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Graph weights arising from Mayer and
Ree-Hoover theories of virial expansions

Amel Kaouche and Pierre Leroux
LaCIM, Département de Mathématiques, Université du Québec à Montréal

Abstract. We study graph weights (i.e., graph invariants) which arise naturally in Mayer’s theory and Ree-Hoover’s
theory of virial expansions in the context of a non-ideal gas. We give special attention to the Second Mayer weight
wM (c) and the Ree-Hoover weight wRH(c) of a 2-connected graph c which arise from the hard-core continuum gas
in one dimension. These weights are computed using signed volumes of convex polytopes naturally associated with
the graph c. Among our results are the values of Mayer’s weight and Ree-Hoover’s weight for all 2-connected graphs
b of size at most 8, and explicit formulas for certain infinite families.

Résumé. Nous étudions les poids de graphes (c’est-à-dire, les invariants de graphes) qui apparaissent naturellement
dans la théorie de Mayer et la théorie de Ree-Hoover pour le développement du viriel dans le contexte d’un gaz
imparfait. Nous donnons une attention particulière au deuxième poids wM (c) de Mayer et au poids wRH(c) de Ree-
Hoover d’un graphe 2-connexe c dans le cas d’un gaz à noyaux durs et à positions continues en une dimension. Ces
poids sont calculés à partir de volumes signés de polytopes covexes associés naturellement au graphe c. Parmi nos
résultats sont les valeurs du poids de Mayer et du poids de Ree-Hoover pour tous les graphes 2-connexes b de taille
au plus 8, et des formules explicites pour certaines familles infinies.
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1 Introduction
Graph weights can be defined as functions on (simple, finite) graphs taking scalar or polynomial values
and which are invariant under isomorphism, i.e., under vertex relabelling. Since most graphical concepts
share this invariance property, examples of graph weights abound. For instance, the graph complexity
γ(g) of a graph g, which is defined as the number of maximal spanning forests of g, is an example of a
graph weight. In the context of a non-ideal gas in a vessel V ⊆ Rd, the Second Mayer weight wM (c) of a
connected graph c, over the set [n] = {1, 2, . . . , n} of vertices, is defined by

wM (c) =
∫

(Rd)n−1

∏
{i,j}∈c

f(‖−→xi −−→xj‖) d−→x1 · · · d−−−→xn−1,
−→xn = 0, (1)

where −→x1, . . . ,
−→xn are variables in Rd representing the positions of n particles in V (V →∞), ‖−→xi −−→xj‖

means the euclidean distance in Rd between−→xi and−→xj , the value−→xn = 0 being arbitrarily fixed, and where
f = f(r) is a real-valued function associated with the pair-wise interaction potential of the particles. See
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[11, 4]. For example, in the case of a Gaussian interaction, where f(r) = − exp(−αr2), α > 0, we have,

for a connected graph c with n vertices and e(c) edges, w(c) = (−1)e(c)
(
π
α

) d(n−1)
2 γ(c)−

d
2 , where γ(c)

is the graph complexity, which, in the case of a connected graph, is the number of spanning trees. The
total sum of weights of connected graphs over [n] is denoted by

|C[n]|wM
=
∑
c∈C[n]

wM (c). (2)

The interest of this sum in statistical mechanics comes from the fact that the pressure P of the system is
given by it’s exponential generating function as follows:

P

kT
= CwM

(z) =
∑
n≥1

|C[n]|wM

zn

n!
, (3)

where k is a constant, T is the temperature and z is a variable called the fugacity or the activity of the
system. It is known that the weight wM is multiplicative over 2-connected components so that it is
sufficient to compute the weights wM (b) for 2-connected graphs b ∈ B[n] (B for blocks). Moreover, these
occur in the so-called virial expansion

P

kT
= ρ+ β2ρ

2 + β3ρ
3 + · · · , (4)

where ρ is the density. Indeed, it can be shown that

βn =
1− n
n!
|B[n]|wM

. (5)

In order to compute this expansion numerically, Ree and Hoover [7] introduced a modified weight
denoted by wRH(b), for 2-connected graphs b, which greatly simplifies the computations. It is defined by

wRH(b) =
∫

(Rd)n−1

∏
{i,j}∈b

f(‖−→xi −−→xj‖)
∏
{i,j}∈b

f(‖−→xi −−→xj‖) d−→x1 · · · d−−−→xn−1,
−→xn = 0, (6)

where f(r) = 1 + f(r) and b = Kn\b is the complementary graph of b. Using this new weight, Ree and
Hoover [7, 8, 9] and later Clisby and McCoy [1, 2] have computed the virial coefficients βn, for n up to
10, in dimension d ≤ 8, in the case of the hard core continuum gas, that is when the interaction is given
by

f(r) = −χ(r < 1), f(r) = χ(r ≥ 1). (7)

While physicists are interested in summing the weights of all connected or 2-connected graphs of a
given order, the present paper focuses on individual graph contributions and their combinatorial signif-
icance. In particular, we study the graph weights wM (b) and wRH(b) in the context of the hard core
continuum gas, defined by (7), in dimension d = 1. Among our results are the values wM (c) and wRH(c)
for all 2-connected graphs c of size at most 8 (see [3]). Moreover, each 2-connected graph c of size Nc,
for which wRH(c) 6= 0, of the form c = KNc\c, determines an infinite family of graphs gn = Kn\c,
n ≥ Nc. Here we give explicit formulas for wRH(Kn\c), for all these infinite families with 4 ≤ Nc ≤ 7,
and give wM (Kn\c) for some of them.



Graph weights arising from Mayer and Ree-Hoover theories 261

2 The hard-core continuum gas in one dimension
Consider n hard particles of diameter 1 on a line segment. The hard-core constraint translates into the
interaction potential ϕ, with ϕ(r) =∞, if r < 1, and ϕ(r) = 0, if r ≥ 1, and the Mayer function fij and
the Ree-Hoover function f ij are defined by

fij = −χ(|xi − xj | < 1), f ij = 1 + fij = χ(|xi − xj | ≥ 1). (8)

From [4], we can write the Mayer weight function wM (c) of a connected graph c as

wM (c) = (−1)e(c)
∫

Rn−1

∏
{i,j}∈c

χ(|xi − xj | < 1) dx1 . . . dxn−1, xn = 0, (9)

and the Ree-Hoover’s weight function wRH(c) of a 2-connected graph c as

wRH(c) = (−1)e(c)
∫

Rn−1

∏
{i,j}∈c

χ(|xi − xj | < 1)
∏
{i,j}∈c

χ(|xi − xj | > 1) dx1 . . . dxn−1, xn = 0,

(10)
where e(c) is the number of edges of c and c = Kn\c is the complementary graph of c.

2.1 Global and specific formulas
Proposition 1 (see [4]). In the thermodynamic limit, the pressure of the continuous unidimensional hard-
core gas model is given by

P

kT
= L(z), (11)

where L(z) denotes the Lambert function, defined by the functional equation

L(z) exp(L(z)) = z. (12)

Corollary 1 (see [4]). Let n be an integer ≥ 1; the total Mayer’s weight |C[n]|wM
of the set of all

connected graphs over the set [n] = {1, 2, . . . , n} of vertices is given by∑
c∈C[n]

wM (c) = (−n)n−1. (13)

Proposition 2 (see [4]). Let n be an integer ≥ 1; the total Mayer’s weight |B[n]|wM
of the set of all

2-connected graphs with n vertices is given by∑
c∈B[n]

wM (c) = (−n)(n− 2)!. (14)

The following formula for the Mayer weight of the complete graphsKn was first observed from numerical
results.

Proposition 3 [4] One has the following specific values of the Mayer weights:
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1. For the complete graph Kn,
wM (Kn) = (−1)(

n
2)n. (15)

2. For the (unoriented) cycle Cn with n vertices,

w(Cn) =
(−1)n

(n− 1)!

bn−1
2 c∑
i=0

(−1)i
(
n

i

)
(n− 2i)n−1. (16)

3. For n ≥ 3, let Kn\e denote the complete graph on n vertices from which an arbitrary edge has
been removed. Then

wM (Kn\e) = (−1)(
n
2)−1

(
n+

2
(n− 1)

)
. (17)

2.2 The Ehrhart polynomial
Except for the sign, the weight

wM (c) = (−1)e(c)
∫

Rn−1

∏
{i,j}∈c

χ(|xi − xj | < 1) dx1 . . . dxn−1, xn = 0, (18)

can be seen as the volume of a convex polytope P(c) in Rn bounded by the constraints |xi − xj | ≤ 1, for
{i, j} ∈ c, with xn = 0. We can compute this volume using Ehrhart polynomials (see [10]).

Proposition 4 (Ehrhart). Let P be a convex polytope of dimension d in Rm, with vertices having integer
coordinates. Let kP = {kα : α ∈ P} denote the k-fold expansion of P , and I(P, k), the number of
points with integer coordinates which lie inside kP. Then I(P, k) is a polynomial function of k of degree
d whose leading coefficient is the volume Vol(P) of P.

Proposition 5 [4]. Let c be a connected graph with its n vertices labelled {1, 2, . . . , n}, and define the
convex polytope P(c) ⊂ Rn by

P(c) = {X ∈ Rn | xn = 0 and |xi − xj | ≤ 1 ∀{i, j} ∈ c}, (19)

where X = (x1, . . . , xn). Then the vertices of P(c) have integer coordinates.

Using Ehrhart polynomials, we have been able to compute the weights wM (b) and wRH(b) for all 2-
connected graphs of size 7 and 8 and we are able to compute the weights wRH(b) for any 2-connected
graphs of size up to 13. A table for sizes up to 8 is available from the authors. See [3].

2.3 Graph homomorphisms
To evaluate the volume of the polytope P(c) we can decompose it into ν(c) subpolytopes which are all
simplices of volume 1/(n−1)! (see [5]). We obtain these subpolytopes by fixing the integral parts and the
relative positions of the fractional parts of the coordinates x1, . . . , xn of points X ∈ P(c). The number
of such configurations will then yield ν(c) and we will have Vol(P(c)) = ν(c)/(n− 1)!.
In fact, to each real number x, we can associate an ordered pair (ξx, hx) where hx = bxc is the integral
part of x and ξx = x− hx is the (positive) fractional part of x, so that x = ξx + hx. Then, the condition
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|x−y| < 1 translates into “ξx 6= ξy and assuming ξx < ξy , then hx = hy or hx = hy+1”. Geometrically,
the slope of the line segment between x and y should be either null or negative. Now consider a connected
graph c with vertex set V = [n] = {1, 2, . . . , n}, and let X = (x1, . . . , xn) be a point in the polytope
P(c). Let us write (ξi, hi) for the fractional representation of the coordinate xi of X , i = 1, . . . , n. For
xn = 0, it will be convenient to use the special representation ξn = 1.0 and hn = −1. The volume of
P(c) is not changed by removing all hyperplanes {xi−xj = k}, for k ∈ Z. Hence, we can assume that all
the fractional parts ξi are distinct. We form a subpolytope ofP(c) by keeping the “heights” h1, h2, . . . , hn
fixed as well as the relative positions (total order) of the fractional parts ξ1, ξ2, . . . , ξn. Let h : V → Z
denote the height function i 7→ hi and β : V → [n] be the permutation of [n] for which β(i) gives the
rank of ξi in this total order. Note that β(n) = n. For example, if n = 5 and ξ3 < ξ4 < ξ2 < ξ1 < ξ5,
then β(1) = 4, β(2) = 3, β(3) = 1, β(4) = 2 and β(5) = 5, i.e. β = (4, 3, 1, 2, 5). The corresponding
subpolytope will be denoted by P(h, β). Let us choose a canonical point X = Xh,β of P(h, β), say the
centroid, obtained by setting ξi = β(i)/n, i = 1, . . . , n. Using the fractional coordinates to represent this
canonical point Xh,β of P(h, β), and drawing a dotted line segment between xi and xj for each edge i, j
of the graph c, we obtain a configuration in the plane which can be seen as an homomorphic image of c
and which characterizes the subpolytope P(h, β).

Proposition 6 ([4]). Let c be a connected graph with vertex set V = [n] and consider a function h : V →
Z and a bijection β : V → [n] satisfying β(n) = n. Then the pair (h, β) determines a valid subpolytope
P(h, β) of P(c) if and only if the following condition is satisfied:

for any edge {i, j} of c, β(i) < β(j) implies hi = hj or hi = hj + 1. (20)

Proposition 7 ([4]). Let c be a connected graph and let ν(c) be the number of pairs (h, β) such that the
condition (20) is satisfied. Then the volume of the polytope P(c) defined by (19) is given by

Vol(P(c)) = ν(c)/(n− 1)!. (21)

Proposition 7 can be used to compute the weight of some families of graphs, sincewM (c) = (−1)e(c)Vol(P(c)).

3 Some new explicit formulas
Here are some of our results concerning explicit formulas for certain infinite families of graphs. These
were first conjectured from numerical results using Ehrhart polynomials. Their proof uses the techniques
of graph homorphisms. The weights are given in absolute value |w(c)|, the sign being always equal to
(−1)e(c).

Proposition 8 For n ≥ 3, let Kn\e denote the complete graph on n vertices from which an arbitrary
edge has been removed. Then we have

|wRH(Kn\e)| =
2

(n− 1)
. (22)

Let Sk denote the k-star graph i.e., with vertex set [k + 1] and edge set {{1, 2}, {1, 3}, . . . , {1, k + 1}}.
Proposition 9 For n ≥ 6, let gn = Kn\S3, then we have

|wM (gn)| = n+
6

(n− 1)
+

12
(n− 1)(n− 3)

, |wRH(gn)| =
12

(n− 1)(n− 2)(n− 3)
· (23)
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Proposition 10 For n ≥ 7, let gn = Kn\S4, then we have

|wM (gn)| = n+
8

(n− 1)
+

24
(n− 1)(n− 2)

+
48

(n− 1)(n− 2)(n− 4)
, (24)

|wRH(gn)| =
48

(n− 1)(n− 2)(n− 3)(n− 4)
· (25)

More generally:

Proposition 11 For k ≥ 1, n ≥ k + 3, let gn = Kn\Sk, then we have

|wM (gn)| = n+ 2
k∑
j=1

j!
(
k
j

)
(n− 1)(n− 2) · · · (n− j)

, |wRH(gn)| =
2k!

(n− 1)(n− 2) · · · (n− k)
· (26)

a) b)

Fig. 1: a) the graph (S3–S4); b) the graph (C4 · S4)

Let (Sj–Sk) denote the graph obtained by joining with a new edge the centers of a j-star and of a k-star.
See Figure 1a) for an example.

Proposition 12 For n ≥ 6, let gn = Kn\(S1–S2), then we have

|wM (gn)| = n+
8

(n− 1)
+

16
(n− 1)(n− 2)

+
16

(n− 1)(n− 2)(n− 3)
+

4
(n− 1)(n− 2)(n− 3)(n− 4)

,

(27)

|wRH(gn)| =
4

(n− 1)(n− 2)(n− 3)(n− 4)
· (28)

Proposition 13 For n ≥ 7, let gn = Kn\(S1–S3), then we have

|wRH(gn)| =
12

(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)
· (29)

More generally:

Proposition 14 For k ≥ 1, n ≥ k + 4, let gn = Kn\(S1–Sk), then we have

|wRH(gn)| =
2k!

(n− 1)(n− 2) · · · (n− (k + 2))
· (30)
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Proposition 15 Let gn = Kn\(S2–S2), then we have

|wM (gn)| = n+
10

(n− 1)
+

24
(n− 1)(n− 2)

+
32

(n− 1)(n− 2)(n− 3)
+

16
(n− 1)(n− 2)(n− 3)(n− 4)

+
8

(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)
, n ≥ 7; |wM (g6)| = 10· (31)

|wRH(gn)| =
8

(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)
, n ≥ 7; |wRH(g6)| =

2
15
· (32)

Proposition 16 Let gn = Kn\(S2–S3), then we have

|wRH(gn)| =
24

(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)
, n ≥ 8; |wRH(g7)| =

1
15
· (33)

More generally:

Proposition 17 For k ≥ 1, n ≥ k + 5, let gn = Kn\(S2–Sk), then we have

|wRH(gn)| =
4k!

(n− 1)(n− 2) · · · (n− (k + 3))
· (34)

Proposition 18 For k ≥ 1, j ≥ 1, n ≥ k + j + 3, let gn = Kn\(Sj–Sk), then we have

|wRH(gn)| =
2k!j!

(n− 1)(n− 2) · · · (n− (k + j + 1))
· (35)

Proposition 19 For n ≥ 6, let gn = Kn\C4, where C4 is the unoriented cycle with 4 vertices then we
have

|wM (gn)| = n+
8

(n− 1)
+

16
(n− 1)(n− 2)

+
16

(n− 1)(n− 2)(n− 3)
, (36)

|wRH(gn)| =
8

(n− 1)(n− 2)(n− 3)
· (37)

Let (C4 · Sk) denote the graph obtained by identifying one vertex of the graph C4 with the center of a
k-star. See Figure 1b) for an example.

Proposition 20 For n ≥ 6, let gn = Kn\(C4 · S1), then we have

|wM (gn)| = n+
10

(n− 1)
+

24
(n− 1)(n− 2)

+
32

(n− 1)(n− 2)(n− 3)
+

12
(n− 1)(n− 2)(n− 3)(n− 4)

,

(38)

|wRH(gn)| =
4

(n− 1)(n− 2)(n− 3)(n− 4)
· (39)

Proposition 21 For n ≥ 7, let gn = Kn\(C4 · S2), then we have

|wRH(gn)| =
8

(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)
· (40)
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More generally:

Proposition 22 For k ≥ 1, n ≥ k + 5, let gn = Kn\(C4 · Sk), then we have

|wRH(gn)| =
4k!

(n− 1)(n− 2) · · · (n− (k + 3))
· (41)

Let Pk denote the path graph i.e., the graph with vertex set [k] and edges set {{1, 2}, {2, 3}, . . . , {k −
1, k}}.
Proposition 23 For n ≥ 5, let gn = Kn\P3, then we have

|wM (gn)| = n+
4

(n− 2)
, |wRH(gn)| =

4
(n− 1)(n− 2)

· (42)

Proposition 24 For n ≥ 5, let gn = Kn\P4, then we have

|wM (gn)| = n+
6

(n− 1)
+

8
(n− 1)(n− 2)

+
2

(n− 1)(n− 2)(n− 3)
, |wRH(gn)| =

2
(n− 1)(n− 2)(n− 3)

·

(43)

Proposition 25 For k ≥ 5, n ≥ k + 1, let gn = Kn\Pk, then we have

|wM (gn)| = n+
2(k − 1)
(n− 1)

+
4(k − 2)

(n− 1)(n− 2)
+

2(k − 3)
(n− 1)(n− 2)(n− 3)

, wRH(gn) = 0· (44)

4 Some physical background
4.1 The grand canonical partition function
In the context of a non-ideal gas with n particles in a vessel V included in Rd, the particle positions
are given by vectors −→x1,

−→x2, . . . ,
−→xn. If we assume that the system is free from external influences, the

partition function is defined as

Z (V, T, n) =
1

n!λdn

∫
V

· · ·
∫
V

exp

−β∑
i<j

ϕ (|−→xi −−→xj |)

 d−→x1 · · · d−→xn, (45)

where λ and β depend on the temperature T and where the interaction between two particles at distance
r is expressed by a potential function ϕ(r) as illustrated in Figure 2a).
The grand canonical partition function is defined as the generating series of the partition functions:

Zgr (V, T, z) =
∞∑
n=0

Z (V, T, n)
(
λdz
)n
, (46)

where z is called the fugacity or the activity of the system. The generating function identities are in the
sense of formal power series in the activity z. The system’s macroscopic parameters can be described
using the grand canonical partition function. In particular, the pressure P , the mean number of particles
n and the density ρ can be written as

P

kT
=

1
V

logZgr (V, T, z) , n = z
∂

∂z
logZgr (V, T, z) and ρ =

n

V
, (47)

where V is also used as the volume of the vessel.
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f

r0r 0r 1r

−1

r r

a) b)

ϕ

1

Fig. 2: a) the function ϕ(r); b) the function f(r)

4.2 Mayer’s idea
In order to study these functions, Mayer (1940) sets

fij = exp(−βϕ(|−→xi −−→xj |))− 1, (48)

where fij = f(|−→xi −−→xj |). The general form of Mayer’s function

f(r) = exp(−βϕ(r))− 1, (49)

compared to the potential function ϕ(r), is shown in Figure 2. Since∏
1≤i≤j≤n

(1 + fij) =
∑
g∈G[n]

∏
{i,j}∈g

fij , (50)

where G[n] denotes the set of all simple graphs over the set of vertices [n] = {1, 2, . . . , n}, the partition
function becomes

Z (V, T, n) =
1

n!λdn

∫
V

· · ·
∫
V

exp

−β∑
i<j

ϕ (|−→xi −−→xj |)

 d−→x1 · · · d−→xn

=
1

n!λdn
∑
g∈G[n]

WM (g), (51)

where the weight WM (g) of a graph g is given by the integral

WM (g) =
∫
V

· · ·
∫
V

∏
{i,j}∈g

fij d
−→x1 · · · d−→xn. (52)

This is the First Mayer weight of a graph g. In terms of WM (g), the grand-canonical function becomes

Zgr (V, T, z) =
∞∑
n=0

Z (V, T, n)
(
λdz
)n

=
∞∑
n=0

1
n!

∑
g∈G[n]

WM (g)zn

= GWM
(z), (53)

the exponential generating function of the species G of graphs weighted by the function WM .
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Proposition 26 (see [4]). The First Mayer weight of a simple graph g WM (g) is multiplicative on the
connected components ck of g, 1 ≤ k ≤ m : WM (g) = WM (c1)WM (c2) · · ·WM (cm).

Corollary 2 (see [4]). The pressure of the system can be expressed in terms of the exponential generating
function of the species G of connected graphs weighted by WM . More precisely, we have

P

kT
=

1
V

logZgr (V, T, z) =
1
V

log GWM
(z) =

1
V
CWM

(z). (54)

4.3 The thermodynamic limit wM(c)

Let c be a connected graph over {1, 2, . . . , n}. The second Mayer weight wM (c) is defined as the thermo-
dynamic limit

wM (c) = lim
V−→∞

1
V
WM (c) = lim

V−→∞

1
V

∫
V

· · ·
∫
V

∏
{i,j}∈c

fij d
−→x1 · · · d−→xn. (55)

Here, V going to infinity has the following meaning. The vessel V ∈ Rd must contain a ball B(0, R)
centered at the origin, with radius R ∈ ]0,∞). V goes to infinity means that R goes to infinity. The
following proposition gives us the conditions on Mayer’s function f for wM (c) to exist.

Proposition 27 (see [4]). If the function f : [0,∞)→ R is integrable and bounded and if
∫
0

∞
rd−1|f(r)|dr

< ∞, then for any fixed ~xn ∈ Rd, the function F~xn
: Rd·(n−1) → R, defined by F−→xn

(−→x1, . . . ,
−−−→xn−1) =∏

{i,j}∈c
f(|−→xi −−→xj |) =

∏
{i,j}∈c

fij is integrable over (Rd)n−1 and its integral is independent of −→xn. More-

over the limit (55) exists and is equal to

wM (c) =
∫

(Rd)n−1

∏
{i,j}∈c

f(‖−→xi −−→xj‖) d−→x1 · · · d−−−→xn−1,
−→xn = 0· (56)

Proposition 28 (see [4]). In the thermodynamic limit, the pressure of the system is given directly in terms
of the exponential generating function of connected graphs weighted by the Second Mayer Weight wM (c):

P

kT
= CwM

(z). (57)

Proposition 29 (see [4]). The second Mayer weight wM is block-multiplicative. More precisely, for any
connected graph c whose blocks are b1, b2, . . . , bm, we have

wM (c) = wM (b1)wM (b2) . . . wM (bm), (58)

where a block in a connected graph is a maximal 2-connected subgraph.

4.4 The virial expansion
In order to better explain the thermodynanic behaviour of non ideal gases, Kamerlingh Onnes proposed,
in 1901, a series expansion of the form

P

kT
= ρ+ β2ρ

2 + β3ρ
3 + · · · , (59)
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where ρ = n
V is the density, called the virial expansion. A benefit of Mayer’s theory is a formal derivation

of this expansion and an interpretation of the virial coefficients βn, n ≥ 2, as the total weight of the set
B[n] of all labelled 2-connected graphs over the set [n] of vertices (see [6] and [11]). More precisely

βn =
1− n
n!
|B[n]|wM

=
1− n
n!

∑
b∈B[n]

wM (b)

=
1− n
n!

∑
b∈T (Bn)

`(b)wM (b), (60)

where the summation in (60) is taken over a set of representatives of the set T (Bn) of isomorphism types
of 2-connected graphs with n vertices, and `(b) is the number of labellings of the graph b.

4.5 The Ree-Hoover expansion
An important rewriting of the virial coefficients was performed by Ree and Hoover ([7], [8]) by introduc-
ing the function

f(r) = 1 + f(r), (61)

and then expanding each weight wM (b) by substituting 1 = f − f for pairs of vertices not connected by
edges. Upon performing this rewriting of the Mayer weights, vertices in the resultant graphs will all be
mutually connected by either f bonds orf bonds. Now there is a new factor which appears for each graph,
called the star content by Ree and Hoover [8], which may be either positive or negative. For example, we
have

wM ( ) = wRH( ), (62)

wM ( ) = wRH( )− wRH( ), (63)

wM ( ) = wMRH( )− wM ( )

= {wRH( )− wRH( )} − {wRH( )− wRH( )}

= wRH( )− 2 · wRH( ) + wRH( )· (64)

Now using the three equations (62), (63), (64), |B[4]|wM
may be written as

|B[4]|wM
= 1 · wM ( ) + 6 · wM ( ) + 3 · wM ( )

= (−2) · wRH( ) + 0 · wRH( ) + 3 · wRH( )

= 1 · (−2) · wRH( ) + 6 · 0 · wRH( ) + 3 · 1 · wRH( ), (65)
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where (-2), 0, 1 are the star contents for the graphs , , , respectively. In general we will

have
|B[n]|wM

=
∑
b∈B[n]

an(b)wRH(b),

where the coefficient an(b) is the star content of the graph b, and wRH(b) is the Ree-Hoover weight of
the graph b:

wRH(b) = lim
V−→∞

1
V

∫
V

· · ·
∫
V

∏
{i,j}∈b

fij
∏
{i,j}∈b

f ij d
−→x1 · · · d−→xn. (66)

However, when the Ree-Hoover transformation is made many graphs have zero star content and hence
do not contribute to the virial coefficient. In addition some Ree-Hoover graph weights may be zero for
geometrical reasons.

References
[1] Nathan Clisby and Barry M. McCoy, “Negative virial coefficients and the dominance of loose packed diagrams

for D-dimensional hard spheres.” Journal of Statistical Physics, 114 (2004), 1361–1392.

[2] Nathan Clisby and Barry M. McCoy, “Ninth and tenth order virial coefficients for hard spheres in D dimen-
sions.” Journal of Statistical Physics, 122 (2006), 15-57.

[3] Kaouche, A., Leroux P. “Tables for the Mayer and Ree-Hoover graph weights of 2-connected graphs of size
4 to 7.” [http://www.lacim.uqam.ca/∼kaouche/TableauRH7.pdf] “Tables for the Mayer and Ree-Hoover graph
weights of 2-connected graphs of size 8.” [http://www.lacim.uqam.ca/∼kaouche/TableauRH8.pdf].

[4] Labelle G., Leroux P. and Ducharme M. G., “Graph weights arising from Mayer’s theory of cluster integrals,”
Seminaire Lotharingien de Combinatoire 54 (2007), Article B54m.

[5] Bodo Lass, Personal communication, 2005.

[6] Pierre Leroux, “Enumerative problems inspired by Mayer’s theory of cluster integrals.” The Electronic Journal
of Combinatorics, vol.11 (2004), R32.

[7] F. H. Ree and W. G. Hoover, “ Fifth and sixth virial coefficients for hard spheres and hard discs. ” The Journal
of Chemical Physics, 40 (1964), 939–950.

[8] F. H. Ree and W. G. Hoover, “ Reformulation of the Virial Series for Classical Fluids.” The Journal of Chemical
Physics, 41 (1964), 1635–1645.

[9] F. H. Ree and W. G. Hoover, “Seventh virial coefficients for hard spheres and hard discs.” The Journal of
Chemical Physics, 46 (1967), 4181–4196.

[10] Richard P. Stanley, Enumerative Combinatorics, vol. 1, Belmont, California: Wadsworth, 1986, 306 p.

[11] G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical Mechanics, Providence, Rhode Island: American
Mathematical Society, 1963, 181 p.


	Introduction
	The hard-core continuum gas in one dimension
	Global and specific formulas
	The Ehrhart polynomial
	Graph homomorphisms

	Some new explicit formulas
	Some physical background
	The grand canonical partition function
	Mayer's idea
	The thermodynamic limit wM(c)
	The virial expansion
	The Ree-Hoover expansion


