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Abstract—The emerging applications in big data and social

networks issue rapidly increasing demands on graph processing.
Graph query operations that involve a large number of vertices
and edges can be tremendously slow on traditional databases. The
state-of-the-art graph processing systems and databases usually
adopt master/slave architecture that potentially impairs their
scalability. This work describes the design and implementation
of a new graph processing system based on Bulk Synchronous
Parallel model. Our system is built on top of ZHT, a scalable
distributed key-value store, which benefits the graph processing in
terms of scalability, performance and persistency. The experiment
results imply excellent scalability.

I. INTRODUCTION

With the advancement of social networks, online gam-
ing [1–3] and scientific applications such as geospatial sys-
tems [4–6] and bioinformatics [7–12], graph data has been
used ubiquitously. There have been works on work flow
systems[13–17] and data streaming management systems[18–
20] attempted to handle structured big data sets from scientific
and commercial applications, which are typically stored in file
systems(such as Hadoop HDFS[21] and FusionFS[22, 23]),
SQL databases(such as Oracle and DB2) or Column Family
databases (such as Hadoop Hive and Cassandra). Data mining,
machine learning [24–26] and security management [27–29]
techniques are also widely used to extract the value from these
big data sets. However it is not easy to fully reveal and utilize
the scientific and commercial value from the continuously
increasing graph data sets. It’s even more challenging when
moving these works to clouds[30]. The traditional relational
database has been used and dominated for many years, and
it also works well for a long time. Graph related query is
tremendously slow on the traditional relational database. An
ideal solution for this problem is to replace the traditional data
infrastructure with a graph-centric model, including storage
and computing, thus to better serve graph-based applications
in terms of performance and programmability.

Pregel [31] is a Bulk Synchronous Parallel model based
distributed graph processing system developed by Google. It
inspires couple of similar variation projects, such as Giraph[32]
and GraphLab[33], now known as Pregel-like systems. How-
ever Pregel-like systems have some limitations. First, they only
work on in-memory data and don’t accept new data as soon
as data loading is finished. This limits their use especially
when the dataset can’t fit in memory. Second, the master node
coordinates both synchronization barriers and checkpointing
for fault tolerance, which makes it a significant bottleneck.

We design and implement a new graph processing system
Graph/Z with ZHT [34–39] as a building block. Graph/Z
can be considered as another Pregel-liked graph processing
system, but it inherits some important features from ZHT, a
distributed key-value store, which differentiate Graph/Z from

other systems. ZHT is a zero-hop distributed key-value store
featured with high scalability, persistency and fault tolerance.
By leveraging ZHT’s persistency, Graph/Z can run with a much
larger working dataset.

The contributions of this paper are as follows:
• Design and implementation of GRAPH/Z, a BSP

model graph processing system on top of ZHT.
• The system utilizes data-locality and minimize data

movement between nodes.
• Benchmarks up to 16-nodes scales.

II. GRAPH/Z DESIGN AND IMPLEMENTATION

GRAPH/Z follows Pregel’s computing paradigm, which
has been known as ”think like a vertex”: graph computation
jobs are divided in terms of what each vertex needs to compute;
edges are communication paths for transmitting results from
one vertex to another. The computation is split into supersteps.
At each superstep, a vertex executes a computation task, send
or receive messages to its neighbors. Supersteps end with
synchronization barriers.

We use ZHT as a building block in our Graph processing
system so as to utilize it’s feature and performance advantages.
In Graph/Z, ZHT is used to support random access, remove,
update and create vertices and edges. We also use the key-
value entry in ZHT to handle the communication messages
between nodes.

Fig. 1: Graph/Z architecture

GRAPH/Z consists of three major components, namely
master node, worker node and storage server. A worker node
is the a computation unit. It firstly loads assigned data parti-
tions (to present vertices) from ZHT server, then it executes
computation jobs depend on specific algorithms. In the BSP
model, each vertex needs to communicate with others. If two
vertexes are not located on the same node, we need to handle
the communication between these two nodes. We use some
special key-value entries in ZHT as message transfer station,
so each worker node don’t need to communicate with each
directly, they only need to communicate with ZHT. As we
discussed, the processes of BSP model consists of multiple
supersteps, since we cannot achieve a perfect load-balance,
some workers may be still working on their own vertexes while
other workers have already finished their job. The main job of
master node is to coordinate the supersteps, only when all
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Fig. 2: Graph/Z performance

worker nodes complete their current superstep master node
will notify them to do the next superstep.

Fault Tolerance: We store all the message list, active ver-
tex list and any information that we need in graph computation
in the ZHT server. This means that all the intermediate and
final results are stored in ZHT. These data can also be used as
checkpoints in each superstep. If one node is failed, we can
simply read these data from ZHT and restart this superstep
without having to restart over. This is especially useful when
processing big data sets.

III. EVALUATION
We run PageRank on setups of 2, 4, 8, and 16 virtual

machines. All VMs are m3.2large Amazon EC2 spot instances,
located in us-west-2c. Each instance has four virtual CPUs,
equivalent to 2.5 GHz Xeon Family processors, and 30GB of
memory. The data set is web-Google from SNAP (Stanford
Network Analysis Project), which contains 1 million vertexes
and 5 million edges. We evaluated the loading time by starting
all the worker nodes and calculate the average loading time in
different scales(form 2 to 16). The increment of loading time
is almost linear because each worker node only need to load its
local vertexes and don’t need to communicate with a remote
node. Due to the load balance feature of ZHT, the amount of
work that each worker needs to do are basically equal.

PageRank algorithm uses all the vertexes and edges in
every superstep. Thus this is a good algorithm to test data
locality and load balance. When running on 8 nodes, the
system achieves the highest performance, and then it decreases
greatly on 16 nodes. This is mainly because the average work
load on each node is too small and relatively more cross-node
communication is involved due to large scale.

IV. RELATED WORK

Pregel[31] is the first influential BSP-based implementation
that provides a native API specifically for programming graph
algorithms while abstracting away the underlying communica-
tion details. Giraph [32] is an Apache project and a variation
of Pregel, which leverages Apache Hadoop’s MapReduce to
handle graphs. It is used to perform graph processing on big
data. Facebook used Apache Giraph to analyze one trillion
edges within only 4 minutes by 200 machines. GraphLab
[33] is a graph-based, high performance, distributed com-
putation framework which was written in C++. GraphLab
extends Pregel protocols and supports both synchronous and
asynchronous modes.

V. CONCLUSION

In this project, we present the preliminary results of
Graph/Z, a scalable distributed graph processing system. By
adopting a distributed key-value store, we simplify the design
and implementation of Graph/Z and reduce the workload on
master node.
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