networks or maps, but also types or patterns of

structure instances. A type of structure instances can be

expressed by a graph pattern which is often used to de-

scribe the matching criteria of occurrence(s) of homo-

morphic or isomorphic subgraph(s) in a host graph.

A (typed attributed) graph pattern can be defined as

P = (Vp , Ep ,pp ,bp) where Vp and Ep are two finite sets of

vertices and edges, pp is the predicate function defined

on Vp and/or Ep as a (logical) conjunction of atomic for-

mulas7 over the vertex and/or edge types TV , TE , the ver-

tex and/or edge attributes AV , AE , and the corresponding

attribute values, and bp is the bound function such that

bp : Ep →R∪∞. Note that an edge in a graph pattern is of-

ten a path in a host graph. Intuitively, the predicate func-

tion defines the search conditions on the vertices and/or

edges in a host graph, and the bound function defines the

7Atomic formulas, as opposed to composite formulas, are the sim-

plest well-formed formulas in mathematical logic. Variables and con-

stants are (atomic) terms; if f is an operation of degree r and t1, · · · , tr

are terms, then f (t1, · · · , tr) is a term; if p is a (predicate) relation of de-

gree r and t1, · · · , tr are terms, then p (t1, · · · , tr) is an atomic formula,

which has roughly the following meaning: the ordered r -tuple of objects

denoted by t1, · · · , tr has the property denoted by the r -ary predicate p

(Manin, 2010; Ben-Ari, 2012).

1

2
3

4

5

6

7

8

1

2
3

4

5

6

Figure 4: Hypergraph – an example with eight vertices

and six edges (ibid.)

bound of a search path, e.g., the upper bound of a path

length, and∞ simply means that there is no bound.

2.1.2 Hypergraph

The definitions in Section 2.1.1 do not yet support the

direct expression of CCH. In order to do so, we need a

mathematical notion of composition. In literature, hyper-

edges (Busatto and Hoffmann, 2001; Drewes et al., 2002;

Palacz, 2004; Bruni et al., 2010) are often used for this

purpose. A hyperedge is an edge in a hypergraph, a gen-

eralized graph whose edges are non empty sets of finite

vertices. To our knowledge, it is first introduced by Berge

(1973, 1989). Berge (1989) has the following definitions8.

Let V = {v1, v2, . . . , vn } be a finite set of vertices. A hy-

pergraph on V is a family H = (E1, E2, . . . , Em) of sub-

sets of V such that the edges E i ∈ H , i ∈ [1, m] satisfy

E i 6= ∅ ∧ ∪E i = V . A simple hypergraph is a hyper-

graph such that no edge is contained by another, i.e.,

E i ⊂ E j ⇒ i = j . A simple graph9 is a simple hypergraph

such that each edge has cardinality 2, i.e., |E i |= 2.

As proposed by Berge (ibid.), a hyperedge E i may be

represented by a line connecting the two vertices if |E i |=

2 (similar to the case in a simple graph), by a loop if

|E i | = 1, and by a closed circle enclosing the vertices if

|E i | ≥ 3 (Figure 4). One can see that a hypergraph is not

per definition strictly nested. A CCH shall not have hy-

peredges that can freely share vertices. We can, however,

impose constrains on the hyperedges to obtain CCHs.

Hyperedges and Simple Edges In representing CCHs

with hypergraphs, we need to pay attention to the hyper-

edges that have cardinality 2. In literature, a hyperedge

connecting two vertices is like an ordinary graph edge.

When we use these hyperedges to represent the compo-

sitional relations of two vertices, how to distinguish them

with the coupling relations of two vertices? Take the hy-

peredge E2 in Figure 4 as an example. This edge con-

nects v5 and v8. It can represent a compositional rela-

tion, where v5 and v8 are composed together to form a

8A more detailed concept of hypergraph is presented, e.g., in Habel

(1992); Drewes et al. (1997) which include tentacles, attachment vertices

and external vertices. We discuss them in Section 2.2.2.
9The (ordinary) graphs that have edges connecting two vertices

only, as those defined in Section 2.1.1.

5

v1

v2

v4

v6

v5

v9

v3

v7

v8

v1

v2

v4

v6

v5

v9

v3

v7

v8C1 C2

C3
C4

G=(V,E) MCG=(G,HG)

HG = (C1,C2,C3,C4); C1 = (v1, v8, v9,C2,C3) ; C2 = (v2, v3);

C3 = (v4, v7,C4) ; C4 = (v5, v6)

Figure 5: Model composite graph – an example with four

compositions defined on a graph with nine vertices

larger coupled component10. It can also represent a cou-

pling relation, where v5 and v8 are simply coupled to-

gether. This ambiguity in relation definition is undesir-

able for model transformation. It would therefore make

sense in our graph representation to distinguish hyper-

edges having cardinality 2 with simple edges, or at least

type or label these edges, in order to represent composi-

tional relations and coupling relations differently.

2.1.3 A Hierarchical Graph for Model Composition

Because a CCH is a strictly nested component inclusion

hierarchy, we define the following constrain for the hy-

peredges: for each pair of hyperedges in a CCH, one edge

can be a subset or superset of another edge but otherwise

they must not intersect one another. Based on the defini-

tions and discussions presented, we propose a definition

of hierarchical graph that can be used to represent a CCH

for model composition.

A model composite graph MCG = (G , HG) is an or-

dered pair of an ordinary digraph G = (V, E) and a CCH

HG specified on G . The graph G can be typed and/or

attributed as defined in Section 2.1.1. The CCH HG =

(C1,C2, . . . ,Cm) is a family of subsets of V ∈ G such that

the hyperedges C i , i ∈ [1, m] satisfy: (1) ∪C i = V ∧ C i 6=∅,

(2) ∃C i = V , and (3) ∀C i ,C j , j ∈ [1, m], i 6= j =⇒ C i ∩C j =

∅ ∨ C i ⊂C j ∨ C i ⊃C j .

We separate a graph G with its graph hierarchy HG in

the definition11. The model coupling relations are repre-

sented in G by simple edges e ∈ E . The compositional re-

lations are represented in HG by hyperedges C i which are

sets of composite members only. The vertices v ∈ V and

the hyperedges C i represent the (elementary and com-

posed) components in model composition. Figure 5 il-

lustrates an example of MCG in which a hypergraph HG

with four compositions C1 ∼ C4 are specified on a graph

G with nine vertices v1 ∼ v9. The solid lines denote sim-

ple edges and the dashed circles denote hyperedges.

Following the first condition in the definition (the same

10This is impermissible in case of DEVS as both vertices are also con-

tained by other hyperedges.
11The definition is consistent with the hypergraph definition, e.g., in

Habel (1992); Drewes et al. (1997); see Section 2.2.2. The information

about attachment vertices of the hyperedges is however contained (in-

directly) in the ordinary graph G ; see Section 3.

as in the hypergraph definition), each composition is a

non empty set of vertices in graph G . The second condi-

tion states the existence of one component that contains

all vertices in G . This is the root component that is to be

instantiated as the top level model (the simulation model

at the highest level in the hierarchy) in AMG. The third

condition in principle states that a CCH does not allow

intersected compositions. A component can be a subset

or superset of another component. Otherwise, they shall

not share composite members. Note that the hyperedges

can be as well typed and/or attributed following defini-

tions in Section 2.1.1.

2.2 Basic Concepts of Graph Transformation

2.2.1 Rules, Matches and Rule Applications

A graph transformation step involves the following basic

concepts: graph transformation rules, matches and rule

applications (Corradini et al., 1997; Kahl, 2002); see Fig-

ure 6 (cf. Figure 2). A rule (or production) p : L R con-

tains at least a left-hand side (LHS, or pattern graph) and

a right-hand side (RHS, or replacement graph), and some

indications of how instances of the RHS are to replace the

matched instances of the LHS, e.g., which vertices and

edges are to be preserved, deleted and/or created. The

LHS and RHS are the source and target meta-models (or

subsets of them) discussed in Section 1.2.

The application of a transformation rule to an applica-

tion graph (or host graph) G requires a match (or graph

morphism) m : L→G for a production p . A match occurs

when the vertices and edges of L can be mapped to a sub-

graph in G such that the defined graph structure, bound

and/or the types and/or the attributes (Section 2.1.1) are

preserved. This subgraph is also called an image.

Following Corradini et al. (1997), a graph morphism

f : G → G ′ is a pair f = 〈 f V : GV → G ′V , f E : GE → G ′E 〉 of

functions which preserve sources, targets, types and at-

tributes, i.e., which satisfies f V ◦ t G = t G ′ ◦ f E , f V ◦ s G =

s G ′ ◦ f E , tG
′

V ◦ f V = tGV , tG
′

E ◦ f E = tGE , aG ′

V ◦ f V = aG
V , aG ′

E ◦ f E = aG
E

(see Section 2.1.1). A graph morphism is an isomorphism

if both f V and f E are bijections. If there exists an isomor-

phism from graph G to graph H , then we write G ∼=H . [G]

denotes the isomorphic class of G , i.e., [G] = {H |H ∼=G }.

rule: LHS → RHS

Application

Graph

LHS

LHS

RHS

RHS

Result Graph

transformation

matching result embedding

Figure 6: Graph transformation – rule-based modifica-

tion of graphs (Corradini et al., 1997; Kahl, 2002; Ehrig

et al., 2006b)

6

The rule application to an application graph G , pro-

duces a result graph (or derived graph) H . The transfor-

mation relation (also know as direct derivation) is often

called co-production p ∗ : G H . Roughly speaking, H is

constructed as G \(L\R)∪ (R\L). The rule application can

be seen as an embedding into a context which is the part

of the host graph G that is not part of the match. The re-

sult embedding (or co-match) m ∗ : R → H , maps R to its

occurrence in the derived graph H .

Figure 6 (right) illustrates a schematic representation

of a direct derivation from G to H , G
p ,m
=⇒ H , resulting

from an application of a production p at a match m (Cor-

radini et al., 1997). A graph grammar G consists of a set

of productions P = {(p i |i ∈ [1, n]} and a start graph G0.

A sequence of direct derivations G0

p1

=⇒G1

p2

=⇒ ·· ·
pn

=⇒Gn

constitutes a derivation of the grammar, also denoted by

G0 =⇒
∗Gn (ibid.).

2.2.2 Hyperedge Replacement

Hyperedge replacement is the replacement of hyperedges

of a hypergraph by hypergraphs (Habel, 1992). A di-

rected hyperedge can be seen as a black-box or a place-

holder with an ordered set of incoming tentacles and an

ordered set of outgoing tentacles; Figure 7 (A) (Habel,

1992; Drewes et al., 1997). Habel (1992) gives the follow-

ing definitions.

A hypergraph H with a finite set of vertices V and a fi-

nite set of hyperedges E has source and target functions

s : E → V ∗ and t : E → V ∗ 12 that assign a sequence of

sources s (e) and a sequence of targets t (e) to each e ∈ E .

There is a (predefined) set of vertices occurring in the se-

quence extH ∈ V ∗ which is called the set of external ver-

tices of H . They (also called the begin and end vertices)

correspond to the sequence of sources and targets of a hy-

peredge (/∈ E) when H may replace this hyperedge (con-

ditions see below). The set of all other vertices is said to

be the set of internal vertices of H . The set of vertices

occurring in the sequence att (e) = s (e) · t (e) is called the

set of attachment vertices of an hyperedge e . A hyper-

edge e ∈ E is called an (m , n)-edge for some m , n ∈ N if

|s (e)| =m and |t (e)| = n . The pair (m , n) is the type of e ,

m

n

m

n

(A) (B)

Figure 7: Hyperedge of type (m , n). (A) A hyperedge with

m incoming tentacles and n outgoing tentacles. (B) A hy-

peredge with m sources and n targets (Habel, 1992)
.

12For a set A, A∗ denotes the set of all strings over A including the

empty string.

denoted by type (e). Figure 7 (B) illustrates a hyperedge

where type (e) = (m , n) whose attachment vertices (i.e.,

source and target vertices) are denoted by dots (•).

Given hypergraphs H and R , a hyperedge e ∈ E ∈ H

may be replaced by R when e and R “fit together”; this

means that when e and R are of the same type — if e

is an (m , n)-edge then R is an (m , n)-hypergraph — and

whenever the i -th and the j -th external vertices of R are

the same then the i -th and the j -th attachment vertices

of e are the same (i.e., distinct tentacles of a hyperedge

may be attached to the same vertex, ibid.). The hyperedge

replacement can be done by removing the hyperedge e ,

adding the hypergraph R except its external vertices, and

handing over each tentacle of each hyperedge (in the re-

placing hypergraph R) which is attached to a begin or end

vertex to the corresponding source or target vertex of the

replaced hyperedge (ibid.); see Figure 8.

A formal definition of hyperedge replacement can be

found in Habel (ibid.). Andersson (2006) provides a sim-

pler definition as following. Let H , R be hypergraphs,

e ∈ E ∈ H , type (e) = type (R). The replacement of e in

H by R yields the hypergraph H [e /R] which is obtained

with three steps: (1) build H\e by removing e from H ; (2)

take the disjoint union of H\e and R , i.e., H\e ⊎ R ; (3)

∀i ∈ [1, type (e)], identify the i -th external vertex of R with

the i -th attachment vertex of e . This means that when

adding R to H\e , the sequence of external vertices of R is

fused with the sequence of attachment vertices of e in the

right order (Drewes et al., 1997).

3 Model Transformation

In this section, we explain and exemplify how to define

transformation rules that are executed on the input data

(i.e., a start graph G0; Section 2.2.1) to construct a hier-

archical graph (i.e., a model composite graph MCG; Sec-

tion 2.1.3) that represents the compositional structure of

the simulation model to be generated.

Typically, existing data has quality issues and does not

contain all types of information, particularly in terms of

model structures, that are required for AMG. An MCG =

(G , HG) is structured where G shall be a graph whose

edges represent (directed) model coupling relations. The

hyperedges in HG shall represent the structure of each

model component. They are the results of Graph Pattern

e

1

1

2

m

n

. . .

. . .

H\e H\e

R

Figure 8: Hyperedge replacement H ⇒H [e /R] (ibid.)

7

Matching (GPM) where different types of data structure

combinations (each of which has a corresponding model

component) are defined as graph patterns. In designing

the transformation rules, the information gap should be

identified and measures are defined accordingly (often

step by step) to close this gap. The rules basically include

the measures that are automatable.

3.1 Start Graph

Figure 9 shows a plot of the CAD infrastructure data

we use as a basis for model structures. The data con-

tains a list of geometric primitives (each of which has a

shape with geometrical descriptions and possibly other

descriptions such as colour and label). Although the data

plot appears to be a network visually, the dataset itself

is unstructured, i.e., it does not contain relations among

the entities. As such, it is hardly a graph as a mathemati-

cal structure. When considered as a graph, it has vertices

which are the CAD entities but has no edges.

With such a start graph G0, a set of productions (or

transformation rules) P is defined to derive an MCG. (The

final production from the MCG to a simulation model is

discussed in Section 4.)

3.1.1 Solving Data Quality Issues

A number of data quality criteria could help detect data

quality issues for AMG (Huang, 2013, Section 3.3). This

subsection briefly discusses some measures.

Syntactic accuracy relates to lawfulness rather than cor-

rectness of data values (Wand and Wang, 1996). It of-

ten can be automatically checked by comparison func-

tions (Batini and Scannapieco, 2006). Syntactic consis-

tency issues are particularly relevant when data has mul-

tiple sources (Shanks and Corbitt, 1999). They can be typ-

ically solved through type and format conversion.

To measure semantic accuracy of a data value v , (i) the

corresponding true value v ′ has to be known, or (ii) it

should be possible, considering additional knowledge, to

deduce whether v is or is not v ′ (Batini and Scannapieco,

2006). The first option is a non-option in a computational

sense: if the “true value” is or can be known digitally, that

Figure 9: Light-rail infrastructure CAD data of the Haag-

landen region

value should be used instead of v . Hence, semantic ac-

curacy is only computationally measurable and solvable

with sufficient knowledge to reason the deduction.

Data completeness issues can be semantic or prag-

matic. When data is truly incomplete13, the only way to

complete the data is to acquire the missing part. Improv-

ing semantic completeness could potentially increase

pragmatic completeness. Semantic incompleteness does

not necessarily signify pragmatic incompleteness.

Mapping consistency issues typically occur among data

from different sources. Sometimes consistency is broken

because of erroneous schema changes (Velegrakis et al.,

2004). When key values intended to map to the same

external instance are inconsistent, a mapping table can

clarify the relations among these keys.

Presentation suitability is the degree to which the data

format, unit, type-sufficiency are appropriate for the pur-

pose of data use. (Type-sufficiency is the degree to which

the data includes all types of information useful for the

purpose of data use.) Existing data often does not contain

the right content and structure of information required

for model generation, i.e., the parts and relations in the

simulation model is richer than those represented in the

data. We do not deem this issue as being semantic incom-

plete, because the missing information can be deduced

from the existing data with sufficient domain knowledge.

The data is not (truly) incomplete but the information di-

rectly contained is not of the right type. When the domain

knowledge and reasoning for deduction can be formal-

ized, we are able to obtain the right type of information

automatically from the data.

Quality Issues in the Infrastructure Data The data we

use for case studies contains a number of quality issues.

Since the CAD entities were drew manually as light-rail

infrastructure blueprints, many data quality issues con-

cern semantic accuracy. For example, (1) two entities

may appear to be connected visually but are indeed un-

connected which can be inspected only when zoomed in

with a sufficiently large scale factor; (2) there exist small

“invisible” entities, e.g., very short lines and arcs, that

shall not be considered as a part in model transformation;

(3) although the entities representing rail tracks have start

and end points, they do not correspond to traffic direc-

tions, which are important for the model.

To solve these issues, we used a number of measures.

For issue (1), a configurable parameter for snap tolerance

is used to evaluate the connectedness of the CAD prop-

erties. For issue (2), we “traverse” the infrastructure en-

tities for connectedness and cleaned the entities that are

not needed. As for issue (3), the direction of traffic is not

an intrinsic track property that can be inferred from the

track geometry alone. But if the origin of a traffic flow can

be indicated in some way, and given that a rail track has a

unique direction of traffic, it is possible to infer the direc-

13This means that (i) the data values or records are unknown but do

exist, (ii) they are not contained by other accessible data sources, and

(iii) they are not deducible from known data values or records.

8

tion of traffic of the successively connected tracks. Urban

light-rail services largely operate on rails with dedicated

directions (Pachl, 2002; Vuchic, 2005); this is the case in

the Haaglanden region. The origins of traffic flows, called

sources, are typically at the boundary of a modelled area

or at defined locations such as terminals. Since there is a

very low number of sources, we manually added this in-

formation into the original infrastructure CAD data using

labelled circle entities.

3.1.2 Defining Information Types and Dependencies

Major data quality issues that shall be solved by the trans-

formation steps concern presentation suitability. To solve

the information gap, we need to first identify what infor-

mation is missing and how to obtain it. We used an in-

tuitive approach. The types of information that are avail-

able are enumerated against those that are required. We

arrange the information types (Info. Types) by their de-

pendencies and try to fill in the gaps by adding the infor-

mation that can be inferred from those that are (or can

be) known. Expert opinions and literature are consulted

in order to complete and verify the information depen-

dencies and inference logic. The identified information

types are arranged into groups, each of which represents

an intermediate transformation step. The dependencies

are used as a basis for the design of the stepwise trans-

formation. Each step has a source graph and a target

graph. Each graph shall contain the information types

that are specified respectively. For the light-rail case, we

identified twelve information types with four groups (Fig-

ure 10). To obtain a LIBROS model, three transformation

steps (i.e., three productions) are needed according to the

dependencies: G0

p1

=⇒G1

p2

=⇒G2

p3

=⇒G3.

3.2 Transformation Step 1: Generation of Di-

graph

In the first step, a production p1 is applied on the start

graph G0 resulting a digraph G1. G0 is a non-graph com-

posed of a list of geometric primitives (Section 3.1). G1

shall contain Info. Types 1∼514 as shown in Figure 10.

The construction of G1 basically relies on geometrical

inference. We pre-process G0 to partition its entities into

three non overlapping sets of sources, tracks and stops.

In the light-rail domain, the rail infrastructure has in-

trinsic characteristics that allow for a limited number of

entity-to-entity compositions with regard to vertex types

and degrees. Figure 11 (left) illustrates the schema of

such compositions. Note that the white-headed arrows

represent track entities that are vertices but not edges,

and their directions indicate permissible directions of the

14This step shall construct a digraph G1 whose vertices are of two

types: sources or tracks (Info. Types 1 and 2). The geometrical com-

positions of the tracks are indicants of locations and types of points

(Info. Type 4). Additionally, since a stop model contains a sequence of

connected tracks with a certain total length and this information is al-

ready available at this step, hyperedges are defined on G1 to represent

the stops and their constituent tracks (Info. Types 3 and 5).

Tracks contained
in intersections

Tracks contained
in stops

Locations & shapes
of line/arc entities

Locations of circles
as sources

Locations, shapes, directions &
connectedness (layout) of tracks

Locations & types
of points

Types of
intersections

Locations &
lengths of stops

Locations of
sources

Points belong to the
same intersections

Locations of
sensors in stops

Locations of signals
in intersections

Check tables of control
units in intersections

Possible routes in
intersections

G0

1 2 3

4 5

6

7

8 9

10 11

12

Locations & lengths
 of circles as stops

G1

G2

G3

Information in

infrastructure CAD

Figure 10: Composite information types and dependen-

cies for the AMG of LIBROS models

traffic which are not contained in the data as such but

need to be inferred during model transformation.

The transformation in this step is completed with one

“graph traversal” during which the graph edges are cre-

ated based on the entities’ geometric connectedness. We

apply Depth-First Search (DFS) for the traversal since DFS

can be used to classify the edges (Cormen et al., 2001)

which suits our situation of exploring G0. In the traversal,

the search root of a new (depth-first) tree in the depth-

first forest (ibid.) is always a source vertex.

3.2.1 Search for Connectedness

The search of entities’ geometric connectedness (to a

reference point) takes place (along the traversal) with a

given snap tolerance; both the start and end points of a

track entity (which is a line or arc entity) are checked for

connectedness. An ordered pair of connected entities15

becomes an edge in digraph G1. A discovered (or visited)

edge is recorded in a map-like data structure, let us call it

track map T, in which the leading vertex is an index (or a

key) and the following (track) vertex is an indexed value16.

Starting from a source vertex, the connected track ver-

tices are searched in the track set. A valid source shall

have exact one track connected to it. A track entity shall

have its start and end points correspond to the permis-

sible direction of the traffic; if not, the these two points

must be swapped. We call this operation regulating track

15It would be a (source, track) pair or a (track, track) pair.
16An index can be associated with more than one value.

9

tj
tj+1

tp

tm

tp+1

tm+1

tj+2

tq

tn

tn+1

Track Map T

TP Map PT

CP Map PC

FP Set PF

ti ti+1
ti ti+1

tj tj+1 tj+2

tp tp+1

tq tp+1

tm tm+1

tn tn+1

tm

tmtn

tn

tj

tp+1 tp tq

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . .

sk tk

. . .

sk
tk

TP

CP

FP

Figure 11: Representation of track composition informa-

tion in set and maps

direction. A track with a regulated direction is called a

regulated track. Starting from a regulated track vertex

(with its end point as the reference point), the connected

track vertices are again searched in the track set. A track

may have non, one, two or three connected tracks, which

may correspond to the situation of being a sink, a normal

track, a stop, a facing point (FP), a trailing point (TP), or a

crossing point (CP) depending on the geometry17.

The DFS proceeds each time when there is a con-

nected track and terminates when all sources and con-

nected tracks are visited. After the traversal, a track map

T holds the information about the (source) track rela-

tions (Info. Types 1 and 2); together with a FP set PF, a

TP map PT and a CP map PC, they hold the information

about the points (Info. Type 4). Figure 11 illustrates the

representation of the information in set and maps, with

which G1 is described. A hyperedge map E (Section 3.2.2)

shall hold information about all (potential) components;

at this stage it only holds information about the stops

which are composites (Info. Types 3 and 5). As the out-

come of transformation step 1, G1 can be expressed such

G1 = (T, PF, PT, PC, E).

3.2.2 Hyperedge Representation of Composition

Let e be an (m , n)-edge with a set of source attachment

vertices As = (a s1
, a s2

, · · · , a sm
) and a set of target attach-

ment vertices A t = (a t1
, a t2

, · · · , a tn
). Suppose edge e can

be replaced with a given (m , n)-hypergraph, say He (Sec-

tion 2.2.2). To generate He , we need to know the com-

position of He without saying that the external vertices of

He shall match the attachment vertices of e . This com-

position is described as a subgraph in G1. We still need to

17Details can be found in Huang (2013, Section 5.2.2).

Hyperedge Map E

u1

u2

ei

. . .

. . .

. . .

. . .

ei

v1

u2 um

vn

u1

as
as as

at at

1

1

2

n

m

ei

um ei

. . .

(A) (B)

As = (a s1 , a s2 , · · · , a sm); A t = (a t1 , a t2 , · · · , a tn)

Ben = (u 1, u 2, · · · , u m); Bex = (v1, v2, · · · , vn)

Figure 12: An (m , n)-edge e i representing a composite

with m entry vertices and n exit vertices. It has m entries

in the hyperedge map

define the “boundary” of this subgraph.

Can we use the attachment vertices of e as the bound-

ary? Certainly we can. But since the attachment vertices

may connect with other vertices that are not a part of e ,

we would need extra operations to check this through.

Additionally, the attachment vertices may take part in

other hyperedges. It is conceptually inexplicable to use

members of a hyperedge as boundaries of another hyper-

edge. Hence, we use an equally easy but more straight-

forward way to define the boundary: using the “outer-

most vertices in e ”. They are the vertices that shall be-

long to He and have edges with vertices that shall be

external vertices of He . We call these vertices bound-

ary vertices B of hyperedge e , where B ∈ V ∈ e . The

boundary vertices that are connected by source attach-

ment vertices are entry vertices Ben; those that are con-

nected to target attachment vertices are exit vertices Bex,

i.e., Ben ∪ Bex = B ∈ V, Ben ∩ Bex = ∅. Figure 12 (A) illus-

trates an (m , n)-edge e i with corresponding attachment

and boundary vertices. Although the figure only shows

one-to-one attachment-boundary vertex connections for

simplicity, this is not a vital condition. An attachment

vertex can connect with more than one boundary ver-

tices and vice versa. The two sets Ben and Bex (specify-

ing the boundary of e i) are needed for generating the re-

placement graph He . We therefore extend the hyperedge

definition in the MCG (Section 2.1.3) with these two sets,

while the incoming and outgoing tentacles connecting As

with Ben and Bex with A t respectively are already specified

in the track map T.

Hyperedge Map The hyperedges created during the

transformation steps are recorded in a hyperedge map E.

The edges are indexed by their entry vertices such that

for each entry vertex u i ∈ Ben in a hyperedge e , there ex-

ists one map-entry (u i , e) in E. This means that the entry

vertices are not used as joint but independent indexes,

and each (m , n)-edge has m entries in E, as illustrated

in Figure 12 (B). Note that a hyperedge is defined by its

entry and exit vertex sets together with the composite in-

10

formation about the internal vertices contained in G1 by

the set and maps. The hyperedge map E serves to fasten

the search of hyperedges during pattern composite (Sec-

tion 3.3.2) and model generation (Section 4). When the

search is in the order of the traversal (or in the direction of

the traffic in our case), it is sufficient to index hyperedges

with entry vertices. In case modelers need to search in a

reversed order, hyperedges can also be indexed by their

exit vertices.

3.3 Model Composite Graph

An MCG is composed of an ordinary digraph G and a

CCH hypergraph HG specified on G . After transformation

step 1, we obtain the ordinary digraph, which is T ∈ G1,

and a part of the CCH hypergraph, the latter being a num-

ber of stop hyperedges contained in E ∈ G1. In trans-

formation step 2 (Section 3.4), we need to create more

hyperedges that represent other model components to

complete HG . For the light-rail case, it contains Info.

Types 6 and 7. Since the other hyperedges have compo-

sitions that are not as simple as a stop, we defined graph

patterns to search for the occurrences of these compos-

ites in G1. We observed recurrence of some small graph

patterns in larger ones. In order to simplify and reuse

the graph patterns and the corresponding search algo-

rithms, we used graph pattern composition (recursive

definition and incremental search) in the transformation

of the CCH hypergraph.

3.3.1 Graph Patterns and Pattern Composites

The rail infrastructure has a number of characteristics in

its geometric composition. Three basic composites are

the FPs, TPs, and CPs. They are used as the basic units

to define the graph patterns for the GPM in transforma-

tion step 2. There are many rail infrastructure layouts. We

shall describe a variety of layouts with a limited number

of pattern definitions. Figure 13 shows the rail compos-

ites we choose to define18. The gray boxes denote dif-

ferent types of hyperedges that shall be specified for the

composites. Each (m , n)-edge will be transformed into

a (coupled) model component (Section 4). Note the not

TP

CP

FP (3,3) Y

(3,3) T

(4,4) Half union

(4,4) Butterfly union

(4,4) Quad‐diamond

1

1

1

3

4

4

1
1

(2,2) Diamond 1

(1,2) Facing turnout
1

(2,1) Trailing turnout 1
(m,n) Misc

*

*

* 2

2

3

2

1

2

3

4
5

6

7

8

9

Figure 13: Rail composites and their dependencies

18They are not complete to define all rail infrastructure layouts but

are deemed sufficient to define the infrastructure of HTM light-rail ser-

vices for our studies.

each type of composite needs a pattern. Types 6∼8, e.g.,

are simply one-to-one mappings from the points, and

Type 9 is so general that it is hardly a pattern. The infor-

mation about FP, TP and CP is contained in PF, PT and PC

after transformation step 1. The arrows denote compos-

ite (information) dependencies or aggregation relations

between the composites. In defining the composites,

some composites are reused in larger ones; e.g., the “Y”

composite (Type 1) contains one FP, one TP and one CP;

the “T” composite (Type 3) contains three “Y” compos-

ites, while the butterfly union composite (Type 4) con-

tains four “Y” composites.

3.3.2 Representing Graph Patterns and Pattern Com-

posites

The main task in transformation step 2 is to search cer-

tain composites in G1. To do so, we define them in graph

patterns. The “Y” composite, e.g., is a (3, 3)-edge repre-

senting a common rail arrangement19. Its schema is illus-

trated in Figure 15. (The gray lines are the tentacles which

are not a part of the composite.) A solid-lined arrow de-

notes a track vertex. A dot-lined arrow denotes a unique

independent path that connects the two corresponding

terminal vertices. In an independent path (also called

path graph or liner graph) the internal vertices of the path

do not incident edges other than the edges in the path. In

other words, if the path has internal nodes, the in-degree

(d +) and out-degree (d −) of each internal node are both

1. The “Y” composite has two unique and independent

paths p1 (connecting the FP to the CP) and p2 (connect-

ing the CP to the TP).

Ordered Graph Isomorphism Note that the geometric

arrangement of the composites in our study have to be

preserved in GPM. This means that a matched image of

a pattern can have, e.g., rotations, but there shall not be

mirroring (or flipping) in the image or of the image as a

whole. For example, if there exists an “image” that has

an “equivalent” of p1 (Figure 15) which connects fpex2 to

cpen2 instead of cpen1, then this is not a match, which

would be considered as a match in a general graph where

geometric information is typically not represented (Jiang

and Bunke, 1996). The composites we use belong to a

special class of graphs. In graph theory, they are called

ordered graphs (Jiang and Bunke, 1996, 1999). In an or-

dered graph, the edges incident to a vertex are uniquely

ordered; in a plane graph, e.g., the ordering can be clock-

wise or counterclockwise (Jiang and Bunke, 1999). An

ordered graph isomorphism is generally constrained, in

which the ordering property is preserved (ibid.).

Following Jiang and Bunke (ibid.), an ordered graph is

a triple G = (V, E , L) where (V, E) defines a graph; for

19This arrangement is sometimes called double junction. It is where

a double track railway splits into two double track lines. A double track

railway runs one track in each direction, compared to a single track rail-

way where trains in both directions share the same track. In our case,

the double track is right hand running.

11

each vertex v ∈ V , the edges (v, v1), (v, v2), · · · , (v, vk) in-

cident to v have a unique order represented by a cyclic

list L(v). Two ordered graphs G = (V, E , L) and G ′ =

(V ′, E ′, L′) are isomorphic if there exists an isomorphism

f between the two graphs (V, E) and (V ′, E ′) such that

the order is preserved; that is, if for any vertex v ∈ V ,

we have L(v) = 〈(v, v1), (v, v2), · · · , (v, vk)〉, then L′(f (v)) =

(f (v), f (v1)), (f (v), f (v2)), · · · , (f (v), f (vk))
�

holds (1999).

Jiang and Bunke (ibid.) propose an algorithm that can

optimally solve the ordered graph isomorphism prob-

lem20 in quadratic time, i.e., O
�

n 2
�

. In our case, the

rail composites have more constraints than general or-

dered graphs: the rail composites are planar and sparse

(with specific geometry), and they have bounded ver-

tex degrees and bounded path distances. We therefore

choose to take advantage of these properties by designing

an algorithm that walks the candidate subgraphs (which

therefore only takes linear time) to solve the isomorphism

problem (Section 3.3.3).

Ordering Track Compositions of Points In preparation

for ordered GPM, we order the composites by first or-

dering the track compositions of points (Figure 14). The

tracks around the point center are simply ordered by their

directions, viz., entry (en) or exit (ex). When there are

two entry or exit tracks, we take the non-reflex angle θ

(0 < θ < π) as reference, and number the tracks (the two

angle sides) counterclockwise21 as 1 and 2. Note that the

geometry of a point naturally imposes a unique orderins

of the tracks surrounding it.

Representing (Standard) Composites with Ordering

Using the above orderings, we can define (standard) rail

composites which logically have unique orderings be-

cause the composites are planar, and the tracks sur-

rounding the points are ordered, and the paths between

them (if any) are independent. The graph pattern defined

for the “Y” composite, e.g., contains two independent

paths connecting three points22 in a specific order (Fig-

fpen

fpex1

fpex2 tpen1

tpen2

tpex
cpen1

cpen2 cpex1

cpex2TP CPFP

Figure 14: Ordering of track compositions of points

20Jiang and Bunke (1999)’s algorithm uses encoding of Eulerian cir-

cuits of ordered graphs starting with an edge in an graph. Since the

code depends on the choice of the starting edge, 2n codes can be gener-

ated for some ordered graph of n edges, which can uniquely represent

the graph. Ordered graph isomorphism is determined by comparing

the codes of two graphs (whether isomorphism exists) and checking the

order-preserving property of the two (ibid.).
21Since there is always one track on the right side and the other on

the left when we rotate the angle θ pointing downwards, we aliased the

Nr. 1 track as “right” (R) and the Nr. 2 track as “left” (L).
22Points with ordering means that they are represented by or-

dered tracks, i.e., fp = (fpen, fpex1, fpex2), tp = (tpen1, tpen2, tpex), cp =

cpex1

tpen2

p1

p2

fpen fpex1

fpex2

tpen1

tpex

cpen1 cpen2

cpex2

(eYen1)

(eYen2)

(eYen3)

(eYex2)
(eYex3)

(eYex1)

“Y” composite (3, 3) eY

Composites fp, cp, tp

Paths p1 fpex2 to cpen1

p2 cpex2 to tpen1

Bound b ∈N

Entry 1. eY en1 fpen

2. eY en2 cpen2

3. eY en3 tpen2

Exit 1. eY ex1 fpex1

2. eY ex2 cpex1

3. eY ex3 tpex

Figure 15: “Y” composite defined as a graph pattern ̺Y

ure 15). The (3, 3) type implies the number of entry and

exit vertices whose mapping relations (in case of a match)

are specified. The (constituent) composites and paths

specify the matching conditions. In addition, a bound b

is specified to constrain the search scope. In our case, this

bound is the max search distance23 of each path.

A GPM algorithm only needs to search for the existence

of the points and paths in PF, PT, PC and T respectively ac-

cording to the pattern definition. When there is a match,

a hyperedge is created to represent the occurrence of the

composite by specifying the boundary vertices accord-

ingly. A created hyperedge is recorded in the hyperedge

map E indexed by its entry vertices.

Planar composites (recursively) defined by ordered

planar composites and independent paths are also

uniquely ordered. The graph pattern defined for the “T”

composite24, e.g., contains three “Y” composites con-

nected by six paths in a specific order. Its pattern defi-

nition has the same form as the “Y” composite example,

but the definition is recursive.

Representing Non-Standard Composites with Ordering

The “Y” composite is an examples of regular or standard

rail composites which have “fixed” geometric arrange-

ments that are known a priori. But not all parts of rail in-

frastructure have standard arrangements. Representing

(automatically) non-standard rail infrastructure parts, we

need definitions that can have “unfixed” (constituent)

composites with ordering. For this purpose, we use a

misc (miscellaneous) composite which is an (m , n) type

(cpen1, cpen2, cpex1, cpex2).
23This distance means the geometric distance of a path which is the

sum of the lengths of all track vertices in the path. We use “distance” to

distinguish with the commonly used “length of a path” in graph theory

which refers to the number of edges in a path.
24This and more pattern definitions can be found in Huang (2013,

Appx. C.2).

12

container what does not have any specific (constituent)

composite. We designed an algorithm (Section 3.4.2) that

can cluster points that are close enough to one another

(given a predefined distance), and each cluster of points

is put into a misc composite.

3.3.3 An Algorithm for Composite Isomorphism

A composite pattern with boundary can be defined as

̺ = (t ,C , P,b , f en, f ex)where

◦ t = (m , n), m , n ∈N is the type of ̺;

◦ C = (c1, c2, · · · , cw), w ∈ N, is a set of pairwise dis-

tinct (constituent) composites whose entry and exit

vertices are ordered;

◦ P = (p1, p2, · · · , pq), q ∈ N, is a set of paths, in which

p i = (exi , eni), i ∈ [1,q] is an independent path that

connects an exit vertex of a composite ca ,exx
(exi =

ca ,exx
) to an entry vertex of another composite cb ,eny

(eni = cb ,eny
) where a 6=b ∈ [1, w];

◦ b ∈N is a fixed upper bound of the distance of a path

p i denoted by d (p i), i.e., d (p i)∈ [0, b].

◦ f en and f ex are the entry and exit vertex mapping

functions respectively that maps entry and exit ver-

tices of constituent composites in C to the entry and

exit vertices of the composite.

In a valid composite pattern definition, the size of

the entry and exit vertex mapping (by f en and f ex) must

match the pattern type (m , n). In addition, all entry and

exit vertices of the constituent composites in a pattern

must be either connected by a path or mapped to the

boundary vertices of the pattern. This means, a pattern̺

necessarily has the two properties25
∑w

a=1
m (ca) = q +m

and
∑w

a=1
n (ca) =q +n .

Path Sorting The paths P ∈ ̺ shall be sorted such that

a composite ca that contains exj ∈ p j ∈ P (j ∈ [2,q]) al-

ready “occurred” in a previous path p ∈ (p1, p2, · · · , p j−1)

in the sense that ca contains a terminal vertex of p . This

means that the start vertex exj of a path p j (except for

the first path p1) is known at the moment of searching

for path p j . This condition is not necessary for the valid-

ity of the composite pattern definition but it affects sig-

nificantly the performance of the search algorithm. The

path sorting problem can be reduced to the well known

topological sort (Cormen et al., 2001). A topological sort

is possible if and only if the graph has no directed cycles

(ibid.), which is the case of all rail composites we defined.

The paths in the “Y” composite definition, e.g., are topo-

logically sorted.

Given a composite pattern ̺ whose path definition

P is topologically sorted, a Composite Pattern Match-

ing (CPM) algorithm (Alg. 1 Appx. A) is defined to

search for all isomorphs of ̺ in a host graph G =

25For simplicity, we use m (c) and n (c) to denote the number of entry

and exit vertices of c respectively, where c can be a composite pattern

or a match of a composite pattern.

(T, PF, PT, PC, E). In principle, it does not traverse G per

se, but searches the occurrences of the (constituent) com-

posites c ′1, c ′2, · · · , c ′
w

whose candidates are contained in

composite maps (PF, PT, PC, E) through walking the inde-

pendent paths (contained in T) that connect them.

Since the host graph and the (planar) composite pat-

terns are ordered, and the paths in the composite pat-

terns are topologically sorted, the CPM algorithm in the

worst case takes liner time O
�

n
�

to the (edge) size of the

host graph, as it will walk the entire host graph, by which

the performance is comparable to that of a graph traver-

sal. The average performance is often substantially better

than the worst case because given the rail infrastructure

graph and composite patterns we use, the matches and

partial matches of patterns rarely spread densely over the

whole host graph.

3.4 Transformation Step 2: Generation of

Model Composite Graph

Transformation step 1 produces a directed graph G1 =

(T, PF, PT, PC, E) with bounded vertex degrees. For this

step, we need to design a production p2 that applies the

CPM algorithm to construct G2 which is an MCG. As a

preparation for applying CPM, the track composites for

points (in PF, PT, PC) are first ordered. The composite

patterns are defined, and the paths in each pattern are

topologically sorted.

3.4.1 Rule Application Control

The transformation in this step is composed of partially

ordered sub-steps that are designed on the basis of the

model composite dependencies (Section 3.3.1)26. The

sub-steps are ordered such that the required composites

in a step are prepared by one or more previous steps. Dur-

ing the CPM, a match is followed by a rewriting where

an (m , n)-edge representing the match is created and the

corresponding constituent composites are removed from

the composite maps.

Incremental Pattern Matching Transforming matches

into hyperedges allows us to simplify pattern definitions,

match routines and to aggregate match results. Our ap-

proach starts with the matching of smaller graph patterns

during which the matches are transformed into interme-

diate structures (i.e., the hyperedges) based on which the

matching of larger (higher-level) graph patterns are per-

formed. The pattern definition takes into consideration

and takes advantage that the CCH of the MCG is strictly

nested so that a bottom-up approach of CPM can be per-

formed on the graph. In addition, since the infrastruc-

ture graph is sparse and has bounded vertex degrees (and

types and orders) surrounding which the patterns occur,

the search space of the CPM is reduced to the locations

of points, the independent paths that connecting them,

26Details can be found in Huang (2013, Section 5.2.4).

13

and their composites. For example, after the CPM algo-

rithm is applied to detecte “Y” composites, each matched

“Y” composite is transformed into a (3, 3)-edge of type eY

and recorded in E. Afterwards, for detecting “T” compos-

ites (each composed of three “Y” composites), the hyper-

edges of eY are the candidates. We only need to search for

the paths between the boundary vertices of the “Y” com-

posites without stepping into the “Y” composites.

We use a hyperedge e to represent a match denoted by

e = (C ′, P ′, Ben, Bex) where all images of the constituent

composites, paths, boundary (entry and exit)vertices are

stored according to the pattern definition ̺. The con-

stituent composites are removed from their original con-

tainer, i.e., the composite maps. The newly constructed

e is indexed in E by its entry vertices Ben. Note that since

the matched constituent composites in a previous sub-

step are removed from their original container, they do

not appear in a later sub-step.

Automorphism in Composite Patterns An automor-

phism of a graph G is a graph isomorphism from G to

itself (Weisstein, 2009). An ordered automorphism is an

automorphism in which the ordering property is pre-

served. For example, each point (see Figure 14) has au-

tomorphism but not ordered automorphism. There are

(ordered) automorphisms in the composite patterns we

defined, e.g., the “T” composite ̺T .

How does this matter to CPM? It depends. When a

composite pattern ̺ has automorphism, its matches or

images also have automorphisms. How the image is or-

dered matters if this image is used further as a constituent

composite in a higher-level composite. Consider a di-

rected ordered square graph s with its four vertices num-

bered as 1∼ 4 (Figure 16). s has automorphism, and each

element of the automorphism group Aut (s) = {(1, 2, 3, 4),

(2, 3, 4, 1), (3, 4, 1, 2), (4, 1, 2, 3)} is isomorphic to another

(the vertices has rotations). When s is embedded into a

larger graph, say s ′, there are four different ways to posi-

tion s (as an ordered graph), i.e., with edges (1, 2), (2, 3),

(3, 4) or (4, 1). The question is: do we want to deem them

as the “same” in ordered graph isomorphism?

It depends on the applications. The CPM in our appli-

cation shall deem them as same. In this case, automor-

phism poses a problem when a composite pattern ̺ con-

tains a (constituent) composite c that has automorphism.

Note that it does not matter whether ̺ itself is automor-

s s ′

Figure 16: Automorphism of a directed ordered square

graph s and its embedding s ′

phic so long that it is not contained in another pattern.

How to deal with this problem? There can be different so-

lutions. The one we use is to reposition the matches of the

automorphic composite, and reapply the CPM algorithm.

This simply means rotate the match (as in the square

graph example, Figure 16) of the hyperedges, which is to

rotate the entry and exit vertices respectively. This is a

very cheap solution in computation27.

Composition and Decomposition in Transformation

Pattern composition (and incremental pattern matching)

allows modelers to make stepwise bottom-up definition

and application of transformation rules. A good compan-

ion of pattern composition is decomposition, which al-

lows composition definitions to be more flexible. Some

composites can be useful as candidates for being a part in

some higher-level composites. But once they are disqual-

ified as a match in the higher-level composites, we may

not need them as composites by themselves. These com-

posites can be decomposed into lower-level composites,

which in turn may be used to compose other composites.

For example, in transformation step 2, some matches

of “Y” composites, even when not contained by a larger

composite (e.g., a “T” composite), do not constitute stand

alone crossings (or intersections) because some points

in these “Y” composites are closely surrounded by other

points which shall together form misc composites. These

“Y” composites are therefore decomposed28 in order to

make the constituent points available for further compo-

sition of misc composites.

3.4.2 An Algorithm for Misc Composites

The Miscellaneous (Misc) Composite Finding (MCF) algo-

rithm performs the following: given a set of point com-

posites EP (i.e., hyperedges of type eF , eTR, eC which rep-

resent facing, trailing and crossing points respectively29),

return a set of misc composites EM such that the ele-

ments in EP , connected by independent paths each of

which within a bounded distance b, are merged into the

same element in EM where each element in eM shall be

ordered. The main tasks here are (1) path search, (2)

merging and (3) ordering. The search of independent

paths with bounded distance is straightforward. It is dis-

cussed in the CPM algorithm (Appx. A). This time, the

terminal vertices must be boundary vertices of the point

composites. We use DFS again (as in transformation step

1) to walk the paths (in subgraphs). Merging and order-

ing are performed along the walk when a qualified path

is found. The merge concept is similar to agglomera-

tive clustering with single linkage (Manning et al., 2008),

where the individual point composites are merged by

27Details of this solution and other possible solutions can be found

in Huang (2013, Section 5.2.4).
28The rewriting of the decomposition is rather simple which is a re-

verse of creating eY : the hyperedge is removed from E and the points

are put back into PF, PT, PC respectively.
29We hereinafter use eP instead of (eF , eTR and eC) for simplicity.

14

1

2 m

n

1

1

2 m

n

1 2

2

1

1i

j

1en

1ex

2en

2ex

i

j

Figure 17: Merge two misc composites eM 1 and eM 1 con-

nected by a path (vi , w j)

progressively merging misc composites. An element is al-

ways merged to another element with ordering.

For effective merging and ordering, we designed the

(m , n)misc composite such that it self-manages its struc-

ture and order. A misc composite eM contains (1) a point

composite map EP in which a set of an arbitrary number

of point composites EP = EF ∪ETR∪EC are indexed inde-

pendently by their entry vertices, (2) a set of paths P that

connect the points, (3) an ordered set of m entry vertices

Ben, and (4) an ordered set of n exit vertices Bex.

The boundary vertices of points in EP are either the ter-

minal vertices of the paths or the boundary vertices of the

containing misc composite. An element of EP or EM can

be merged into another element of EM with ordering. Let

eM 1 = (E1P, P1, B1en, B1ex) and eM 2 = (E2P, P2, B2en, B2ex) be

two distinct misc composites, where

◦ B1en = (u 1, u 2, · · · , u m1
), B1ex = (v1, v2, · · · , vn 1

);

◦ B2en = (w1, w2, · · · , wm2
), B2ex = (z 1, z 2, · · · , vn 2

).

Suppose a path from vi ∈ B1ex to w j ∈ B2en (Figure 17)

is explored during a walk. Then eM 2 can be merged into

eM 1 with ordering by the MERGE function (Appx. B Alg. 2).

Because the two terminal vertices of path (vi , w j) are no

longer boundary vertices in the merge, they are removed

from the boundary vertex sets. Each removal splits the

respective entry or exit vertex set into two parts which

are joined to the two ends of the corresponding set of

the other misc composite30 (Figure 17). Suppose the path

(vi , w j) is from a misc composite eM to a point compos-

ite eP . Then eP can be merged into eM by first merging

eP into an empty misc composite (Appx. B Alg. 3). Merg-

ing a misc composite into a point composite can be per-

formed in the same manner. In some cases, the path

(vi , w j) found may start from and end at the same misc

composite eM . Such a path forms a cycle around eM , i.e.,

(vi , w j) is a backward path (Cormen et al., 2001). The cy-

cle has to be closed (Appx. B Alg. 4).

These merge options combined with the DFS walk of

the paths surrounding the point composites make the

30Note that it preserves the original ordering which numbers the en-

try or exit vertices counterclockwise.

MCF algorithm (Appx. B Alg. 5). After MCF visits all point

composites, the algorithm terminates. We update the hy-

peredge map E using the misc composite map EM: (1) re-

move from E the point composites that are merged in to

misc composites (i.e., ∀eP ∈ eM ∈ EM with their indexes

∀u ∈ Ben ∈ eP) , and (2) add to E all misc composites in-

dexed by their entry vertices (i.e., ∀eM ∈ EM with their in-

dexes ∀u ∈ Ben ∈ eM).

Note that there are likely some point composites that

remain in E. These composites will be transformed indi-

vidually into model components according to the point

types, i.e., eF , eTR and eC , in transformation step 3.

The misc composite detection is the last sub-step in

transformation step 2. After this, we obtain graph G2 =

(T, E), in which T (unchanged as in G1) is a map of

track vertices, and E is a map of hyperedges each of

which represents a composite with a corresponding type

(Info. Type 7). The information about point composites

(Info. Type 6) is contained in the corresponding hyper-

edges of the containing composites. The (track, track)

edges in the independent paths connecting the hyper-

edges are represented by entries in T. T is an ordinary

graph that describes vertex-vertex relations at the lowest

level of the composition. E is insofar a sufficient repre-

sentation of the model composition as a CCH. The trans-

formation from G0 to MCG is completed at G2 = (T, E).

Each hyperedge type (and the represented composite)

has a corresponding model component (type) in the LI-

BROS library. During the model instantiation in the next

step, each hyperedge e ∈ E can be transformed into a cou-

pled model component instance according to its type.

4 Model Generation

For this step, we shall design a product p3 to instan-

tiate a simulation model G3 according to G2 which is

an MCG that contains sufficient information about the

model structure and composition. In the light-rail case,

G3 is a TopLevelModel composed of LIBROS model com-

ponents. Recall that a top level model is the root model

that is at the highest level of the model composite hierar-

chy. For model instantiation, besides the information in

G2, we often need other information about model config-

uration, which includes the setting of the model param-

eter values and the initial values of model variables. We

used additional data sources for LIBROS model configu-

ration31. The data shall be prepared such that the qual-

ity issues related to syntactic consistency and mapping

consistency are dealt with before model instantiation32.

From now on, we assume that the date is transformed

31For model configuration, we used the following data provided by

HTM: (1) timetables that schedule the services, (2) the routes of the ser-

vice lines, (3) vehicle types for the service lines, (4) Service line transfor-

mation, i.e., the locations where a service line changes to another.
32Common approaches, such as data type and format conversion,

data merging and mapping tables, are used for the preparation. The

implementations of the approaches are domain specific. Therefore we

will not discuss the details.

15

into appropriate unit and structure, and it is indexed with

identifiers that are consistent with the identifiers33 con-

tained in G2.

4.1 Model Instantiation

The instantiation (or generation)34 of a simulation model

in this step can be completed with one DFS graph traver-

sal of G2 = (T, E). The traversal, however, does not walk

deeper into the hyperedges e ∈ E except for the boundary

vertices. Once reached an entry vertex of a hyperedge,

the walk “exits” the hyperedge and walks further as usual.

In this sense, the hyperedges are treated like vertices in

the walk. Along the walk, model component instances

are generated and configured. Each vertex or hyperedge

is transformed into a model component according to its

type. Each hyperedge corresponds to a coupled model.

The ordinary edges, i.e., the (vertex, vertex) pairs in T, in-

dicate the coupling relations between the model compo-

nents. Model configuration in our case takes place only at

the elementary model level (i.e., in the atomic models).

4.1.1 Model Instantiation Basics

A vertex in T is transformed into a corresponding model

component instance. In LIBROS, it can be a Source or a

TrackSegment. An atomic model component in LIBROS

is called a Rail Infrastructure Element (RIE). The other

RIEs are not directly represented by individual vertices

in T. The sensors, switches and signals (3S) models, e.g,

are represented by the vertex combinations that are con-

tained in the hyperedges in E. They are therefore gener-

ated when the hyperedges are generated (Section 4.1.2);

so are the control units. The RIE models are defined with

fixed structures (including port settings). Their instanti-

ation is straightforward. Each model instantiation shall

specify the parent model of that model. For example,

when G2 is transformed into a TopLevelModel M top, any

model that is placed directly under the TopLevelModel

has M top as the parent. A modes is configured after in-

stantiation. In addition, for the purpose of animation,

a model image is generated for each (atomic) model in-

stance that is to be animated. After the model generation,

the images are passed on to the model image manager

which is an animation component in the LIBROS library35.

4.1.2 Model Instantiation from A Hyperedge

A hyperedge in E has specified constituent composites,

paths and boundary vertices. The transformation does

not “traverse” the hyperedge but instantiates the corre-

sponding model according to the hyperedge in a partic-

ular manner. Since many of the composites are intersec-

tions, we use a simple misc composite to explain how a

33Two types of identifiers appear in G2: the identifiers for stops and

the identifiers for switches.
34We use instantiation and generation interchangeably hereinafter

since they mean the same in the context of transformation step 3.
35Readers of interest may refer to Huang (2013, Chapter 4).

coupled model is instantiated from a hyperedge by the

Infrastructure Component Generation (ICG) algorithm.

Note that the models generated are all ordered accord-

ing to the ordering in the composites. In particular this

means that the start nodes and end nodes (for coupling)

of each model are ordered respectively so that they can be

matched with the ordered composites.

Example 1 Transform a (2, 2) misc composite eM into an

infrastructure model M . Let eM (and its specification) be

as shown in Figure 18.

Given the (2, 2)-edge eM , the ICG first creates a (cou-

pled) model M of type MiscCrossing (an infrastrcture

component in LIBROS); see Figure 19 (A): (1) M is initial-

ized with two start nodes SN1, SN2 and two end nodes

EN1, EN2. (2) Two lineside signals LS1, LS2 are added, one

at each entry (i.e., start node) of the intersection. (3) A

facing point FP and a trailing point TP are added to M .

(4) A control unit CU is added to M , with which LS1, LS2,

FP and TP are coupled. For the convenience of infras-

tructure coupling, a queue like structure Que is used to

hold successive (1, 1) infrastructure models (which to-

gether form an independent path) so that they can be

later coupled together at once. In a coupled infrastruc-

ture model IC , each start node of IC and each end node

of a non-(1, 1) constituent component in IC is associated

with a Que. For example, there are five Que s in M : two

for its two start nodes, two for the two end nodes of FP,

and one for the end nodes of TP. LS1 is added to QueSN1,

and LS2 is added to QueSN2 since signals are to guard the

inflow traffic of the intersection.

Next, the ICG generates one track segment for each en-

try vertex of the hyperedge eM , and adds them into the

corresponding start nodes’ Que s. If an entry vertex of eM

is not an entry vertex of a point component in eM but

holds a path to the latter, then all (models of the) vertices

in the path36 (including the target vertex) are added into

the corresponding Que (Info. Type 8). (Hence the start

nodes’ Que s are also called entry path Que s.) To end this

step, the (first) start node and the (last) end node (of the

models) of each entry path Que are coupled to the corre-

sponding attachment nodes. For example, Figure 19 (B),

since fpen is the first entry vertex of eM (and the entry ver-

tex of fp), a TrackSegment T1 is generated and added to

QueSN1. The start node of LS1 (the first element in QueSN1)

en
ex1

ex2

en1

en2 ex

1

Composites fp, tp

Paths p1 fpex1 to tpen1

Entry 1. eM en1 tpen2

2. eM en2 fpen

Exit 1. eM ex1 tpex

2. eM ex2 fpex2

Figure 18: A (2, 2)misc component eM

36The terminal vertices of the path are specified in the hyperedge.

The vertices between them are in T.

16

1

2

1

2

1

2

(A) Initialization with start and end nodes; add points, lineside signals

and a control unit. Que status: QueSN1 = (LS1), QueSN2 = (LS2)

1

2

3

4

5

6

1

2

1

2

1

2

(C) Generate track segments in the internal and exit paths and add to

Que s; couple the start and end nodes of each path Que. Que status:

QueSN1 = (LS1, T1), QueSN2 = (LS2, T2), QueFP1 = (T3, · · · , T4),

QueFP2 = (T5), QueTP = (T6)

1

2

1

2

1

2

1

2

(B) Generate track segments in the entry paths and add to entry

path Que s; couple the start and end nodes of each entry path

Que to their corresponding attachment nodes.

Que status: QueSN1 = (LS1, T1), QueSN2 = (LS2, T2)

1

2

3

4

5

6

1

2

1

2

1

2

(D) Couple the models in the Que s.

Que status: the same as (C).

Figure 19: Steps of generating a coupled infrastructure model M – Example 1 (cf., Figure 18)

and the end node of T1 (the last element in QueSN1) are

coupled to SN1 and the start node of FP correspondingly.

The next step, Figure 19 (C), is similar to the previous

one, but the ICG generates one track segment for each

exit vertex of the point composites of the hyperedge eM

and adds them to the corresponding Que s. Since the exist

vertex may hold a path to an entry vertex of another point

composite, or to an exit vertex of eM (or be an exist vertex

of eM itself), these Que s are also called internal path Que s

or exit path Que s correspondingly. After these Que s are

completed, their start and end nodes are coupled to the

corresponding attachment nodes as in the previous step.

In the last step, the (1, 1) infrastructure models in each

(entry, internal or exit path) Que are coupled sequentially

to one another, i.e., the end node of a previous model is

coupled to the start node of a next model. The infrastruc-

ture model generation of the hyperedge completes at this

step; Figure 19 (D).

Note that the shaded model components in Figure 19

(i.e., the lineside signals, points, and control unit) do not

have corresponding vertices in the hyperedge. The infor-

mation contained in the hyperedge is sufficient to indi-

cate the composition of the coupled infrastructure model

including these extra model components, by which we

obtain Info. Type 11. This means that the hyperedge

(composite) is injective homomorphic to the coupled in-

frastructure model. The four-step model generation is

applicable to all intersection hyperedge composites.

4.1.3 Configuration of Control Unit

Each intersection model component in LIBROS contains

a control unit (CU). The CU interacts with the detectors

and signals in the intersection and supervises the safe op-

eration of the area. In this regard, a CU maintains a check

table that contains a list of all possible routes in the inter-

section, the required points (and positions if applicable)

by the routes, the states (whether reserved and/or occu-

pied) of the points, weather the routes are active or have

queueing requests, etc. Since the layout of a misc cross-

ing is not known a priori, we need an algorithm that can

configure the routes in the check table (the first two types

of information) automatically according to the layout37.

Otherwise, the generation of misc crossings is of little use.

Find All Routes in An Intersection A route, denoted

by r = (s ,ρ1,ρ2, · · · ,ρi), is composed of an entrance sig-

nal and the required points (and positions if applicable)

along the route in the intersection. For example, the

model M (Figure 19) generated in Example 1 has three

routes, which are r1 = (LS1, FP/2), r2 = (LS1, FP/1, TP),

r3 = (LS2, TP). The number following FP is the posi-

tion (i.e., ordering) of the facing point required by the

route. Because all possible routes in an intersection are

“rooted” from the entries of the intersection, this finding-

all-routes problem is essentially a finding-all-paths prob-

lem with given start vertices in a directed acyclic graph.

We again use DFS for the route finding, but a search does

not stop at a visited vertex. We use the Que s as “edges”

in the search since they represent the entry, internal and

exit paths in the intersection.

A search starts at an entry path Que whose first element

(which is a lineside signal) is added to a new route, i.e.,

r = (s). The point that is coupled with the end of the

Que is added into r , e.g., r = (s , p1). The search walks

deeper to an end node Que of the point. In case of a trail-

ing point (TP) or crossing point (CP), the route proceeds

only in one direction. But in case of a facing point (FP),

37The algorithm also works on intersections with fixed layout, i.e.,

those match the composite patterns (Section 3.3.2).

17

the original route becomes two routes, and the order of

the end nodes in the FP are added into the correspond-

ing route, e.g., r = (s , p1/1), r ′ = (s , p1/2). The search can

walk deeper to either end node Que with the correspond-

ing route record. The route search continues in the same

manner until it reaches an exit path Que, and when all the

entry path Que s are explored.

Assign Routes to Service Lines Each service line has

a preassigned service route (from terminal to terminal).

The route data specifies the direction of each line at each

facing point. This information needs to be transformed

into the corresponding route of the intersection since the

vehicle models would request the corresponding route in

the simulation. After this route configuration for service

lines, the configuration of a control unit is complete.

4.1.4 Model Instantiation and Setting Up Couplings

Setting up couplings among models is not as straightfor-

ward as it may appear. A coupling relation is a port-to-

port relation. Since a model may have more than one

start or end nodes, coupling relations often can not be

directly translated from model-to-model relations. In Ex-

ample 1, when TrackSegment T3 or T5 is to be coupled to

FP, we need to know the corresponding end node of FP.

This can be known, e.g., by keeping the order of the end

nodes and of the to be coupled TrackSegments.

Additionally, G2 is injective homomorphic to the gen-

erated model G3 such that a vertex-to-vertex relation in

G2 may represent an indirect model-to-model relation in

G3. This is the case when only one of two connected ver-

tices is a boundary vertex of a hyperedge while the other

vertex is not in that hyperedge, so that only one is trans-

formed to be a component of a higher level model. The

two corresponding models (of the vertices) as such can

not be directly coupled to each other.

Example 2 Consider a G2, Figure 20, with two sources

s1, s2, one (2, 2)-edge e1, and a number of track vertices.

Suppose the DFS starts at s1. It shall first walk through

s1 → t1 → t2 because these vertices have entries in T but

not in E. At each step, a model is generated, say S1, T1, T2,

and since they do not have multiple start or end nodes,

T= {(s1, t1), (t1, t2), (t2, u 1),

(s2, t3), (t3, u 2),

(v1, t4), (t4, t5),

(v2, t6), (t6, t7), · · · }

E= {(u 1, e1), (u 2, e1)}

Figure 20: A simple G2 with two sources s1, s2 and one

(2, 2)-edge e1

we can successively couple them. At step (t2, u 1), u 1 has

an entry (u 1, e1) in E (i.e., u 1 is an entry vertex of hyper-

edge e1), which can be e.g., a (2, 2) diamond composite or

a misc composite, hence a coupled model, say M 1, is gen-

erated according to e1 (Section 4.1.2). Note that M 1 is the

parent model of models of u 1, u 2, v1, v2, i.e., U1,U2, V1, V2

which are all generated at once by generating M 1.

At this point, we need to “couple T2 to U1” through a

start node of M 1 instead of coupling them directly to-

gether. Suppose M 1 is a (2, 2) MiscCrossing as shown

in Example 1 (Figure 19 D). Whether T2 shall be coupled

to EN1 or EN2 depends on which node U1 is “coupled

to” (through a lineside signal). This information can be

known, e.g., through the order of the Que that contains

U1
38. Similarly, when the walk “exists” e1 and goes to, e.g.,

v1→ t4→ t5, we use the order of the Que that contains V1

to know the order of the end node of M 1 that shall cou-

ple to T4. Because t5 is the end of the branch (i.e., it does

not have an entry in T), we generate a sink model (where

a vehicle model is removed during a simulation run) SK1

and couple it to T5.

The DFS then starts at the second source s2 and con-

tinues with s2 → t3 → u 2. Because there exits an entry

(u 2, e1) in E and a model M 1 of e1 is already generated, we

only need to couple T3 to the corresponding start node of

M 1 (as discussed). The walk then goes on to v2→ t6→ t7,

couple T6 to the corresponding end node of M 1, and ends

by generating SK2 after T7.

Model Map Through traversing a simple example of G2,

we can also observe that some mapping is needed to

maintain a relation between G2 and G3 in order to trace

back which part of G2 has been transformed into which

part of G3. A DFS in G2 anyway needs some record to

trace the visited vertices. But the model generation (and

couplings) also needs a mapping between the vertices

(and hyperedges) and the generated models. For exam-

ple, in traversing the G2 in Figure 20, at step (t3, u 2), we

need to know the counterpart of u 2 in G3 or whether the

model is generated at all in order to have further infor-

mation about the parent model and the corresponding

start port. We therefore use a model map M of (vertex,

model) pairs for the mapping between the vertices in G2

and their direct counterpart models (not parent models)

in G3. Since the source vertices do not have “back walks”,

they are not recorded in M. Hence M has only (track ver-

tex, TrackSegment) pairs. These pairs are added into M

each time a track vertex (including the ones in the hyper-

edges) is visited and the corresponding TrackSegment is

generated. The information about the hyperedges (and

their corresponding models) can be obtained through the

entry vertices.

38When the nodes are ordered, the Que s are ordered too.

18

4.2 Transformation Step 3:

Generation of Simulation Model

Through transformation step 2, the CCH (i.e., the hyper-

edge map E) of G2 is defined bottom-up on the ordinary

digraph (i.e., the track map T). Given G2 = (T, E), we use a

Model Generation Algorithm (MGA), see Appx. C Alg. 7, in

transformation step 3 to generate G3, a simulation model.

The principle of the algorithm is explained by the two ex-

amples in Section 4.1. In this step, the model generation

of G3 is partly bottom-up, as when the graph traversal is at

ordinary vertices of T, and partly top-down, as when the

traversal encounters a hyperedge in E based on which an

InfraComponent is generated.

5 Model Generator

In LIBROS, there is a ModelGeneator component that im-

plements the steps of model transformation (steps 1 and

2) and instantiation (step 3) as discussed in Section 3 and

Section 4. The main tasks performed by the model gener-

ator (Figure 21) can be summarized as following.

1. Read CAD data into G0
39. The CAD entities are the

vertices in G0. The entity types and descriptions are

the vertex types and attributes.

2. Transformation step 1. Build a directed graph G1 =

(T, PF, PT, PC, E) where track compositions of points

(in PF, PT, PC) and stop composites eS (in E) are

detected: (a) Partition the vertices into three sets:

sources, tracks and stops. (b)“Traverse” G0 based on

the geometrical connectedness of the vertices in or-

der to create directed edges (in T), detect locations

of points and create stop hyperedges.

3. Transformation step 2. Build an MCG G2 = (T, E)

where T remains the same as in G1 and E contains

Model Generator

G0

G1

G2

G3

Step 1

Step 2

Step 3

Rail composite

patterns and

definitions

Infrastructure

Model

components

CAD data

Other

configuration

data

Sect.3.1

Sect.3.2

Sect.3.3.2

Sect.3.4

Sect.4.2

Figure 21: Model generator

39A Java Ycad library (sourceforge.net/projects/ycad) is used to read

the AutoCAD DXF files.

more infrastructure composites as hyperedges. The

transformation starts with G1 and rewrites it incre-

mentally with sub-steps based on the result of incre-

mental pattern matching. These sub-steps are par-

tially ordered. The composite matching or finding

algorithm in a sub-step does not traverse the whole

graph but walks the independent paths surrounding

the candidate constituent composites.

4. Read in the other model configuration data such as

timetables and service routes.

5. Transformation step 3. Generate a TopLevelModel

model G3 by traversing G2 and creating infrastruc-

ture model components according to the vertex and

hyperedge types each of which has a correspond-

ing model component (type) in LIBROS. The com-

ponents are configured and coupled accordingly.

Model images are as well generated for the purpose

of animation.

After these steps, we obtain a simulation model G3

where the model behavior at the elementary level is pre-

specified in the (atomic) model components in the LI-

BROS library, and the model structure is dynamically con-

structed using the coupled components according to the

infrastructure CAD data.

6 Conclusions

In this paper, we presented our study on Automated

Model Generation (AMG). A method is developed that

can automatically generate complex simulation models

from existing data using model components as building

blocks. The AMG method differs from other methods in

that: the data used for the AMG does not contain spec-

ifications of the model structures to be generated; and

the generated models have structures that are dynami-

cally constructed. To study the AMG method, we used

cases in the domain of light-rail transport. In generating

LIBROS models, infrastructure CAD data is used as a basis

for model structures. The major challenge for the AMG

method is the presentation suitability of model structures

(including identification of model components and com-

positional relations). In principle, transformation rules

for AMG can be defined when the data that serves as in-

put for AMG has semantic and pragmatic completeness,

has definable measures for syntactic and mapping incon-

sistency (if any), and when modelers have sufficient do-

main knowledge and deductive reasoning for the defi-

nition of transformation rules that can solve data issues

related to semantic accuracy and presentation suitabil-

ity with regard to model structure and parameterization.

Model transformations are defined on meta-models of

the original data structure (as the AMG input), of inter-

mediate structures and of the simulation model. Suppose

that the original data structure is a non-graph, meaning

that the data items do not have specified relations (or

they can be deemed as a graph with vertices but without

19

http://sourceforge.net/projects/ycad

edges); and assume that the meta-model of the simula-

tion model and the model components are specified, e.g.,

in a domain model component library, then the trans-

formation needs three steps: from a non-graph to a di-

graph, to a model composite graph, and finally to a sim-

ulation model, where the vertices and hyperedges of the

model composite graph must have corresponding (pre-

specified) model components.

To conclude, the functionality that the AMG method

we propose should provide transformation rules: (1) that

can solve data quality issues related to semantic accuracy

and presentation suitability in terms of model structure

and parameterization, (2) that are defined on the meta-

models of the original data structure, of the indetermi-

nate structures, and of the simulation model, (3) that uses

graph and/or hypergraph-based structure representation

and transformation, (4) that can construct a representa-

tion of the (to be generated) model structure whose com-

ponents can be mapped to corresponding pre-specified

simulation model components, (5) that can construct a

simulation model according to the representation of the

model structure. The following are not necessary but can

be beneficial for the design of the transformation rules:

(1) recursive definition and incremental search of model

composite patterns, and (2) using both composition and

decomposition in the transformation rules.

To complement the AMG method, when operational

data from the real system is available, the simulation

model can be calibrated by a model calibration proce-

dure using user defined goodness-of-fit measures and

parameter search algorithms. Note that the goodness-of-

fit measures in the calibration procedure can serve as a

way to validate the relevant model output data (opera-

tional validation through comparison). The AMG method

is evaluated with a panel of subject-matter experts and it

has practical uses that helped strategic, tactical and oper-

ational decision makings in light-rail transport systems40.

There are limitations that are bound to such model

generation processes. The transformation rules (as well

as the data patterns and simulation model components)

are designed for certain types of input data with the

assumptions that the data satisfies certain properties.

When such properties change or when those assump-

tions are invalid, the AMG rules are likely to be ineffec-

tive and/or would cause errors. Even if the rules are de-

fined flexible enough to accommodate large degrees of

freedom, there always can be changes in data that are

out of the scope that was under consideration during the

process design. At the very end, it is a trade-off between

complexity (of the rules and development) and flexibil-

ity. Moreover, since the transformation rules are based

on graph theory, the data and model need to be repre-

sented with graph-based structures. This is not necessar-

ily always the case. The main contribution of the paper

is the AMG method or the process. It is participially in-

teresting for those who need to frequently develop differ-

40Details about model validation and applications can be found in

Huang (2013, Chapter 7 and 8).

ent models for large systems where there are reoccurring

component parts and definable rules. If modelers want

to invest time and effort to develop an AMG routine, then

the method we proposed is a possible solution.

With regard to future research, multi-resolution and

multi-perspective model generation can be an interesting

and challenging direction. The development of a domain

simulation model or a class of models is often intended

for similar purposes of study. When simulation models

can be generated with different resolutions and/or per-

spectives from a library or a set of libraries, such libraries

will be highly reusable. This of course requires substan-

tial research efforts. Above all, we need libraries that con-

tain sufficient domain knowledge and organize different

parts of this knowledge in an appropriate manner to allow

users or automated agents to query the knowledge with

relevance. Furthermore, the AMG method designed in

this research can be applied for AMG of other systems be-

sides light-rail transport systems. Straightforward appli-

cations include those in the infrastructure domain such

as heavy-rail and road transport, pipeline and grid sys-

tems. A step further could be made to systems that can

be represented with graph-based structures such as pro-

duction and supply chain systems.

Acknowledgement

The authors thank Martijn Warnier from TU Delft for his

feedback.

References

AMS (2013). Simulation stimulates Ford’s improvement. Auto-

mobile Manufacturing Solutions.

Amsterdam, J. (1993). “Automated Qualitative Modeling of Dy-

namic Physical Systems”. PhD thesis. Artifical Intelligence

Laboratory, Massachusetts Institue of Technology.

Andersson, P. (2006). Hyperedge Replacement Grammars.

Banks, J., J. S. Carson II, B. L. Nelson, and D. M. Nicol (2010).

Discrete-Event System Simulation. 5th. Pearson Education.

Batini, C. and M. Scannapieco (2006). Data Quality: Concepts,

Methodologies and Techniques. Data-Centric Systems and

Applications. Springer-Verlag Berlin Heidelberg.

Ben-Ari, M. (2012). Mathematical Logic for Computer Science.

Springer-Verlag London.

Berge, C. (1973). Graphs and Hypergraphs. Translation and

revised edition of Graphes et Hypergraphes 1970. North-

Holland Publishing Company.

Berge, C. (1989). Hypergraphs: Combinatorics of Finite Sets.

Vol. 45. North-Holland Mathematical Library. Elsevier Sci-

ence Publishers.

Bergmann, S. and S. Strassburger (2010). “Challenges for the Au-

tomatic Generation of Simulation Models for Production Sys-

tems”. In: Proceedings of the 2010 Summer Simulation Multi-

conference. Ottawa, Canada, pp. 545–549.

Brause, R. (2004). “Model selection and adaptation for biochem-

ical pathways”. In: Lecture Notes in Computer Science 3337,

pp. 439–449.

20

Bruni, R., F. Gadducci, and A. Lluch Lafuente (2010). “An Alge-

bra of Hierarchical Graphs”. In: Trustworthly Global Comput-

ing. Ed. by M. Wirsing, M. Hofmann, and A. Rauschmayer.

Vol. 6084. Lecture Notes in Computer Science. Springer

Berlin Heidelberg, pp. 205 –221.

Busatto, G. and B. Hoffmann (2001). “Comparing notions of hi-

erarchical graph transformation”. In: Electronic Notes in The-

oretical Computer Science 50.3, pp. 310 –317.

COBP (2002). NATO code of best practice for command and con-

trol assessment. DoD Command and Control Research Pro-

gram (CCRP). SAS-026.

Cai, J. (2011). “Assessing The Impact of Capacity of Depots

and Vehicle Schedule in Transportation Systems”. MA thesis.

Delft University Of Technology, Faculty Of Technology, Policy

And Management.

Cao, Y., Y. Liu, H. Fan, and B. Fan (2012). “SysML-based uniform

behavior modeling and automated mapping of design and

simulation model for complex mechatronics”. In: CAD Com-

puter Aided Design. Article in Press.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2001).

Introduction to Algorithms. 3rd. MIT Press and McGraw-Hill.

Corradini, A., U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and

M. Löwe (1997). “Algebraic Approaches to Graph Transforma-

tion - Part I: Basic Concepts and Double Pushout Approach”.

In: Handbook of Graph Grammars and computing by graph

transformation. Ed. by G. Rozenberg. Vol. 1: Foundations.

World Scientific Publishing, pp. 163 –246.

Crosbie, R. E. (2010). “Grand Challenges in Modeling and Simu-

lation”. In: SCS M&S Magazine 1.1, pp. 1–8.

Czarnecki, K. and S. Helsen (2006). “Feature-based survey of

model transformation approaches”. In: IBM Systems Journal

45.3, pp. 621 –645.

De Lara, J., H. Vangheluwe, and M. Alfonseca (2004). “Meta-

modelling and graph grammars for multi-paradigm mod-

elling in AToM3”. In: Software and Systems Modeling 3.3,

pp. 194 –209.

Drewes, F., H.-J. Kreowski, and A. Habel (1997). “Hyperedge Re-

placement Graph Grammars”. In: Handbook of Graph Gram-

mars and Computing by Graph Transformation. Ed. by G.

Rozenberg. Vol. 1: Foundations. World Scientific Publishing,

pp. 95 –162.

Drewes, F., B. Hoffmann, and D. Plump (2002). “Hierarchical

Graph Transformation”. In: Journal of Computer and System

Sciences 64.2, pp. 249 –283.

Eeckelaert, T., W. Daems, G. Gielen, and W. Sansen (2004). “Gen-

eralized simulation-based posynomial model generation for

analog integrated circuits”. In: Analog Integrated Circuits and

Signal Processing 40.3, pp. 193–203.

Ehrig, H., K. Ehrig, U. Prange, and G. Taentzer (2006a). “Funda-

mental Theory for Typed Attributed Graphs and Graph Trans-

formation based on Adhesive HLR Categories”. In: Funda-

menta Informaticae 74.1, pp. 31 –61.

Ehrig, H., K. Ehrig, U. Prange, and G. Taentzer (2006b). Funda-

mentals of Algebraic Graph Transformation. Ed. by W. Brauer,

G. Rozenberg, and A. Salomaa. Monographs in Theoretical

Computer Science, An EATCS Series. Springer-Verlag Berlin

Heidelberg.

Fan, W., J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu (2010). “Graph

pattern matching: from intractable to polynomial time”. In:

Proceedings of the VLDB Endowment 3.1-2, pp. 264 –275.

Ferney, M. (2000). “Modelling and controlling product manu-

facturing systems using bond-graphs and state equations:

Continuous systems and discrete systems which can be rep-

resented by continuous models”. In: Production Planning

and Control 11.1, pp. 7–19.

Fowler, J. W. and O. Rose (2004). “Grand Challenges in Model-

ing and Simulation of Complex Manufacturing Systems”. In:

Simulation 80.9, pp. 469–476.

Gallagher, B. (2006). “Matching structure and semantics: A sur-

vey on graph-based pattern matching”. In: Capturing and

Using Patterns for Evidence Detection. AAAI Press, pp. 45–53.

Gelsey, A. (1990). “Automated reasoning about machines”. PhD

thesis. New Haven: Yale University.

Gelsey, A. (1995). “Automated reasoning about machines”. In:

Artificial Intelligence 74.1, pp. 1–53.

Glotzer, S. C., S. Kim, P. T. Cummings, A. Deshmukh, M. Head-

Gordon, G. Karniadakis, L. Petzold, C. Sagui, and M. Shi-

nozuka (2010). International Assessment of Research and

Development in Simulation-based Engineering and Science.

Tech. rep. World Technology Evaluation Center.

Gössler, G. and J. Sifakis (2005). “Composition for component-

based modeling”. In: Science of Computer Programming

55.1-3, pp. 161–183.

Granda, J. J. and R. C. Montgomery (2003). Automated Mod-

eling and Simulation Using the Bond Graph Method for the

Aerospace Industry. Tech. rep. CASI-20040085773. NASA Lan-

gley Research Center.

Habel, A. (1992). Hyperedge Replacement: Grammars and Lan-

guages. Spriger-Verlag.

Harrison, G. A., D. S. Maynard, and E. Pollak (2004). “Automated

database and schema-based data interchange for modeling

and simulation”. In: Proceedings of the 2004 Winter simula-

tion Conference, pp. 191–197.

Huang, Y., A. Verbraeck, N. van Oort, and H. Veldhoen (2010).

“Rail Transit Network Design Supported by an Open Source

Simulation Library: Towards Reliability Improvement”. In:

Transportation Research Board 89th Annual Meeting Com-

pendium of Papers. 10-0310. Washington, DC, USA: TRB.

Huang, Y. (2013). “Automated Simulation Model Generation”.

PhD thesis. Delft Univeristy of Technology.

Jiang, X. Y. and H. Bunke (1996). “Including geometry in graph

representations: A quadratic-time graph isomorphism algo-

rithm and its applications”. In: Advances in Structural and

Syntactical Pattern Recognition. Ed. by P. Perner, P. Wang, and

A. Rosenfeld. Vol. 1121. LNCS. Springer Berlin Heidelberg,

pp. 110 –119.

Jiang, X. Y. and H. Bunke (1999). “Optimal quadratic-time iso-

morphism of ordered graphs”. In: Pattern Recognition 32.7,

pp. 1273 –1283.

Johnson, T., A. Kerzhner, C. Paredis, and R. Burkhart (2012). “In-

tegrating models and simulations of continuous dynamics

into SysML”. In: Journal of Computing and Information Sci-

ence in Engineering 12.1.

Kahl, W. (2002). A Relation-Algebraic Approach to Graph Struc-

ture Transformation. Habilitationsschrift.

Kamerling, W. (2007). “Besluitvorming over traminfrastruc-

tuur”. In Dutch. MA thesis. Delft Univeristy of Technology,

Faculty of Technology, Policy and Management.

Kanacilo, E. M. and A. Verbraeck (2006). “Simulation services to

support the control design of rail infrastructures”. In: Pro-

ceedings of the 2006 Winter Simulation Conference. IEEE,

pp. 1372–1379.

Kanacilo, E. M. and A. Verbraeck (2007). “Assessing tram sched-

ules using a library of simulation components”. In: Pro-

ceedings of the 2007 Winter Simulation Conference. IEEE,

pp. 1878–1886.

21

Kleppe, A., J. Warmer, and W. Bast (2003). MDA Explained:

The Model-Driven Architecture: Practice and Promise. Addi-

son Wesley.

Levy, A. Y., Y. Iwasaki, and R. Fikes (1997). “Automated model

selection for simulation based on relevance reasoning”. In:

Artificial Intelligence 96.2, pp. 351–394.

Little, S., D. Walter, K. Jones, C. Myers, and A. Sen (2010).

“Analog/mixed-signal circuit verification using models gen-

erated from simulation traces”. In: International Journal of

Foundations of Computer Science 21.2, pp. 191–210.

Longo, F. (2011). “Advances of modeling and simulation in sup-

ply chain and industry”. In: Simulation 87.8, pp. 651–656.

Lucko, G., P. C. Benjamin, K. Swaminathan, and M. G. Madden

(2010). “Comparison of manual and automated simulation

generation approaches and their use for construction appli-

cations”. In: Proceedings of the 2010 Winter Simulation Con-

ference, pp. 3132–3144.

Manin, Y. I. (2010). A Course in Mathematical Logic for Mathe-

maticians. Vol. 53. Graduate Texts in Mathematics. Springer

New York.

Manning, C. D., H. Schütze, and P. Raghavan (2008). Introduc-

tion to Information Retrieval. Cambridge University Press.

Mens, T. and P. van Gorp (2006). “A Taxonomy of Model Trans-

formation”. In: Electronic Notes in Theoretical Computer Sci-

ence 152, pp. 125–142.

Mielczarek, B. and J. Uzialko-Mydlikowska (2012). “Application

of computer simulation modeling in the health care sector: a

survey”. In: Simulation 88.2, pp. 197–216.

Mueller, R. (2007). “Specification And Automatic Generation

Of Simulation Models With Applications In Semiconductor

Manufacturing”. PhD thesis. Georgia Institute of Technology.

Nayak, P. (1995). Automated Modeling of Physical Systems.

Vol. 1003. Lecture Notes in Computer Science.

Pachl, J. (2002). Railway Operation and Control. VTD Rail Pub-

lishing.

Palacz, W. (2004). “Algebraic hierarchical graph transformation”.

In: Journal of Computer and System Sciences 68.3, pp. 497 –

520.

Roman, M. and D. Selisteanu (2012). “Pseudo bond graph mod-

eling of wastewater treatment bioprocesses”. In: Simulation

88.2, pp. 233–251.

Roychoudhury, I., M. Daigle, G. Biswas, and X. Koutsoukos

(2011). “Efficient simulation of hybrid systems: A hybrid

bond graph approach”. In: Simulation 87.6, pp. 467–498.

Shanks, G. and B. Corbitt (1999). “Understanding Data Quality:

Social and Cultural Aspects”. In: Proceeding of the 10th Aus-

tralasian Conference on Information Systems, pp. 785 –797.

Shannon, R. E. (1975). Systems simulation: the art and science.

Prentice Hall, Inc.

Theeg, G. and S. Vlasenko, eds. (2009). Railway Signalling & In-

terlocking: International Compendium. Eurailpress.

Thomaseth, K. (2003). “Multidisciplinary modelling of biomed-

ical systems”. In: Computer Methods and Programs in

Biomedicine 71.3, pp. 189–201.

Tian, Y., B. Liu, H.-W. Gao, and W.-Q. Li (2012). “Modeling and

simulation of electro-hydraulic proportional position control

system with the flexible hose”. In: Advanced Materials Re-

search 468-471, pp. 2094–2099.

Umesh Rai, B. and L. Umanand (2009). “Bond graph toolbox for

handling complex variable”. In: IET Control Theory and Ap-

plications 3.5, pp. 551–560.

Van Oort, N. (2011). “Service Reliability and Urban Public Trans-

port Design”. PhD thesis. Netherlands: Delft University of

Technology, Department of Transport and Planning.

Vangheluwe, H. (2000). “DEVS as a common denominator for

multi-formalism hybrid systems modelling”. In: IEEE Inter-

national Symposium on Computer-Aided Control System De-

sign, pp. 129 –134.

Vangheluwe, H. (2008). “Foundations of Modelling and Simula-

tion of Complex Systems”. In: Electronic Communications of

the EASST - Proceedings of the 7th International Workshop on

Graph Transformation and Visual Modeling Techniques. 10.

Veldhoen, H. (2009). “Embedding Simulation in Decision Mak-

ing”. MA thesis. Delft University of Technology, Faculty of

Technology, Policy and Management.

Velegrakis, Y., J. Miller, and L. Popa (2004). “Preserving mapping

consistency under schema changes”. In: The VLDB Journal

13.3, pp. 274 –293.

Vuchic, V. R. (2005). Urban Transit: Operations, Planning, and

Economics. John Wiley & Sons, Inc.

Wainer, G. A. (2009). Discrete-Event Modeling and Simulation: A

Practitioner’s Approach. Computational Analysis, Synthesis,

and Design of Dynamic Systems. CRC Press.

Wand, Y. and R. Y. Wang (1996). “Anchoring data quality dimen-

sions in ontological foundations”. In: Communications of the

ACM 39.11, pp. 86 –95.

Wang, J., Q. Chang, G. Xiao, N. Wang, and S. Li (2011). “Data

driven production modeling and simulation of complex au-

tomobile general assembly plant”. In: Computers in Industry

62.7, pp. 765–775.

Wasynczuk, O. and S. Sudhoff (1996). “Automated state model

generation algorithm for power circuits and systems”. In:

IEEE Transactions on Power Systems 11.4, pp. 1951–1956.

Weisstein, E. W. (2009). Graph Automorphism. MathWorld - A

Wolfram Web Resource.

Wieland, F. and A. Pritchett (2007). “Looking into the Future of

Air Transportation Modeling and Simulation: A Grand Chal-

lenge”. In: Simulation 83.5, pp. 373–384.

Xia, S. and N. Smith (1996). “Automated modelling: A discussion

and review”. In: Knowledge Engineering Review 11.2, pp. 137–

160.

Zeigler, B. P., H. Praehofer, and T. G Kim (2000). Theory of Mod-

eling and Simulation: Integrating Discrete Event and Con-

tinuous Complex Dynamic Systems. 2nd. Elsevier/Academic

Press.

Zupančič, B. and A. Sodja (2013). “Computer-aided physical

multi-domain modelling: Some experiences from education

and industrial applications”. In: Simulation Modelling Prac-

tice and Theory 33, pp. 45–67.

22

Appendixes

A Composite Pattern Matching Algo-

rithm

For the Composite Pattern Matching (CPM) algorithm

(Alg. 1), since P ∈ ̺ is topologically sorted and the non-

match of a path excludes the match of the whole pattern,

the vertices that satisfy the conditions of the start vertex

ex1 of the first path p1 are chosen as candidates to start

each pattern search. These candidates are saved in T for

iteration (ln. 3)41. A candidate vertex t j is used as the start

vertex s of the first search path p1 ∈ P (lns. 6, 7).

As mentioned in Section 3.3.2, the internal vertices of

an independent path must satisfy d + = d − = 1. In our

case, this means that the internal vertices shall not ap-

pear in the composite maps but only in T.

Leaving the search bound b aside, a sufficient condi-

tion to consider a vertex t̂ to be in a path (including the

target vertex) is that it is indexed by an known vertex t in

the path (lns. 11, 12). If in addition t̂ is not in the compos-

ite maps, then we can accumulate the search distance d

and continue the path walk (ln. 28).

If a known vertex t has no entry in T, then t is literally at

the end of the path (with nothing connected to it). In this

case, and of course also when the path distance exceeds

b, the algorithm drops the current search and proceeds

with the next candidate t j ∈ T (ln. 32).

In walking an independent path p i given a start vertex

s (lns. 11∼30), once a following vertex t appears in the

composite maps, it means that there would be a match

of p i if t satisfies the target vertex eni specification of p i

(i.e., the first two conditions in ln. 14). However, this is not

necessarily an isomorphism. We need to check whether

the found composite c (t), that contains the target vertex

t of the (path) image, is pairwise distinct with the other

found composites (which are recorded in C ′). Note that

C ∈̺ is pairwise distinct, hence we have the third condi-

tion c (t) /∈C ′\c ′b in ln. 14.

If one of the three conditions above is not satisfied (i.e.,

a non-match) then we can proceed with the next t j ∈ T

(ln. 24). If these is an isomorphic path match of p i , the

composite c (t) is recorded in C ′ at the same position as

its counterpart in C ∈ ̺ (ln. 15; note that the index of

c ′b ← c (t) is b as that of cb ∈ C). In the second case, the

algorithm shall proceed with the next path p i+1 if there

is any path left. Because P ∈ ̺ is topologically sorted,

the composite that contains the start vertex s of p i+1 is

already in C ′. Since the composites in C ′ are reordered in

the same order as in C , we can know s by replacing the

containing composite of exi+1 ∈ p i+1, say c f ∈ C , with its

image c ′f ∈C ′ (ln. 20). The path walk given a start vertex s

is stated above.

There is an isomorphism if and only if all q paths are

found as specified in P ∈ ̺ (ln. 16). If so, some actions

can be performed. In our case, an (m , n)-type hyper-

41Line is abbreviated as ln., lines as lns.

edge e that represents the match is created by RECORD-

MATCH(C ′,̺) (ln. 17), and the hyperedge map E has to be

updated correspondingly. The CPM algorithm continues

with the next t j ∈ T . The match is recorded in e ∈ E so

that the algorithm only needs to record the most recent

match in C ′. Before a new search with the next candi-

date, C ′ is cleared (ln. 5). The algorithm terminates after

it iterates through all the candidates.

B Miscellaneous Composite Finding

Algorithm

Algorithm 2 The MERGE Function of eM 2 to eM 1, two dis-

tinct misc composites

1 function MERGE(eM 1, vi , w j , eM 2)

2 E1P← E1P ∪E2P

3 B1en← (w1, · · · , w j−1) ‖ B1en ‖ (w j+1, · · · , wm2
)

4 B1ex← (v1, · · · , vi−1) ‖ B2ex ‖ (vi+1, · · · , vn 1
)

5 P1← P1 ∪P2 ∪ (vi , w j)

6 end function ⊲ The ‖ symbol denotes the concatenation

of two ordered sets.

Algorithm 3 The MERGE Function of eP to eM , a point

composite and a misc composite

1 function MERGE(eM , vi , w j , eP)

2 e ′M ←MERGE(eP)

3 MERGE(eM , vi , w j , e ′M)

4 end function

5

6 function MERGE(eP)

7 eM ← (EP←∅, P←∅, Ben←∅, Bex←∅)

8 Ben← entry vertices of eP

9 Bex← exit vertices of eP

10 for all u ∈ Ben do

11 EP← EP ∪ (u , eP)

12 end for

13 return eM

14 end function

Algorithm 4 The CLOSECYCLE Function

1 function CLOSECYCLE(eM , vi , w j)

2 Ben← Ben\w j

3 Bex← Bex\vi

4 P← P ∪ (vi , w j)

5 end function

In the Miscellaneous Composite Finding (MCF) Algo-

rithm (Alg. 5), we use a misc composite map EM to keep

traces of merging (ln. 1). This map contains a set of (hy-

peredges of) misc composites EM indexed independently

by their constituent point composites eP ∈ eM ∈ EM , i.e.,

each entry in EM has the form (eP , eM). At the start of the

algorithm, EM is empty. EP is the set of (hyperedges of)

23

point composites under consideration and b is the bound

of path distance42.

A DFS walk starts with an unvisited eP ∈ EP

(lns. 2∼6). The GETNEXTCONNECTEDPOINTENTRY(eP , b)

function searches for point composites that are con-

nected (by independent paths within b, Section 3.3.3) to

the exit vertices of eP . It returns an ordered set of the

connected entry vertices EN. If an element43 in ENnext is

empty, it simply means that a qualified path is not found

for the corresponding exit vertex of eP . If no path is found,

we continue with the next eP (ln. 2); otherwise, eP “be-

comes” a misc composite eM (ln. 8), since the connected

point composite will be later merged into it. The newly

created eM is recorded in EM indexed by eP (ln. 9). We

shall walk deeper in the current “depth-first tree” along

the path(s) indicated by EN. (We are at the tree root.) We

do so by passing on the “subgraph” eM and the terminal

vertices of the corresponding path (ex, en) to the WALK-

TREE function (ln. 14).

The WALKTREE function (Alg. 6) walks deeper the tree

branch until an unqualified path or a backward or a cross

tree path (Cormen et al., 2001) is reached. Recall that the

function is invoked with a misc composite eM , an exit ver-

tex v of eM , and an entry vertex w of a point composite,

where (v, w) is a qualified path.

The point composite eP that cotaines w can be found

in the hyperedge map E (ln. 2). If eP is in the misc com-

posite map EM (ln. 3), then it is visited and is already

merged into a misc composite. And if this misc compos-

ite is by chance eM itself (ln. 4), then (v, w) is a back-

ward path and we use CLOSECYCLE to include this path

in eM . When eP is in another e ′M , we merge e ′M into eM

(ln. 12). Since e ′M is indexed in EM by all its point com-

posites e ∈ EP ∈ e ′M , we need to replace all indexed values

to eM (lns. 8∼11). When eP is not in any misc composite,

we merge eP into eM and record this merge (lns. 15, 16).

Now we can further explore the exit vertices of eP (ln. 17),

the similar situation as at a root vertex, but this time eP is

already merged into a misc composite. The walk goes on

as explained until all possible branches are visited.

C Model Generation Algorithm

The Model Generation Algorithm (MGA) creates a

model map M (ln. 1) whose entries are added when a

TrackSegment is generated either during the DFS (ln. 16)

or along with the model generation for a hyperedge

(ln. 22).

At each DFS walk step, the GENERATEMODELTREE func-

tion is passed on with a vertex v in T and an end node en

(ln. 8). The vertex v has a generated model, say V , and it

leads the current branch of the tree walk. The end node

en is either that of V 44 or an end node of the parent model

M of V (i.e., V is in M) to which V is connected with. In

42For example, this distance can be set to 10 or 20 meters.
43Note that ENnext has at most two elements since the number of exit

vertices of a point composite is at most two.
44A source or track model can have only one end node.

both cases, en is the end node that the next generated

model shall be coupled with. We may encounter one of

the four situations for a walk step (see also Example 2 in

4.1.4):

(1) When v does not have a descendant vertex, a sink is

generated (lns. 10∼12).

(2) When v has a descendant vertex t that is not in a hy-

peredge45, a track segment is generated and the walk

goes one step further (lns. 15∼18).

(3) When v has a descendant vertex t in a hyperedge e ,

and a model for t is not generated, a model M for

e is generated and the walk goes one step further to

one of the branches, (lns. 21∼30).

(4) When v has a descendant vertex t in a hyperedge e ,

and a model for t is generated, there is a back walk

(lns. 32∼34).

Note that v can have at most one descendant vertex

since all the point composites are in hyperedges where

the DFS does not step into. Model generation for hyper-

edges (ln. 22) is explained in Section 4.1.2. In case of an

intersection model, the configuration of the control unit

is included in the model generation. The MGA terminates

when all the DFS trees rooted from the source vertices are

explored.

45The only chance for a back walk is when t is in a hyperedge, i.e., a

vertex that is not in a hyperedge can not be revisited.

24

Algorithm 1 The CPM Algorithm

Require: ̺

1 C ′← (c ′1←∅, c ′2←∅, · · · , c ′
w
←∅) ⊲ a set of empty elements the same size as C ∈̺

2 ⊲ suppose ex1 = ca ,exx ∈ p1, ca ∈C , a ∈ [1, w]

3 T = (t1, t2, · · · , tr)← exx of all c from PF, PT, PC, or E according to the class of ca

4 for j = 1→ r do ⊲ check all possible candidates t j ∈ T

5 clear C ′ ⊲ reset C ′ to empty

6 s ← t j ⊲ start vertex s of the first search path p1

7 c ′
a
← c (s) ⊲ see ln. 2, cf. ln. 15

8 for i = 1→q do ⊲ check all paths p i ∈ P ∈̺

9 d ← 0

10 t ← s

11 while t in T and d < b do ⊲ path search of p i within bound b ∈̺

12 t ← T (t) ⊲ T has an entry (t , t̂)

13 if t in PF, PT, PC, or E then

14 if c (t) is in the same class as cb and t is eny of c (t) ⊲ see ln. 15

and c (t) /∈C ′\c ′b then ⊲ a match of p i

15 c ′b ← c (t) ⊲ suppose eni = cb ,eny ∈ p i , cb ∈C , b ∈ [1, w]

16 if i =q then ⊲ all q paths matched, i.e., a match of pattern ̺

17 RECORDMATCH(C ′,̺) ⊲ do something related to the match

18 ⊲ the loop goes to next t j+1 (ln. 4) after ln. 26

19 else ⊲ suppose exi+1 = c f ,exx ∈ p i+1, c f ∈C

20 s ← exx of c ′f ∈C ′ ⊲ start vertex s of the next search path p i+1

21 ⊲ the loop goes to p i+1 (ln. 8) after ln. 26

22 end if

23 else ⊲ a non match of p i

24 i ←q ⊲ force the loop to go to next t j+1 (ln. 4) after ln. 26

25 end if

26 break

27 else

28 d ← d (t)+d ⊲ accumulate path distance; search continues at ln. 11

29 end if

30 end while

31 ⊲ a non match of p i because the path ended (with a sink) or bound b is reached

32 i ←q ⊲ force the loop to go to next t j (ln. 4)

33 end for

34 end for

◦ The text following a ⊲ symbol is comment.

◦ A prime sign (′) is used next to the original symbols of the elements in the pattern ̺, to denote a placeholder for the images of the elements

(in case of a match); e.g., C ′ holds images of elements in C (ln. 1).

◦ The “class of composite c ”, e.g., ln. 3, refers to whether c is an fp, tp, cp or a hyperedge composite e .

◦ The “composite c that contains t ” is denoted by c (t), e.g., ln. 14.

25

Algorithm 5 The MCF Algorithm

Require: EP , b

1 EM←∅ ⊲ the misc composite map

2 for eP ∈ EP do ⊲ each DFS walk is rooted with an unvisited eP

3 if eP in EM then

4 continue ⊲ go to the next eP

5 end if

6 EN← GETNEXTCONNECTEDPOINTENTRY(eP ,b) ⊲ the entry vertices are ordered

7 if EN is not empty then

8 eM ←MERGE(eP) ⊲ a new eM is created with eP , Alg. 3

9 EM← EM ∪ (eP , eM)

10 for en∈ EN do

11 if en 6=∅ then ⊲ the entry vertex en of a connected point composite

12 i ← index of en in EN ⊲ the order of en

13 ex← Bex,i ∈ eP ⊲ the corresponding exit vertex ex of eP

14 WALKTREE(eM , ex, en) ⊲ Alg. 6

15 end if

16 end for

17 end if

18 end for

Algorithm 6 The WALKTREE Function

1 function WALKTREE(eM , v, w)

2 eP ← the indexed value of w in E ⊲ the connected point composite

3 if eP in EM then ⊲ eP is in a misc composite

4 if eP in eM then ⊲ the misc composite is eM

5 CLOSECYCLE(eM , v, w) ⊲ Alg. 4

6 else

7 e ′M ← the indexed value of eP in EM

8 for all e ∈ EP ∈ e ′M do ⊲ the point composites that are merged into e ′M
9 EM← EM\(e , e ′M)

10 EM← EM ∪ (e , eM) ⊲ replace the indexed values

11 end for

12 MERGE(eM , v, w , e ′M) ⊲ Alg. 2

13 end if

14 else

15 MERGE(eM , v, w , eP) ⊲ Alg. 3

16 EM← EM ∪ (eP , eM)

17 EN← GETNEXTCONNECTEDPOINTENTRY(eP ,b) ⊲ the same as Alg. 5 ln. 6

18 for en∈ EN do ⊲ the same as Alg. 5 lns. 10∼15

19 if en 6=∅ then

20 i ← index of en∈ EN

21 ex← Bex,i ∈ eP

22 WALKTREE(eM , ex, en)

23 end if

24 end for

25 end if

26 end function

26

Algorithm 7 The MGA Algorithm

Require: T, E

1 M←∅ ⊲ the model map, see Section 4.1.4

2 for all s do in source vertices in T ⊲ each DFS walk is rooted with a source vertex s

3 S← generate a Source instance for s

4 en← the end node of S

5 GENERATEMODELTREE(s , en) ⊲ see ln 8

6 end for

7

8 function GENERATEMODELTREE(v , en) ⊲ cf., Section 4.1.4

9 t ← T(v) ⊲ check whether T has an entry (v, t)

10 if t =∅ then ⊲ nothing is connected to v

11 SK← generate a Sink instance

12 couple en and the start node of SK ⊲ the tree walk ends at this branch

13 else

14 e ← E(t) ⊲ check whether E has an entry (t , e)

15 if e =∅ then ⊲ t is not an entry vertex of an hyperedge

16 T ← generate a TrackSegment instance for t

17 couple en and the start node of T

18 GENERATEMODELTREE(t , the end node of T) ⊲ the walk goes to next vertex

19 else

20 T ←M(t) ⊲ check whether t (hence e) has a model generated

21 if T =∅ then ⊲ generate a model M for hyperedge e ; cf., Section 4.1.2

22 M ← generate an InfraComponent instance according to the type of e

23 T ←M(t) ⊲ the model T is newly generated along with M

24 sn← the start node to which T is connected in M

25 couple en and sn

26 for all i = 1→ the size of the end nodes of M do

27 v ← the i -th exit vertex of e

28 en← the i -th end node of M ⊲ assume exit vertices and end nodes are simply ordered with indexes

29 GENERATEMODELTREE(v , en) ⊲ the walk goes to one of the branches

30 end for

31 else ⊲ a model for the hyperedge e is already generated

32 M ← parent model of T

33 sn← the start node to which T is connected in M

34 couple en and sn ⊲ a back walk: the walk ends at this tree branch

35 end if

36 end if

37 end if

38 end function

27

	Introduction
	State of the Art
	Research Background

	Graph Theory and Graph Transformation
	Model Structure Representation with Graphs
	Graph and Graph Pattern
	Hypergraph
	A Hierarchical Graph for Model Composition

	Basic Concepts of Graph Transformation
	Rules, Matches and Rule Applications
	Hyperedge Replacement

	Model Transformation
	Start Graph
	Solving Data Quality Issues
	Defining Information Types and Dependencies

	Transformation Step 1: Generation of Digraph
	Search for Connectedness
	Hyperedge Representation of Composition

	Model Composite Graph
	Graph Patterns and Pattern Composites
	Representing Graph Patterns and Pattern Composites
	An Algorithm for Composite Isomorphism

	Transformation Step 2: Generation of Model Composite Graph
	Rule Application Control
	An Algorithm for Misc Composites

	Model Generation
	Model Instantiation
	Model Instantiation Basics
	Model Instantiation from A Hyperedge
	Configuration of Control Unit
	Model Instantiation and Setting Up Couplings

	Transformation Step 3: Generation of Simulation Model

	Model Generator
	Conclusions
	Appendix Composite Pattern Matching Algorithm
	Appendix Miscellaneous Composite Finding Algorithm
	Appendix Model Generation Algorithm

