
HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION 1

Graph Visualization and Navigation in Information
Visualization: a Survey

Ivan Herman, Member, IEEE CS Society, Guy Melançon, and M. Scott Marshall

Abstract—This is a survey on graph visualization and navigation techniques, as used in information visualization. Graphs appear in
numerous applications such as web browsing, state–transition diagrams, and data structures. The ability to visualize and to
navigate in these potentially large, abstract graphs is often a crucial part of an application. Information visualization has specific
requirements, which means that this survey approaches the results of traditional graph drawing from a different perspective.

Index Terms—Information visualization, graph visualization, graph drawing, navigation, focus+context, fish–eye, clustering.

1 Introduction

lthough the visualization of graphs is the subject of this
survey, it is not about graph drawing in general.

Excellent bibliographic surveys[4],[34], books[5], or even
on–line tutorials[26] exist for graph drawing. Instead, the
handling of graphs is considered with respect to information
visualization.

Information visualization has become a large field and
“sub–fields” are beginning to emerge (see for example Card
et al.[16] for a recent collection of papers from the last
decade). A simple way to determine the applicability of graph
visualization is to consider the following question: is there an
inherent relation among the data elements to be visualized?
If the answer to the question is “no”, than data elements are
“unstructured” and the goal of the information visualization
system might be to help discover relations among data
through visual means. If, however, the answer to the question
is “yes”, then the data can be represented by the nodes of a
graph, with the edges representing the relations.

Information visualization research dealing with
unstructured data has a distinct flavour. However, such
research is not the subject of this survey. Instead, our
discussion focuses on representations of structured data, i.e.,
where graphs are the fundamental structural representation
of the data. Information visualization has specific
requirements, which means that we will approach the results
of traditional graph drawing from a different perspective than
the other surveys.

1.1 Typical Application Areas
Graph visualization has many areas of application. Most
people have encountered a file hierarchy on a computer
system. A file hierarchy can be represented as a tree (a special
type of graph). It is often necessary to navigate through the
file hierarchy in order to find a particular file. Anyone who
has done this has probably experienced a few of the problems

involved in graph visualization: “Where am I?” “Where is the
file that I'm looking for?” Other familiar types of graphs
include the hierarchy illustrated in an organisational chart and
taxonomies that portray the relations between species. Web
site maps are another application of graphs as well as
browsing history. In biology and chemistry, graphs are
applied to evolutionary trees, phylogenetic trees, molecular
maps, genetic maps, biochemical pathways, and protein
functions. Other areas of application include object–oriented
systems (class browsers), data structures (compiler data
structures in particular), real–time systems (state–transition
diagrams, Petri nets), data flow diagrams, subroutine–call
graphs, entity relationship diagrams (e.g. UML and database
structures), semantic networks and knowledge–representation
diagrams, project management (PERT diagrams), logic
programming (SLD–trees), VLSI (circuit schematics), virtual
reality (scene graphs), and document management systems.
Note that the information isn’t always guaranteed to be in a
purely hierarchical format — this necessitates techniques
which can deal with more general graphs than trees.

1.2 Key Issues in Graph Visualisation
The size of the graph to view is a key issue in graph
visualization. Large graphs pose several difficult problems. If
the number of elements is large it can compromise
performance or even reach the limits of the viewing platform.
Even if it is possible to layout and display all the elements,
the issue of viewability or usability arises, because it will
become impossible to discern between nodes and edges (see
Figure 1, although this tree is by no means a very complex
one). In fact, usability becomes an issue even before the
problem of discernability is reached. It is well known that
comprehension and detailed analysis of data in graph
structures is easiest when the size of the displayed graph is
small. In general, displaying an entire large graph may give an
indication of the overall structure or a location within it but
makes it difficult to comprehend. These issues form the
context for most of this survey.

A

• The authors are with the Centre for Mathematics and Computer

Sciences (CWI), Amsterdam, The Netherlands
 E–mail: I.Herman@cwi.nl, G.Melancon@cwi.nl,

M.S.Marshall@cwi.nl

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. X, XXX, 2000

Other than the usual reference to information overload
and the occasional reference to some of the gestalt principles,
papers in information visualization rarely apply cognitive
science and human factors. This is for no lack of trying; very
few of the findings in cognitive science have practical
applications at this time and very few usability studies have
been done. Cognitive aspects are undoubtedly a subject for
future research. For this reason, an objective evaluation of the
merits of a given approach is difficult; the reader has to bear
this limitation in mind when various techniques are
presented.1

The rest of this survey is organized as follows: In
Section 2, we try to give an impression of graph layout issues
and limitations with regard to scaleability. Then, we discuss
several approaches to navigation of large graphs (Section 3),
followed by methods of reducing visual complexity through
reorganisation of the data (Section 4). Afterwards, we discuss
a few application systems that implement many of the
techniques described in this survey (Section 5). To help the
reader pursue further research and development, we have
listed the various sources of information that we found
particularly important for graph visualization (Section 6) and
provided an extensive list of references.

2 Graph Layout

This section looks at the current results in graph drawing and
layout algorithms, but from the point of view of graph
visualization in information visualization. As we will see, this
point of view differs, in many respects, from the traditional
view of the Graph Drawing community. We will give an
account of the available results and discuss their relevance for
graph visualization, although, in general, we will not go too
far into the technical details. For those desiring more
information, we recommend the excellent book of Battista et
al.[5] as one of the best starting points.

1 Ware’s new book[123] may become an important source of information in

this area, although, at the time of finalization of this manuscript, only a draft
version is available, which does not allow a thorough judgement.

2.1 Background of Graph Drawing
The Graph Drawing community2 grew around the yearly
Symposia on Graph Drawing (GD ’XX conferences), which
were initiated in 1992 in Rome. Springer–Verlag publishes
the proceedings of the conference in the LNCS series, which
contains new layout algorithms, theoretical results on their
efficiency or limitations, and systems demonstrations. The
recent electronic Journal of Graph Algorithms and
Applications is dedicated to papers concerned with design
and analysis of graph algorithms, as well as with experiences
and applications.

The basic graph drawing problem can be put simply: given
a set of nodes with a set of edges (relations), calculate the
position of the nodes and the curve to be drawn for each edge.
Of course, this problem has always existed, for the simple
reason that a graph is often defined by its drawing. Indeed,
Euler himself relied on a drawing to solve the “Königsberger
Brückenproblem” in his 1736 paper (see the recent book of
Jungnickel[74]). The annotated bibliography by Battista et
al.[4] gathers hundreds of papers studying what a good
drawing of a graph is. That is where the problem becomes
more intricate: it requires the definition of properties and a
classification of layouts according to the type of graphs to
which they can be applied. For example, a familiar property is
planarity — whether it is possible to draw a graph on the
plane with no edge crossings. Layout algorithms may be
categorized with respect to the type of layout they generate.
For example, grid layouts position nodes of a graph at points
with integer coordinates. Other categories of layouts are
defined by the methodology on which they are based. For
example, non–deterministic approaches form a category that
uses algorithms such as force–directed models or simulated
annealing. Each class of graphs and layouts thus generates its
own set of problems. Planarity, for example, raises problems
such as:

2 http://www.cs.brown.edu/people/rt/gd.html

Fig. 1 A tree layout for a moderately large graph

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION 3

• Planarity tests for graphs: is it possible to draw a
graph without edge–crossings?

• Planar layout algorithms according to various
constraints: given that a graph is planar, find a layout
satisfying a group of constraints.

Many constraints in use are also expressed in terms of
aesthetic rules imposed on the final layout. Nodes and edges
must be evenly distributed, edges should all have the same
length, edges must be straight lines, isomorphic sub–
structures should be displayed in the same manner, edge–
crossings should be kept to a minimum, etc.1 Trees have
received the most attention in the literature. Consequently,
additional aesthetics rules have also been formulated for
them. For example, nodes with equal depth should be placed
on a same horizontal line, distance between sibling nodes is
usually fixed, etc. See again the book of Battista et al.[5] for
further examples.

The Reingold and Tilford algorithm for trees[103],[121]
(see Figure 1) is a good example of a layout algorithm
achieving these aesthetics goals. Isomorphic subtrees are laid
out in exactly the same way, and distance between nodes is a
parameter of the algorithm. On the other hand, the more
straightforward and naive algorithm for displaying a tree,
consisting of distributing the available horizontal space to
subtrees according to their number of leaves, actually fails to
achieve some of the aesthetic rules listed above.

Although the adjective “aesthetic” is used, some rules
were originally motivated by more practical issues. For
instance, minimisation of the full graph area might be an
important criterion in applications. Some of the rules clearly
apply to a certain category of graphs or layouts only, others
have a more “absolute” character. Furthermore, each of the
rules defines an associated optimisation problem, used in a
number of non–deterministic layout algorithms22.

There has been some work lately which questions the
absolute character of those rules, however. Usability studies
were conducted in order to evaluate the relevance of these
aesthetics for the end–user. Purchase[100]demonstrates that
“reducing the crossings is by far the most important aesthetic,
while minimizing the number of bends and maximizing
symmetry have a lesser effect”. Her work concludes by
prioritizing these aesthetics; see also Purchase et
al.[101],[102] for more details. Other authors[10],[29],[86]
report differences in the perception of a graph depending on
its layout. Unfortunately, usability studies necessitate a great
effort, both to realize the experimentation itself and to
analyse its results properly, but we regard this line of work as
essential for information visualization as well. They have
recently gained credibility in the graph visualization
community as well, recognizing their contribution to help
focus on important issues in the area.

A wide variety of tasks related to graph drawing have been
studied: layering a graph, turning it into an acyclic directed
graph, planarisation of a graph, minimizing the area occupied

1Actually, some aesthetics are quite arbitrary and are not seen as absolute

rules any more[100],[101]. Ware’s book[123] is also an interesting source of
information for this topic.

by a layout, minimizing the number of bends in edges, etc.
Unfortunately, many of the associated algorithms are too
complex to be practical for applications. On the positive side,
this has motivated the development of effective heuristics to
overcome the complexity of some of these problems[5],[34].

In graph visualization, a major problem that needs to be
addressed is the size of the graph. Few systems can claim to
deal effectively with thousands of nodes, although graphs
with this order of magnitude appear in a wide variety of
applications. NicheWorks[126]or H3Viewer[94]are among
the few systems that claim to handle data sets with thousands
of elements. The size of a graph can make a normally good
layout algorithm completely unusable. In fact, a layout
algorithm may produce good layouts for graphs of several
hundred nodes, but this does not guarantee that it will scale
up to several thousand nodes. For example, Figure 1
illustrates a tree with a few hundred nodes laid out using the
classical Reingold and Tilford algorithm. The high density of
the layout comes as no surprise, and changing particular
parameters of the algorithm will not improve the picture for
the graph. Other 2D layout techniques could be used, but
most layout algorithms suffer from the same problem.
Because the layout is so dense, interaction with the graph
becomes difficult. Occlusions in the picture make it
impossible to navigate and query about particular nodes. The
use of 3D or of non–Euclidean geometry have also been
proposed to alleviate these problems. Sections 2.4 and 2.5
provide more details about these techniques. However,
beyond a certain limit, no algorithm will guarantee a proper
layout of large graphs. There is simply not enough space on
the screen. In fact, from a cognitive perspective, it does not
even make sense to display a very large amount of data.
Consequently, a first step in the visualization process is often
to reduce the size of the graph to display. As a result, classical
layout algorithms remain usable tools for visualization, but
only when combined with these techniques.

Other properties of a layout algorithm can be critical when
navigating through a graph. The concept of predictability has
been identified as an important and necessary aspect of layout
algorithms[61],[99]. What is meant by predictability is that
two different runs of the algorithm, involving the same or
similar graphs, should not lead to radically different visual
representations. This property is also referred to in the
literature as “preserving the mental map” of the user[90].
Predictability is often ignored during analysis of classical
layout algorithms, which are often only used to produce a
static view of a graph.

Another important issue is time complexity. Any
visualization system needs to provide near real–time
interaction, where updates must be done in very short time
intervals in order to escape the notice of the user. Having an
accurate estimate of the time complexity of an algorithm can
be of great help for the implementation of large systems when
planning which algorithm to apply.

2.2 Traditional Layout — an Overview
We will briefly review existing layout techniques in graph
drawing, keeping the issues of predictability and time

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. X, XXX, 2000

complexity in mind. Figure 2 gives a classification of existing
layout techniques. This classification is the work of Mutzel et
al.[96]. Most of the algorithms are described in the book of
Battista et al.[5]. We will focus on the Layout box containing
a list of possible layout types.

A classical Tree Layout will position children nodes
“below” their common ancestor. The algorithm by Reingold
and Tilford[103],[121] is probably the best known layout
technique in the tree layout category (see Figure 1). It can be
adapted to produce top–down as well as left–to–right tree
layout, and can also be set to output grid–like positioning

H–tree layouts are also classical representations for binary
trees[113] which only perform well on balanced trees.
Eades[35] suggests a variation of the algorithm that behaves
well in general (see Figure 3). The radial positioning by
Eades[35] places nodes on concentric circles according to
their depth in the tree (see Figure 4). A subtree is then laid out
over a sector of the circle and the algorithm ensures that two
adjacent sectors do not overlap (although this condition can
be ignored to obtain relatively good drawings on
average[63],[126]). The cone tree[20],[106] algorithm can be
used to obtain a “balloon view” of the tree by projecting it
onto the plane[20],[71], where sibling subtrees are included
in circles attached to the father node. It is also possible to
compute the nodes’ position directly, without reference to

cone trees[87] (see Figure 5; Section 2.4 describes cone trees
in more detail).

The Reingold and Tilford algorithm produces a more
classical drawing in the sense that the drawing clearly reflects
the intrinsic hierarchy of the data. The radial and H–tree
positioning are different in this respect, because it is less clear
where the root of the tree is and thus one might explore the
graph in a less hierarchical fashion. The Reingold and Tilford,
H–tree, radial, and balloon layouts are all predictable. Tree
layout problems usually have the lowest complexity, which is
linear in the number of nodes. As we can see, although the
Tree Layout box occupies only a small area of Figure 2, it
contains a variety of layouts. Chapter 3.1 of the book by
Battista et al.[5] is a good starting point for a further
overview of these tree layout techniques. Two tree layout
algorithms, which are not part of the “traditional” arsenal, are
also worth mentioning here: tree–maps[72] (see Figure 6),
and onion graphs[115], which represent trees by sequences of
nested boxes. It is important to note that, in tree–maps, the
size of the individual rectangles is significant. For example, if
the tree represents a file system hierarchy, this size may be
proportional to the size of the respective file. This is why
tree–maps enjoy popularity in information visualization, in
spite of the fact that it is difficult to perceive the structure in

Edge Insertion

Shortest Path

Subgraph (extraction)

Planar subgraph

Acyclic subgraph

(Two Layer)
Crossing Minimization

Barycenter heuristic

Median Heuristic

Split Heuristic

Greedy Insert

Greedy Switch

Cross. Min. Opt.

Rank Assignment

DFS Ranking

Hierarchy Ranking

Hierarchy Layout

Fast Hierarchy Layout

Layout

Visibility representation

Convex Layout

FPP Layout

Schnyder Layout

No crossings

Grid Layout

Ranking

Cross. Min.

Compute Coord.

Tree Layout

Sugiyama Layout

Spring Layout

Tutte Layout

Planar Layout Planar Grid Layout

Compaction

Augment.

Planarization
Planarize subgraph

Insert edges

Fig 2. Overview of graph layout algorithms. (Reproduced from Mutzel et al.[96], courtesy of T. Mutzel, Max–Planck–Institut, Saarbrücken,
Germany)

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION 5

this representation1. An attempt to overcome this problem has
been recently presented by Wijk and Wetering[125], in the
form of cushion tree–maps.

A separate box at the bottom of Figure 2 is devoted to
Planarity. This is a critical issue in graph drawing, because
planarity of a graph may be an important constraint imposed
by practical applications (such as graphs representing printed
circuit boards). The complexity for testing planarity for
undirected graphs can be linear[67] (see Chapter 3.3 in
Battista et al.[5]. See also Mehlhorn and Mutzel[88] for a
discussion on implementation issues). However, many
applications impose the additional requirement that edges are
all in the same direction (planar drawings often make use of
edges going around some nodes to avoid crossings). This
condition, called upward planarity, turns the original problem
into an NP problem (see Garg and Tamassia[54]. See also
Chapter 6 in Battista et al.[5]). In information visualization
applications, it only makes sense to check for planarity when
dealing with a small and sparse graph[3],[30], such as a
subgraph obtained by clustering a larger graph (see
Section 4.). In general, we can safely say that planarity is not
a central issue in information visualization.

The Sugiyama Layout box included in Figure 2 is named
after the seminal work by Sugiyama on layout for general
directed graphs[117]. The basic approach to laying out a
directed graph is to first decide on a layering of its nodes;
that is, assign a layer number to each node and place nodes of
a given layer in a certain order. Several layering techniques
exist, the majority of which rely on the extraction of an
acyclic subgraph. In this process, a subgraph containing all
nodes of the original graph is extracted in such a way that
when nodes have been placed in their respective layers, edges
will all point in the same direction (usually downwards).
Another solution is not to extract a subgraph but turn the
original graph into an acyclic one by reversing the direction of
a subset of the edges.

Once the nodes have been assigned to layers, one must
position the nodes within the same layer following an
imposed order. A major effort has been invested in edge–
crossing minimization[5],[34] since the crossing of edges has
been recognized as a major obstacle to the readability of
graphs[100],[101]. This is usually done by minimizing the

1 The value of the tree–map is demonstrated in an interactive java applet at

http://smartmoney.com/marketmap/

number of edge–crossings between two consecutive layers.
This minimization step is the core of complexity for the
whole algorithm. Note that these strategies do not address the
problem of minimizing the number of crossings in the whole
graph: even with the restriction of looking at consecutive
layers only, minimization of edge–crossings is difficult and
complex. In fact, Garey and Johnson proved the problem to
be NP–hard[53] and Eades and Whitesides proved the
corresponding decision problem to be NP–complete[36].

The complexity of a proper minimization has motivated
the development of various heuristics for computing a good
order for the nodes on a layer. Tutte[119] was the first to
propose a heuristics: starting from an order on the top and

Fig 3. H–tree layout

Fig 4. Radial View

Fig 5. Balloon view

Fig 6. Tree–map: rectangles with colour belong to the same
level of the (tree) hierarchy. (Adapted from Johnson and
Schneiderman[72].)

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. X, XXX, 2000

bottom layers, the coordinates of a node are defined to be the
barycenter of those of its neighbours. This corresponds to the
intuitive idea that a node should be kept “close” to its
neighbours. The solution is then obtained by solving a system
of linear equations. One variation to this scheme is to
compute barycentric coordinates by performing a layer by
layer descent in the graph. More generally, the four boxes on
the left of the figure correspond to various pre–processing
possibilities for the algorithm in the Sugiyama Layout
category. New improvements and perspectives to the problem
were published recently[73],[79] which include a detailed
report on existing techniques[80], and a comparison of
existing heuristics[81].

The critical element of the general scheme for directed
graphs is its high complexity, although it might be kept within
reasonable bounds if the size of the graph — or should we say
subgraph — to be drawn is kept small. The ranking process in
itself has a low cost. Indeed, a breadth first search of the
graph returns an acyclic subgraph that can be used for
layering. However, the choice of this subgraph can determine
the quality of the final layout. We will return to that issue
later. It is also not clear whether any algorithm in this class
will be predictable. Some approaches can certainly be made
predictable, but then the price to pay will be a greater
complexity due to the loss in flexibility in reordering the
nodes on a layer. Battista et al. give a detailed account of
edge–crossing minimization in Chapter 9 of their book[5].

The Spring Layout box stands for all non–deterministic
layout techniques, also called Force–Directed Methods.
Eades[33] was the first to propose this approach in graph
drawing, modelling nodes and edges of a graph as physical
bodies tied with springs. Using Hooke’s law describing forces
between the bodies he was able to produce layouts for
(undirected) graphs. Since then, his method was revisited and
improved[28],[47],[49],[75]. Mathematically, the methods
are based on an optimization problem. Different physical
models lead to algorithms of different complexities and they
produce layouts of varying quality. Spring layouts have been
used successfully to produce well-balanced layout for graphs.
In some cases, their output can even behave well with respect
to edge–crossing minimization without any supplementary
efforts[47]. Bertault has recently developed a force–directed
model preserving edge–crossings, turning it into a more
predictable approach[9].

In general, however, force–directed methods can be rather
slow. Each iteration involves a visit of all pairs of nodes in the
graph and the quality of the layout depends on the number of
full iterations: each step improves the positions following the
underlying mathematical model. Even one of the best
variants[47] is still estimated to work with a complexity of
O(N3), where N is the number of nodes in the graph.
Moreover, two different runs of the algorithm on almost
identical graphs might produce radically different layouts. In
other words, the methods may be highly unpredictable. This
makes them less interesting for information visualization,
since unpredictability can be a major problem for interaction.
However, in some cases, the lack of predictability can be
compensated if the graph is small or sparse, by animating

changes in the layout to help the user in adapting to the new
drawing[69]. For further information on force–directed
methods, the reader should refer to the comparison of non–
deterministic techniques of Brandenburg et al.[12] or Chapter
10 in the book of Battista et al.[5].

We will not discuss layouts on grids here. We refer to
Battista et al.[5] for details on that as well as for learning
more about the additional techniques included in the boxes
“Compaction” and “Augmentation” on the right side of
Figure 2. None of these techniques play a central role in graph
visualization.

 The classification of algorithms in Figure 2 assumes that
layout is determined only by the nodes and edges, without
additional constraints. However, some work has been done
with applications where the nodes of the graph have pre-
assigned positions in the plane, such as geographical
positions. The challenge is then to find a way to draw edges,
for example, by using polylines or spline curves[6],[13],[97].

2.3 Spanning Trees
A general problem with the majority of the available
techniques is that they are only applicable for relatively small
graphs1. The “traditional” concerns of Graph Drawing
become much less relevant in graph visualization, which
typically deals with relatively large graphs. In general, it
makes no sense to test a graph of several hundreds of nodes
for planarity or to try to minimize edge–crossings. Often the
most obvious and practical solution is simply to layout a
spanning tree for the graph. As we have already seen, tree
layout algorithms[20],[35],[103],[121] have the lowest
complexity and are simpler to implement. The problem is
then transformed into one of finding a spanning tree. That
option involves laying out a graph based on the positioning of
a tree containing all nodes of the graph, which had been
previously extracted from the graph. Additional edges are
then added to that of the tree. The literature in graph theory
proposes a long list of algorithms to compute spanning trees
for graphs, both for the directed and undirected cases (see, for
example, Jungnickel[74]). Incidentally, using a spanning tree
to layout a graph can also be a solution to gain predictability
of the layout. Although spanning trees are obviously not the
only layout approach in graph visualization, they certainly do
and will play an important role.

Extracting a spanning tree with no particular property can
be done easily. One approach is to visit the nodes of the graph
through a breadth first search and collect edges to form a tree.
The search can start from a node that is more likely to “act”
as the root of the extracted tree. A node whose distance to all
other nodes is minimal is a good candidate[11]. More
sophisticated algorithms have been designed to satisfy various
optimization goals. If a weight function exists for the graph,
algorithms exist to compute spanning trees minimizing (or
maximizing) the total weight of the tree. One solution is to
iteratively build a tree by adding edges adjacent to the set of

1 This is clearly shown by the size of the graphs submitted each year to the

Graph Drawing Contest, although bigger graphs — and also graphs coming
from real–world applications — have also been included in recent years.

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION 7

already selected nodes, each time selecting an edge with
minimal (maximal) weight. Different choices for the weight
function will yield different solutions and will also affect the
complexity of the extracting process (see, for example,
Chapters 4 and 5 of Jungnickel[74]). The complexity of this
task varies according to the variant used. The naive solution
has a complexity of O(N2), better solutions exist which bring
the complexity down to O(N logN) or to O(E logN) (where N
and E denote the number of nodes and edges of the graph,
respectively).

A weight function can be used to extract different
spanning trees and, consequently, to obtain different possible
layouts for the same graph (although the implementor must be
aware of the fact that a spanning tree realizing an
optimization goal for a given weight function does not
necessarily produce a good view of the graph). Use of weight
functions can also be applied to directed acyclic graphs, to
avoid going through the task of edge–crossing minimization.
For large and dense acyclic directed graphs, the use of layers
as a weight function (the weight of a node or edge is its layer
number) has proven to give good results (see, for instance,
Herman et al.[63]).

2.4 3D Layout
One popular technique is to display graphs in 3D instead of
2D. The hope is that the extra dimension would give, literally,
more “space”, and that this would ease the problem of
displaying large structures. Furthermore, the user can
navigate to find a view without occlusions. The simplest
approach is to generalize classical 2D layout algorithms for
3D. Figure 7, for example, shows a 3D version of a radial tree
algorithm, while
Figure 8 is a generalization[104] of the two–dimensional
approach using nested boxes[115]. Most force–directed
methods are also described in dimension independent terms,
which allows them to be generalized to 3D (such as the
approaches based on simulated annealing by Davidson and
Harel[28] and also from Cruz and Twarog[27]). The reader

may find further examples in the overview by Young[128] or
in the new book of Ware[123].

In spite of their apparent simplicity, Figures 7 and 8 show
that displaying graphs in 3D can also introduce new
problems. Objects in 3D can occlude one another, and it is
also difficult to choose the best “view” in space[38]. As a
consequence, virtually all 3D displays of graphs include
additional visual cues, like transparency, depth queuing, etc.
They also allow the user to interactively change the view by
“moving around” in space. But the ability to change
perspective adds another difficulty. Common practices such
as the minimization of edge–crossings are less rewarding if
the user can change the perspective and see edge–crossings
from another angle. However, it is the job of the application
to provide the best possible view of the information in the
perspective initially provided to the user, so aesthetics cannot
be dismissed.

The cone tree[106],[107] (see Figure 9) is one of the best
known 3D graph (in this case, tree) layout techniques in
information visualization1. In contrast to the previous
examples, cone trees have been developed directly for 3D,
instead of generalizing another 2D algorithm.

Mathematically, the layout is quite simple. Nodes are
placed at the apex of a cone with its children placed evenly
along its base. In the original implementation, each layer has

1 The term “cam tree” is also used sometimes. Strictly speaking, cam trees

are horizontal arrangements, whereas cone trees are vertical. We will not
differentiate between them.

Fig 7. 3D version of a radial algorithm. (Courtesy of S. Benford,
University of Nottingham, UK.)

Fig 8. Information Cube. (Courtesy of J. Rekimoto, Sony Computer
Science Laboratory, Inc., Japan[104].)

Fig 9. A Cone Tree. (Courtesy of M. Hemmje, GMD, Germany[59].)

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. X, XXX, 2000

cones of the same height, and the cone base diameters for
each level are reduced in a progression so that the bottom
layer fits into the width of what the authors called the “room”,
i.e., the box containing the full cone tree. The original idea of
cone trees has been re–implemented by others[20],[59],[71]
with, in some cases, a somewhat refined layout algorithm.
Carrière and Kazman[20], for example, calculate an
approximation of the diameter for each cone base by
traversing the tree bottom–up and by taking the number of
descendents into account at each step, to make better use of
the available space. Jeong and Pang[71] replace the cones
with discs to reduce occlusion.

The interactive and visual aspects of cone trees are
essential to make them usable. Not only are some of the
labels at the nodes transparent, but the user can pick any node
and rotate the cone tree so that the chosen node is brought to
the front. This can either be done automatically by the
system, or as a result of further user interaction. For
horizontal cone trees, the effect somewhat resembles stepping
through Rolodex cards arranged in multiple levels.

Gaining more “space” is not the only possible advantage
of using 3D. Because of general human familiarity with 3D in
the physical world, 3D lends itself to the creation of real–
world metaphors that should help in perceiving complex
structures. One of the earliest widespread applications is the
File System Navigator (see Figure 10), which came with
earlier SGI Workstations until version 5 of their operating
system. The layout of the graph (a tree representing the user’s
file space) is a simple planar layout. The 3D aspect consists,
on the one hand, of adding blocks on the plane whose sizes
are proportional to the file sizes and, on the other hand, of the
ability to “fly” over the virtual landscape created by those
blocks. This “fly through” idea has been implemented since in
various other systems, see, for example, STARLIGHT[105],
or, more recently, the system presented by Chen and
Carr[22]. More complex 3D metaphors include the
Perspective Wall[107], which represents the data as posters
on a big wall in virtual space. VizNet[43] and Vitesse[98]
both use an idea similar to the perspective wall by mapping
objects onto the surface of a sphere with highly related

objects placed close to a selected object of interest. The Web
Book[15] displays an animated book in 3D with Web page
contents, etc. Here again, we refer to the overview of
Young[128] for further examples.

In spite of all the technical development in the area, and
their undeniably attractive features, 3D graph visualization
techniques have significant difficulties. In our view, the main
reason lies with the inherent cognitive difficulties of 3D
navigation in our current systems. Perceptual and navigational
conflicts are caused by the discrepancy of using 2D screens
and 2D input devices to interact with a 3D world, combined
with missing motion and stereo cues (see the overview of
Ware and Franck[122] for how important these cues are).
Limited 3D interaction, such as the ability to rotate an object
for inspection without getting closer to it, may provide 3D
interaction that doesn’t cause disorientation. If advanced VR–
like systems such as a Workbench, CAVE, or large tiled
displays are used, some of these difficulties may be solved.
However, such facilities are not widely available and are still
too expensive to serve as a basis for most information
visualization applications. However, when more advanced
display and interactive facilities (e.g. haptic displays and
interaction, stereo views, etc.) become more widely available,
3D techniques may have a profound effect in graph
visualization.

2.5 Hyperbolic Layout
The hyperbolic layout of graphs (mainly trees) is one of the
new forms of graph layouts which has been developed with
graph visualization and interaction in mind. The first papers
in this area are from Lamping et al.[82],[83], followed by a
series of papers by Munzner[92],[93],[94]. Both developed,
for example, Web content viewers based on these techniques.
The technique has been since used by other systems, too, see,
for example, Robinson[108] or Wilson and Bergeron[127].
Hyperbolic views, which can be implemented in either 2D or
3D, provide a distorted view of a tree (see Figure 11). It
resembles the effect of using fish–eye lenses on traditional
tree layouts. This distorted view makes it possible to interact

Fig 10. The SGI File System Navigator

Fig 11. Hyperbolic view of a tree in 3D. (Courtesy of T. Munzner,
Stanford University, USA.)

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION 9

with potentially large trees, making it suitable for real–life
applications. We will come back to this distortion effect later
in this survey (see Section 3.2), when we will focus on
navigation rather than layout.

Hyperbolic views represent a radically different direction
in layout, when compared to the various algorithms described
so far, due to their different geometrical background. In fact,
some of the classical layout algorithms can be re–used in a
hyperbolic setting, yielding sometimes quite different results,
as demonstrated later in this section. Hyperbolic views are
also surrounded by a sort of mystery, because few people in
the information visualization community really understand
the mathematics of hyperbolic visualization. Furthermore, it
is quite difficult to reproduce the results. Unfortunately, none
of the papers are didactic enough to reveal the mystery. We
will discuss the main elements of these layout methods
further, with the hope that the reader will gain a better
understanding of the technique.

Hyperbolic geometry is based on an axiomatic system
almost identical to the traditional Euclidean axioms with the
exception of one, the so–called 5th postulate. Whereas the
Euclidean postulate states that if a line does not intersect a
point, then there is only one line intersecting the point and
parallel to the original line (i.e., non–intersecting and co–
planar), in hyperbolic geometry there exists more than one
such parallel line. This alternative set of axioms results in a
perfectly consistent form of geometry, albeit different in
flavour: the traditional trigonometric equations are no longer
valid, the sum of the internal angles of a triangle is no longer
180 degrees, etc.1 (These differences, by the way, represent
significant difficulties for implementors using hyperbolic
geometry.)

It is also possible to define a consistent model for the
hyperbolic plane (or space) within the Euclidean space,
thereby making a logical link between the two worlds. A
model in this respect means defining a subset of the
Euclidean space and the notions of “points”, “lines”,
“intersections”, “length” within this subset, so that the axioms
of hyperbolic geometry would be valid locally. Several
different models were developed. The best known are the
Klein and the Poincaré models. The Klein model (see

1 The interested reader might want to refer to Coxeter[25] for further

details. Also, look at the papers of Gunn[56] or Hausman et al.[57].

Figure 12) uses an open disc (or sphere for 3D) as a subset,
i.e. the hyperbolic plane in this model consists of the points
within the perimeters of the disc. Hyperbolic lines are
represented by chords of the disc. Intersection is just the
Euclidean intersection. The only major difference is the
length of a line segment. We will not give a detailed
definition here. Suffice it to say that this length is defined as a
function of the position of the points vis–à–vis the perimeter
of the disc: segments which are congruent in a hyperbolic
sense are exponentially smaller in the Euclidean sense when
approaching the perimeter. To prove the local validity of all
the axioms of hyperbolic geometry requires some non–trivial
work. The validity of the negation of Euclid’s 5th postulate is
quite obvious, though, just consider the line l and the point P
on the figure. The Poincaré model is quite similar although
hyperbolic lines are represented by arcs which intersect
ortogonally the perimeter of the disc.

It is now possible to give a more exact description of what
the hyperbolic graph layouts do: they perform a layout
algorithm in the hyperbolic plane or space, and then display
the results in the familiar Euclidean plane or space using one
of the models of hyperbolic geometry. That is, what we see is
not hyperbolic geometry per se, but its representations in
Euclidean geometry. The original paper of Lamping et al.
used the Poincaré model, whereas Munzner primarily uses the
Klein model. In Figure 11, for example, the Klein model for

P

Q

R

Q''

Q'
Q1

R1

Q2

R2

Q3

R3
P2

P3

P1

α

α1

α2

α3

Fig 13. A simple tree positioning algorithm on the Euclidean plane.

P

Q

R

Q''

Q'

Q1

R1
Q2

R2

Q3

R3
P2

P3

P1

α

α1

α2

α3

Fig 14. The same tree positioning algorithm on the hyperbolic
plane, using the Klein model to visualize the results.

l

P

A B

A' B'

Fig. 12. The Klein for the hyperbolic plane. The line segments AB
and A’B’ have an equal length in the hyperbolic sense.

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. X, XXX, 2000

hyperbolic 3D space is used to display the tree. The distortion
effect referred to earlier is the result of the exponential
shrinking of congruent line segments closer to the disc
perimeter when viewed in the Euclidean space.

The different spatial nature of hyperbolic geometry makes
some rather simple layout algorithms suddenly viable. As an
example, consider the outline of the following tree placement
algorithm (see Figure 13)1. The algorithm starts from the root
of the tree, positioning the sub–trees recursively in a circular
fashion. In each step, the algorithm determines a wedge to
place a sub–tree. The goal is to find wedges in such a way
that no crossing would occur between edges of different sub–
trees. If the point P on the figure refers to a node, and the
wedge QPR with angle α is the one assigned to the sub–tree
starting at P, the main step of the algorithm is to define sub–
wedges for the sub–trees of P (starting at P1, P2, and P3). The
angle α is divided into (for the sake of simplicity, equal) sub–
angles, one for each sub–tree. The subdivision of the original
wedge results in the radii PQ’, PQ”, etc. (see the figure). The
points P1, P2, P3 are positioned in the middle of these sub–
wedges at some suitable distance from P. The next step is to
determine the constraining wedges for these sub–tree. This
can be done by establishing parallel lines with PQ, PQ’, PQ”,
starting at the points P1, P2, P3, etc. These lines will determine
the new wedges with angles α1, α2, α3, etc., and the recursion
step can continue for each of the corresponding sub–trees.
Obviously, because parallel lines are used, the children’s
wedges will not overlap.

The algorithm is very naive, and would lead to quite
unusable figures on the Euclidean plane. Indeed, the wedge
angles become very small after a few steps, which shrinks the
space available for the next sub–tree. However, if the same
algorithm is used on a hyperbolic plane, the situation is quite
different. Figure 14 shows the same algorithm in the Klein
model. The major difference is the way the parallel lines to

1 This algorithm is essentially the same as the one used in the paper of

Lamping et al.[83].

PQ’, PQ”, etc., are calculated: the (hyperbolic) parallel lines
are the lines intersecting on the perimeter of the disc of our
model. The effect will be to “open” the angles α1, α2, α3. To
cite Lamping et al.[83]: “each child will typically get a wedge
that spans about as big an angle as does its parent’s wedge”.
Of course, although visible on the Klein model, this statement
has to be substantiated through explicit formulae using the
hyperbolic trigonometric calculations, which is quite possible.
The result is a perfectly feasible layout algorithm. It should be
noted that Munzner uses different layouts. More details on
her spherical placement can be found in one of her
papers[93], which is actually a generalization of the cone tree
algorithm described in Section 2.4. However, here again, the
placement algorithm is used in terms of hyperbolic geometry,
taking advantage of the “large space” available in hyperbolic
space.

3 Navigation and Interaction

Navigation and interaction facilities are essential in
information visualization. No layout algorithm alone can
overcome the problems raised by the large sizes of the graphs
occurring in the visualization applications. Furthermore, the
task of revealing the structure of the graph calls for
innovative approaches, too.

3.1 Zoom and Pan
Zoom and pan are traditional tools in visualization. They are
quite indispensable when large graph structures are explored.
Zoom is particularly well suited for graphs because the
graphics used to display them is usually fairly simple (lines
and simple geometric forms). This means that zoom can, in
most cases, be performed by simply adjusting screen trans-
formations and redraw the screen’s contents from an internal
representation, rather than zooming into the pixel image. In
other words, no aliasing problems occur.

Zooming can take on two forms. Geometric zooming
simply provides a blow up of the graph content. Semantic
zooming means that the information content changes and
more details are shown when approaching a particular area of
the graph. The technical difficulty in this case is not with the
zooming operation itself, but rather with assigning an ap-
propriate level of detail, i.e., a sort of clustering, to subgraphs.
The more general problem of clustering is addressed in
Section 4.

Although conceptually simple, zoom and pan does raise
problems when used in interactive environments. Let us
imagine, for example, the following setting: the graph being
displayed is the road network of Europe, and the user has
zoomed into the area around Amsterdam. The user then wants
to change the view of the area around Milano. Doing this
without changing the zoom factor, at least temporarily, might
be too slow because the user has to first zoom out, pan to
Milano, and zoom in again. Furthermore, the user wants the
system to make the necessary moves smoothly. A naive
implementation might calculate the necessary changes for the
pan and the zoom independently and perform the changes in
parallel. The problem is that when zooming in, the world view

x

y

z

Fig 15. A space–scale diagram. The yellow rectangles represent
possible window positions in space–scale, yielding different zoom
factors and pan positions. (Adapted from Furnas and
Bederson[51].)

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION 11

expands exponentially fast, and the target point moves away
faster than the pan can keep up with. The net result is that the
target is approached non–monotonically: it first moves away
as the zoom dominates and only later comes back to the
center of the view, which can be quite disturbing.

The zoom and pan problem is not restricted to graphs, nor
is the elegant solution proposed by Furnas and Bederson[51]
to alleviate it. Nevertheless, graph visualization systems can
greatly benefit from their approach, so we will provide a short
description here. Furnas and Bederson introduce the concept
of space–scale diagrams (see Figure 15). The basic idea is to
define an abstract space “by creating many copies of the
original 2D picture, one at each possible magnification, and
stacking them up to form an inverted pyramid”. Points in the
original image can be represented by rays that contain
information both about the point and its magnification.
Various combinations of (continuous) zoom and pan actions
can then be described as paths in this space, by describing the
central position of a window parallel to the x–y plane. A cost,
or “length”, can also be associated to each path and, if the
length is judiciously chosen, a minimum length path can
represent an optimal combination of zoom and pan
movements. Furnas and Bederson not only give a solution to
the problem outlined above; space–scale diagrams can also be
used to describe semantic zooming (instead of stacking the
same picture in the pyramid, the content of the picture may
depend on the magnification level) which also allows for the
development of a specialized authoring system for semantic
zooming[52].

3.2 Focus+Context Techniques
A well–known problem with zooming is that if one zooms on
a focus, all contextual information is lost1. Such a loss of
context can become a considerable usability obstacle. A set of
techniques that allow the user to focus on some detail without
losing the context can alleviate this problem. The term
focus+context has been used to describe these techniques.
They do not replace zoom and pan, but rather complement
them. The complexity of the underlying data might make
zoom an absolute necessity. However, focus+context
techniques are a good alternative and full–blown applications
systems often implement both.2

3.2.1 Fisheye Distortion

Graphical fisheye views are popular techniques for
focus+context. Fisheye views imitate the well–known fisheye
lens effect, by enlarging an area of interest, and showing
other portions of the image with successively less detail (see
Figure 16).

We will describe some of the mathematics involved in the
fisheye technique. Conceptually, the graph is mapped onto

1 Unless a separate window keeps the context visible, which is done by

several systems. But this solution is not fully satisfactory either.
2 All techniques described in this section are geometric, i.e., they operate on

the geometric representation of the underlying graphs. This is in contrast with a
logical focus+context view described in an often–cited paper of Furnas[50]. In
our view, the work of Furnas is more related to what we call “metrics”, rather
than to graphical focus+context. See Section 4.2 for further details.

the plane and a “focus” point is defined (usually by the user).
The distance from the focus to each node of the tree is then
distorted by a function h(x) and the distorted points, and
connecting edges, are displayed. The function h(x) should be
concave, mapping monotonically the [0,1] interval onto [0,1]
(see Figure 17). The distortion created by the fisheye view is
the consequence of the form of the function, which has a
faster increment around 0 (hence affecting the nodes around
the focus), with the increment slowing down when closing up
to 1. The exact definition of the function may yield a lesser or
stronger distorting effect. A simple distortion function, for
example, used by Sarkar and Brown[110],[111] is:
h(x)=(d+1)/(d+1/x) (this is the function plotted on Figure
17). The factor d is the so–called distortion factor, which can
be set interactively by the user. It should be positive; the
larger it is, the stronger the fisheye distortion. Figure 18
shows the effect of this function (with d = 4) on the regular
grid around the origin.

(a)

(b)

(c)

Fig 16. Fisheye distortion. Figure (a) represents the graph without
the fisheye. Figure (b) uses polar fisheye, whereas Figure (c) uses
cartesian fisheye with a different layout of the same graph. The
green dots on Figures (b) and (c) denote the focal points of the
fisheye distortion. Note the extra edge–crossing on Figure (b).

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. X, XXX, 2000

There are some variations to this basic scheme. What we
have just described is usually referred to as a “polar”
distortion, in the sense that it applies to the nodes radially in
all directions starting from the focus point. An alternative is
to use a “cartesian” fisheye: the distance distortion is applied
independently on the x and y directions before establishing
the final position of the node (see again Figure 16). Other
variations are possible. Consult the overview of Carpendale et
al.[18] or Keahey et al.[77] for further examples and for their
visual effects. The final choice should depend on the style of
the graph to be explored as well as the layout algorithm in
use.

This simple but powerful technique is an important form
of navigation that complements zoom and pan. However,
implementors should be aware of one of the pitfalls. The
essence of a fisheye view is to distort the position of each
node. If the distortion is faithfully applied, the edges
connecting the nodes will also be distorted. Mathematically,
the result of this distortion is a general curve. Standard
graphics systems (e.g. X11, Java2D, OpenGL) do not offer

the necessary facilities to transform lines into these curves
easily (the facilities can be rather complex). The
implementer’s only choice is, therefore, to approximate the
original line segments with a high number of points,
transform those points, and display a polyline to approximate
the ideal, transformed curve. The problem is that the number
of approximating points must be relatively high if a smooth
impression is desired (on average 60 points per edge), which
leads to a prohibitively large number of calculations and may
make the responsiveness of the system sink to an
unacceptably low level. The only viable solution is to apply
the fisheye distortion on the node coordinates only, and to
connect the transformed nodes by straight–line edges. The
consequence of this inexact solution is that unintended edge–
crossings might occur (see, for example, the upper left
quadrant of Figure 16/b). This is one of those typical
situations when the pragmatism required by information
visualization should prevail. If large graphs are explored,
these extra intersection points do not really matter much, and
it is more important to keep the exploration tool fast.

3.2.2 Focus+Context Layout Techniques

The fisheye technique is independent of the layout algorithm
and is defined as a separate processing step on the graphical
layout of the graph. Interacting with fisheye means changing
the position of the focus point and/or modifying the distortion
value. This independence has positive and negative aspects.
On the positive side, it allows for a modular organization of
software in which fisheye is a separate step in the graph
rendering pipeline somewhere between the layout module and
the actual display. Fisheye can also be significantly faster
than the layout algorithm, which is an important issue for
interaction. However, the fisheye distortion may destroy the
aesthetics governing the layout algorithm. For example, as we
have seen in the previous section, it can add new and
unwanted edge–crossings.

An alternative is to build appropriate distortion
possibilities into the layout algorithm itself, thereby merging
the focus+context effects and the layout proper. Interacting
with the distortion would mean to interact with (some)
parameters governing the layout algorithm. The hyperbolic
layout (see Section 2.5) does just that. The hyperbolic view of
a graph, whether in 2D or 3D, produces a distorted view, not
unlike the fisheye view (see Figure 11). The equivalent of the
focal point of the graphical fisheye view is the center of the
Euclidean circle (or sphere) which is used to “map” the
hyperbolic view onto the Euclidean space through either the
Klein or the Poincaré model. Interacting with the view means
changing the position of this center point within the graph.

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Fig 18. Fisheye distortion of a regular grid of the plane. The
distortion factor is 4.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Fig. 17. The Sarkar–Brown distortion function with a distortion
factor 2 (red curve) and 4 (blue curve).

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION 13

Similar effects can be achieved by using 3D techniques
(see also Section 2.4). By putting objects on 3D surfaces, for
example, the view created by the perspective or parallel
projections create a natural distortion on the 2D screen. In the
Vitesse system[98], for example, the user has only limited 3D
navigation facilities. The main goal of mapping objects onto a
sphere or an ellipsoid is indeed to achieve a focus+context
distortion. More complex surfaces (such as 3D surfaces of
blended Gaussian curves) have also been used to achieve
focus+context effects (see Carpendale et al.[17],[18]). Other
3D visualization techniques, already cited in Section 2.4 (such
as the Perspective Wall[107]), apply this principle as well.

The hyperbolic layout is special because it is a graph
layout algorithm that was developed with the focus+context
distortion in mind. In fact, we do not know of any systematic
research conducted on the existing, and more traditional,
layout algorithms to decide whether such layout dependent
distortions are possible or not, and, if yes, to exploit this
feature in real systems. This is in spite of the fact that, at least
in some cases, the possibility of applying such distortion
control is clearly available. For example, Figure 5 shows a
balanced view of a tree, using a balloon layout algorithm[87].
This algorithm defines the radii of the circles by taking the
number of descendents into account. The algorithm can be
easily directed to give one of the circles a larger “share” of
the display space by shrinking all the others, thereby creating
a focus+context effect on that circle[63]. We think that such
research would provide valuable input for the implementors
of graph visualization systems.

3.2.3 Further Issues in Focus+Context
Techniques

There are further issues in the area of focus+context that can
be of interest, some of which could be the basis for future
research as well (a general characterization and taxonomy of
distortion techniques is also presented in Leung and
Apperly[84]). For example, fisheye is based on the choice of
a distortion function, but we presented only a simple version
here, used by Sarkar and Brown. This function can be
replaced by others with different distortion features (arctan or
tanh functions, piecewise linear approximations to speed up
processing, etc.)[44],[77],[111]. The techniques can also be
extended to 3D[19]. Also, just as we could speak about

“semantic zoom”, one could also refer to “semantic
focus+context”, meaning that when the distortion becomes
too “extreme”, in some sense, nodes might disappear after all.
Sarkar and Brown describe this technique in their paper[110],
but finer control over this facility might lead to new insights
as well. Note that the space–scale diagrams[51] (see
Section 3.1) can also be used to model fisheye distortions,
which may lead to interesting results in combining (semantic)
fisheye with zoom and pan. Finally, multifocal focus+context
methods can also be applied[18],[76],[77], allowing the user
to simultaneously concentrate on several important areas of
the graph or to use the system in a cooperative
environment[98].

An interesting example that combines various techniques,
including multifocal zoom and focus+context, is provided by
Schaffer et al.[112]. Their system also shows the fundamental
importance of clustering, which we address in Section 4. They
consider graphs that already have a hierarchical clustering.
The left hand side of Figure 19 shows a drawing of the initial
graph. The dotted rectangles denote the logical clusters (they
appear on the figure only for the sake of the explanation, they
would not necessarily appear on a real screen). The right hand
side of the same figure shows the same graph after a
multifocal zoom/fisheye action on clusters A and D. These
clusters are now bigger, while the other clusters have shrunk.
Moreover, cluster C has disappeared as a result of a sort of a
“semantic fisheye” action on the graph. Schaffer et al.
describe the mathematics of distortion and shrinking used to
achieve these results. Similar ideas can also be found in the
DA–TU system of Huang et al.[70]. However, much remains
to be done in combining these different approaches to achieve
a coherent set of navigation techniques.

3.3 Incremental Exploration and Navigation
We have emphasized several times that the size of the graph
is a major problem in graph visualization applications. There
are cases when this size is so huge that it becomes impossible
to handle the full graph at any time; the World Wide Web is
an obvious example. Incremental exploration techniques are
good candidates for such situations. The system displays only
a small portion of the full graph and other parts of the graph
are displayed as needed. The advantage of such incremental
approach is that, at any given time, the subgraph to be shown

A

B

C

D

E

F

A

B

D

E

F

Fig. 19. Multifocal fisheye/zoom in a hierarchically clustered graph. The dotted rectangles denote the (logical) clusters. Note the
disappearance of cluster C on the right hand side. (Adapted from Schaffer et al.[112].)

14 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. X, XXX, 2000

on the screen may be limited in size, hence the layout and
interaction times may not be critical any more. This approach
to graph exploration is still relatively new, but interesting
results in the area are already available, see, for
example[14],[40],[68],[69],[99],[130].

Incremental exploration means that the system places a
visible “window” on the graph, somewhat similar to what pan
does. Exploration means to move this window (also referred
to as logical frames by Huang et al.[68]) along some
trajectory (see Figure 20). Implementation of such incre-
mental exploration has essentially two aspects, namely:

• decide on a strategy to generate new logical frames
• reposition the content of the logical frame after each

change.
Generating new logical frames is always under the control of
the user. In some cases, the logical frame simply contains the
nodes visited so far. This is the case, for example, in the
NESTOR tool, implemented by Zeiliger[130], which uses
incremental exploration to record a history of the user’s
surfing the World Wide Web: newly accessed web pages are
simply added to the logical frame to generate a new one.
Huang et al.[68] (who also implemented a tool along the
same lines to explore the World Wide Web[69]) anticipate
the user’s future interaction by adding not only a new node to
a frame, but also its immediate neighbors. Huang et al.[68] or
North[99] also include a control over throwing away some
part of the logical frame, to avoid saturation on the screen.

As far as the repositioning is concerned, the simplest
solution is to use the same layout algorithm for each logical
frame. This is done, for example by Huang et al.[68]. (Note
that the latter use a modified spring algorithm. This is one
case where the relatively small graph on the screen makes the
use of a force–directed method perfectly feasible in graph
visualization.) North[99] and Brandes et al.[14] go further by

providing dynamic control over the parameters that direct the
layout algorithms.

As said above, this line of visual graph management is still
quite new, but we think that it will gain in importance in the
years to come, and that it will complement the navigation and
exploration methods described elsewhere in this survey.

4 Clustering

As mentioned earlier, it is often advantageous to reduce the
number of visible elements being viewed. Limiting the
number of visual elements to be displayed both improves the
clarity and simultaneously increases performance of layout
and rendering[78]. Various “abstraction” and “reduction”
techniques have been applied by researchers in order to
reduce the visual complexity of a graph. One approach is to
perform clustering.

Clustering is the process of discovering groupings or
classes in data based on a chosen semantics. Clustering
techniques have been referred to in the literature as cluster
analysis, grouping, clumping, classification, and
unsupervised pattern recognition[41],[89]. We will refer to
clustering that uses only structural information about the
graph as structure–based clustering (also referred to as
identifying natural clusters[109]). The use of the semantic
data associated with the graph elements to perform clustering
could be termed content–based clustering.

Although content–based clustering can yield groupings
which are most appropriate for a particular application and
can even be combined with structure–based clustering, most
mentions of clustering in graph visualization are references to
purely structure–based clustering, with a few notable
exceptions[91],[105]. This is probably due to the fact that
content–based clustering requires application–specific data
and knowledge. Any application which implements content–
based clustering is likely to be so specialized to a problem
domain that it is no longer general enough for use in other
application areas. Furthermore, an advantage of using
structure–based clustering is that natural clusters often retain
the structure of the original graph, which can be useful for
user orientation in the graph itself.

It is important to note that clustering can be used to
accomplish functions such as filtering and search. In
visualization terms, filtering usually refers to the de–emphasis
or removal of elements from the view, while search usually
refers to the emphasis of an element or group of elements.
Both filtering and search can be accomplished by partitioning
elements into two or more groups, and then emphasizing one
of the groups.

Fi+1

Fi-1
Fi-2

F1

F2

F3

F4

Fi

The path of exploration

A sequence of logical frames

The partially unknown graph G
Fig. 20. Exploration of a huge graph. (Adapted from Huang et
al.[69].)

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION 15

By far the most common clustering approach in graph
visualization is to find clusters which are disjoint or mutually
exclusive, as opposed to clusters that overlap (found by a
process called clumping). Disjoint clusters are simpler to
navigate than overlapping clusters because a visit of the
clusters only visits the members once. It should be noted,
however, that it is not always possible to find disjoint clusters
such as in the case of language–oriented or semantic
topologies.

A common technique for finding natural clusters is to
choose the clustering with the least number of edges between
members. This technique is described by Mirkin[89]. It is
also known as the Ratio Cut technique in VLSI design[124].
This technique extends to the case when edges have a weight.
The task is then to minimize the total weight of the edges
connecting members[109]. Natural clusters can also be
obtained by applying a spring model (see below).

4.1 Layout of a clustered graph
After discovering clusters within the data, we can reduce the
number of elements to display by restricting our view to the
clusters themselves. This provides an overview of the
structure and allows us to retain a context while reducing
visual complexity. Looking at the simpler and smaller
clustered graph, the user should be better able to grasp the
overall structure of the graph. Most algorithms look for a
balance between the number of clusters and the number of
nodes within clusters[1],[31]. A small number of clusters
allows for a fast processing and navigation. However, this
number should not be too small, because otherwise the visible
information content is too low.

A common technique is to represent the clusters with
glyphs and treat them as super–nodes in a higher–level or
compound graph, which we can now navigate instead of the
original graph. Some approaches have already been
proposed[37],[112]. Huang and Eades[70] also give a precise
definition of how edges between super–nodes can be induced
(they refer to this idea as abridgement). This technique has
also been implicitly implemented in many other visualization
systems. One original solution is to omit the edges and
position the nodes in a way that indicates their

connectivity[126]. This solution eliminates the problem of
edge–crossings and reduces visual clutter.

If clustering is performed by successively applying the
same clustering process to groups discovered by a previous
clustering operation, the process is referred to as hierarchical
clustering[89]. A containment hierarchy will result from
hierarchical clustering and this may be navigated as a tree,
with each cluster represented as a node in the tree (see
Figure 21). Hierarchical clustering can therefore be used to
induce a hierarchy in a graph structure that might not
otherwise have a hierarchical structure.

The approaches discussed until now involve first finding
logical clusters, then laying out the graph of clusters. A
completely different approach to clustering is based on force–
directed layout. It lets forces between nodes influence the
position of the node in the layout. All nodes in the system
exert repulsive force on the others and related nodes are
attracted to each other. After several iterations in which the
positions are adjusted according to the calculated force, the
system stabilizes, yielding clusters which are visually
apparent. In a case study of Narcissus[60], the authors report
that this technique can produce useful clusters in a relatively
small number of iterations. As with other N–body problems,
the complexity is O(N3). Another example of clustering by
layout is described for the SemNet system[42], where
clustering is accomplished by using semantic information to
determine the positioning of nodes.

4.2 Node Metrics for Clustering
In order to cluster a graph, we must use numerical measures
associated with the nodes. A node metric can be used to
measure or to quantify an abstract feature associated with a
node in order to compare it with others of the same type and
acquire a ranking. A metric can be implemented as a numeric
computable function. Clustering can be accomplished by
assigning elements to groups according to their metric value.
Metrics can also be used to implement search or filtering, in
which elements with a certain metric value or a value above a
threshold are highlighted.

The term metric, or node metric, has been used in many
different ways in graph visualization. In this survey, we will
use the term to refer to a measure that is associated with a
node in the graph. We have identified the concept of node
metrics in several places in the literature[11],[50],[61],[78].
Of course, similar concepts can be applied to metrics
associated with edges.

A metric is structure–based if it only uses information
about the structure of the graph. A metric is content–based if
it uses information or data associated with the node such as
text. The advantage of a structural metric is that no domain
knowledge is required. This makes a structural metric useful
for all applications. It is possible, of course, to combine
structural and content–based metrics for more powerful
effects. A simple approach is to allow the user to add an
application–specific “weight” to the nodes, which is then
combined with the structural metric[50],[61],[62].

Fig. 21. A structure induced by hierarchical clustering. (Adapted
from Eades and Feng[37].)

16 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. X, XXX, 2000

An example of a structural metric is the degree of a node
(i.e. the number of edges connected to the node). With such a
metric, the application could exclusively display the nodes
with a degree higher than or equal to a threshold value. This
would give a view of data which shows the nodes that have
the largest number of relations with other nodes. A metric
more specific to trees (called the Strahler metric[120]) has
been applied in Figure 22, in which nodes with the highest
Strahler metric values generate a skeleton or backbone which
is then emphasized (see Herman et al.[61],[62]).

Metrics can also be composed due to their numeric
nature[62]. By choosing, for example, the weighted average
of metrics, the user can choose how much influence a
particular feature has on the resulting composed metric, and
thereby influence the resulting clustering. The Degree of

Interest (DOI) function of Furnas[50] is also an example of a
metric that is composed of two other metrics (in this case, a
metric based on distance and a level of detail).

Node metrics can be used for many different purposes,
and, in our view, all the possible applications have not yet
been fully explored. For instance, metrics can also be used to
govern a spanning tree extraction procedure (see Section 2.3).
Furnas’s DOI function has been used to generate a
focus+context view of the graph1. In another application,
metrics are used to influence layout[127].

Once a subset of nodes has been selected, as with a
skeleton, a method of representing the un–selected nodes
must be chosen. In the case of clustering, the selected set of
nodes is the set of super–nodes or the groups themselves.
Kimelman et al. name three possible approaches[78] (see
Figure 22):

• ghosting: de–emphasizing nodes, or relegating nodes
to the background.

• hiding: simply not displaying the un–selected nodes.
This is also referred to as folding or eliding.

• grouping: grouping nodes under a new super–node
representation.

These approaches may be combined, for example with
clusters represented by transparent super–nodes used by
Sprenger et al.[116] in the IVORY system. Figure 22(c)
demonstrates an alternative where the size and the shape of
the glyph representing the grouping is used to indicate the
structure of the underlying subgraph. The resulting graph,
technically a compound graph, is a sort of high–level map or
schematic view[23],[62] of the original graph which is useful
for navigation of the original graph.

Clustering is full of challenges and is applied in many
different fields, which has the unfortunate consequence that
results about clustering are disseminated in journals and
conferences addressing very different topics. This makes it
difficult to gather the results into a unified theory or into a
structured set of methodologies. Surprisingly, the book by
Battista et al.[5] does not include a chapter on clustering,
although the Graph Drawing Symposia welcomes papers on
the topic every year. Our feeling is that this issue should
receive more attention in future, especially from the
information visualization community.

5 Systems

The area of graph visualization has reached a level of
maturity in which large applications and application
frameworks are being developed. However, it is difficult to
enumerate all the systems because of the sheer quantity.
Furthermore, some of them have a short lifetime because they
are research tools and others are embedded in specialized
applications. An overview of all graph visualization systems
would go beyond the scope of this survey. However, we have
already referred to a number of systems in earlier sections,
based on features that we found interesting or important.

1 As mentioned earlier, although Furnas referred to this technique as “fish–

eye”, his technique is not limited to fish–eye in the geometric sense, as described
in Section 3.2.1.

(a)

(b)

(c)

Fig. 22. Different schematic views of a tree: (a) ghosting, (b)
hiding, and (c) grouping.

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION 17

Some other systems also caught our attention. Without any
claim to completeness, we briefly describe a few additional
systems below.
 Efforts to develop software libraries and frameworks have
been underway in several places. Some libraries are directed
at mathematicians and include large libraries of algorithms,
while others are meant for more general application. Some of
the libraries and frameworks that are available are GTL[45],
LINK[8], GFC[21], GDT[55], and GVF[64]. Although there
is no widely used standard for graph description formats,
GML[66] and GraphXML[65] are available.

SemNet[42] is one of the few systems to provide graph
editing while still providing a comprehensive set of tools to
visualize large graphs. It is also one of the earliest complete
systems that we know about.

Clustering has been applied by many older systems such
as SemNet[42], Narcissus[60], SKETCH[118], and the
Navigational View Builder[91]. Some newer systems that
cluster graphs are NicheWorks[126], DA–TU[70],
STARLIGHT[105], and a system used by Bell
Laboratories[58] for network visualization.

NicheWorks is an example of a complete system
implementation that can be adapted for very specific
applications. As an example, it has been used to visualize
Y2K related problems[39]. The fsviz system of Carrière and
Kazman[20], the da Vinci system of the University of
Bremen[48], or the Latour system developed at CWI[63] fall
into the same category. We should also mention the company
called Tom Sawyer Software1, which offers a number of
products based on various graph drawing techniques.

A few systems stand out because of unique features. The
STARLIGHT[105] system performs content-based clustering
and allows multiple mappings and layouts. It is one of the few
systems that allows a 3D graph to be mapped to locations on
a plane (for associating nodes or entire graphs with
geographical positions). Shiozawa et al[114] use a similar
type of 3D to 2D mapping in order to view cell dependencies
in a spreadsheet application. Another system, SDM[24] is
unique because of a method of filtering in which nodes of
interest are selected from a cityscape view by a plane above
them. A similar cityscape view of nodes is used by Chen et
al.[22] A system called WebPath[46] uses a fog effect in a
3D rendering of web history to limit the window of viewing.
Graphs have also been used in an attempt to understand
images and the transformations on them, where edges
represent operations[85]. A system for viewing Bayesian
Belief Networks[129] is one of a unique few
(including[8],[63]) to employ animation for informative
purposes. A highly interactive system called Constellation[95]
has sophisticated zooming and highlighting features that
facilitate the analysis of linguistic networks.

The World Wide Web is one of the typical application
areas where graph visualization may play an important role in
the future. H3View[93], based on hyperbolic viewing (see
Section 2.5), is part of a Web site management tool of SGI
whereas the similar ideas of Lamping et al.[82],[83] are also

1 http://www.tomsawyer.com

exploited by a commercial spin–off of Xerox, called Inxight2.
Earlier in this survey, we referred to NESTOR[1] or
WebOFDAV[69], which can be used as web navigation tools.
Other examples in this category are the Harmony Browser[1],
Mapa[32], or Fetuccino[7] (the latter also combines the
results of a web search engine with graph visualization).

6 Journals and Conferences

This survey is based on an extensive literature overview
drawn from various conferences and journals. One of the
difficulties of the field is that results are spread over a large
number of different publications. To help the reader in
pursuing research in the area, we list here some of the main
publications which may be of interest:

• The Graph Drawing Symposia are organized yearly at
various locations in the World. The proceedings are
published by Springer–Verlag. These symposia have
evolved into the traditional meeting places of the
graph drawing community.

• The new Journal of Graph Algorithms and
Applications (JGAA) is an online journal which gather
a similar community as the graph drawing symposia.
The home page of the journal is at Brown University3,
but Oxford University Press will also publish the
collected papers in book formats.

• Graph drawing has strong relationships with
computational geometry and algorithms. As a
consequence, specialized journals like Computational
Geometry: Theory and Applications or Algorithmica
might also be a valuable source, although the papers
in these journals tend to be much more
“mathematical”, hence more difficult to read for the
computer graphics and information visualization
communities.

• As said before, the yearly CHI’XX and UIST’XX
conferences, both sponsored by ACM SIGCHI, often
contain important papers for information
visualization, due to the importance of user interface
issue. Similarly, the ACM Transaction on Human
Computer Interaction can be a valuable source of
information.

• The yearly InfoViz’XX symposia form a separate track
within the well–known IEEE Visualization
conference. These symposia, as well as the
Visualization conference itself, have become one of
the leading events in the area by now.

• Somewhat confusingly, there is also a yearly IEEE
Conference on Information Visualization which,
however, has no real connection to the InfoViz’XX
symposia (besides being sponsored by IEEE, too).
Our own experience is that the academic level of
InfoViz’XX is somewhat better.

• What was known before as the series of Eurographics
Workshop on Scientific Computing’XX has recently
changed its name to Data Visualization’XX, with

2 http://www.inxight.com
3 http://www.cs.brown.edu/publications/jgaa.

18 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. X, XXX, 2000

information visualization as a separate track. The
workshops has become joint Eurographics
IEEE TCVG symposium and is considered as the
European “sister” conference to IEEE Visualization.

• Some traditional computer graphics journals, like the
IEEE Transaction on Visualization and Computer
Graphics, or the Computer Graphics Forum (which
include the proceedings of the Eurographics
conferences, too), have an increasing number of
papers in information visualization.

• Finally, application oriented journals or conference
proceedings may also include papers on information
visualization related to their respective application
area. Examples include the proceedings of the yearly
XXth World Wide Web or the Digital Library’XX
conferences.

Obviously, the list is not exhaustive but, hopefully, it is still
useful for the reader as a starting point.

References
[1] C. J. Alpert and A. B. Kahng, “Recent Developments in Netlist

Partitioning: A Survey”, Integration: the VLSI Journal, vol. 19, pp. 1–
81, 1995.

[2] K. Andrews, “Visualizing Cyberspace: Information Visualization in the
Harmony Internet Browser”, Proceedings of the IEEE Symposium on
Information Visualization (InfoViz’95), IEEE CS Press, pp. 97–105,
1995.

[3] P.K. Argawal, B. Aronov, J. Pach, R. Pollack, and M. Sharir, “Quasi–
Planar Graphs Have a Linear Number of Edges”, Proceedings of the
Symposium on Graph Drawing, GD ’95, Springer–Verlag, pp. 1–7,
1995.

[4] G. di Battista, P. Eades, R. Tamassia, and I.G. Tollis, “Algorithms for
drawing graphs: an annotated bibliography”, Computational Geometry:
Theory and Applications, Vol. 4, No..5, pp. 235–282, 1994.

[5] G. di Battista, P. Eades, R. Tamassia, and I.G. Tollis, Graph Drawing:
Algorithms for the Visualization of Graphs, Prentice Hall, 1999.

[6] R. A. Becker, S. G. Eick, and A. R. Wilks, “Visualizing Network Data”,
IEEE Transactions on Visualization and Computer Graphics, Vol. 1,
No. 1, pp. 16-28, 1995.

[7] I. Ben–Shaul, M. Herscovici, M. Jacovi, Y. S. Maarek, D. Pelleg, M.
Shtalhaim, V. Soroka, and S. Ur, “Adding support for dynamic and
focused search with Fetuccino”, Proceedings of 8th International World
Wide Web Conference, Elsevier Science, pp. 575–587, 1999.

[8] J. Berry, N. Dean, M. Goldberg, G. Shannon, and S. Skiena, “Graph
Drawing and Manipulation with LINK”, in Proceedings of the
Symposium on Graph Drawing GD’97, Springer–Verlag, pp. 425–437,
1999.

[9] F. Bertault, “A Force–Directed Algorithm that Preserves Edge Crossing
Properties”, Proceedings of the Symposium on Graph Drawing, GD’99,
Springer–Verlag, pp. 351–358, 1999.

[10] J. Blythe, C. McGrah, and D. Krackhardt, “The Effect of Graph Layout
on Inference from Social Network Data”, Proceedings of the
Symposium on Graph Drawing, GD ’95, Springer–Verlag, pp. 40–51,
1995.

[11] R. A. Botafogo, E. Rivlin, and B. Schneiderman, “Structural Analysis of
Hypertexts: Identifying Hierarchies and useful Metrics,” ACM
Transactions on Information Systems, Vol. 10, No. 2, 1992.

[12] F.J. Brandenburg, M. Himsolt, and C. Rohrer, “An Experimental
Comparison of Force–Directed and Randomized Graph Drawing

Algorithms”, Proceedings of the Symposium on Graph Drawing GD
’95, Springer–Verlag, 1996.

[13] U. Brandes, G. Shubina, and R. Tamassia, “Improving Angular
Resolution in Visualizations of Geographic Networks”, to be published
in: Data Visualization ‘2000, Proceedings of the Joint Eurographics
and IEEE TCVG Symposium on Visualization, Springer–Verlag, 2000.

[14] U. Brandes and D. Wagner, “A Bayesian Paradigm for Dynamic Graph
Layout”, Proceedings of the Symposium on Graph Drawing GD '97,
Springer–Verlag, pp. 236–247, 1997.

[15] S.K. Card, G.G. Robertson, and W. York, “The WebBook and the Web
Forager: an Information Workspace for the World–Wide Web”, Human
Factors in Computer Systems, CHI’96 Conference Proceedings, ACM
Press, pp. 111–117, 1996. Also in S.K. Card et al.[16].

[16] S.K. Card, J.D. Mackinlay, and B. Shneiderman (eds), Readings in
Information Visualization, Morgan Kaufmann Publishers, 1999.

[17] M.S.T. Carpendale, D.J. Cowperthwaite, and F.D. Fracchia, “3D Pliable
Surfaces”, Proceedings of the UIST’95 Symposium, ACM Press, pp.
217–266, 1995.

[18] M. S. T. Carpendale, D. J. Cowperthwaite, F. D. Fracchica and T.
Shermer, “Graph Folding: Extending Detail and Context Viewing into a
Tool for Subgraph Comparisons”, Proceedings of the Symposium on
Graph Drawing GD ’95, Springer–Verlag, pp. 127–139, 1996.

[19] M.S.T. Carpendale, D.J. Cowperthwaite, and F.D. Fracchia, “Extending
Distortion Viewing from 2D to 3D”, IEEE Computer Graphics &
Applications, Vol. 17, No. 4, pp. 42–51, 1997. Also in S.K. Card et
al.[16].

[20] J. Carrière and R. Kazman, “Research Report: Interacting with Huge
Hierarchies: Beyond Cone Trees”, Proceedings of the IEEE Conference
on Information Visualization ‘95, IEEE CS Press, pp. 74–81, 1995.

[21] C. L. Cesar, Graph Foundation Classes for Java, IBM,
http://www.alphaWorks.ibm.com/tech/gfc, 1999.

[22] C. Chen and L. Carr, “Visualizing the evolution of a subject domain: a
case study”, Proceedings of the IEEE Visualization’99 Conference,
IEEE CS Press, pp. 449–452, 1999.

[23] M.C. Chuah, “Dynamic Aggregation with Circular Visual Designs”,
Proceedings of the IEEE Symposium on Information Visualization
(InfoViz’98), IEEE CS Press, pp. 30–37, 1998.

[24] M. C. Chuah, S. F. Roth, J. Mattis, and J. Kolojejchick, “SDM:
Malleable Information Graphics”, Proceedings of the IEEE Symposium
on Information Visualization, IEEE CS Press, pp. 36–42, 1995.

[25] H.S.M. Coxeter, Introduction to Geometry, John Wiley & Sons, Inc.,
1973.

[26] I. F. Cruz and R. Tamassia, “Online tutorial on Graph drawing”,
http://www.cs.brown.edu/people/rt/papers/gd-tutorial/gd-constraints.pdf.

[27] I. F. Cruz and J. P. Twarog, “3D Graph Drawing with Simulated
Annealing”, Proceedings of the Symposium on Graph Drawing GD ‘95,
Springer–Verlag, pp. 162–165, 1995.

[28] R. Davidson and D. Harel, “Drawing Graphs Nicely Using Simulated
Annealing”, ACM Transaction on Graphics, Vol. 15, No. 4, pp. 301–
331, 1996.

[29] E. Dengler and W. Cowan, “Human Perception of Laid–Out Graphs”,
Proceedings of the Symposium on Graph Drawing GD ’98, Springer–
Verlag, pp. 441– 444, 1998.

[30] A. Denise, M. Vasconcellos, and D.J.A. Welsh, “The random planar
graph”, Congressus Numerantium, Vol. 113, pp. 61–79, 1996.

[31] C. A. Duncan, M.T. Goodrich, and S. G. Kobourov, “Balanced Aspect
Trees and Their Use for Drawing Very Large Graphs”, Proceedings of
the Symposium on Graph Drawing GD ’98, Springer–Verlag, pp. 111–
124, 1998.

[32] D. Durand and P. Kahn, “MAPA”, Proceedings of Ninth ACM
Conference on Hypertext and Hypermedia (Hypertext’98), Pittsburgh,
USA, (1998).

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION 19

[33] P. Eades, “A Heuristic for Graph Drawing,” Congressus
Numerantium, Vol. 42, pp. 149–160, 1984.

[34] P. Eades and K. Sugiyama, “How to Draw a Directed Graph”, Journal
of Information Processing, Vol. 13, No. 4, pp. 424–434, 1990.

[35] P. Eades, “Drawing Free Trees”, Bulletin of the Institute for
Combinatorics and its Applications, pp. 10– 36, 1992.

[36] P. Eades and S.H. Whitesides, “Drawing Graphs in Two Layers”,
Theoretical Computer Science, Vol. 131 No. 2, pp. 361–374, 1994.

[37] P. Eades and Q.–W. Feng, “Multilevel Visualization of Clustered
Graphs”, Proceedings of the Symposium on Graph Drawing GD ’96,
Springer–Verlag, pp. 101– 112, 1997.

[38] P. Eades, M. E. Houle, and R. Webber, “Finding the Best Viewpoints for
Three–Dimensional Graph Drawings”, Proceedings of the Symposium
on Graph Drawing GD ’97, Springer–Verlag, p. 87–98, 1998.

[39] S. G. Eick, “A Visualization tool for Y2K”, IEEE Computer, Vol. 31
No. 10, p. 63–69, (1998).

[40] J. Eklund, J. Sawers, and R. Zeiliger, “NESTOR Navigator: A tool for
the Collaborative Construction of Knowledge Through Constructive
Navigation”, Proceedings of Ausweb’99, The Fifth Australian World
Wide Web Conference, Southern Cross University Press, 1999.

[41] B. Everitt, Cluster Analysis, First edition, Heinemann Educational Books
Ltd., 1974.

[42] K. M. Fairchild, S. E. Poltrock, G. W. Furnas, “SemNet: Three–
Dimensional Representation of Large Knowledge Bases”, Cognitive
Science and Its Applications for Human–Computer Interaction, Law-
rence Erlbaum Associates, Inc., pp. 201–233, 1988. . Also in S.K. Card
et al.[16].

[43] K.M. Fairchild, “Information Management Using Virtual Reality–Based
Visualisations”, Virtual Reality: Application and Explorations,
Academic Press, 1993.

[44] A. Formella and J. Keller, “Generalized Fisheye Views of Graphs”,
Proceedings of the Symposium on Graph Drawing GD ’95, Springer–
Verlag, pp. 242– 253, 1995.

[45] M. Forster, A. Pick, and M. Raitner, Graph Template Library,
University of Passau, http://infosun.fmi.uni-passau.de/GTL/, (1999).

[46] E. Frécon and G. Smith, “WebPath — A Three Dimensional Web
History”, Proceedings of the IEEE Symposium on Information
Visualization (InfoViz’98), IEEE CS Press, 1998.

[47] A. Frick, A. Ludwig and H. Mehldau “A Fast Adaptive Layout
Algorithm for Undirected Graphs”, Proceedings of the Symposium on
Graph Drawing GD '93, Springer–Verlag, pp. 389–403, 1994.

[48] M. Fröhlich and M. Werner, “Demonstration of the Interactive Graph
Visualization System da Vinci”, Proceedings of the DIMACS Workshop
on Graph Drawing ’94, Springer–Verlag, 1995.

[49] T.M.J. Fruchterman and E.M. Reingold, “Graph Drawing by Force–
Directed Placement,” Software — Practice & Experience, Vol. 21, pp.
1129–1164, 1991.

[50] G.W. Furnas, “Generalized Fisheye Views”, Human Factors in
Computing Systems, CHI ’86 Conference Proceedings, ACM Press, pp.
16–23, 1986.

[51] G.W. Furnas and B.B. Bederson, “Space–scale Diagrams:
Understanding Multiscale Interfaces”, Human Factors in Computing
Systems, CHI ’95 Conference Proceedings, ACM Press, pp. 234–241,
1995.

[52] G.W. Furnas and X. Zhang, “MuSE: A Multi–Scale Editor”,
Proceedings of the UIST’98 Symposium, ACM Press, 1998.

[53] M.R. Garey and D. S. Johnson (1983). “Crossing number is NP–
complete”, SIAM Journal of Algebraic and Discrete Methods Vol. 4 No
3, pp. 312–316, 1983.

[54] A. Garg and R. Tamassia, “On the Computational Complexity of
Upward and Rectilinear Planarity Testing”, Proceedings of Symposium
on Graph Drawing, GD’95, Springer–Verlag, pp. 286–297, 1995.

[55] Graph Drawing Toolkit, Third University of Rome,
http://www.dia.uniroma3.it/~gdt/, 1999.

[56] C. Gunn, “Visualizing Hyperbolic Space”, Proceedings of the
Eurographics Workshop on Computer Graphics and Mathematics,
Springer–Verlag, pp. 299–313, 1992.

[57] B. Hausmann, B. Slopianka, and H.–P. Seidel, “Exploring Plane
Hyperbolic Geometry”, Proceedings of the Workshop on Visualization
and Mathematics, Springer–Verlag, pp. 21–36, 1998.

[58] T. He, “Internet–Based Front–End to Network Simulator”, Data
Visualization ‘99, Proceedings of the Joint Eurographics and IEEE
TCVG Symposium on Visualization, Springer–Verlag, pp. 247–252,
1999.

[59] M. Hemmje, C. Kunkel, and A. Willet: “LyberWorld — A Visualization
User Interface Supporting Fulltext Retrieval”, Proceedings of ACM
SIGIR’94, ACM Press, 1994.

[60] R. J. Hendley, N. S. Drew, A. M. Wood, and R. Beale, “Narcissus:
Visualising Information”, Proceedings of the IEEE Symposium on
Information Visualization, IEEE CS Press, pp. 90–96, 1995.

[61] I. Herman, M. Delest, and G. Melançon, “Tree Visualization and
Navigation Clues for Information Visualization”, Computer Graphics
Forum, Vol. 17 No. 2, pp. 153– 165, 1998.

[62] I. Herman, M.S. Marshall, G. Melançon, D.J. Duke, M. Delest, and J.–
P. Domenger, “Skeletal Images as Visual Cues in Graphs Visualization”,
Data Visualization ‘99, Proceedings of the Joint Eurographics and
IEEE TCVG Symposium on Visualization, Springer–Verlag, pp. 13–22,
1999.

[63] I. Herman, G. Melançon, M.M. de Ruiter, and M. Delest, “Latour — a
Tree Visualization System”, Proceedings of the Symposium on Graph
Drawing GD ’99, Springer–Verlag, pp. 392–399, 1999. A more detailed
version in : Reports of the Centre for Mathematics and Computer
Sciences, Report number INS–R9904, available at:
http://www.cwi.nl/InfoVisu/papers/LatourOverview.pdf, 1999.

[64] I. Herman, M. S. Marshall, and G. Melançon, Graph Visualization
Framework, Reports of the Centre for Mathematics and Computer
Sciences, available at: http://www.cwi.nl/InfoVisu/GVF/GVF.pdf, 1999.

[65] I. Herman and M. S. Marshall, GraphXML, Reports of the Centre for
Mathematics and Computer Sciences, available at:
http://www.cwi.nl/InfoVisu/GVF/GraphXML/GraphXML.pdf,1999.

[66] M. Himsolt, GML — Graph Modelling Language, University of Passau,
http://infosun.fmi.uni-passau.de/Graphlet/GML/, 1997.

[67] J. Hopcroft and R. E. Tarjan, “Efficient Planarity Testing”, Journal of
the ACM, Vol. 21 No. 4, pp. 549–568, 1974.

[68] M.L. Huang, P. Eades, and J. Wang, “Online Animated Graph Drawing
Using a Modified Spring Algorithm”, Journal of Visual Languages and
Computing, Vol. 9 No. 6, 1998.

[69] M.L. Huang, P. Eades, and R.F. Cohen, “WebOFDAV — Navigating
and Visualizing the Web On–line with Animated Context Swapping”,
Proceedings of the 7th World Wide Web Conference, Elsevier Science,
pp. 636–638, 1998.

[70] M.L. Huang and P. Eades, “A Fully Animated Interactive System for
Clustering and Navigating Huge Graphs”, Proceedings of the
Symposium on Graph Drawing GD ’98, Springer–Verlag, pp. 374–383,
1998.

[71] C.–S Jeong and A. Pang, “Reconfigurable Disc Trees for Visualizing
Large Hierarchical Information Space”, Proceedings of the IEEE
Symposium on Information Visualization (InfoViz’98), IEEE CS Press,
1998.

[72] B. Johnson and B. Schneiderman, “Tree–maps: a Space–filling Approach
to the Visualization of Hierarchical Information Structures”,

20 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. X, XXX, 2000

Proceedings of IEEE Visualisation’91, IEEE CS Press, pp. 275–282,
1991. Also in S.K. Card et al. [16].

[73] M. Juenger and P. Mutzel, “2–layer Straightline Crossing Minimization:
Performance of Exact and Heuristic Algorithms”, Journal of Graph
Algorithms and Applications, Vol. 1, pp. 33–59, 1997.

[74] D. Jungnickel, Graphs, Networks and Algorithms, Springer Verlag,
1999.

[75] T. Kamada and S. Kawai, “An Algorithm for Drawing General
Undirected Graphs”, Information Processing Letters, Vol. 31, pp. 7–15,
1989.

[76] K. Kaugars, J. Reinfelds, and A. Brazma, “A Simple Algorithm for
Drawing Large Graphs on Small Screens”, Proceedings of the
Symposium on Graph Drawing GD ’94, Springer–Verlag, pp. 278–281,
1995.

[77] T.A. Keahey and E.L. Robertson, “Techniques for Non–Linear
Magnification Transformations”, Proceedings of the IEEE Symposium
on Information Visualization (InfoViz’97), IEEE CS Press, pp. 38–45,
1997.

[78] D. Kimelman, B. Leban, T. Roth, and D. Zernik, “Reduction of Visual
Complexity in Dynamic Graphs”, Proceedings of the Symposium on
Graph Drawing GD ’93, Springer–Verlag, 1994.

[79] M.R. Laguna, R. Martí, and V. Vals, “Arc Crossing Minimization in
Hierarchical Digraphs with Tabu Search”, Computers and Operations
Research, Vol. 24, No. 12, pp. 1165–1186, 1997.

[80] M. Laguna and R. Martí, “GRASP and Path Relinking for 2–Layer
Straight Line Crossing Minimization”, INFORMS Journal on
Computing, Vol. 11, pp. 44–52, 1999.

[81] M. Laguna and R. Martí, “Heuristics and Meta–Heuristics for 2–Layer
Straight Line Crossing Minimization”, URL: http://www-
bus.colorado.edu/Faculty/ Laguna/, 1999.

[82] J. Lamping, R. Rao, and P. Pirolli, “A Focus+context Technique Based
on Hyperbolic Geometry for Visualizing Large Hierarchies”, Human
Factors in Computing Systems, CHI ’95 Conference Proceedings, ACM
Press, 1995.

[83] J. Lamping and R. Rao, “The Hyperbolic Browser: A Focus+context
Technique for Visualizing Large Hierarchies”, Journal of Visual
Languages and Computing, Vol. 7 No. 1, pp. 33–55, 1996. Also in S.K.
Card et al. [16].

[84] Y. K. Leung and M. D. Apperly, “A Review and Taxonomy of
Distortion–Oriented Presentation Techniques”, ACM Transactions on
Computer–Human Interaction, Vol. 1 No. 2, pp. 126–160, 1994. Also
in S.K. Card et al. [16].

[85] K. L. Ma, “Image graphs — a Novel Approach to Visual Data
Exploration”, in Proceedings of IEEE Visualization ’99, IEEE CS Press,
pp. 81–88, 1999.

[86] M. McGrath, J. Blythe, D. Krackhardt, “The effect of spatial
arrangement on judgments and errors in interpreting graphs”, Social
Networks, Vol. 19 No. 3, pp. 223–242, 1997.

[87] G. Melançon and I. Herman, Circular Drawings of Rooted Trees,
Reports of the Centre for Mathematics and Computer Sciences, Report
number INS–9817, available at:
http://www.cwi.nl/InfoVisu/papers/circular.pdf, 1998.

[88] K. Mehlhorn and P. Mutzel, “On the Embedding Phase of the Hopcroft
and Tarjan Planarity Testing Algorithm”, Algorithmica, Vol. 16, pp.
233–242, 1996.

[89] B. Mirkin, Mathematical Classification and Clustering, Kluwer
Academic Publishers, (1996).

[90] K. Misue, P. Eades, W. Lai, and K. Sugiyama, “Layout Adjustment and
the Mental Map”, Journal of Visual Languages and Computing, Vol. 6,
pp. 183–210, (1995).

[91] S. Mukherjea, J.D. Foley, and S. Hudson, “Visualizing Complex
Hypermedia Networks through Multiple Hierarchical Views”, Human

Factors in Computing Systems, CHI ’95 Conference Proceedings, ACM
Press, pp. 331–337, 1995.

[92] T. Munzner and P. Burchard, “Visualizing the Structure of the World
Wide Web in 3D Hyperbolic Space”, Proceedings of the VRML’95
Symposium, ACM SIGGRAPH, ACM Press, 1995.

[93] T. Munzner, “H3: Laying out Large Directed Graphs in 3D Hyperbolic
Space”, Proceedings of the 1997 IEEE Symposium on Information
Visualization (InfoViz’97), IEEE CS Press, pp. 2–10, 1997.

[94] T. Munzner, “Drawing Large Graphs with H3Viewer and Site
Manager”, Proceedings of the Symposium on Graph Drawing GD ’98,
Springer–Verlag, pp. 384– 393, 1998.

[95] T. Munzner, F. Guimbretière, and G. Robertson, “Constellation: A
Visualization Tool for Linguistic Queries from MindNet”, in
Proceedings of IEEE Symposium on Information, InfoVis’99, IEEE CS
Press, pp. 132–135, 1999.

[96] P. Mutzel, C. Gutwengwer, R. Brockenauer, S. Fialko, G. Klau, M.
Kruger, T. Ziegler, S. Naher, D. Alberts, D. Ambras, G. Koch, M.
Junger, C. Bucheim, S. Leipert, “A Library of Algorithms for Graph
Drawing”, Proceedings of the Symposium on Graph Drawing GD ’97
Symposium, Springer–Verlag, pp. 456– 457, 1998.

[97] T. Munzner, E. Hoffman, K. Claffy, and B. Fenner, “Visualizing the
Global Topology of the MBone”, in Proceedings of IEEE Symposium on
Information Visualization, San Francisco, California, USA, 1996.

[98] L. Nigay and F. Vernier, “Design method of interaction techniques for
large information space”, Proceedings of Advanced Visual Interfaces
(AVI’98), ACM Press, 1998.

[99] S. North, “Incremental Layout in DynaDAG”, Proceedings of the
Symposium on Graph Drawing GD ’95, Springer–Verlag, pp. 409–418,
1995.

[100] H.C. Purchase, “Which Aesthetic has the Greatest Effect on Human
Understanding?”, Proceedings of the Symposium on Graph Drawing
GD ’97, Springer–Verlag, pp. 248–261, 1998.

[101] H.C. Purchase, R.F. Cohen, and M. James, “Validating Graph Drawing
Aesthetics”, Proceedings of the Symposium on Graph Drawing GD ’95,
Springer–Verlag, pp. 435–446, 1995.

[102] H. C. Purchase, R. F. Cohen, M. James, “An experimental study of the
basis for graph drawing algorithms”, ACM Journal of Experimental
Algorithmics, Vol. 2 No. 4, 1997.

[103] E.M. Reingold and J.S. Tilford, “Tidier Drawing of Trees”, IEEE
Transactions on Software Engineering, Vol. SE-7, No. 2, pp. 223–228,
1981.

[104] J. Rekimoto and M. Green, “The Information Cube: Using Transparency
in 3D Information Visualization”, Proceedings of the Third Annual
Workshop on Information Technologies & Systems (WITS’93), 1993.

[105] J. S. Risch, D. B. Rex, S. T. Dowson, T. B. Walters, R. A. May, and B.
D. Moon, “The STARLIGHT Information Visualization System”,
Proceedings of the IEEE Conference on Information Visualization,
IEEE CS Press, pp. 42–49, 1997.

[106] G.G. Robertson, J.D. Mackinlay, and S.K. Card, “Cone Trees: Animated
3D Visualizations of Hierarchical Information”, Human Factors in
Computing Systems, CHI ’91 Conference Proceedings, ACM Press, pp.
189–194, 1991.

[107] G.G. Robertson, S.K. Card, and J.D. Mackinlay, “Information
Visualization Using 3D Interactive Animation”, Communication of the
ACM, Vol. 36 No. 4, pp. 57– 71, 1993. Also in S.K. Card et al. [16].

[108] A. Robinson, EBI Hyperbolic Viewer, European Bioinformatics
Institute, available at: http://industry.ebi.ac.uk/~alan/components, 1998.

[109] T. Roxborough and A. Sen, “Graph Clustering Using Multiway Ratio
Cut”, Proceedings of the Symposium on Graph Drawing GD ‘97,
Springer Verlag, pp. 291– 196, 1998.

HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION 21

[110] M. Sarkar and M.H. Brown, “Graphical Fish–eye views of graphs”,
Human Factors in Computing Systems, CHI ’92 Conference
Proceedings, ACM Press, pp. 83–91, 1992.

[111] M. Sarkar and M.H. Brown, “Graphical Fisheye Views”,
Communications of the ACM, Vol. 37 No. 12, pp. 73– 84, 1994.

[112] D. Schaffer, Z. Zuo, S. Greenberg, L. Bartram, J. Dill, S. Dubs, and M.
Roseman, “Navigating Hierarchically Clustered Networks through
Fisheye and Full–zoom Methods”, ACM Transactions on Computer–
Human Interaction, Vol. 3 No. 2, pp. 162–188, 1996.

[113] Y. Shiloach, Arrangements of Planar Graphs on the Planar Lattices,
PhD Thesis, Weizmann Institute of Science, Rehovot, Israel, 1976.

[114] H. Shiozawa, K.-i. Okada, and Y. Matsushita, “3D Interactive
Visualization for Inter-Cell Dependencies of Spreadsheets”, in
Proceedings of IEEE Symposium on Information Visualization
(InfoViz’99), pp. 79–82, IEEE CS Press, 1999.

[115] G. Sindre, B. Gulla, H. G. Jokstad, “Onion Graphs: Aesthetics and
Layout”, Proceedings of IEEE/CS Symposium on Visual Languages
(VL’93), IEEE CS Press, pp. 287–291, 1993.

[116] T. C. Sprenger, M. Gross, D. Bielser, and T. Strasser, “IVORY — An
Object–Oriented Framework for Physics–Based Information
Visualization in Java”, Proceedings of the IEEE Symposium on
Information Visualization (InfoViz’98), IEEE CS Press, 1998.

[117] K. Sugiyama, S. Tagawa and M. Toda, “Methods for Visual
Understanding of Hierarchical Systems Structures”, IEEE Transactions
on Systems, Man and Cybernetics Vol. SMC–11 No. 2, pp. 109–125,
1989.

[118] K. Sugiyama and K. Misue, “Visualization of Structural Information:
Automatic Drawing of Compound Digraphs”, IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 21 No. 4, pp. 876–892, 1991.

[119] W. Tutte, “How to draw a Graph”, Proceedings of the London
Mathematical Society Vol. 3 No. 13, pp. 743–768, 1963.

[120] X.G. Viennot, “Trees everywhere”, Proceedings of the 15th CAAP
Conference, Springer–Verlag, pp. 18–41, 1990.

[121] J.Q. Walker II, “A Node-positioning Algorithm for General Trees”,
Software — Practice and Experience, Vol. 20 No. 7, pp. 685–705,
1990.

[122] C. Ware and G. Franck, “Evaluation of Stereo and Motion Cues for
Visualising Information in Three Dimensions”, ACM Transactions on
Graphics, Vol. 15 No. 2, pp. 121–140, 1996.

[123] C. Ware, Information Visualization: Perception for Design, Morgan
Kaufmann Publishers, 2000.

[124] Y. C. Wei and C. K. Cheng, “Ratio Cut Partitioning for Hierarchical
Designs”, IEEE Transactions on Computer Aided Design, Vol. 10 No.
7, pp. 911–921, 1991.

[125] J.J. van Wijk and H. van de Wetering, “Cushion Treemaps:
Visualization of Hierarchical Information”, Proceedings of the IEEE
Symposium on Information Visualization (InfoViz’99), IEEE CS Press,
pp. 73–78, 1999.

[126] G.J. Wills, “Niche Works — Interactive Visualization of Very Large
Graphs”, Proceedings of the Symposium on Graph Drawing GD ’97,
Springer–Verlag, pp. 403– 415, 1998.

[127] R.M. Wilson and R.D. Bergeron, “Dynamic Hierarchy Specification and
Visualization”, Proceedings of the IEEE Symposium on Information
Visualization (InfoViz’99), IEEE CS Press, pp. 65–72, 1999.

[128] P. Young, Three Dimensional Information Visualization (Survey),
Computer Science Technical Report, Centre for Software Maintenance
Department of Computer Science, University of Durham, available at:
http://www.dur.ac.uk/~dcs3py/pages/work/documents/lit-survey/IV-
Survey/index.html, 1996.

[129] J.-D. Zapata-Rivera, E. Neufeld, and J. E. Greer, “Visualization of
Bayesian Belief Networks”, in Proceedings of IEEE Visualization ’99,
Late Breaking Hot Topics, IEEE CS Press, pp. 85–88, 1999.

[130] R. Zeiliger, “Supporting Constructive Navigation of Web Space”,
Proceedings of the Workshop on Personalized and Solid Navigation in
Information Space, 1998.

Ivan Herman graduated as applied
mathematician in 1979 in Budapest, Hungary,
and received his PhD at the University of
Leiden, The Netherlands, in 1990. He is
currently senior researcher at Centre for
Mathematics and Computer Science (CWI), in
Amsterdam, the Netherlands, and is head of
the research group on information
visualization. He has been chief designer and
implementor of several graphics and

multimedia systems, and is also author or co–author of close to 50
scientific publications in international journals and conferences. He is
currently co–chair of the 9th World Wide Web conference and of the
second joint Eurographics/IEEE TSVG Symposium on Visualization. He
has been member of the Eurographics Executive Committee since
1987 and member of its Executive Board sinse 1990. He is also
member of the IEEE CS, and of the Advisory Committee of the World
Wide Web Consortium.

Guy Melançon received his PhD in
Mathematics from University of Québec in
Montréal, Canada, in 1991 and recently
defended his “habilitation” in Computer
Science at the University of Bordeaux I,
France. He is currently scientific researcher
at Centre for Mathematics and Computer
Science (CWI), in Amsterdam, the
Netherlands, and also holds a permanent
position at University of Bordeaux I, France.

He is author or co–author of many scientific publications in international
journals and conferences in combinatorial mathematics and information
visualization. He is currently co-organizer of the second joint
Eurographics/IEEE TSVG Symposium on Visualization.

M. Scott Marshall received a BA in computer
science from University of California at Berkeley in
1992. He is currently research associate at the
Centre for Mathematics and Computer Science
(CWI) in Amsterdam, the Netherlands, working in
the information visualization research group. He
recently helped to implement an ISO standard for
multimedia called PREMO and co-authored a
book on the subject. His research interests include
scientific, medical, and information visualization
and knowledge representation. He is currently
working on his PhD dissertation on graph

visualization in cooperation with the University of Bordeaux, France.

