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Abstract—This is a survey on graph visualization and navigation techniques, as used in information visualization. Graphs appear in 
numerous applications such as web browsing, state–transition diagrams, and data structures. The ability to visualize and to 
navigate in these potentially large, abstract graphs is often a crucial part of an application. Information visualization has specific 
requirements, which means that this survey approaches the results of traditional graph drawing from a different perspective. 
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1 Introduction 

lthough the visualization of graphs is the subject of this 
survey, it is not about graph drawing in general. 

Excellent bibliographic surveys[4],[34], books[5], or even 
on–line tutorials[26] exist for graph drawing. Instead, the 
handling of graphs is considered with respect to information 
visualization.  

Information visualization has become a large field and 
“sub–fields” are beginning to emerge (see for example Card 
et al.[16] for a recent collection of papers from the last 
decade). A simple way to determine the applicability of graph 
visualization is to consider the following question: is there an 
inherent relation among the data elements to be visualized? 
If the answer to the question is “no”, than data elements are 
“unstructured” and the goal of the information visualization 
system might be to help discover relations among data 
through visual means. If, however, the answer to the question 
is “yes”, then the data can be represented by the nodes of a 
graph, with the edges representing the relations. 

Information visualization research dealing with 
unstructured data has a distinct flavour. However, such 
research is not the subject of this survey. Instead, our 
discussion focuses on representations of structured data, i.e., 
where graphs are the fundamental structural representation 
of the data. Information visualization has specific 
requirements, which means that we will approach the results 
of traditional graph drawing from a different perspective than 
the other surveys. 

1.1 Typical Application Areas 
Graph visualization has many areas of application. Most 
people have encountered a file hierarchy on a computer 
system. A file hierarchy can be represented as a tree (a special 
type of graph). It is often necessary to navigate through the 
file hierarchy in order to find a particular file. Anyone who 
has done this has probably experienced a few of the problems 

involved in graph visualization: “Where am I?” “Where is the 
file that I'm looking for?” Other familiar types of graphs 
include the hierarchy illustrated in an organisational chart and 
taxonomies that portray the relations between species. Web 
site maps are another application of graphs as well as 
browsing history. In biology and chemistry, graphs are 
applied to evolutionary trees, phylogenetic trees, molecular 
maps, genetic maps, biochemical pathways, and protein 
functions. Other areas of application include object–oriented 
systems (class browsers), data structures (compiler data 
structures in particular), real–time systems (state–transition 
diagrams, Petri nets), data flow diagrams, subroutine–call 
graphs, entity relationship diagrams (e.g. UML and database 
structures), semantic networks and knowledge–representation 
diagrams, project management (PERT diagrams), logic 
programming (SLD–trees), VLSI (circuit schematics), virtual 
reality (scene graphs), and document management systems. 
Note that the information isn’t always guaranteed to be in a 
purely hierarchical format — this necessitates techniques 
which can deal with more general graphs than trees.  

1.2 Key Issues in Graph Visualisation 
The size of the graph to view is a key issue in graph 
visualization. Large graphs pose several difficult problems. If 
the number of elements is large it can compromise 
performance or even reach the limits of the viewing platform. 
Even if it is possible to layout and display all the elements, 
the issue of viewability or usability arises, because it will 
become impossible to discern between nodes and edges (see 
Figure 1, although this tree is by no means a very complex 
one). In fact, usability becomes an issue even before the 
problem of discernability is reached. It is well known that 
comprehension and detailed analysis of data in graph 
structures is easiest when the size of the displayed graph is 
small. In general, displaying an entire large graph may give an 
indication of the overall structure or a location within it but 
makes it difficult to comprehend. These issues form the 
context for most of this survey. 
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Other than the usual reference to information overload 
and the occasional reference to some of the gestalt principles, 
papers in information visualization rarely apply cognitive 
science and human factors. This is for no lack of trying; very 
few of the findings in cognitive science have practical 
applications at this time and very few usability studies have 
been done. Cognitive aspects are undoubtedly a subject for 
future research. For this reason, an objective evaluation of the 
merits of a given approach is difficult; the reader has to bear 
this limitation in mind when various techniques are 
presented.1 

The rest of this survey is organized as follows: In 
Section 2, we try to give an impression of graph layout issues 
and limitations with regard to scaleability. Then, we discuss 
several approaches to navigation of large graphs (Section 3), 
followed by methods of reducing visual complexity through 
reorganisation of the data (Section 4). Afterwards, we discuss 
a few application systems that implement many of the 
techniques described in this survey (Section 5). To help the 
reader pursue further research and development, we have 
listed the various sources of information that we found 
particularly important for graph visualization (Section 6) and 
provided an extensive list of references. 

2 Graph Layout 

This section looks at the current results in graph drawing and 
layout algorithms, but from the point of view of graph 
visualization in information visualization. As we will see, this 
point of view differs, in many respects, from the traditional 
view of the Graph Drawing community. We will give an 
account of the available results and discuss their relevance for 
graph visualization, although, in general, we will not go too 
far into the technical details. For those desiring more 
information, we recommend the excellent book of Battista et 
al.[5] as one of the best starting points. 

                                                           
1 Ware’s new book[123] may become an important source of information in 

this area, although, at the time of finalization of this manuscript, only a draft 
version is available, which does not allow a thorough judgement. 

2.1 Background of Graph Drawing 
The Graph Drawing community2 grew around the yearly 
Symposia on Graph Drawing (GD ’XX conferences), which 
were initiated in 1992 in Rome. Springer–Verlag publishes 
the proceedings of the conference in the LNCS series, which 
contains new layout algorithms, theoretical results on their 
efficiency or limitations, and systems demonstrations. The 
recent electronic Journal of Graph Algorithms and 
Applications is dedicated to papers concerned with design 
and analysis of graph algorithms, as well as with experiences 
and applications. 

The basic graph drawing problem can be put simply: given 
a set of nodes with a set of edges (relations), calculate the 
position of the nodes and the curve to be drawn for each edge. 
Of course, this problem has always existed, for the simple 
reason that a graph is often defined by its drawing. Indeed, 
Euler himself relied on a drawing to solve the “Königsberger 
Brückenproblem” in his 1736 paper (see the recent book of 
Jungnickel[74]). The annotated bibliography by Battista et 
al.[4] gathers hundreds of papers studying what a good 
drawing of a graph is. That is where the problem becomes 
more intricate: it requires the definition of properties and a 
classification of layouts according to the type of graphs to 
which they can be applied. For example, a familiar property is 
planarity — whether it is possible to draw a graph on the 
plane with no edge crossings. Layout algorithms may be 
categorized with respect to the type of layout they generate. 
For example, grid layouts position nodes of a graph at points 
with integer coordinates. Other categories of layouts are 
defined by the methodology on which they are based. For 
example, non–deterministic approaches form a category that 
uses algorithms such as force–directed models or simulated 
annealing. Each class of graphs and layouts thus generates its 
own set of problems. Planarity, for example, raises problems 
such as: 

                                                           
2 http://www.cs.brown.edu/people/rt/gd.html 

 
Fig. 1 A tree layout for a moderately large graph 
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• Planarity tests for graphs: is it possible to draw a 
graph without edge–crossings? 

• Planar layout algorithms according to various 
constraints: given that a graph is planar, find a layout 
satisfying a group of constraints. 

Many constraints in use are also expressed in terms of 
aesthetic rules imposed on the final layout. Nodes and edges 
must be evenly distributed, edges should all have the same 
length, edges must be straight lines, isomorphic sub–
structures should be displayed in the same manner, edge–
crossings should be kept to a minimum, etc.1 Trees have 
received the most attention in the literature. Consequently, 
additional aesthetics rules have also been formulated for 
them. For example, nodes with equal depth should be placed 
on a same horizontal line, distance between sibling nodes is 
usually fixed, etc. See again the book of Battista et al.[5] for 
further examples. 

The Reingold and Tilford algorithm for trees[103],[121] 
(see Figure 1) is a good example of a layout algorithm 
achieving these aesthetics goals. Isomorphic subtrees are laid 
out in exactly the same way, and distance between nodes is a 
parameter of the algorithm. On the other hand, the more 
straightforward and naive algorithm for displaying a tree, 
consisting of distributing the available horizontal space to 
subtrees according to their number of leaves, actually fails to 
achieve some of the aesthetic rules listed above. 

Although the adjective “aesthetic” is used, some rules 
were originally motivated by more practical issues. For 
instance, minimisation of the full graph area might be an 
important criterion in applications. Some of the rules clearly 
apply to a certain category of graphs or layouts only, others 
have a more “absolute” character. Furthermore, each of the 
rules defines an associated optimisation problem, used in a 
number of non–deterministic layout algorithms22. 

There has been some work lately which questions the 
absolute character of those rules, however. Usability studies 
were conducted in order to evaluate the relevance of these 
aesthetics for the end–user. Purchase[100]demonstrates that 
“reducing the crossings is by far the most important aesthetic, 
while minimizing the number of bends and maximizing 
symmetry have a lesser effect”. Her work concludes by 
prioritizing these aesthetics; see also Purchase et 
al.[101],[102] for more details. Other authors[10],[29],[86] 
report differences in the perception of a graph depending on 
its layout. Unfortunately, usability studies necessitate a great 
effort, both to realize the experimentation itself and to 
analyse its results properly, but we regard this line of work as 
essential for information visualization as well. They have 
recently gained credibility in the graph visualization 
community as well, recognizing their contribution to help 
focus on important issues in the area. 

A wide variety of tasks related to graph drawing have been 
studied: layering a graph, turning it into an acyclic directed 
graph, planarisation of a graph, minimizing the area occupied 

                                                           
1Actually, some aesthetics are quite arbitrary and are not seen as absolute 

rules any more[100],[101]. Ware’s book[123] is also an interesting source of 
information for this topic. 

by a layout, minimizing the number of bends in edges, etc. 
Unfortunately, many of the associated algorithms are too 
complex to be practical for applications. On the positive side, 
this has motivated the development of effective heuristics to 
overcome the complexity of some of these problems[5],[34]. 

In graph visualization, a major problem that needs to be 
addressed is the size of the graph. Few systems can claim to 
deal effectively with thousands of nodes, although graphs 
with this order of magnitude appear in a wide variety of 
applications. NicheWorks[126]or H3Viewer[94]are among 
the few systems that claim to handle data sets with thousands 
of elements. The size of a graph can make a normally good 
layout algorithm completely unusable. In fact, a layout 
algorithm may produce good layouts for graphs of several 
hundred nodes, but this does not guarantee that it will scale 
up to several thousand nodes. For example, Figure 1 
illustrates a tree with a few hundred nodes laid out using the 
classical Reingold and Tilford algorithm. The high density of 
the layout comes as no surprise, and changing particular 
parameters of the algorithm will not improve the picture for 
the graph. Other 2D layout techniques could be used, but 
most layout algorithms suffer from the same problem. 
Because the layout is so dense, interaction with the graph 
becomes difficult. Occlusions in the picture make it 
impossible to navigate and query about particular nodes. The 
use of 3D or of non–Euclidean geometry have also been 
proposed to alleviate these problems. Sections 2.4 and 2.5 
provide more details about these techniques. However, 
beyond a certain limit, no algorithm will guarantee a proper 
layout of large graphs. There is simply not enough space on 
the screen. In fact, from a cognitive perspective, it does not 
even make sense to display a very large amount of data. 
Consequently, a first step in the visualization process is often 
to reduce the size of the graph to display. As a result, classical 
layout algorithms remain usable tools for visualization, but 
only when combined with these techniques. 

Other properties of a layout algorithm can be critical when 
navigating through a graph. The concept of predictability has 
been identified as an important and necessary aspect of layout 
algorithms[61],[99]. What is meant by predictability is that 
two different runs of the algorithm, involving the same or 
similar graphs, should not lead to radically different visual 
representations. This property is also referred to in the 
literature as “preserving the mental map” of the user[90]. 
Predictability is often ignored during analysis of classical 
layout algorithms, which are often only used to produce a 
static view of a graph. 

Another important issue is time complexity. Any 
visualization system needs to provide near real–time 
interaction, where updates must be done in very short time 
intervals in order to escape the notice of the user. Having an 
accurate estimate of the time complexity of an algorithm can 
be of great help for the implementation of large systems when 
planning which algorithm to apply. 

2.2 Traditional Layout — an Overview 
We will briefly review existing layout techniques in graph 
drawing, keeping the issues of predictability and time 
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complexity in mind. Figure 2 gives a classification of existing 
layout techniques. This classification is the work of Mutzel et 
al.[96]. Most of the algorithms are described in the book of 
Battista et al.[5]. We will focus on the Layout box containing 
a list of possible layout types. 

A classical Tree Layout will position children nodes 
“below” their common ancestor. The algorithm by Reingold 
and Tilford[103],[121] is probably the best known layout 
technique in the tree layout category (see Figure 1). It can be 
adapted to produce top–down as well as left–to–right tree 
layout, and can also be set to output grid–like positioning 

H–tree layouts are also classical representations for binary 
trees[113] which only perform well on balanced trees. 
Eades[35] suggests a variation of the algorithm that behaves 
well in general (see Figure 3). The radial positioning by 
Eades[35] places nodes on concentric circles according to 
their depth in the tree (see Figure 4). A subtree is then laid out 
over a sector of the circle and the algorithm ensures that two 
adjacent sectors do not overlap (although this condition can 
be ignored to obtain relatively good drawings on 
average[63],[126]). The cone tree[20],[106] algorithm can be 
used to obtain a “balloon view” of the tree by projecting it 
onto the plane[20],[71], where sibling subtrees are included 
in circles attached to the father node. It is also possible to 
compute the nodes’ position directly, without reference to 

cone trees[87] (see Figure 5; Section 2.4 describes cone trees 
in more detail).  

The Reingold and Tilford algorithm produces a more 
classical drawing in the sense that the drawing clearly reflects 
the intrinsic hierarchy of the data. The radial and H–tree 
positioning are different in this respect, because it is less clear 
where the root of the tree is and thus one might explore the 
graph in a less hierarchical fashion. The Reingold and Tilford, 
H–tree, radial, and balloon layouts are all predictable. Tree 
layout problems usually have the lowest complexity, which is 
linear in the number of nodes. As we can see, although the 
Tree Layout box occupies only a small area of Figure 2, it 
contains a variety of layouts. Chapter 3.1 of the book by 
Battista et al.[5] is a good starting point for a further 
overview of these tree layout techniques. Two tree layout 
algorithms, which are not part of the “traditional” arsenal, are 
also worth mentioning here: tree–maps[72] (see Figure 6), 
and onion graphs[115], which represent trees by sequences of 
nested boxes. It is important to note that, in tree–maps, the 
size of the individual rectangles is significant. For example, if 
the tree represents a file system hierarchy, this size may be 
proportional to the size of the respective file. This is why 
tree–maps enjoy popularity in information visualization, in 
spite of the fact that it is difficult to perceive the structure in 
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this representation1. An attempt to overcome this problem has 
been recently presented by Wijk and Wetering[125], in the 
form of cushion tree–maps. 

A separate box at the bottom of Figure 2 is devoted to 
Planarity. This is a critical issue in graph drawing, because 
planarity of a graph may be an important constraint imposed 
by practical applications (such as graphs representing printed 
circuit boards). The complexity for testing planarity for 
undirected graphs can be linear[67] (see Chapter 3.3 in 
Battista et al.[5]. See also Mehlhorn and Mutzel[88] for a 
discussion on implementation issues). However, many 
applications impose the additional requirement that edges are 
all in the same direction (planar drawings often make use of 
edges going around some nodes to avoid crossings). This 
condition, called upward planarity, turns the original problem 
into an NP problem (see Garg and Tamassia[54]. See also 
Chapter 6 in Battista et al.[5]). In information visualization 
applications, it only makes sense to check for planarity when 
dealing with a small and sparse graph[3],[30], such as a 
subgraph obtained by clustering a larger graph (see 
Section 4.). In general, we can safely say that planarity is not 
a central issue in  information visualization. 

The Sugiyama Layout box included in Figure 2 is named 
after the seminal work by Sugiyama on layout for general 
directed graphs[117]. The basic approach to laying out a 
directed graph is to first decide on a layering of its nodes; 
that is, assign a layer number to each node and place nodes of 
a given layer in a certain order. Several layering techniques 
exist, the majority of which rely on the extraction of an 
acyclic subgraph. In this process, a subgraph containing all 
nodes of the original graph is extracted in such a way that 
when nodes have been placed in their respective layers, edges 
will all point in the same direction (usually downwards). 
Another solution is not to extract a subgraph but turn the 
original graph into an acyclic one by reversing the direction of 
a subset of the edges. 

Once the nodes have been assigned to layers, one must 
position the nodes within the same layer following an 
imposed order. A major effort has been invested in edge–
crossing minimization[5],[34] since the crossing of edges has 
been recognized as a major obstacle to the readability of 
graphs[100],[101]. This is usually done by minimizing the 

                                                           
1 The value of the tree–map is demonstrated in an interactive java applet at 

http://smartmoney.com/marketmap/ 

number of edge–crossings between two consecutive layers. 
This minimization step is the core of complexity for the 
whole algorithm. Note that these strategies do not address the 
problem of minimizing the number of crossings in the whole 
graph: even with the restriction of looking at consecutive 
layers only, minimization of edge–crossings is difficult and 
complex. In fact, Garey and Johnson proved the problem to 
be NP–hard[53] and Eades and Whitesides proved the 
corresponding decision problem to be NP–complete[36]. 

The complexity of a proper minimization has motivated 
the development of various heuristics for computing a good 
order for the nodes on a layer. Tutte[119] was the first to 
propose a heuristics: starting from an order on the top and 

 
Fig 3. H–tree layout 

 
Fig 4. Radial View 

 

 
Fig 5. Balloon view 

 
 

 
Fig 6. Tree–map: rectangles with colour belong to the same 
level of the (tree) hierarchy. (Adapted from Johnson and 
Schneiderman[72].) 
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bottom layers, the coordinates of a node are defined to be the 
barycenter of those of its neighbours. This corresponds to the 
intuitive idea that a node should be kept “close” to its 
neighbours. The solution is then obtained by solving a system 
of linear equations. One variation to this scheme is to 
compute barycentric coordinates by performing a layer by 
layer descent in the graph. More generally, the four boxes on 
the left of the figure correspond to various pre–processing 
possibilities for the algorithm in the Sugiyama Layout 
category. New improvements and perspectives to the problem 
were published recently[73],[79] which include a detailed 
report on existing techniques[80], and a comparison of 
existing heuristics[81]. 

The critical element of the general scheme for directed 
graphs is its high complexity, although it might be kept within 
reasonable bounds if the size of the graph — or should we say 
subgraph — to be drawn is kept small. The ranking process in 
itself has a low cost. Indeed, a breadth first search of the 
graph returns an acyclic subgraph that can be used for 
layering. However, the choice of this subgraph can determine 
the quality of the final layout. We will return to that issue 
later. It is also not clear whether any algorithm in this class 
will be predictable. Some approaches can certainly be made 
predictable, but then the price to pay will be a greater 
complexity due to the loss in flexibility in reordering the 
nodes on a layer. Battista et al. give a detailed account of 
edge–crossing minimization in Chapter 9 of their book[5].  

The Spring Layout box stands for all non–deterministic 
layout techniques, also called Force–Directed Methods. 
Eades[33] was the first to propose this approach in graph 
drawing, modelling nodes and edges of a graph as physical 
bodies tied with springs. Using Hooke’s law describing forces 
between the bodies he was able to produce layouts for 
(undirected) graphs. Since then, his method was revisited and 
improved[28],[47],[49],[75]. Mathematically, the methods 
are based on an optimization problem. Different physical 
models lead to algorithms of different complexities and they 
produce layouts of varying quality. Spring layouts have been 
used successfully to produce well-balanced layout for graphs. 
In some cases, their output can even behave well with respect 
to edge–crossing minimization without any supplementary 
efforts[47]. Bertault has recently developed a force–directed 
model preserving edge–crossings, turning it into a more 
predictable approach[9]. 

In general, however, force–directed methods can be rather 
slow. Each iteration involves a visit of all pairs of nodes in the 
graph and the quality of the layout depends on the number of 
full iterations: each step improves the positions following the 
underlying mathematical model. Even one of the best 
variants[47] is still estimated to work with a complexity of 
O(N3), where N is the number of nodes in the graph. 
Moreover, two different runs of the algorithm on almost 
identical graphs might produce radically different layouts. In 
other words, the methods may be highly unpredictable. This 
makes them less interesting for information visualization, 
since unpredictability can be a major problem for interaction. 
However, in some cases, the lack of predictability can be 
compensated if the graph is small or sparse, by animating 

changes in the layout to help the user in adapting to the new 
drawing[69]. For further information on force–directed 
methods, the reader should refer to the comparison of non–
deterministic techniques of Brandenburg et al.[12] or Chapter 
10 in the book of Battista et al.[5]. 

We will not discuss layouts on grids here. We refer to 
Battista et al.[5] for details on that as well as for learning 
more about the additional techniques included in the boxes 
“Compaction” and “Augmentation” on the right side of 
Figure 2. None of these techniques play a central role in graph 
visualization. 

   The classification of algorithms in Figure 2 assumes that 
layout is determined only by the nodes and edges, without 
additional constraints. However, some work has been done 
with applications where the nodes of the graph have pre-
assigned positions in the plane, such as geographical 
positions. The challenge is then to find a way to draw edges, 
for example, by using polylines or spline curves[6],[13],[97]. 

2.3 Spanning Trees 
A general problem with the majority of the available 
techniques is that they are only applicable for relatively small 
graphs1. The “traditional” concerns of Graph Drawing 
become much less relevant in graph visualization, which 
typically deals with relatively large graphs. In general, it 
makes no sense to test a graph of several hundreds of nodes 
for planarity or to try to minimize edge–crossings. Often the 
most obvious and practical solution is simply to layout a 
spanning tree for the graph. As we have already seen, tree 
layout algorithms[20],[35],[103],[121] have the lowest 
complexity and are simpler to implement. The problem is 
then transformed into one of finding a spanning tree. That 
option involves laying out a graph based on the positioning of 
a tree containing all nodes of the graph, which had been 
previously extracted from the graph. Additional edges are 
then added to that of the tree. The literature in graph theory 
proposes a long list of algorithms to compute spanning trees 
for graphs, both for the directed and undirected cases (see, for 
example, Jungnickel[74]). Incidentally, using a spanning tree 
to layout a graph can also be a solution to gain predictability 
of the layout. Although spanning trees are obviously not the 
only layout approach in graph visualization, they certainly do 
and will play an important role. 

Extracting a spanning tree with no particular property can 
be done easily. One approach is to visit the nodes of the graph 
through a breadth first search and collect edges to form a tree. 
The search can start from a node that is more likely to “act” 
as the root of the extracted tree. A node whose distance to all 
other nodes is minimal is a good candidate[11]. More 
sophisticated algorithms have been designed to satisfy various 
optimization goals. If a weight function exists for the graph, 
algorithms exist to compute spanning trees minimizing (or 
maximizing) the total weight of the tree. One solution is to 
iteratively build a tree by adding edges adjacent to the set of 

                                                           
1 This is clearly shown by the size of the graphs submitted each year to the 

Graph Drawing Contest, although bigger graphs — and also graphs coming 
from real–world applications — have also been included in recent years. 
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already selected nodes, each time selecting an edge with 
minimal (maximal) weight. Different choices for the weight 
function will yield different solutions and will also affect the 
complexity of the extracting process (see, for example, 
Chapters 4 and 5 of Jungnickel[74]). The complexity of this 
task varies according to the variant used. The naive solution 
has a complexity of O(N2), better solutions exist which bring 
the complexity down to O(N logN) or to O(E logN) (where N 
and E denote the number of nodes and edges of the graph, 
respectively). 

A weight function can be used to extract different 
spanning trees and, consequently, to obtain different possible 
layouts for the same graph (although the implementor must be 
aware of the fact that a spanning tree realizing an 
optimization goal for a given weight function does not 
necessarily produce a good view of the graph). Use of weight 
functions can also be applied to directed acyclic graphs, to 
avoid going through the task of edge–crossing minimization. 
For large and dense acyclic directed graphs, the use of layers 
as a weight function (the weight of a node or edge is its layer 
number) has proven to give good results (see, for instance, 
Herman et al.[63]). 

2.4 3D Layout 
One popular technique is to display graphs in 3D instead of 
2D. The hope is that the extra dimension would give, literally, 
more “space”, and that this would ease the problem of 
displaying large structures. Furthermore, the user can 
navigate to find a view without occlusions. The simplest 
approach is to generalize classical 2D layout algorithms for 
3D. Figure 7, for example, shows a 3D version of a radial tree 
algorithm, while  
Figure 8 is a generalization[104] of the two–dimensional 
approach using nested boxes[115]. Most force–directed 
methods are also described in dimension independent terms, 
which allows them to be generalized to 3D (such as the 
approaches based on simulated annealing by Davidson and 
Harel[28] and also from Cruz and Twarog[27]). The reader 

may find further examples in the overview by Young[128] or 
in the new book of Ware[123]. 

In spite of their apparent simplicity, Figures 7 and 8 show 
that displaying graphs in 3D can also introduce new 
problems. Objects in 3D can occlude one another, and it is 
also difficult to choose the best “view” in space[38]. As a 
consequence, virtually all 3D displays of graphs include 
additional visual cues, like transparency, depth queuing, etc. 
They also allow the user to interactively change the view by 
“moving around” in space. But the ability to change 
perspective adds another difficulty. Common practices such 
as the minimization of edge–crossings are less rewarding if 
the user can change the perspective and see edge–crossings 
from another angle. However, it is the job of the application 
to provide the best possible view of the information in the 
perspective initially provided to the user, so aesthetics cannot 
be dismissed. 

The cone tree[106],[107] (see Figure 9) is one of the best 
known 3D graph (in this case, tree) layout techniques in 
information visualization1. In contrast to the previous 
examples, cone trees have been developed directly for 3D, 
instead of generalizing another 2D algorithm.  

Mathematically, the layout is quite simple. Nodes are 
placed at the apex of a cone with its children placed evenly 
along its base. In the original implementation, each layer has 

                                                           
1 The term “cam tree” is also used sometimes. Strictly speaking, cam trees 

are horizontal arrangements, whereas cone trees are vertical. We will not 
differentiate between them. 

 
Fig 7. 3D version of a radial algorithm. (Courtesy of S. Benford, 
University of Nottingham, UK.) 

 

 

 
Fig 8. Information Cube. (Courtesy of J. Rekimoto, Sony Computer 
Science Laboratory, Inc., Japan[104].) 
 

 

 
Fig 9. A Cone Tree. (Courtesy of M. Hemmje, GMD, Germany[59].) 
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cones of the same height, and the cone base diameters for 
each level are reduced in a progression so that the bottom 
layer fits into the width of what the authors called the “room”, 
i.e., the box containing the full cone tree. The original idea of 
cone trees has been re–implemented by others[20],[59],[71] 
with, in some cases, a somewhat refined layout algorithm. 
Carrière and Kazman[20], for example, calculate an 
approximation of the diameter for each cone base by 
traversing the tree bottom–up and by taking the number of 
descendents into account at each step, to make better use of 
the available space. Jeong and Pang[71] replace the cones 
with discs to reduce occlusion. 

The interactive and visual aspects of cone trees are 
essential to make them usable. Not only are some of the 
labels at the nodes transparent, but the user can pick any node 
and rotate the cone tree so that the chosen node is brought to 
the front. This can either be done automatically by the 
system, or as a result of further user interaction. For 
horizontal cone trees, the effect somewhat resembles stepping 
through Rolodex cards arranged in multiple levels.  

Gaining more “space” is not the only possible advantage 
of using 3D. Because of general human familiarity with 3D in 
the physical world, 3D lends itself to the creation of real–
world metaphors that should help in perceiving complex 
structures. One of the earliest widespread applications is the 
File System Navigator (see Figure 10), which came with 
earlier SGI Workstations until version 5 of their operating 
system. The layout of the graph (a tree representing the user’s 
file space) is a simple planar layout. The 3D aspect consists, 
on the one hand, of adding blocks on the plane whose sizes 
are proportional to the file sizes and, on the other hand, of the 
ability to “fly” over the virtual landscape created by those 
blocks. This “fly through” idea has been implemented since in 
various other systems, see, for example, STARLIGHT[105], 
or, more recently, the system presented by Chen and 
Carr[22]. More complex 3D metaphors include the 
Perspective Wall[107], which represents the data as posters 
on a big wall in virtual space. VizNet[43] and Vitesse[98] 
both use an idea similar to the perspective wall by mapping 
objects onto the surface of a sphere with highly related 

objects placed close to a selected object of interest. The Web 
Book[15] displays an animated book in 3D with Web page 
contents, etc. Here again, we refer to the overview of 
Young[128] for further examples. 

In spite of all the technical development in the area, and 
their undeniably attractive features, 3D graph visualization 
techniques have significant difficulties. In our view, the main 
reason lies with the inherent cognitive difficulties of 3D 
navigation in our current systems. Perceptual and navigational 
conflicts are caused by the discrepancy of using 2D screens 
and 2D input devices to interact with a 3D world, combined 
with missing motion and stereo cues (see the overview of 
Ware and Franck[122] for how important these cues are). 
Limited 3D interaction, such as the ability to rotate an object 
for inspection without getting closer to it, may provide 3D 
interaction that doesn’t cause disorientation. If advanced VR–
like systems such as a Workbench, CAVE, or large tiled 
displays are used, some of these difficulties may be solved. 
However, such facilities are not widely available and are still 
too expensive to serve as a basis for most information 
visualization applications. However, when more advanced 
display and interactive facilities (e.g. haptic displays and 
interaction, stereo views, etc.) become more widely available, 
3D techniques may have a profound effect in graph 
visualization. 

2.5 Hyperbolic Layout 
The hyperbolic layout of graphs (mainly trees) is one of the 
new forms of graph layouts which has been developed with 
graph visualization and interaction in mind. The first papers 
in this area are from Lamping et al.[82],[83], followed by a 
series of papers by Munzner[92],[93],[94]. Both developed, 
for example, Web content viewers based on these techniques. 
The technique has been since used by other systems, too, see, 
for example, Robinson[108] or Wilson and Bergeron[127]. 
Hyperbolic views, which can be implemented in either 2D or 
3D, provide a distorted view of a tree (see Figure 11). It 
resembles the effect of using fish–eye lenses on traditional 
tree layouts. This distorted view makes it possible to interact 

 
Fig 10. The SGI File System Navigator 

 

 
Fig 11. Hyperbolic view of a tree in 3D. (Courtesy of T. Munzner, 
Stanford University, USA.) 
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with potentially large trees, making it suitable for real–life 
applications. We will come back to this distortion effect later 
in this survey (see Section 3.2), when we will focus on 
navigation rather than layout. 

Hyperbolic views represent a radically different direction 
in layout, when compared to the various algorithms described 
so far, due to their different geometrical background. In fact, 
some of the classical layout algorithms can be re–used in a 
hyperbolic setting, yielding sometimes quite different results, 
as demonstrated later in this section. Hyperbolic views are 
also surrounded by a sort of mystery, because few people in 
the information visualization community really understand 
the mathematics of hyperbolic visualization. Furthermore, it 
is quite difficult to reproduce the results. Unfortunately, none 
of the papers are didactic enough to reveal the mystery. We 
will discuss the main elements of these layout methods 
further, with the hope that the reader will gain a better 
understanding of the technique. 

Hyperbolic geometry is based on an axiomatic system 
almost identical to the traditional Euclidean axioms with the 
exception of one, the so–called 5th postulate. Whereas the 
Euclidean postulate states that if a line does not intersect a 
point, then there is only one line intersecting the point and 
parallel to the original line (i.e., non–intersecting and co–
planar), in hyperbolic geometry there exists more than one 
such parallel line. This alternative set of axioms results in a 
perfectly consistent form of geometry, albeit different in 
flavour: the traditional trigonometric equations are no longer 
valid, the sum of the internal angles of a triangle is no longer 
180 degrees, etc.1 (These differences, by the way, represent 
significant difficulties for implementors using hyperbolic 
geometry.) 

It is also possible to define a consistent model for the 
hyperbolic plane (or space) within the Euclidean space, 
thereby making a logical link between the two worlds. A 
model in this respect means defining a subset of the 
Euclidean space and the notions of “points”, “lines”, 
“intersections”, “length” within this subset, so that the axioms 
of hyperbolic geometry would be valid locally. Several 
different models were developed. The best known are the 
Klein and the Poincaré models. The Klein model (see 

                                                           
1 The interested reader might want to refer to Coxeter[25] for further 

details. Also, look at the papers of Gunn[56] or Hausman et al.[57]. 

Figure 12) uses an open disc (or sphere for 3D) as a subset, 
i.e. the hyperbolic plane in this model consists of the points 
within the perimeters of the disc. Hyperbolic lines are 
represented by chords of the disc. Intersection is just the 
Euclidean intersection. The only major difference is the 
length of a line segment. We will not give a detailed 
definition here. Suffice it to say that this length is defined as a 
function of the position of the points vis–à–vis the perimeter 
of the disc: segments which are congruent in a hyperbolic 
sense are exponentially smaller in the Euclidean sense when 
approaching the perimeter. To prove the local validity of all 
the axioms of hyperbolic geometry requires some non–trivial 
work. The validity of the negation of Euclid’s 5th postulate is 
quite obvious, though, just consider the line l and the point P 
on the figure. The Poincaré model is quite similar although 
hyperbolic lines are represented by arcs which intersect 
ortogonally the perimeter of the disc. 

It is now possible to give a more exact description of what 
the hyperbolic graph layouts do: they perform a layout 
algorithm in the hyperbolic plane or space, and then display 
the results in the familiar Euclidean plane or space using one 
of the models of hyperbolic geometry. That is, what we see is 
not hyperbolic geometry per se, but its representations in 
Euclidean geometry. The original paper of Lamping et al. 
used the Poincaré model, whereas Munzner primarily uses the 
Klein model. In Figure 11, for example, the Klein model for 
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Fig 13. A simple tree positioning algorithm on the Euclidean plane. 
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Fig 14. The same tree positioning algorithm on the hyperbolic 
plane, using the Klein model to visualize the results. 

 

l

P

A B

A' B'

 
Fig. 12. The Klein for the hyperbolic plane. The line segments AB 
and A’B’ have an equal length in the hyperbolic sense. 
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hyperbolic 3D space is used to display the tree. The distortion 
effect referred to earlier is the result of the exponential 
shrinking of congruent line segments closer to the disc 
perimeter when viewed in the Euclidean space. 

The different spatial nature of hyperbolic geometry makes 
some rather simple layout algorithms suddenly viable. As an 
example, consider the outline of the following tree placement 
algorithm (see Figure 13)1. The algorithm starts from the root 
of the tree, positioning the sub–trees recursively in a circular 
fashion. In each step, the algorithm determines a wedge to 
place a sub–tree. The goal is to find wedges in such a way 
that no crossing would occur between edges of different sub–
trees. If the point P on the figure refers to a node, and the 
wedge QPR with angle α is the one assigned to the sub–tree 
starting at P, the main step of the algorithm is to define sub–
wedges for the sub–trees of P (starting at P1, P2, and P3). The 
angle α is divided into (for the sake of simplicity, equal) sub–
angles, one for each sub–tree. The subdivision of the original 
wedge results in the radii PQ’, PQ”, etc. (see the figure). The 
points P1, P2, P3 are positioned in the middle of these sub–
wedges at some suitable distance from P. The next step is to 
determine the constraining wedges for these sub–tree. This 
can be done by establishing parallel lines with PQ, PQ’, PQ”, 
starting at the points P1, P2, P3, etc. These lines will determine 
the new wedges with angles α1, α2, α3, etc., and the recursion 
step can continue for each of the corresponding sub–trees. 
Obviously, because parallel lines are used, the children’s 
wedges will not overlap. 

The algorithm is very naive, and would lead to quite 
unusable figures on the Euclidean plane. Indeed, the wedge 
angles become very small after a few steps, which shrinks the 
space available for the next sub–tree. However, if the same 
algorithm is used on a hyperbolic plane, the situation is quite 
different. Figure 14 shows the same algorithm in the Klein 
model. The major difference is the way the parallel lines to 

                                                           
1 This algorithm is essentially the same as the one used in the paper of 

Lamping et al.[83]. 

PQ’, PQ”, etc., are calculated: the (hyperbolic) parallel lines 
are the lines intersecting on the perimeter of the disc of our 
model. The effect will be to “open” the angles α1, α2, α3. To 
cite Lamping et al.[83]: “each child will typically get a wedge 
that spans about as big an angle as does its parent’s wedge”. 
Of course, although visible on the Klein model, this statement 
has to be substantiated through explicit formulae using the 
hyperbolic trigonometric calculations, which is quite possible. 
The result is a perfectly feasible layout algorithm. It should be 
noted that Munzner uses different layouts. More details on 
her spherical placement can be found in one of her 
papers[93], which is actually a generalization of the cone tree 
algorithm described in Section 2.4. However, here again, the 
placement algorithm is used in terms of hyperbolic geometry, 
taking advantage of the “large space” available in hyperbolic 
space. 

3 Navigation and Interaction 

Navigation and interaction facilities are essential in 
information visualization. No layout algorithm alone can 
overcome the problems raised by the large sizes of the graphs 
occurring in the visualization applications. Furthermore, the 
task of revealing the structure of the graph calls for 
innovative approaches, too. 

3.1 Zoom and Pan 
Zoom and pan are traditional tools in visualization. They are 
quite indispensable when large graph structures are explored. 
Zoom is particularly well suited for graphs because the 
graphics used to display them is usually fairly simple (lines 
and simple geometric forms). This means that zoom can, in 
most cases, be performed by simply adjusting screen trans-
formations and redraw the screen’s contents from an internal 
representation, rather than zooming into the pixel image. In 
other words, no aliasing problems occur. 

Zooming can take on two forms. Geometric zooming 
simply provides a blow up of the graph content. Semantic 
zooming means that the information content changes and 
more details are shown when approaching a particular area of 
the graph. The technical difficulty in this case is not with the 
zooming operation itself, but rather with assigning an ap-
propriate level of detail, i.e., a sort of clustering, to subgraphs. 
The more general problem of clustering is addressed in 
Section 4. 

Although conceptually simple, zoom and pan does raise 
problems when used in interactive environments. Let us 
imagine, for example, the following setting: the graph being 
displayed is the road network of Europe, and the user has 
zoomed into the area around Amsterdam. The user then wants 
to change the view of the area around Milano. Doing this 
without changing the zoom factor, at least temporarily, might 
be too slow because the user has to first zoom out, pan to 
Milano, and zoom in again. Furthermore, the user wants the 
system to make the necessary moves smoothly. A naive 
implementation might calculate the necessary changes for the 
pan and the zoom independently and perform the changes in 
parallel. The problem is that when zooming in, the world view 

x
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Fig 15. A space–scale diagram. The yellow rectangles represent 
possible window positions in space–scale, yielding different zoom 
factors and pan positions. (Adapted from Furnas and 
Bederson[51].) 
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expands exponentially fast, and the target point moves away 
faster than the pan can keep up with. The net result is that the 
target is approached non–monotonically: it first moves away 
as the zoom dominates and only later comes back to the 
center of the view, which can be quite disturbing. 

The zoom and pan problem is not restricted to graphs, nor 
is the elegant solution proposed by Furnas and Bederson[51] 
to alleviate it. Nevertheless, graph visualization systems can 
greatly benefit from their approach, so we will provide a short 
description here. Furnas and Bederson introduce the concept 
of space–scale diagrams (see Figure 15). The basic idea is to 
define an abstract space “by creating many copies of the 
original 2D picture, one at each possible magnification, and 
stacking them up to form an inverted pyramid”. Points in the 
original image can be represented by rays that contain 
information both about the point and its magnification. 
Various combinations of (continuous) zoom and pan actions 
can then be described as paths in this space, by describing the 
central position of a window parallel to the x–y plane. A cost, 
or “length”, can also be associated to each path and, if the 
length is judiciously chosen, a minimum length path can 
represent an optimal combination of zoom and pan 
movements. Furnas and Bederson not only give a solution to 
the problem outlined above; space–scale diagrams can also be 
used to describe semantic zooming (instead of stacking the 
same picture in the pyramid, the content of the picture may 
depend on the magnification level) which also allows for the 
development of a specialized authoring system for semantic 
zooming[52]. 

3.2 Focus+Context Techniques 
A well–known problem with zooming is that if one zooms on 
a focus, all contextual information is lost1. Such a loss of 
context can become a considerable usability obstacle. A set of 
techniques that allow the user to focus on some detail without 
losing the context can alleviate this problem. The term 
focus+context has been used to describe these techniques. 
They do not replace zoom and pan, but rather complement 
them. The complexity of the underlying data might make 
zoom an absolute necessity. However, focus+context 
techniques are a good alternative and full–blown applications 
systems often implement both.2 

3.2.1 Fisheye Distortion 

Graphical fisheye views are popular techniques for 
focus+context. Fisheye views imitate the well–known fisheye 
lens effect, by enlarging an area of interest, and showing 
other portions of the image with successively less detail (see 
Figure 16). 

We will describe some of the mathematics involved in the 
fisheye technique. Conceptually, the graph is mapped onto 

                                                           
1 Unless a separate window keeps the context visible, which is done by 

several systems. But this solution is not fully satisfactory either. 
2 All techniques described in this section are geometric, i.e., they operate on 

the geometric representation of the underlying graphs. This is in contrast with a 
logical focus+context view described in an often–cited paper of Furnas[50]. In 
our view, the work of Furnas is more related to what we call “metrics”, rather 
than to graphical focus+context. See Section 4.2 for further details. 

the plane and a “focus” point is defined (usually by the user). 
The distance from the focus to each node of the tree is then 
distorted by a function h(x) and the distorted points, and 
connecting edges, are displayed. The function h(x) should be 
concave, mapping monotonically the [0,1] interval onto [0,1] 
(see Figure 17). The distortion created by the fisheye view is 
the consequence of the form of the function, which has a 
faster increment around 0 (hence affecting the nodes around 
the focus), with the increment slowing down when closing up 
to 1. The exact definition of the function may yield a lesser or 
stronger distorting effect. A simple distortion function, for 
example, used by Sarkar and Brown[110],[111] is: 
h(x)=(d+1)/(d+1/x) (this is the function plotted on Figure 
17). The factor d is the so–called distortion factor, which can 
be set interactively by the user. It should be positive; the 
larger it is, the stronger the fisheye distortion. Figure 18 
shows the effect of this function (with d = 4) on the regular 
grid around the origin. 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig 16. Fisheye distortion. Figure (a) represents the graph without 
the fisheye. Figure (b) uses polar fisheye, whereas Figure (c) uses 
cartesian fisheye with a different layout of the same graph. The 
green dots on Figures (b) and (c) denote the focal points of the 
fisheye distortion. Note the extra edge–crossing on Figure (b). 
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There are some variations to this basic scheme. What we 
have just described is usually referred to as a “polar” 
distortion, in the sense that it applies to the nodes radially in 
all directions starting from the focus point. An alternative is 
to use a “cartesian” fisheye: the distance distortion is applied 
independently on the x and y directions before establishing 
the final position of the node (see again Figure 16). Other 
variations are possible. Consult the overview of Carpendale et 
al.[18] or Keahey et al.[77] for further examples and for their 
visual effects. The final choice should depend on the style of 
the graph to be explored as well as the layout algorithm in 
use. 

This simple but powerful technique is an important form 
of navigation that complements zoom and pan. However, 
implementors should be aware of one of the pitfalls. The 
essence of a fisheye view is to distort the position of each 
node. If the distortion is faithfully applied, the edges 
connecting the nodes will also be distorted. Mathematically, 
the result of this distortion is a general curve. Standard 
graphics systems (e.g. X11, Java2D, OpenGL) do not offer 

the necessary facilities to transform lines into these curves 
easily (the facilities can be rather complex). The 
implementer’s only choice is, therefore, to approximate the 
original line segments with a high number of points, 
transform those points, and display a polyline to approximate 
the ideal, transformed curve. The problem is that the number 
of approximating points must be relatively high if a smooth 
impression is desired (on average 60 points per edge), which 
leads to a prohibitively large number of calculations and may 
make the responsiveness of the system sink to an 
unacceptably low level. The only viable solution is to apply 
the fisheye distortion on the node coordinates only, and to 
connect the transformed nodes by straight–line edges. The 
consequence of this inexact solution is that unintended edge–
crossings might occur (see, for example, the upper left 
quadrant of Figure 16/b). This is one of those typical 
situations when the pragmatism required by information 
visualization should prevail. If large graphs are explored, 
these extra intersection points do not really matter much, and 
it is more important to keep the exploration tool fast. 

3.2.2 Focus+Context Layout Techniques 

The fisheye technique is independent of the layout algorithm 
and is defined as a separate processing step on the graphical 
layout of the graph. Interacting with fisheye means changing 
the position of the focus point and/or modifying the distortion 
value. This independence has positive and negative aspects. 
On the positive side, it allows for a modular organization of 
software in which fisheye is a separate step in the graph 
rendering pipeline somewhere between the layout module and 
the actual display. Fisheye can also be significantly faster 
than the layout algorithm, which is an important issue for 
interaction. However, the fisheye distortion may destroy the 
aesthetics governing the layout algorithm. For example, as we 
have seen in the previous section, it can add new and 
unwanted edge–crossings.  

An alternative is to build appropriate distortion 
possibilities into the layout algorithm itself, thereby merging 
the focus+context effects and the layout proper. Interacting 
with the distortion would mean to interact with (some) 
parameters governing the layout algorithm. The hyperbolic 
layout (see Section 2.5) does just that. The hyperbolic view of 
a graph, whether in 2D or 3D, produces a distorted view, not 
unlike the fisheye view (see Figure 11). The equivalent of the 
focal point of the graphical fisheye view is the center of the 
Euclidean circle (or sphere) which is used to “map” the 
hyperbolic view onto the Euclidean space through either the 
Klein or the Poincaré model. Interacting with the view means 
changing the position of this center point within the graph. 
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Fig 18. Fisheye distortion of a regular grid of the plane. The 
distortion factor is 4. 
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Fig. 17. The Sarkar–Brown distortion function with a distortion 
factor 2 (red curve) and 4 (blue curve). 
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Similar effects can be achieved by using 3D techniques 
(see also Section 2.4). By putting objects on 3D surfaces, for 
example, the view created by the perspective or parallel 
projections create a natural distortion on the 2D screen. In the 
Vitesse system[98], for example, the user has only limited 3D 
navigation facilities. The main goal of mapping objects onto a 
sphere or an ellipsoid is indeed to achieve a focus+context 
distortion. More complex surfaces (such as 3D surfaces of 
blended Gaussian curves) have also been used to achieve 
focus+context effects (see Carpendale et al.[17],[18]). Other 
3D visualization techniques, already cited in Section 2.4 (such 
as the Perspective Wall[107]), apply this principle as well. 

The hyperbolic layout is special because it is a graph 
layout algorithm that was developed with the focus+context 
distortion in mind. In fact, we do not know of any systematic 
research conducted on the existing, and more traditional, 
layout algorithms to decide whether such layout dependent 
distortions are possible or not, and, if yes, to exploit this 
feature in real systems. This is in spite of the fact that, at least 
in some cases, the possibility of applying such distortion 
control is clearly available. For example, Figure 5 shows a 
balanced view of a tree, using a balloon layout algorithm[87]. 
This algorithm defines the radii of the circles by taking the 
number of descendents into account. The algorithm can be 
easily directed to give one of the circles a larger “share” of 
the display space by shrinking all the others, thereby creating 
a focus+context effect on that circle[63]. We think that such 
research would provide valuable input for the implementors 
of graph visualization systems. 

3.2.3 Further Issues in Focus+Context 
Techniques 

There are further issues in the area of focus+context that can 
be of interest, some of which could be the basis for future 
research as well (a general characterization and taxonomy of 
distortion techniques is also presented in Leung and 
Apperly[84]). For example, fisheye is based on the choice of 
a distortion function, but we presented only a simple version 
here, used by Sarkar and Brown. This function can be 
replaced by others with different distortion features (arctan or 
tanh functions, piecewise linear approximations to speed up 
processing, etc.)[44],[77],[111]. The techniques can also be 
extended to 3D[19]. Also, just as we could speak about 

“semantic zoom”, one could also refer to “semantic 
focus+context”, meaning that when the distortion becomes 
too “extreme”, in some sense, nodes might disappear after all. 
Sarkar and Brown describe this technique in their paper[110], 
but finer control over this facility might lead to new insights 
as well. Note that the space–scale diagrams[51] (see 
Section 3.1) can also be used to model fisheye distortions, 
which may lead to interesting results in combining (semantic) 
fisheye with zoom and pan. Finally, multifocal focus+context 
methods can also be applied[18],[76],[77], allowing the user 
to simultaneously concentrate on several important areas of 
the graph or to use the system in a cooperative 
environment[98]. 

An interesting example that combines various techniques, 
including multifocal zoom and focus+context, is provided by 
Schaffer et al.[112]. Their system also shows the fundamental 
importance of clustering, which we address in Section 4. They 
consider graphs that already have a hierarchical clustering. 
The left hand side of Figure 19 shows a drawing of the initial 
graph. The dotted rectangles denote the logical clusters (they 
appear on the figure only for the sake of the explanation, they 
would not necessarily appear on a real screen). The right hand 
side of the same figure shows the same graph after a 
multifocal zoom/fisheye action on clusters A and D. These 
clusters are now bigger, while the other clusters have shrunk. 
Moreover, cluster C has disappeared as a result of a sort of a 
“semantic fisheye” action on the graph. Schaffer et al. 
describe the mathematics of distortion and shrinking used to 
achieve these results. Similar ideas can also be found in the 
DA–TU system of Huang et al.[70]. However, much remains 
to be done in combining these different approaches to achieve 
a coherent set of navigation techniques. 

3.3 Incremental Exploration and Navigation 
We have emphasized several times that the size of the graph 
is a major problem in graph visualization applications. There 
are cases when this size is so huge that it becomes impossible 
to handle the full graph at any time; the World Wide Web is 
an obvious example. Incremental exploration techniques are 
good candidates for such situations. The system displays only 
a small portion of the full graph and other parts of the graph 
are displayed as needed. The advantage of such incremental 
approach is that, at any given time, the subgraph to be shown 
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Fig. 19. Multifocal fisheye/zoom in a hierarchically clustered graph. The dotted rectangles denote the (logical) clusters. Note the 
disappearance of cluster C on the right hand side. (Adapted from Schaffer et al.[112].) 
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on the screen may be limited in size, hence the layout and 
interaction times may not be critical any more. This approach 
to graph exploration is still relatively new, but interesting 
results in the area are already available, see, for 
example[14],[40],[68],[69],[99],[130]. 

Incremental exploration means that the system places a 
visible “window” on the graph, somewhat similar to what pan 
does. Exploration means to move this window (also referred 
to as logical frames by Huang et al.[68]) along some 
trajectory (see Figure 20). Implementation of such incre-
mental exploration has essentially two aspects, namely: 

• decide on a strategy to generate new logical frames 
• reposition the content of the logical frame after each 

change. 
Generating new logical frames is always under the control of 
the user. In some cases, the logical frame simply contains the 
nodes visited so far. This is the case, for example, in the 
NESTOR tool, implemented by Zeiliger[130], which uses 
incremental exploration to record a history of the user’s 
surfing the World Wide Web: newly accessed web pages are 
simply added to the logical frame to generate a new one. 
Huang et al.[68] (who also implemented a tool along the 
same lines to explore the World Wide Web[69]) anticipate 
the user’s future interaction by adding not only a new node to 
a frame, but also its immediate neighbors. Huang et al.[68] or 
North[99] also include a control over throwing away some 
part of the logical frame, to avoid saturation on the screen. 

As far as the repositioning is concerned, the simplest 
solution is to use the same layout algorithm for each logical 
frame. This is done, for example by Huang et al.[68]. (Note 
that the latter use a modified spring algorithm. This is one 
case where the relatively small graph on the screen makes the 
use of a force–directed method perfectly feasible in graph 
visualization.) North[99] and Brandes et al.[14] go further by 

providing dynamic control over the parameters that direct the 
layout algorithms. 

As said above, this line of visual graph management is still 
quite new, but we think that it will gain in importance in the 
years to come, and that it will complement the navigation and 
exploration methods described elsewhere in this survey. 

4 Clustering 

As mentioned earlier, it is often advantageous to reduce the 
number of visible elements being viewed. Limiting the 
number of visual elements to be displayed both improves the 
clarity and simultaneously increases performance of layout 
and rendering[78]. Various “abstraction” and “reduction” 
techniques have been applied by researchers in order to 
reduce the visual complexity of a graph. One approach is to 
perform clustering. 

Clustering is the process of discovering groupings or 
classes in data based on a chosen semantics. Clustering 
techniques have been referred to in the literature as cluster 
analysis, grouping, clumping, classification, and 
unsupervised pattern recognition[41],[89]. We will refer to 
clustering that uses only structural information about the 
graph as structure–based clustering (also referred to as 
identifying natural clusters[109]). The use of the semantic 
data associated with the graph elements to perform clustering 
could be termed content–based clustering.  

Although content–based clustering can yield groupings 
which are most appropriate for a particular application and 
can even be combined with structure–based clustering, most 
mentions of clustering in graph visualization are references to 
purely structure–based clustering, with a few notable 
exceptions[91],[105]. This is probably due to the fact that 
content–based clustering requires application–specific data 
and knowledge. Any application which implements content–
based clustering is likely to be so specialized to a problem 
domain that it is no longer general enough for use in other 
application areas. Furthermore, an advantage of using 
structure–based clustering is that natural clusters often retain 
the structure of the original graph, which can be useful for 
user orientation in the graph itself.  

It is important to note that clustering can be used to 
accomplish functions such as filtering and search. In 
visualization terms, filtering usually refers to the de–emphasis 
or removal of elements from the view, while search usually 
refers to the emphasis of an element or group of elements. 
Both filtering and search can be accomplished by partitioning 
elements into two or more groups, and then emphasizing one 
of the groups.  

Fi+1

Fi-1
Fi-2

F1

F2

F3

F4

Fi

The path of exploration

A sequence of logical frames

The partially unknown graph G  
Fig. 20. Exploration of a huge graph. (Adapted from Huang et 
al.[69].) 
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By far the most common clustering approach in graph 
visualization is to find clusters which are disjoint or mutually 
exclusive, as opposed to clusters that overlap (found by a 
process called clumping). Disjoint clusters are simpler to 
navigate than overlapping clusters because a visit of the 
clusters only visits the members once. It should be noted, 
however, that it is not always possible to find disjoint clusters 
such as in the case of language–oriented or semantic 
topologies. 

A common technique for finding natural clusters is to 
choose the clustering with the least number of edges between 
members. This technique is described by Mirkin[89]. It is 
also known as the Ratio Cut technique in VLSI design[124]. 
This technique extends to the case when edges have a weight. 
The task is then to minimize the total weight of the edges 
connecting members[109]. Natural clusters can also be 
obtained by applying a spring model (see below). 

4.1 Layout of a clustered graph 
After discovering clusters within the data, we can reduce the 
number of elements to display by restricting our view to the 
clusters themselves. This provides an overview of the 
structure and allows us to retain a context while reducing 
visual complexity. Looking at the simpler and smaller 
clustered graph, the user should be better able to grasp the 
overall structure of the graph. Most algorithms look for a 
balance between the number of clusters and the number of 
nodes within clusters[1],[31]. A small number of clusters 
allows for a fast processing and navigation. However, this 
number should not be too small, because otherwise the visible 
information content is too low.  

A common technique is to represent the clusters with 
glyphs and treat them as super–nodes in a higher–level or 
compound graph, which we can now navigate instead of the 
original graph. Some approaches have already been 
proposed[37],[112]. Huang and Eades[70] also give a precise 
definition of how edges between super–nodes can be induced 
(they refer to this idea as abridgement). This technique has 
also been implicitly implemented in many other visualization 
systems. One original solution is to omit the edges and 
position the nodes in a way that indicates their 

connectivity[126]. This solution eliminates the problem of 
edge–crossings and reduces visual clutter. 

If clustering is performed by successively applying the 
same clustering process to groups discovered by a previous 
clustering operation, the process is referred to as hierarchical 
clustering[89]. A containment hierarchy will result from 
hierarchical clustering and this may be navigated as a tree, 
with each cluster represented as a node in the tree (see 
Figure 21). Hierarchical clustering can therefore be used to 
induce a hierarchy in a graph structure that might not 
otherwise have a hierarchical structure.  

The approaches discussed until now involve first finding 
logical clusters, then laying out the graph of clusters. A 
completely different approach to clustering is based on force–
directed layout. It lets forces between nodes influence the 
position of the node in the layout. All nodes in the system 
exert repulsive force on the others and related nodes are 
attracted to each other. After several iterations in which the 
positions are adjusted according to the calculated force, the 
system stabilizes, yielding clusters which are visually 
apparent. In a case study of Narcissus[60], the authors report 
that this technique can produce useful clusters in a relatively 
small number of iterations. As with other N–body problems, 
the complexity is O(N3). Another example of clustering by 
layout is described for the SemNet system[42], where 
clustering is accomplished by using semantic information to 
determine the positioning of nodes. 

4.2 Node Metrics for Clustering 
In order to cluster a graph, we must use numerical measures 
associated with the nodes. A node metric can be used to 
measure or to quantify an abstract feature associated with a 
node in order to compare it with others of the same type and 
acquire a ranking. A metric can be implemented as a numeric 
computable function. Clustering can be accomplished by 
assigning elements to groups according to their metric value. 
Metrics can also be used to implement search or filtering, in 
which elements with a certain metric value or a value above a 
threshold are highlighted.  

The term metric, or node metric, has been used in many 
different ways in graph visualization. In this survey, we will 
use the term to refer to a measure that is associated with a 
node in the graph. We have identified the concept of node 
metrics in several places in the literature[11],[50],[61],[78]. 
Of course, similar concepts can be applied to metrics 
associated with edges. 

A metric is structure–based if it only uses information 
about the structure of the graph. A metric is content–based if 
it uses information or data associated with the node such as 
text. The advantage of a structural metric is that no domain 
knowledge is required. This makes a structural metric useful 
for all applications. It is possible, of course, to combine 
structural and content–based metrics for more powerful 
effects. A simple approach is to allow the user to add an 
application–specific “weight” to the nodes, which is then 
combined with the structural metric[50],[61],[62]. 

 
Fig. 21. A structure induced by hierarchical clustering. (Adapted 
from Eades and Feng[37].) 
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An example of a structural metric is the degree of a node 
(i.e. the number of edges connected to the node). With such a 
metric, the application could exclusively display the nodes 
with a degree higher than or equal to a threshold value. This 
would give a view of data which shows the nodes that have 
the largest number of relations with other nodes. A metric 
more specific to trees (called the Strahler metric[120]) has 
been applied in Figure 22, in which nodes with the highest 
Strahler metric values generate a skeleton or backbone which 
is then emphasized (see Herman et al.[61],[62]).  

Metrics can also be composed due to their numeric 
nature[62]. By choosing, for example, the weighted average 
of metrics, the user can choose how much influence a 
particular feature has on the resulting composed metric, and 
thereby influence the resulting clustering. The Degree of 

Interest (DOI) function of Furnas[50] is also an example of a 
metric that is composed of two other metrics (in this case, a 
metric based on distance and a level of detail).  

Node metrics can be used for many different purposes, 
and, in our view, all the possible applications have not yet 
been fully explored. For instance, metrics can also be used to 
govern a spanning tree extraction procedure (see Section 2.3). 
Furnas’s DOI function has been used to generate a 
focus+context view of the graph1. In another application, 
metrics are used to influence layout[127]. 

Once a subset of nodes has been selected, as with a 
skeleton, a method of representing the un–selected nodes 
must be chosen. In the case of clustering, the selected set of 
nodes is the set of super–nodes or the groups themselves. 
Kimelman et al. name three possible approaches[78] (see 
Figure 22): 

• ghosting: de–emphasizing nodes, or relegating nodes 
to the background. 

• hiding: simply not displaying the un–selected nodes. 
This is also referred to as folding or eliding. 

• grouping: grouping nodes under a new super–node 
representation.  

These approaches may be combined, for example with 
clusters represented by transparent super–nodes used by 
Sprenger et al.[116] in the IVORY system. Figure 22(c) 
demonstrates an alternative where the size and the shape of 
the glyph representing the grouping is used to indicate the 
structure of the underlying subgraph. The resulting graph, 
technically a compound graph, is a sort of high–level map or 
schematic view[23],[62] of the original graph which is useful 
for navigation of the original graph.  

Clustering is full of challenges and is applied in many 
different fields, which has the unfortunate consequence that 
results about clustering are disseminated in journals and 
conferences addressing very different topics. This makes it 
difficult to gather the results into a unified theory or into a 
structured set of methodologies. Surprisingly, the book by 
Battista et al.[5] does not include a chapter on clustering, 
although the Graph Drawing Symposia welcomes papers on 
the topic every year. Our feeling is that this issue should 
receive more attention in future, especially from the 
information visualization community. 

5 Systems 

The area of graph visualization has reached a level of 
maturity in which large applications and application 
frameworks are being developed. However, it is difficult to 
enumerate all the systems because of the sheer quantity. 
Furthermore, some of them have a short lifetime because they 
are research tools and others are embedded in specialized 
applications. An overview of all graph visualization systems 
would go beyond the scope of this survey. However, we have 
already referred to a number of systems in earlier sections, 
based on features that we found interesting or important. 

                                                           
1 As mentioned earlier, although Furnas referred to this technique as “fish–

eye”, his technique is not limited to fish–eye in the geometric sense, as described 
in Section 3.2.1. 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 22. Different schematic views of a tree: (a) ghosting, (b) 
hiding, and (c) grouping. 
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Some other systems also caught our attention. Without any 
claim to completeness, we briefly describe a few additional 
systems below.  
      Efforts to develop software libraries and frameworks have 
been underway in several places. Some libraries are directed 
at mathematicians and include large libraries of algorithms, 
while others are meant for more general application. Some of 
the libraries and frameworks that are available are GTL[45], 
LINK[8], GFC[21], GDT[55], and GVF[64]. Although there 
is no widely used standard for graph description formats, 
GML[66] and GraphXML[65] are available. 

SemNet[42] is one of the few systems to provide graph 
editing while still providing a comprehensive set of tools to 
visualize large graphs. It is also one of the earliest complete 
systems that we know about. 

Clustering has been applied by many older systems such 
as SemNet[42], Narcissus[60], SKETCH[118], and the 
Navigational View Builder[91]. Some newer systems that 
cluster graphs are NicheWorks[126], DA–TU[70], 
STARLIGHT[105], and a system used by Bell 
Laboratories[58] for network visualization.  

NicheWorks is an example of a complete system 
implementation that can be adapted for very specific 
applications. As an example, it has been used to visualize 
Y2K related problems[39]. The fsviz system of Carrière and 
Kazman[20], the da Vinci system of the University of 
Bremen[48], or the Latour system developed at CWI[63] fall 
into the same category. We should also mention the company 
called Tom Sawyer Software1, which offers a number of 
products based on various graph drawing techniques. 

A few systems stand out because of unique features. The 
STARLIGHT[105] system performs content-based clustering 
and allows multiple mappings and layouts. It is one of the few 
systems that allows a 3D graph to be mapped to locations on 
a plane (for associating nodes or entire graphs with 
geographical positions). Shiozawa et al[114] use a similar 
type of 3D to 2D mapping in order to view cell dependencies 
in a spreadsheet application. Another system, SDM[24] is 
unique because of a method of filtering in which nodes of 
interest are selected from a cityscape view by a plane above 
them. A similar cityscape view of nodes is used by Chen et 
al.[22] A system called WebPath[46] uses a fog effect in a 
3D rendering of web history to limit the window of viewing. 
Graphs have also been used in an attempt to understand 
images and the transformations on them, where edges 
represent operations[85]. A system for viewing Bayesian 
Belief Networks[129] is one of a unique few 
(including[8],[63]) to employ animation for informative 
purposes. A highly interactive system called Constellation[95] 
has sophisticated zooming and highlighting features that 
facilitate the analysis of linguistic networks. 

The World Wide Web is one of the typical application 
areas where graph visualization may play an important role in 
the future. H3View[93], based on hyperbolic viewing (see 
Section 2.5), is part of a Web site management tool of SGI 
whereas the similar ideas of Lamping et al.[82],[83] are also 

                                                           
1 http://www.tomsawyer.com 

exploited by a commercial spin–off of Xerox, called Inxight2. 
Earlier in this survey, we referred to NESTOR[1] or 
WebOFDAV[69], which can be used as web navigation tools. 
Other examples in this category are the Harmony Browser[1], 
Mapa[32], or Fetuccino[7] (the latter also combines the 
results of a web search engine with graph visualization). 

6 Journals and Conferences 

This survey is based on an extensive literature overview 
drawn from various conferences and journals. One of the 
difficulties of the field is that results are spread over a large 
number of different publications. To help the reader in 
pursuing research in the area, we list here some of the main 
publications which may be of interest: 

• The Graph Drawing Symposia are organized yearly at 
various locations in the World. The proceedings are 
published by Springer–Verlag. These symposia have 
evolved into the traditional meeting places of the 
graph drawing community. 

• The new Journal of Graph Algorithms and 
Applications (JGAA) is an online journal which gather 
a similar community as the graph drawing symposia. 
The home page of the journal is at Brown University3, 
but Oxford University Press will also publish the 
collected papers in book formats. 

• Graph drawing has strong relationships with 
computational geometry and algorithms. As a 
consequence, specialized journals like Computational 
Geometry: Theory and Applications or Algorithmica 
might also be a valuable source, although the papers 
in these journals tend to be much more 
“mathematical”, hence more difficult to read for the 
computer graphics and information visualization 
communities. 

• As said before, the yearly CHI’XX and UIST’XX 
conferences, both sponsored by ACM SIGCHI, often 
contain important papers for information 
visualization, due to the importance of user interface 
issue. Similarly, the ACM Transaction on Human 
Computer Interaction can be a valuable source of 
information. 

• The yearly InfoViz’XX symposia form a separate track 
within the well–known IEEE Visualization 
conference. These symposia, as well as the 
Visualization conference itself, have become one of 
the leading events in the area by now. 

• Somewhat confusingly, there is also a yearly IEEE 
Conference on Information Visualization which, 
however, has no real connection to the InfoViz’XX 
symposia (besides being sponsored by IEEE, too). 
Our own experience is that the academic level of 
InfoViz’XX is somewhat better. 

• What was known before as the series of Eurographics 
Workshop on Scientific Computing’XX has recently 
changed its name to Data Visualization’XX, with 

                                                           
2 http://www.inxight.com 
3 http://www.cs.brown.edu/publications/jgaa. 
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information visualization as a separate track. The 
workshops has become joint Eurographics 
IEEE TCVG symposium and is considered as the 
European “sister” conference to IEEE Visualization. 

• Some traditional computer graphics journals, like the 
IEEE Transaction on Visualization and Computer 
Graphics, or the Computer Graphics Forum (which 
include the proceedings of the Eurographics 
conferences, too), have an increasing number of 
papers in information visualization. 

• Finally, application oriented journals or conference 
proceedings may also include papers on information 
visualization related to their respective application 
area. Examples include the proceedings of the yearly 
XXth World Wide Web or the Digital Library’XX 
conferences. 

Obviously, the list is not exhaustive but, hopefully, it is still 
useful for the reader as a starting point. 
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