ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W8, 2019
14th 3D Geolnfo Conference 2019, 24-27 September 2019, Singapore

GRAPH TRANSFORMATION RULES FOR IFC-TO-CITYGML ATTRIBUTE
CONVERSION

Joie Lim !, Helga Tauscher >* Filip Biljecki !

! National University of Singapore, Singapore — (joie.lim, filip) @nus.edu.sg
2 Dresden University of Applied Sciences, Dresden, Germany — helga.tauscher @htw-dresden.de

KEY WORDS: BIM, GIS, IFC, CityGML, graph transformation, conversion, attributes, properties

ABSTRACT:

In model transformation, the population of attributes on the target side constitutes the last step of the conversion process that carries
over that part of the input which is often perceived as the most valuable actual information. We are employing a graph-based model
transformation approach to convert building information models into geospatial city models. In this paper, we are reporting on
different types of transformation rules to populate the attributes on CityGML side using information extracted from the IFC data.
We document the various ways how attribute values can be stored in IFC and CityGML respectively and identify patterns that bridge
these endpoints in the conversion process. These patterns lead to a set of prototypical graph transformation rules which have been
applied to a range of building projects. The novel graph-based approach to IFC-to-CityGML conversion implicates an intuitive
visual representation of these rules. This work can also serve as a starting point to convert IFC data to other formats or to populate

CityGML from other data sources.

1. INTRODUCTION
1.1 TIFC-to-CityGML conversion

Interoperability between the domain of Architecture,
Engineering and Construction (AEC) and the geospatial
(urban) domain has become a highly-researched topic in the
recent years (Liu et al., 2017; Stouffs et al., 2018; Ellul et
al., 2018; Wang et al., 2019; Zhu et al., 2018). Information
from Geographic Information Systems (GIS) and Building
Information Modelling (BIM) supplement each other thus
supporting cross-domain analysis such as view and shading
analysis, tower crane location optimization (Rafiee et al.,
2014; Irizarry, Karan). Benefits from digital modelling in
both domains, e.g. improved analysis and simulation methods,
continuous information flow across the lifecycle, reuse of
existing datasets can be scaled up through integration of the
two.

Industry Foundation Classes (IFC) and CityGML, an
application schema of the Geographical Markup Language
(GML), are the primary standards used for information transfer
in the BIM and GIS domain respectively. Interoperability
between the two is researched in a variety of ways, such as by
looking at compatibility, overlaps and mismatches, between
the respective conceptual models, by converting between IFC
datasets and CityGML datasets or by integrating BIM and
GIS datasources into larger systems (El-Mekawy et al., 2012;
Gilbert et al., 2018).

While much effort has been put into the conversion of
IFC to CityGML, many of the research projects focus on
geometry reduction (generalisation) and geometry validity,
especially in relation to creating models of different levels
of detail and producing geometry that conforms to CityGML
standards (Donkers et al., 2016; Kang, Hong; Floros et al.,
2017). Not as many deal with the semantic data and attributes

* Corresponding author

or properties present in the IFC models that could potentially
inform or be helpful to downstream use of the converted
models. Some that do this include Hor’s approach using
semantic web technology and RDF graphs and Deng’s approach
using reference ontology (Hor et al., 2016; Deng et al., 2016).

This paper aims to share an approach we have used as an
important component of a project on the conversion from IFC to
CityGML. It focuses on the properties portion of the conversion
and rule development processes.

1.2 Graph transformation approach

We have taken a graph transformation approach to convert from
the IFC data to CityGML. This approach takes the form of
a triple graph grammar, a concept first introduced by Schiirr
(1995). Applied here, one graph represents the objects and
relations on the IFC side, a second graph stands for objects
and relations on the CityGML, and a third graph carries the
correspondence between the two main graphs.

While a regular triple graph grammar can be operationalized
for transformation in both directions as well as for
synchronization of integrated systems, we focus solely on
forward transformation (Stouffs et al., 2018) from IFC to
CityGML. That means that the full IFC object graph is given
as start graph together with an empty CityGML and connection
graph. The latter two empty graphs are populated through
out the application of graph transformation rules, effectively
creating the CityGML graph from the given IFC input and the
correspondence relations between the two.

1.2.1 Layered rule repository. In our implementation, we
created a rule repository, made up of multiple modules
consisting of rules that map different portions of the IFC
schema to the CityGML schema. The scopes of the modules
are for instance the general model structure, the spatio-semantic
structure, the geometry and the properties.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-W8-83-2019 | © Authors 2019. CC BY 4.0 License. 83

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W8, 2019
14th 3D Geolnfo Conference 2019, 24-27 September 2019, Singapore

Each rule defines an isolated part of the conversion logic,
mostly to generate one type of object. The rules take the form of
small triple graphs (template graphs) that define certain patterns
and conditions that have to be satisfied in order to trigger the
application of the rule. They also define the nodes that are
to be created on the CityGML graph. Finally, they define
how information is obtained, processed and stored, through the
assigning of converters.

Based on the information present in the IFC file and the
result desired for the CityGML file, relevant rules from each
module can be selected and combined to create a rule set that
generates the desired output. This rule set can then be used to
perform conversions, repeatedly for different input data. Each
single rule can be created and modified to process information
in different ways for each particular object, including the
combination of multiple properties or functions to further
transform the values to conform to the CityGML schema.

This method allows a range of different options for customizing
the IFC to CityGML conversion. Rule sets can be compiled
for different scenarios, from converting entire IFC models to
extracting floor plans of single storeys. Tauscher (Stouffs), for
example, show different conversion variants with respect to the
spatio-semantic paradigm.

1.2.2 Property rules. Forward transformation rules in
the property module process non-spatial attribute values
(information that is not related to either the semantic structure
or geometry) from the IFC graph, transform them and add
the results to the CityGML graph. These added properties
supplement the semantic structure and geometry and provide
additional non-geometric information for the various use cases
the CityGML file might be used for.

Property rules assume that the semantic structure and geometry
of the graph is already present. During the application of a
property rule specific values are extracted from and added as
attributes to matching nodes of the IFC and CityGML object
graphs. The structure of these rules may differ depending on
where these properties are to be found in the IFC graph and
where they should be inserted in the CityGML graph.

1.3 ADE

Application Domain Extensions (ADE) are extensions to the
standard CityGML schema, allowing objects and information
that are not part of the CityGML schema to also be stored
within a CityGML file. ADEs have been developed for a variety
of purposes (Biljecki et al., 2018), including supporting the
conversion between the two data models (de Laat, van Berlo;
Deng, Cheng).

In our project, an ADE had been developed to allow more
properties from IFC to be represented in CityGML as attributes.
For example, we have extended the standard CityGML set
of attributes for buildings and their components (e.g. wall
material, building function according to extended code lists)
and introduced new features (e.g. elevators) to accommodate
some potentially useful information from IFC that cannot be
stored in the CityGML data model by default. The ADE was
designed based on analysing the requirements of multiple use
cases.

In some of the examples in the paper, we use
ifc:IfcProperty, an ADE element made to replicate

the IfcProperty object from IFC. It a property name and a
property value, both as Strings, and allows for a generic
representation of arbitrary properties without explicitly adding
each single required attribute to the ADE.

1.4 Implementation

The implementation has been developed as three parts. The first
part is an instance of BIMserver, an opensource IFC database !.
The second part is a web-based rule repository, where rules and
rulesets are created and stored in a customised Domain Specific
Language. These rulesets are then converted into JSON for use
with the third part, which is a java client that retrieves models
from BIMserver and handles the bulk of the conversion process.

Due to the added features that improve interoperability between
the two file formats (Cheng et al., 2014; Kutzner, Kolbe), we
have chosen to use IFC4 and an early developmental version of
CityGML 3.0 in the development and testing of rules and the
implementation.

1.5 Structure of the paper

The reminder of this paper is structured as follows: In Section 2
we describe different ways how properties and attributes appear
in IFC and CityGML. In Section 3 we deduce 6 types of rules
that cover the various possibilities on IFC and CityGML side
in combination, and can be employed in many situations. In
Section 4 we show the results of applying these rule to a use
case.

2. PROPERTIES AND ATTRIBUTES IN IFC AND
CITYGML

Properties and attributes are defined and expressed differently
in IFC and CityGML, with a number of different possible ways
in each. In order to identify common patterns that could be used
to guide property rule creation, we explored how properties
and attributes appear in IFC and CityGML respectively. This
section shares our findings.

We have focused mainly on the architecture domain of IFC and
the building module of CityGML, based on the models we were
able to study as well as the desired CityGML output. However,
the overall structure of the two schemas should be similar for
other portions as well and the study could be expanded upon in
the future.

2.1 Direct attributes in IFC

Some attributes in IFC are defined directly as attributes of
entity types, mainly of IfcObject or IfcType subtypes. For
example, the name and longName of an IfcSpace are defined
within the definition of the IfcSpace itself, as the third and
eighth attributes respectively. In the template graph of the
rule, these are shown as part of the node, which must be of
the respective type where the attribute is defined. An example
excerpt from IFC is shown below.

#7605= IFCSPACE(’06UQUgDKf100FHDJEkk10K’ ,#42,°160°,
$,$,#7340,#7602,>GYMNASIUM’ , .ELEMENT. , .SPACE. ,$) ;

When developing rules and converters, it must be considered
that some of the attributes defined in the IFC schema may be
optional and thus hold indefinite values ($).

' Open source BIMserver: http:/bimserver.org

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-W8-83-2019 | © Authors 2019. CC BY 4.0 License. 84

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W8, 2019
14th 3D Geolnfo Conference 2019, 24-27 September 2019, Singapore

2.2 Property sets in IFC

Other information not defined directly as attributes of entities
can be defined in properties, for all kinds of information
related to an entity, and quantities, for measured values like
lengths and areas. These just contain additional information
and are grouped into sets called property sets or quantity sets
respectively. Properties, quantities as well as property and
quantity sets are separate entities that consequently appear as
separate nodes in the rules’ template graphs.

Properties and property sets constitute a generic concept,
that can be customized to hold any information one
may need. However, the IFC schema contains a large
number of predefined options for common choices, in
order to establish interoperability. = One example is the
Pset_SpaceCommon property set that contains properties such
as HandicapAccessible and IsExternal. An example
excerpt is shown below.

#252= IFCSPACE(’2Tz$9V8aP4ADwHsKEQilyWQ’ ,#42,°1°,$,
$,#225,#247,’Area’ , .ELEMENT. , .SPACE.,$);

#273= IFCPROPERTYSINGLEVALUE(’Reference’,$,
IFCIDENTIFIER(’Area 1°),$);

#274= IFCPROPERTYSINGLEVALUE(’ IsExternal’,$,
IFCBOOLEAN(.F.),$);

#275= IFCPROPERTYSET (’2$8eoYr41AHhjBt912GWS2’ ,#42,
’Pset_SpaceCommon’ ,$, (#273,#274)) ;

#283= IFCRELDEFINESBYPROPERTIES (
’0bPQxpV8TDjQ_CEqzgt7f’ ,#42,$,$, (#252) ,#275) ;

In the template graph, these are expressed as a path of nodes,
going from the node of the IFC object or type, to the property
set or quantity set, to the property or quantity. The values are
then direct attributes of the property or quantity nodes.

This kind of generic properties and property sets may
be used and thus be referenced by multiple objects.
For example, the HandicapAccessible property of
IfcSpace has only 3 possible values: True, False, and
Undefined. In many cases, it may only be defined once
per possible value and each IfcSpace would reference
the corresponding property definition. So even if multiple
IfcSpaces are handicap-accessible, there would only be one
HandicapAccessible property defined and it would be shared
by all the IfcSpaces. Likewise, a whole property set can be
shared among similar entities, for instance if some spaces are
all accessible, as shown in Figure 1.

2.3 Direct attributes in CityGML

Most information in CityGML (including information that
is found in most ADEs in practice) are simple values, like
primitives or enumerations, expressed as either elements
directly in the content or attributes of the city objects. Examples
of this are id and name as shown below.

<bldg:BuildingRoom gml:id="ifc-2Tz-9V8aP4DwH...">
<gml :name>1</gml :name>
<l== .. -

</bldg:BuildingRoom>

Although these appear different in the XML-representation of
CityGML, the way they are expressed in the template graphs
are the same. Both are expressed as part of the object’s node as
shown in Figure 2.

spacel space2

IfcSpace IfcSpace

relatedObjects T T

rell rel2
IfcRelDefinesByProperties IfcRelDefinesByProperties

relatingPropertyDefinition relatingPropertyDefinition

|

propertyset
IfcPropertySet

Name : Pset_SpaceCommon

hasPropertiesl

ifcproperty
IfcSinglePropertyValue

Name : HandicapAccessible
NominalValue : TRUE

Figure 1. An instance of an IfcPropertySet node
referenced by multiple entities in the IFC object graph.

room
bldg:BuildingRoom

1d : ifc-2Tz-9V8aP4DwWHSKEQilyWQ

Name: 1

Figure 2. An instance of a BuildingRoom node in the
CityGML object graph with some direct attributes.

2.4 Dedicated property elements in CityGML

In some instances when we are dealing with more complex
or customized properties, they are defined CityGML or in the
ADE as separate complex types instead of just simple attributes.
These complex types have more than one attribute. An example
is the address of a building. In the ADE we have defined
a dedicated IfcProperty element to resemble the generic IFC
properties, which also makes use of a similar construction as
shown below.

<bldg:BuildingRoom>
<ifc:ifcProperty>
<ifc:IfcProperty propertyName="RoomType"
propertyValue="commonArea"/>
</ifc:ifcProperty>
<!-- more room attributes, geometry etc. --->
</bldg:BuildingRoom>

In the graphs, these complex properties appear as separate
nodes to allow for the different values and attributes to be
attached to them individually, as shown in Figure 3.

3. PROPERTY RULE PATTERNS
3.1 Overview of possible property rule patterns

The different possible configurations used to store information
in IFC and CityGML as described in the previous Section 2 can
be combined in a number of ways and result in the following
possible rule structures:

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-W8-83-2019 | © Authors 2019. CC BY 4.0 License. 85

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W8, 2019
14th 3D Geolnfo Conference 2019, 24-27 September 2019, Singapore

room

bldg:BuildingRoom

ifcProperty

gmlproperty
ifc:IfcProperty

PropertyName : RoomType

PropertyValue : commonArea

Figure 3. An instance of a BuildingRoom node with an
IfcProperty node in the CityGML object graph.

1. From a direct attribute in IFC to a direct attribute in
CityGML.

From a direct attribute in IFC to a new node in CityGML.
From a property in IFC to a direct attribute in CityGML.
From a property in IFC to a new node in CityGML.

A

From multiple sources in IFC to one attribute or node in
CityGML.

6. From one attribute or property in IFC to multiple attributes
or nodes in CityGML.

The rest of this section describes each of the above with
examples and shares some limitations we encountered.

3.1.1 Direct attribute to direct attribute. Such rules
extract a value directly from an existing IFC node and add an
attribute directly to an already existing and connected CityGML
node. With such rules, in our current implementation, if
multiple rules apply to the same attribute on the same CityGML
node, the values assigned by earlier rules are overwritten by
subsequent rules. One example is the transfer of IDs from the
IFC file into the CityGML file, as shown in Figure 4. This rule
applies to all IFC entities of type IfcProduct corresponding to
a CityGML object of type AbstractGMLType. The GlobalID
attribute is then extracted from the product, transformed to
conform to the constraints defined for IDs in GML in the
guid function, and finally inserted as the ID attribute of the
gmlObject.

product gmlObject
IfcProduct eml:AbstractGMLType

globalld > $guid id < guid ($guid)

Figure 4. A rule converting a direct attribute to a direct
attribute, here GloballD in IFC to ID in CityGML.

3.1.2 Direct attribute to new node. Such rules extract
a value directly from an existing IFC node, create a new
CityGML node and add it to the CityGML graph by creating
an edge between an existing CityGML node corresponding to
the initial IFC node and the newly created CityGML node. One
example is shown in Figure 5. This rule applies to an IFC node
of type IfcSpace and an existing corresponding CityGML
node of type AbstractSpace element. The name attribute,
which many BIM software populate with the room’s number
during export 2, is extracted and inserted into the CityGML
graph as a newly created IfcProperty node.

One issue encountered during an early implementation stage
of the conversion client was that some rule types were not

2 On a related note — for this piece of information it was necessary to
extend the CityGML data model.

space
IfcSpace

room

core:AbstractSpace

name > $Sname b
ifcProperty

b

gmlProp
ifc:IfcProperty

propertyName < RoomNumber

propertyValue < ifcValueConverter ($name)

Figure 5. A rule converting a direct attribute to a new
node, here the name attribute of IfcSpace in [IFC to a
generic IfcProperty node named RoomNumber in
CityGML.

supported yet, e.g. rules with a newly created node on the
CityGML side that does not have a corresponding node in the
IFC side. A workaround that we employed at this stage was to
forcefully detach the attribute on the IFC side to create a new
node. This leads to a rule structure similar to the one described
later in Section 3.1.4 and shown in Figure 6.

space room
IfcSpace core:AbstractSpace

lifcProperty
+

gmlProp
ifc:IfcProperty

propertyName < RoomNumber

propertyValue < ifcValueConverter ($name)

Figure 6. A rule similar to the one in Figure 5 working
around an implementation issue.

3.1.3 Property to direct attribute. Such a rule extracts a
value from a property or quantity that is located down a path
from the entry IFC node and adds an attribute directly to the
correlated existing CityGML node. With such rules, in our
current implementation, if multiple rules apply to the same
attribute on the same CityGML node, the values assigned by
earlier rules are overwritten by subsequent rules.

One example is shown in Figure 7. This rule extracts the
IsExternal property from the Pset_SpaceCommon property
set of an IfcSpace typed entity and uses the value to
determine the room’s spaceType, assigning it to the respective
AbstractSpace type gmlElem node in the CityGML graph.

clem
IfcSpace
o)

relatedObject

gmlElem
core:AbstractSpace

spaceType < spaceType ($pValue)

relProp

IfcRelDefinesByProperties

relatingPropertyDefinition)

pset
IfcPropertySet

name : Pset_SpaceCommon

huxf’mpcllwl

prop
IfcPropertySingleValue

Name : IsExternal

NominalValue > $pValue

Figure 7. A rule converting a property to a direct attribute,
here the IsExternal property of IfcSpace in IFC to the
spaceType attribute in CityGML.

3.1.4 Property to new node. Such a rule extracts a value
from a property or quantity that is located down a path from

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-W8-83-2019 | © Authors 2019. CC BY 4.0 License. 86

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W8, 2019
14th 3D Geolnfo Conference 2019, 24-27 September 2019, Singapore

the entry IFC node, creates a new CityGML node and adds it
to the CityGML graph by creating an edge between an existing
CityGML node corresponding to the initial [FC node and the
newly created CityGML node. Further it creates a correlation
between the property nodes in IFC and CityGML.

One example is the FloorSurfaceMaterial rule, shown
in Figure 8. This rule extracts the value of the
IFC property with name FloorCovering from the
Pset_SpaceCoveringRequirements property set of an IFC
node of type IfcSpace and sets it as a new IfcProperty node
of the corresponding existing CityGML node.

gmlElem
core:AbstractSpace

ifcProperty

elem
IfcSpace

relatedObjects

relProp

IfcRelDefinesByProperties

relatingPropertyDefinitior

pset
IfcPropertySet

name : Pset_SpaceCoveringRequirements

hasProperties
+

prop gmlProp
IfcPropertySingleValue ifc:IfcProperty

propertyName < FloorCovering

Name : FloorCovering

NominalValue > $pValue propertyValue < floorCovering ($pValue)

Figure 8. A rule converting a property to a new node, here
the FloorCovering property of IfcSpace in IFC to an
IfcProperty node.

3.1.5 Multiple sources to single target. These rules require
multiple attributes and properties from the IFC graph to be
combined in order to determine the desired value to be inserted
into the CityGML graph. These come in the form of a number
of different types.

One such type are rules that require attributes and properties
specified in a different rule, and stored in the context during
application of that other rule. One example of such a case
is door height. In IFC, units can be omitted in measurement
properties. In such cases, the properties take on the default
units, defined on the level of the IfcProject node which is
processed much earlier. To transfer such a property would
require two rules. One rule to extract the units from IfcProject
and store them in context, Figure 9, and one rule to extract that
height value from the door, adjust it using the stored units, and
assign it to a new node in the CityGML graph, Figure 10.

project | cityModel
IfcProject core:CityModel

UnitsInContexf

lengthUnit >$lengthUnit
IfcSIUnit

unitType : LENGTHUNIT

Figure 9. A rule extracting the default length unit from
IfcProject to store it in the context variable $lengthUnit.

One issue with such rules is that the order in which the rules
are applied is crucial. In this case, the first rule has to be
applied before the second rule in order to work. In our
implementation, we have worked around this by having rules

elem | gmlElem
IfcDoor bldg:BuildingConstructiveElement
9 ifcPropertyl
relatedObjects
ifcRelation2
IfcRelDefinesByProperties
relatingProperty Definition]
I
o)
ifcQto
IfcElementQuantity
Name : Qto_DoorBaseQuantities
quumlucl
ifcHeight !
IfcQuantityLength __gmlProp
- ifc:IfcProperty
Name : Height : N o
0] ame < Height
LengthValue > $Length ISR
e propertyValue < unitConverter (SLength,$Unit,$lengthUnit)

nit > $Unit

Figure 10. A rule extracting the height quantity from
IfcDoor, converting it to meters using the $lengthUnit
variable and setting it as a new IfcProperty node with the
name DoorHeight in CityGML.

apply in alphanumerical order pertaining to their names, such
that prefixes on rule names can be used to order them correctly.

Another type requires multiple of the same type of node to be
used to determine the desired value. One example of such a case
would be a rule for number of storeys above ground. This rule
would require access to the AboveGround property for every
storey before it can determine and assign a final value to the
CityGML graph. With our implementation, in such a rule, each
storey node would be processed individually. These types of
rules would not be possible and would require workarounds
instead.

3.1.6 Single source to multiple target. On the other hand,
sometimes multiple attributes in the CityGML graph are
derived from the same shared IFC node or attribute. These also
come in a number of different types.

Some rules, as described in Section 2, involve a single, shared
IFC node, referenced by multiple different parent nodes. One
example is the rule for handicap access, Figure 11.

elem
IfcSpace
o}

relatedObjects

relProp
IfcRelDefinesByProperties

relatingPropertyDefinition|

gmlElem

core:AbstractSpace
ifcProperty|

pset
IfcPropertySet

name : Pset_SpaceCommon

hasPropertie
+

prop gmlProp
IfcPropertySingleValue ifc:IfcProperty

propertyName < HandicapAccessible

Name : HandicapAccessible

NominalValue > $pValue propertyValue < ifcValueConverter ($pValue)

Figure 11. A rule that extracts the handicapAccessible
property from IfcSpace and sets it as a new IfcProperty
node in CityGML.

Because of checks to make sure each object is only converted
once, there were issues with making sure that in such cases,
the property is properly converted each time. In an early
implementation stage, the conversion algorithm just refused

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-W8-83-2019 | © Authors 2019. CC BY 4.0 License. 87

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W8, 2019
14th 3D Geolnfo Conference 2019, 24-27 September 2019, Singapore

to create a new CityGML node for a given node in the IFC
object graph if there was already one. A more developed
implementation now also checks whether there is an edge from
the entry CityGML node to the potential duplicate and allowed
creation of a second connected node if that is not the case.

Another type is when multiple attributes for the same node
in the CityGML graph use the same attribute or property
from the IFC graph. An example is the rules for RoomName
and RoomType. Both rules require the LongName attribute of
IfcSpace, as shown in Figure 12, and create new nodes. The
IFC path for both rules are exactly the same. Hence, the current
conversion implementation treats the second rule as a duplicate
of the first and does not create the second property node.

space | room
IfcSpace core:AbstractSpace

longName|

ifcProperty
+

gmlProp
ifc:IfcProperty

propertyName < RoomType

propertyValue < roomType ($name)

,,,,,,,,,,,,,,,,, room
core:AbstractSpace

longName| fifcProperty
+
+
5 . gmlProp
name >$name | - o ey
java:String propertyName < RoomName
propertyValue < ifcValueConverter ($name)

Figure 12. Rules that share the same left-hand side with
nodes of types IfcSpace, java:String and
core:AbstractSpace.

If the rules add attributes directly to the CityGML graph, they
can simply be combined to work around this issue, as shown
in the example in figure 13. However, if the rules create new
nodes, the conversion client is unable to handle the combined
rule.

product gmlObject
IfeProduct | -_____] gml:AbstractGMLType

gmlObject

globalld > Sguid id < guid (Sguid) eml: AbstractGMIType

product
IfcProduct
/ name > Sname || name <

Figure 13. Rules for GML ID and GML name, combined
into one rule.

name (Sname)

product gmlObject
IfcProduct L ______| gml:AbstractGMLType

globalld > Sguid id < guid (Sguid)

name > S$name name < name ($name)

3.1.7 Other issues. Apart from the different combinations
of where the information is obtained from the IFC graph and
added in CityGML graph described above, there are also some
issues that stem from the semantic structure and geometric
structure of the graphs.

One such issue occurs when trying to set attributes on nodes
in the CityGML graph that do not have corresponding nodes in
the IFC graph. One example involves the solid node in the rule
shown in Figure 14. Here, we wanted to implement a rule that
adds a randomly generated ID attribute to all AbstractGMLType
nodes. However, because this rule creates nodes that do not
correspond to the IFC graph and our conversion implementation
is heavily based on pairs of an IFC and a CityGML node as
nexuses between subsequently applied rules (entry and exit
node pairs), we were unable to do so for these particular nodes.

shape

IfcShapeModel multiSolid

gml:CompositeSolid
solidMember

Representationldentifier : Body

Items
"

solid
gml:Solid

exterior|
4

gmiShell
gml:Shell

Figure 14. Rule that creates a node of type Solid which
has no corresponding node in the IFC graph

IfcPolygonalFaceSet

4. RULE APPLICATION
4.1 Use cases

During our project on developing an automated approach
to convert IFC to CityGML, we have considered various
circumstances that would shape the development of our
conversion mechanism. Besides examining specific datasets
that were at our disposal and considering properties pertaining
to the geographic area we are dealing with, the development
of the conversion was driven by the intended use of the output
(CityGML) datasets.

We have carried out discovery sessions together with users of
the urban models, and identified a number of use cases for
which the datasets would be in general suitable for use. We
focused on three use cases that would be beneficial to look
into more details, and identified relevant properties that would
be potentially useful for these cases. The three domains of
interest are namely indoor navigation, urban planning, and
energy studies.

For each of the use cases we have highlighted a set of properties
that should be preserved during the conversion from IFC, and
for some of these the ADE had to be developed. For example,
for indoor navigation, it was deemed beneficial to retain the
information on elevators, stairs, accessibility of spaces, and size
of doors.

4.2 Ruleset

The resulting ruleset contains a total of 21 property rules,
distributed across the types described in Section 3. Some of the
rules correspond to more than one type. The ruleset contains

e 2 rules of type 1,

e 3 rules of type 2,

e 1 rule of type 3,

e 15 rules of type 4,

e 6 rules of combination type 5,

e 4 rules of combination type 6.

Conversions were carried out with the created ruleset on a
number of files. Three of them have been selected and
studied below, a full [IFC model of a non-residential building
in Singapore we have been provided with (BCA Academy)
and two residential estates (A and B) exported from Revit and
ArchiCAD files respectively. The resulting CityGML files,
generated with our conversion engine, are shown in Figure 15.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-W8-83-2019 | © Authors 2019. CC BY 4.0 License. 88

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W8, 2019
14th 3D Geolnfo Conference 2019, 24-27 September 2019, Singapore

Figure 15. Visualisation of resulting CityGML files from
the BCA Academy dataset (left), Estate A dataset (center)
and Estate B dataset (right).

Through the conversion, we also tracked how many times each
individual rule and each rule type was applied. Table 1 shows
the total number of times each rule type is applied for each IFC
file. Table 2 shows the details of each individual rule, its rule
type and how many times they are applied for the two IFC files.

BCA Academy | Estate A | Estate B
Rule Type 1 222410 | 325601 40664
Rule Type 2 1415 4506 939
Rule Type 3 701 2247 0
Rule Type 4 23150 62086 9709
Rule Type 5 2094 5773 0
Rule Type 6 1415 3566 1

Table 1. Number of applications for each rule type in the
3rd storey model and the full BCA Academy model

5. CONCLUSIONS
5.1 Discussion

The study has identified what and how attribute information is
represented in IFC and CityGML, and how they differ. This
helped us to gain a better understanding of the different factors
that affect how this type of information can be transferred from
IFC to CityGML. We have also described some of the issues
and difficulties that we encountered during the development of
property rules for our conversion application based on graph
transformation.

Having developed a rule set that successfully converted the
properties we have identified, it has also demonstrated the
possibility and flexibility of using a graph transformation
approach for property conversion. We managed to transfer 19
different properties across the 6 different scenarios we have
identified.

Through this process we have also managed to identify
more nuanced scenarios that added complexity to the graph
transformation approach for mapping information from one file
format to another. Towards the larger efforts of developing a
triple graph grammar approach for conversions between any
two file formats, knowledge of these scenarios has helped to
gain a better understanding of what might be required for a
more robust and sufficiently flexible conversion procedure.

5.2 Limitations

Due to the way the property rules have been separated into
individual graphs for each property, combining information
from different parts of the file is difficult. Many of the rules of
type 5 and 6 require unintuitive workarounds or are not possible
at the current stage of our implementation.

Also, the properties and attributes we have studied are only a
subset of what is possible in the IFC and CityGML schemas,

based on the models we were able to access and what
information might be useful for the use cases we considered.
With further studies of other portions of the two schemas (e.g.
the electrical or construction management domains for IFC and
the transportation or vegetation modules for CityGML), it is
possible that other cases and nuanced scenarios may be found.
These may result in additional rule structures.

5.3 Future work

Other possibilities for future work could lie in how these rules
could be developed more quickly or with less manual work
based on the patterns we have identified. It would be useful if
the patterns could be used to generate rules automatically given
a simple list of property names or the schema definitions.

Another possibility could involve studying more file formats
used in the building and geospatial community. It may be
possible that some larger or more generic patterns could be
derived from how information is stored differently across all
of them.

ACKNOWLEDGEMENTS

We gratefully acknowledge the comments from the
reviewers, and the IF2CityGML project team. This
material is based on research/work supported by the National
Research Foundation under Virtual Singapore Award No.
NRF2015VSG-AA3DCMO001-008.

REFERENCES

Biljecki, F., Kumar, K., Nagel, C., 2018. CityGML Application
Domain Extension (ADE): overview of developments. Open
Geospatial Data, Software and Standards, 3(1), 13.

Cheng, J. C. P, Deng, Y., Das, M., Anumba, C., 2014.
Evaluation of IFC4 for the GIS and green building domains.
Computing in Civil and Building Engineering, 2216-2223.

de Laat, R., van Berlo, L., 2011. Integration of BIM and
GIS: The development of the CityGML GeoBIM extension.
Advances in 3D Geo-Information Sciences, Springer Berlin
Heidelberg, 211-225.

Deng, Y., Cheng, J. C., Anumba, C., 2016. Mapping
between BIM and 3D GIS in different levels of detail using
schema mediation and instance comparison. Automation in
Construction, 67, 1-21.

Deng, Y., Cheng, J. C. P,, 2015. Automatic Transformation of
Different Levels of Detail in 3D GIS City Models in CityGML.
International Journal of 3-D Information Modeling, 4(3), 1-21.

Donkers, S., Ledoux, H., Zhao, J., Stoter, J., 2016. Automatic
conversion of IFC datasets to geometrically and semantically
correct CityGML LOD3 buildings. Transactions in GIS, 20(4),
547-569.

El-Mekawy, M., stman b, A., c, I. H., 2012. An Evaluation
of IFC-CityGML Unidirectional Conversion. International
Journal of Advanced Computer Science and Applications, 3(5).

Ellul, C., Stoter, J., Harrie, L., Shariat, M., Behan, A., Pla,
M., 2018. Investigating the state of play of GeoBIM across
Europe. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.,
XLII-4/W10, 19-26.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-W8-83-2019 | © Authors 2019. CC BY 4.0 License. 89

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W8, 2019
14th 3D Geolnfo Conference 2019, 24-27 September 2019, Singapore

. No. of application | No. of application | No. of application
Rule Name Rule Type | Combination (BCA A?; demy) (Estate lg’ (Estate é))p
IsExternal2SpaceType 3 6 701 2247 0
HandicapAccessible 4 6 0 0 0
Internal & External Access 4 6 703 1570 1
FloorSurfaceMaterial 4 56 0 0
Name2RoomType 4 701 2247 462
MaterialLayerSet2Material 4 12364 31771 0
MaterialConstituentSet2Material 4 1912 3044 0
NoOfStories 4 1 1 1
RoofTilt 4 6 11 16 0
RoomHeight 4 5 701 2247 0
RandomUuid2Gmld 1 205257 227318 27104
IfcGuid2Gmlld + GmIName 1 17153 98283 13560
RoomName 2 701 2247 462
StoreyName 2 13 12 15
DoorWidth 4 5 567 1570 0
RoofArea 4 5 11 204 0
WindowHeight 4 5 122 91 0
WindowWidth 4 5 122 91 0
DoorHeight 4 5 571 1570 0
RoomNumber 2 701 2247 462
ThermalTransmittance 4 5308 17664 9243

Table 2. Table of each rule, its corresponding type and how often each rule is applied in the BCA Academy Model,
Estate A Model and Estate B Model

Floros, G., Pispidikis, I., Dimopoulou, E., 2017. Investigating
integration capabilities between IFC and CityGML LOD3 for
3D city modelling.

Gilbert, T., Barr, S., James, P, Morley, J., Ji, Q.
2018. Software Systems Approach to Multi-Scale GIS-BIM
Utility Infrastructure Network Integration and Resource Flow
Simulation. ISPRS International Journal of Geo-Information,
7(8).

Hor, A.-H., Jadidi, A., Sohn, G., 2016. BIM-GIS Integrated
Geospatial Information Model Using Semantic Web And RDF
Graphs. ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, 111-4, 73-79.

Irizarry, J., Karan, E. P., 2012. Optimizing location of tower
cranes on construction sites through GIS and BIM integration.
ITcon, 17, 351-366.

Kang, T. W., Hong, C. H., 2017. IFC-CityGML LOD
mapping automation using multiprocessing-based screen-buffer
scanning including mapping rule. KSCE Journal of Civil
Engineering, 4(4), 1-11.

Kutzner, T., Kolbe, T. H., 2018. CityGML 3.0: Sneak preview.
38. Wissenschaftlich-Technische Jahrestagung der DGPF und
PFGKI8 Tagung, Publikationen der DGPF, 27, Munich,
Germany, 835-839.

Liu, X., Wang, X., Wright, G., Cheng, J., Li, X., Liu,
R., 2017. A State-of-the-Art Review on the Integration
of Building Information Modeling (BIM) and Geographic
Information System (GIS). ISPRS International Journal of
Geo-Information, 6(2), 53.

Rafiee, A., Dias, E., Fruijtier, S., Scholten, H., 2014. From
BIM to Geo-analysis: View Coverage and Shadow Analysis

by BIM/GIS Integration. Procedia Environmental Sciences, 22,
397 - 402.

Schiirr, A., 1995. Specification of graph translators with
triple graph grammars. Graph-Theoretic Concepts in Computer
Science, 151-163.

Stouffs, R., Tauscher, H., Biljecki, F., 2018. Achieving
Complete and Near-Lossless Conversion from IFC to
CityGML. ISPRS International Journal of Geo-Information,
7(9), 355.

Tauscher, H., Stouffs, R., 2019. Extracting different
spatio-semantic structures from IFC using a triple graph
grammar. Intelligent and informed: 24th Annual Conference
of the Association for Computer-Aided Architectural Design
Research in Asia (CAADRIA 2019), Wellington, New Zealand,
605-614.

Wang, H., Pan, Y., Luo, X., 2019. Integration of BIM and GIS
in sustainable built environment: A review and bibliometric
analysis. Automation in Construction, 103, 41-52.

Zhu, J., Wright, G., Wang, J., Wang, X., 2018. A Critical
Review of the Integration of Geographic Information System
and Building Information Modelling at the Data Level. ISPRS
International Journal of Geo-Information, 7(2).

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-W8-83-2019 | © Authors 2019. CC BY 4.0 License. 90

