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Graphbots: Cooperative Motion
Planning in Discrete Spaces

Samir Khuller, Ehud Rivlin, and Azriel Rosenfeld, Life Fellow, IEEE

Abstract—Most previous theoretical work on motion planning
for a group of robots has addressed the problem of path planning
for the individual robots sequentially, in geometrically simple
regions of Euclidean space (e.g., a planar region containing polyg-
onal obstacles). In this paper, we define a version of the motion-
planning problem in which the robots move simultaneously. We
establish conditions under which a team of robots having a
particular configuration can move from any start location to any
goal destination in a graph-structured space. We show that for a
group of robots that maintain a fixed formation we can find the
“shortest” path in polynomial time, and we give faster algorithms
for special kinds of environments.

Index Terms—Graphs, motion planning.

I. INTRODUCTION

M
ANY robotic tasks can be handled more efficiently

and robustly by a group of robots. Various constraints

may be imposed on the group by the common task at hand.

These constraints may be internal, imposed by the nature of

the task, or external, imposed by the environment. Consider,

for example, a team of robots trying to cooperatively clean a

large system of air-conditioning pipes (see Fig. 1). The group

leader is assumed to have a map of the environment and should

plan a path for the group that will take into consideration the

constraints imposed by the topology of the air-conditioning

system. The most common kinds of maps used in robot navi-

gation are quantitative. Such maps directly represent geometric

information about the environment. Alternatively, qualitative

maps, such as topological graphs, can be used to model

robot environments [15]. This kind of representation reflects

qualitative information about the environment. In our case,

the fact that pipes and their intersections (presumably) do

not permit more than one robot at a time to pass motivates

a topological representation of locations (intersections) and

their connecting paths (the pipes joining them) by using a

graph model (as in [13]). The group leader may impose
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Fig. 1. Team of robots (one leader L and three team members m) in an
air-conditioning system. Starting position in the lower right, goal position in
the upper left.

other task-relevant constraints on the group’s motion. These

constraints might reflect a need to maintain communication,

or mutual coverage, and might also reflect different abilities

of the group’s members.

In this paper, we study motion planning for a group of robots

that operate in an environment that can be modeled discretely,

i.e., as a graph, and where the group is trying to maintain a

specific formation, represented by a subgraph.

A. Mobility in a Graph

We begin by formally defining our model for mobility of a

graph-structured group of robots in a graph-structured space.

Let be a connected graph, which we usually refer to from

now on as the “graph space,” and let be a connected

subgraph of , which we refer to from now on as the “group”

[representing a cooperating team of (point) robots]. We allow

to incrementally “move” in ; as it moves, we require it

to remain isomorphic to itself. Formally, this is defined as

follows: two isomorphic subgraphs , of are said to

differ by a local displacement if corresponding nodes (under

the isomorphism) are either identical or are neighbors. A

movement or motion of from to (which we call the

start and target locations or “states”) is defined by a sequence

of subgraphs and , all isomorphic

to , such that and differ by a local displacement

. We say that moves from to by a
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Fig. 2. Three UGV’s operating in rugged terrain need to move from the start positions (2,1,3) to the goal positions (7,9,8) while maintaining their formation
and minimizing their exposure. On the right is the graph representation.

sequence of -local displacement steps. Note that a location (or

“placement”) of in is a subgraph of that is isomorphic

to ; two isomorphisms of into that have the same image

are regarded as defining the same placement.

Example: Consider a group of unmanned ground vehicles

(UGV’s; see [16]) that need to move from a set of start

positions to a set of goal positions in the area shown in Fig. 2.

The group is heterogeneous, and the group leader (GL) can

protect the members of the group when they are stationary and

in a certain formation (which reflects constraints like distance,

visibility, etc.). The nodes of the graph represent locations

where a UGV can stop to communicate, reassess the situation,

etc. Moving from one node to another is done along a relatively

unexposed but unsecure path (see [22]). We represent the

members of the team by single nodes, and each time they

move, we require them to reestablish their formation, which

defines the graph structure of the team. Note that a situation in

which two robots occupy the same node represents a threat to

the group and is therefore forbidden. The external constraints

(the environment) motivate a graph-like representation for the

locations and the unexposed paths. These tactical demands and

the need for minimum exposure dictate the team’s formation.

Our definition of movement is a discretized description of

the way the group of UGV’s is moving. The need to keep the

time in which each UGV is moving to a minimum results in a

series of steps, each of which represents a move of the group

from one secure position to the next. Checking if such a series

of moves is possible and trying to plan for the shortest such

series is the topic of this paper.

B. Outline of Results

Let a group of robots in a formation be modeled by a graph

. The formation exists in an environment modeled by a

“graph space” . It is desired that the group maintain the

same formation while moving around in . This is not always

possible; can only occupy positions in which is “big”

enough to contain an isomorphic copy of . Thus, cannot

always “move freely” in . If has only one or two nodes,

it can obviously move freely in any connected graph , but

bigger ’s cannot move freely in an arbitrary .

In this paper we explore two kinds of questions.

• What conditions should satisfy so that a given graph

can move freely in ? In other words, under what

conditions can we guarantee the existence of a motion

between any two valid placements of in ? (We shall

assume that there exist at least two possible locations,

since if there is only one location, cannot move

at all.) We consider many different types of ’s and

establish conditions on that permit a motion between

any two valid placements of . Our proofs easily lead to

efficient algorithms for planning a motion between any

two locations of .

• Given a start state and a target state for the group,

what is the complexity of finding a motion with the fewest

local displacements from to (if one exists)?

We consider the first question for various types of ’s.

Even for very simple ’s, this question turns out to be quite

interesting and nontrivial. The results characterize various

classes of graphs that permit free movement of various forms

of ’s, which we name after various types of arthropods1 and

which we illustrate in Fig. 3. In Section II, we give necessary

and sufficient conditions on for the movement of a two-

vertex path, which we call a tick. In Section II-B, we give

necessary and sufficient conditions on for a three-vertex

path, a scorpion, to be able to move freely in , and in

Section II-C, we give sufficient conditions for a three-vertex

cycle, a trilobite, to move freely. These conditions do not

generalize straightforwardly to paths or cycles (or cliques) that

have more than three nodes; but in Section II-D, we give a

simple sufficient condition on for a -node star, a

-legged spider consisting of a “central” node and of its

neighbors, to be able to move freely in . A four-vertex cycle

is referred to as a jellyfish, and it can move freely on a grid

graph.

In Section III, we show that for any fixed graph , the

second question can always be answered in polynomial time.

Unfortunately, the time complexity of the algorithm is quite

high, albeit polynomial. For special kinds of graphs , we give

1 A major group of segmented invertebrates having jointed legs. (Strictly
speaking, not all of our examples are arthropods.)
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Fig. 3. Different formations that will be considered in the paper. From left to right: a tick, a scorpion, a trilobite, a five-legged spider, and a jellyfish.

faster algorithms. We also prove that the problem is NP-hard

when is part of the input. This reduction is also outlined

in Section III.

In Section IV, we give an example involving the coordi-

nated motion of three UGV’s on rugged terrain. Section V

contains a discussion and suggestions about future work.

C. Related Work

Several papers have addressed the problem of motion plan-

ning for multiple robots moving in Euclidean space (e.g., [8]

and [20]). In [4] and [14], motion planning for a group of

moving robots is addressed. The assumption is that the robots

move sequentially. A similar assumption is made in [11],

where motion planning for multiple mobile-tethered robots

is described. The robot’s movements and configurations are

constrained by the tethers. In [19], control laws for governing

the behavior of a team of agents are proposed. The paper

describes a motion of a group that is parallel to the one-step

motion in our model. These principles can be used by our

planner after the next move is decided upon. Work similar

in spirit to ours is that by Papadimitriou et al. [18]. Their

work is similar in the sense of trying to capture a well-studied

geometric motion-planning problem in a graph setting. In their

work, it is assumed that the robot is a single vertex and the

obstacles (also single vertices) are considered to be movable.

The robot needs to plan a motion and has the power to request

obstacles to move. (Another way to view this situation is

to think of a group of robots located in the graph; one of

them wants to plan a motion and may request the others to

cooperate.) In our work, we have tried to model the movement

of a group of robots that has a certain formation and that moves

in the presence of fixed obstacles. Since the obstacles are fixed,

we can simply delete the nodes occupied by them from the

graph; thus, we never need to refer to them. (Similarly, fixed

obstacles in the plane can simply be treated as holes in the

plane.) A preliminary version of this paper appeared in [12].

II. MOVING ROBOTS FREELY

A. Moving a Tick

A “tick” is modeled by a two-vertex graph linked by a single

edge. The proof of the following proposition is obvious.

Proposition 2.1: A tick can move freely in any connected

graph.

Note that if has only two vertices (and is connected), then

there is a unique placement of the tick. (Both isomorphisms

define the same placement.)

B. Moving a Scorpion

A “scorpion” is modeled by a three-vertex graph linked by

two edges. We will refer to the degree-two vertex as (the

coordinator or the “body”) and the degree-one vertices as

(the “feet”).

Theorem 2.2: A scorpion can move freely in if and only

if does not contain a vertex with two neighbors of degree

1.

Note that we regard the two placements of the scorpion on

a three-vertex, two-edge graph as identical.

Proof: If has such a vertex , we can place the

scorpion with on and the ’s on the neighbors of .

Any movement of the feet requires that both must move to .

If we move one foot to , then must leave , and thus, the

other foot will not be adjacent to ’s new location. Thus, the

scorpion cannot move from this location.

To prove the converse, assume there is no such vertex . Let

the initial placement of the scorpion be at , , (one on

, on , and the other on ), and let the target location

be , , . If there is a path joining a foot of the scorpion

in the initial location to a foot of the scorpion at the final

location, without passing through and , then the scorpion

can “creep” along this path to reach its destination. Let us

assume that the only path from to

goes through either or (or both). Since the degree of

is not one (the case when the degree of is not one is

identical), has a neighbor (other than ). Move the

scorpion as follows. One foot goes from to , goes

to , and the other foot goes from to . Now the

scorpion can creep along the path to the desired destination.

(At the other end, a similar orientation step may be required.)

The details are left to the reader.

Basically, to corner a scorpion, you have to completely

immobilize it at its starting location. This proof easily extends

to an algorithm that can move a scorpion from any initial

location to a target location, if a motion exists.

C. Moving a Trilobite

A “trilobite” is modeled by a three-vertex graph linked by

three edges (i.e., a clique of size three). We will give some

conditions under which free motion of a trilobite is possible.

Before discussing the details of the conditions that the graph

must satisfy, we review some definitions [3].

Biconnected Graphs: A single vertex in a connected graph

whose deletion disconnects the graph is called a cut vertex

(also known as an articulation vertex). A graph with no cut

vertices is called biconnected.

-Connected Graphs: A graph is said to be -connected

if the deletion of any subset of vertices leaves the
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Fig. 4. Case in Lemma 2.5 when v has one neighbor.

graph connected. We also require that contain at least

vertices.

Chordal Graph: A chordal graph is a graph in which each

cycle of length of at least four has a chord. (A chord is an edge

that connects two vertices that are not adjacent on the cycle.)

Perfect Elimination Orderings: A perfect elimination or-

dering (peo) is a numbering of the vertices from

such that, for each , the higher numbered neighbors of vertex

form a clique. Thus, a peo is represented by a sequence

of vertices.

Theorem 2.3) Fulkerson and Gross [9]: A graph has a

perfect elimination ordering if and only if is chordal.

We will use this characterization of chordal graphs to prove

the following theorem.

Theorem 2.4: A trilobite can move freely in a biconnected

chordal graph that has at least three vertices.

Note that if itself is a clique of size three, then a

trilobite has only one possible location (recall that we do not

count locations obtained by permuting the vertices as distinct

locations).

Before we prove the theorem, we first prove the following

simple lemma.

Lemma 2.5: Let be a biconnected chordal graph that has

at least three vertices. Consider a peo for ; then any vertex

( ) must have at least two neighbors with

higher numbers.

Proof: We will prove this by contradiction. Start deleting

vertices one at a time, starting with vertex 1. Stop the deletion

process when we are about to delete vertex that has fewer

than two neighbors in the current graph. There are two possible

cases.

Case 1) Vertex Has One Neighbor (see Fig. 4): The

other vertices adjacent to have been deleted. We now claim

that is a cut vertex (in ) that separates from the other

vertices in (by our assumption, ’s number in the peo is

between 1 and ; thus, has at least one vertex other than

). To prove this by contradiction, assume that is the shortest

path (in ) from to any vertex in that avoids . Observe

that has at least two edges in it since is not adjacent

to any vertex in (other than ). Consider the first vertex

of that we delete. There must be an edge between its two

neighbors; this gives a shorter path from to , contradicting

the assumption that was the shortest path from to some

vertex in (avoiding ).

Case 2) Vertex Has No Neighbors: Let be the most

recently deleted vertex among the neighbors of in . By

our assumption, about , had at least two neighbors when

it was deleted; since these formed a clique, must have a

Fig. 5. Chordiality is not necessary for moving a trilobite freely.

neighbor that has not been deleted as yet (by our assumption

on ). Thus, this case cannot occur.

Proof of Theorem 2.4: We now use Lemma 2.5 to prove

the theorem by induction on the number of vertices of . The

base case is a chordal graph with three vertices. A biconnected

graph on three vertices is a clique of size three and the theorem

is trivially true for this graph. Consider a peo of . Assume

that we have deleted vertices and have a graph

left. The subgraph is chordal since it is an induced subgraph

of . is also biconnected since it does not have any

cut vertices. (If it has a cut vertex separating it into two

connected components and , then when the last vertex

in the peo is removed from the component that is exhausted

first, this vertex will have only as its neighbor; this is a

contradiction to Lemma 2.5.) Since is biconnected and

chordal, by the induction hypothesis we know that the trilobite

can move freely on . What happens if we add vertex back?

We have to show that for each location of a trilobite that uses

, it can move to any location in . In a placement of the

trilobite using vertex , let the other corners of the trilobite be

at vertices and . Without loss of generality, assume that

. If , then has at least one other neighbor

with a higher number, such that is adjacent to (this follows

from Lemma 2.5 and the definition of a peo). Thus, we can

move the trilobite from , , to , , . Since , , and

are all in , by the induction hypothesis the trilobite can also

move to any other location in . The other case to consider

is when (in this case ). Since has more

than three vertices, vertex is distinct from vertex . This

vertex is also adjacent to both vertices and . We can

move the trilobite from , , to , , . This

concludes the proof.

It is easy to see that valid locations of a trilobite cannot

be separated by a cut vertex. However, we can construct

graphs that are biconnected but not chordal, which allow free

movement of the trilobite (see Fig. 5). Hence, chordiality is

sufficient, but not necessary.

D. Moving a Spider

A -legged “spider” is modeled by a -vertex graph

having a central vertex, denoting its “body” (vertex ), linked

by edges to vertices , representing its “feet.” We
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give conditions under which free motion of a spider is possible.

When , we have a one-legged spider, which is a tick;

this case has already been dealt with. Section II-B gave an

exact characterization of the graphs a two-legged spider (also

called a scorpion) can move freely in. In the remainder of this

subsection, we will assume that .

Theorem 2.6: A -legged spider can move freely in a

-connected chordal graph. (We assume that the graph

has at least two distinct placements of the spider.)

For the rest of the discussion in this subsection, we will

assume that the underlying graph is -connected and

chordal. Observe that Menger’s theorem [3] guarantees the

existence of internally vertex-disjoint paths between any

pair of vertices in .

We first prove some interesting lemmas that are used in

the proof of Theorem 2.6. Before we prove the lemmas, we

introduce the following notation. Let denote the set of

vertices that are adjacent to vertex . Let denote the

set of vertices that are adjacent to vertices and . In other

words, .

Lemma 2.7) Common Neighbors Lemma: Let be a graph

that is -connected and chordal. If and are two

adjacent vertices, then .

Proof: Consider a set of vertex-disjoint paths from

to . Clearly, one path is the edge from to . Let

be the other paths from to . Of

all such paths, we can pick the set of paths that have the

shortest total length. If path has three or more edges, then,

together with the edge , it creates a chordless cycle of

length four or more, which is a contradiction to the assumption

that the graph is chordal. Let be . Clearly, all the

vertices are in . This completes the proof.

Lemma 2.8) Connectivity Lemma: Let be a graph that is

biconnected and chordal. For any vertex , if is the graph

induced by the neighbors of , then is connected.

Proof: Suppose were not connected. Let

be the connected components of . Since is biconnected,

for any pair of vertices we must have a path in avoiding

that connects the pair. Of all such paths, let be the shortest

path connecting two vertices and , such that and

with . Since there is no edge , this path

must have at least two edges. In this case, the edge ,

together with and the edge , form a chordless

cycle of length four or more; this is because has no edges to

internal vertices of . This is a contradiction to the assumption

that has at least two components. Hence, is connected.

Lemma 2.9) Rotation Lemma: Consider a spider located

with its body at vertex and its feet at vertices

. There is a legal motion that moves the feet to

any desired subset with .

Proof: By the Connectivity Lemma, is connected; let

be a spanning tree of . Using , we will move the feet

of the spider from their current locations to the vertices in .

Pick any foot at vertex . The vertices in that currently

do not have a foot on them are called “free” vertices, and those

that have a foot on them are called “occupied” vertices.

Let be a path in that connects with some free vertex

in . We start moving the foot along the path from to

the free vertex. If any vertex on the path is occupied by a foot

, we stop moving and start moving . In other words,

we exchange the role of and . In this way, we can move

all the feet to vertices in .

Observe that the above lemma lets us reduce the problem of

moving a spider from one location to another to the problem

of moving the body without worrying about the placement of

the feet.

Remark: The above lemma moves the feet one by one. If

we want to move the feet as quickly as possible, it is possible

to compute a set of shortest disjoint paths between the

initial locations of the feet and the final locations. (Observe that

the feet in “front” of and “behind” the body are not moved

by the Rotation Lemma.) This works since the graph is

-connected even after we delete the vertex occupied

by the body.

Proof of Theorem 2.6: Assume that the start location of

the spider’s body is at vertex and its target location is at

vertex . We will concentrate on moving the spider’s body

from vertex to vertex . Using the Rotation Lemma, we can

always move the feet from any set of neighbors of a vertex to

any desired set of neighbors of the vertex.

Let be the shortest path

in from to . We will show how the spider can move

from to by a local displacement. We first apply

the Rotation Lemma and move the feet to the set

. (The only cases in which this is

an invalid set are and ; these will be dealt with

later.)

The body of the spider moves from to . The spider

then moves the foot at to and the foot at to

. The feet in the set do not need to move at

all in this step. Observe that for the next local displacement,

we apply the Rotation Lemma to move the feet to vertices

in before we can move the body again. In

particular, the feet are moved from the current location to

.

When , we define as any vertex in that

does not have a foot placed on it. When , we define

as any vertex in that does not have a foot placed on

it.

Let and , respectively, denote the number of vertices

and edges in . Our proof also yields an efficient algorithm

for finding the motion between the start and target locations.

The shortest path from to can be found in time by

using breadth—first search. At each step, we can move the

legs in time. This yields an time algorithm for

moving the spider from any start location to a target location

(since the body moves for at most steps).

Remark: Using a modification of the basic approach de-

scribed above, we can design an algorithm with running

time (assuming that is a fixed constant). The main

bottleneck in our algorithm is due to the fact that we need

to apply the Rotation Lemma each time the body moves one

step. The following idea yields a linear time algorithm.

First compute vertex-disjoint paths

between and . (These can be obtained by finding a flow of

value in an appropriately defined flow network [5]). Next,
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Fig. 6. A five-legged spider cannot move freely in a biconnected chordal
graph.

preprocess these paths to make them minimal, so they have

no chords that provide shortcuts. This is easily accomplished

by labeling each vertex on by its distance from along

the path and traversing a second time, picking the neighbor

with the highest label at each step. The new paths are called

, .

Let be the vertex adjacent to on the

path . The spider does one rotation step to put feet on

the vertices. Observe that form a clique, since

is chordal. The spider can move its body to any neighbor

on one of the paths and drag the last foot behind it. We need

to recompute chordless vertex-disjoint paths in

steps, where is the degree of vertex . This can be done

by examining the neighbors of on the paths .

The feet are once more moved onto the new set of paths

and then the body moves again. Once the body reaches , we

need to do one more rotation step to finish the motion. This

method saves the cost of doing a rotation step each time the

body moves and thus, runs in time.

E. Moving a Four-Legged Spider

We showed that we can move a three-legged spider in a

biconnected chordal graph; this follows from the theorem in

the previous section with . In this section, we prove

the slightly stronger result that a four-legged spider can move

freely in a biconnected chordal graph. This is the best possible,

since we can show by an example that a five-legged spider

cannot move freely in a biconnected chordal graph (see Fig. 6).

Clearly, there are two feasible locations for the five-legged

spider at the two vertices of degree five; but since these are

the only two degree-five vertices, no movement is possible

between the two locations of the spider.

The proof for the four-legged spider is more complicated,

since the proof technique that worked for the three-legged

spider in a biconnected graph does not work for four-legged

spiders. (In particular, it is not the case that we can select a

shortest path and move the body along this path, since there

may be degree-three vertices on this path.)

Theorem 2.10: A four-legged spider can move freely in a

biconnected chordal graph.

Proof: Let the spider’s body be at vertex , and let the

target location of the body be . By the Rotation Lemma, we

can see that it is easy to “rotate” the legs without moving the

body. Hence, we concentrate on moving from to .

We prove the lemma by induction on the length of the

shortest cycle that passes through both and . It is clear

that such a cycle always exists since the graph is biconnected.

The base case is when this cycle has length three. In this

case, vertices and share a common neighbor . By Lemma

2.9, we can assume that one foot is on vertex and the other

is on vertex . Assume that the third and fourth feet and

are on vertices and . We would like to move from

to ; the foot at must move to a destination location for the

foot. One foot will continue to occupy , and one foot will

move to . The fourth foot will have to be moved while the

body moves from to .

Note that if and have two common neighbors, then,

using Lemma 2.9, we can move two feet to those neighbors,

and then move from to (the foot at moves to its final

position, and one foot moves to ). Assume now that and

have only one common neighbor. Note that is connected

(Connectivity Lemma), hence, there exists a path from

to in that does not use (if it uses , replace by

in the rest of the argument). Moreover, observe that in

vertex has degree one (since and have only one common

neighbor), and this neighbor is . Hence, passes through .

We will move to the node of just before . There

exists a path in from to a final destination for a foot,

which does not use since has degree one in and its sole

neighbor is . We make the following moves in one step: the

foot at to the first node on , the foot that came from

on to , the foot at to its final destination, from to ,

and the foot at to (see Fig. 7).

Let us assume by the induction hypothesis that there is a

way to move the four-legged spider between two locations if a

cycle of length passes through the two locations. We will

show how to find a solution when the shortest cycle has length

. Let the shortest cycle passing through and be of length

. We can think of this cycle as two internally vertex-

disjoint paths and from to . Since this is the shortest

cycle, and is of length of at least four, it must have a chord.

Any such chord must clearly go from an internal vertex on

to an internal vertex on . (Any other chord would create a

shorter cycle passing through and .) Of all such chords, pick

a chord with that minimizes the length of

the cycle . Clearly, this chord

connects the two vertices that are the neighbors of on

and . We first move the feet and , such that they

are on the paths and , respectively. Assume that ,

are on vertices , , respectively. Since is connected

(Connectivity Lemma), there is a path joining to

. Consider the shortest such path in the graph .

Assume it goes from to (the other case is similar). Let

be the last vertex (other than ) on this shortest path.

Clearly, it is adjacent to .

First move from to along the shortest path in .

Now move to , to the next node on , and to . This

results in a new location with a strictly shorter cycle passing

through and the new location of the body (see Fig. 8).

Applying the induction hypothesis completes the proof.

III. SHORTEST MOTION

Assume that has vertices and has vertices. There

are at most a polynomial number of possible locations of

in for any fixed-size graph . We construct a new graph

in which each vertex corresponds to a possible

valid location of in . There is an edge in between
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Fig. 7. Base case of induction for proof of Theorem 2.10.

Fig. 8. Four-legged spider movement.

and , if there is a local displacement between

and of . can be constructed in time polynomial in

the size of . In fact, by finding the shortest path in from

the start state to the target state, we can determine the motion

with the least number of local displacements in polynomial

time for any fixed-size graph . In fact, when the graph is

not fixed, not only is finding the shortest motion difficult, but

even the problem of simply checking to see if there exists a

motion between two valid placements is NP-hard, as we show

at the end of this section.

A. Moving a Trilobite Quickly

The previous paragraph shows that we can move any

arthropod from any start location to any target location in the

least possible number of moves. Clearly, the complexity of the

algorithm is rather high. In this subsection, we show how to

move a trilobite from any start location to any target location

(in a biconnected chordal graph) in a way that uses at most

one more than the number of moves of an optimal solution.

This algorithm has an running time.

Theorem 3.1: In a biconnected chordal graph , we can

find a valid motion in time, for which the number of

steps is guaranteed to be at most one more than the optimal

number of steps.

Proof: Let denote the subgraph corresponding to the

initial location of the trilobite and denote the subgraph

corresponding to the target location of the trilobite. If and

share a common edge, then one step is enough to move the

trilobite from to .

The key idea is to determine the shortest cycle passing

through any two edges of and . This can be done in

time by using the algorithm by Suurballe and Tarjan2 [21].

(The algorithm given in their paper is for the case of weighted

graphs and has a running time of . It is easy to

modify it to work in time when we are dealing with

unweighted graphs.) We determine a motion for the trilobite

by using only vertices on this cycle.

Lemma 3.2) Skip Lemma: If we have two placements of a

trilobite, such that some pair of edges of these locations belong

to a cycle of length three, then we can move the trilobite

between these locations in a single move.

Proof: If the two locations do not share any vertices then

the shortest cycle through some pair of edges has length at least

four. Hence, the two locations must have a common vertex.

In Fig. 9, we show two locations of a trilobite. The trilobite

initially occupies vertices (1, 2, 3) and would like to move to

the location (2, 4, 5). The arrows indicate how it can move in

one step from the initial to the target location.

If the cycle has length exactly three, then we can move the

trilobite in exactly one step by using the Skip Lemma. If the

cycle has length greater than three, we can move the trilobite

so that the length of the cycle decreases by two at each step.

We argue this as follows: Let the three vertices of the trilobite

2 This paper deals with the problem of finding the shortest pair of disjoint
paths between two specified vertices. We can reduce our problem to it by
creating two artificial vertices, each connected to the vertices occupied by the
trilobite.
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Fig. 9. Proof of Skip Lemma.

Fig. 10. Using the shortest cycle to move a trilobite.

be , , . Let the vertices in that the trilobite is placed

on be , , , respectively. Let the target vertices be , , .

Let the shortest cycle pass through edges and .

Let be the path (portion of the cycle) from to and

be the path (portion of the cycle) from to , such that

they are disjoint (see Fig. 10). Since the graph is biconnected

and chordal, and and are minimal paths, we must have

edges from one of to vertices on the two paths. Assume

that there is an edge from to the neighbor of on .

There are two cases as shown in Fig. 10, and in each case, by

applying the Skip Lemma, we can move the trilobite so that

the cycle length decreases by two. The number of moves we

make is, thus, , where is the length of the cycle.

It is easy to show, by induction on the number of moves,

that if there is a solution with moves, then there must be

a cycle of length at most that passes through an edge

of and an edge of . (Decompose the sequence of moves

into the first move, followed by a sequence of moves.

By the induction hypothesis, we can find a cycle of length ;

extending the cycle uses only two extra edges.) Since we have

found the shortest cycle, and . Hence,

the total number of moves is at most , where is the

number of moves in an optimal solution.

Remark: This bound is tight for our algorithm, since it

does not involve any moves in which all three vertices move

simultaneously to three unoccupied vertices. Perhaps by using

such moves we could obtain a solution involving the fewest

moves in linear time.

B. NP-Hardness

Clique is the problem of checking if the graph

contains a clique of size . This problem is known to be

NP-complete [10].

Theorem 3.3: Checking if there is a motion from a start

state to a goal state is NP-hard.

Proof: We can reduce the clique problem to checking

if there exists a motion that moves from a start

location to a target location. Construct a new graph

, as follows:

In other words, we add two cliques to having vertices

each, and we add edges from each vertex in each clique to all

the vertices in .

In the start state, occupies one clique completely, and in

the target state, it occupies the other clique completely. If

contains a clique on vertices, then we have two cliques in

of vertices each that share vertices of in common.

We can move vertices of from one copy of to the

vertices in forming the clique. In the next step, these

vertices move to the second copy of , and the remaining

vertices in occupy the vertices in forming the clique.

One more step completes the motion. Thus, if contains a

clique of size , the desired motion exists.

To prove the converse, notice that cannot simultaneously

occupy vertices from the two cliques of vertices each (since

there are no edges between them). Thus if does not have

a clique of size , there is no motion from the start state to

the target state.

IV. UGV EXAMPLE

In this section, we expand the UGV example mentioned in

Section I. Consider three UGV’s, each having different special

abilities (communication, supplies, coverage) and trying to

move from a set of start positions to a set of goal positions. The

UGV’s try to maintain a trilobite formation, so that each pair

of them always remain neighbors. The terrain map is shown in

Fig. 11. The graph representation of the environment is shown

in Fig. 12. We are trying to achieve a representation similar

in spirit to the one described in [7], [15]. We connect nodes

representing neighboring places that have a path between them

that can be traversed easily (planar, or one that crosses a low

saddle point that requires only one contour line of ascent).

Since the resulting graph is biconnected and chordal, we

can use Theorem 3.1 to move our trilobite quickly. First, we

determine the shortest cycle passing through any two edges of

the trilobite in the start and goal locations. These are edges

in and in . The cycle, which has length

eight, is shown in Fig. 12. The planned motion will be on this

cycle. Each time the trilobite moves by one step, the length

of the cycle decreases by two. After making three moves, the

current position and the target position share a common edge

and only one more move is required. Thus, four moves were
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Fig. 11. On the left is a portion of a Montezuma, NY, map. Part of the map, enlarged, is shown on the right with marked locations. The arrows indicate
the first movements of the formation (see explanation below).

Fig. 12. On the right is the graph representation of the map. The start position is marked with an S, the target with a T . The shortest cycle is indicated
by marks on the edges. The path is shown on the right.

sufficient to move our formation from to :

.

V. DISCUSSION AND FUTURE WORK

In this paper, we have defined a natural version of the

motion-planning problem for a group of robots in a graph-

theoretic setting. We have established conditions under which

a team of robots having a particular graph structure can move

from any start location to any goal destination in a graph-

structured space. We have shown that, for a group of robots

having a fixed formation, we can find the shortest motions in

polynomial time, and we have given algorithms for cases in

which the environment can be modeled (discretely) as special

kinds of graphs. Efficient computation of shortest motions (or

approximate shortest motions) remains a very interesting open

problem. The main difficulty is in charging for the cost of

rotations for movement of -legged spiders.

Clearly, variations of our definition for motion could also be

considered. For example, our definition allows the “exchange”

of two vertices in a single step, but none of our results make

use of such a motion, so that, in essence, we have disallowed

it. (We did not do so explicitly to avoid cluttering our simple

definitions.) In fact, in much of this paper, we have used

a definition of movement in which we do not distinguish

between automorphic images of . If we strictly enforce our

original definition, an automorphism of is not necessarily

a local displacement, since corresponding nodes may not be

neighbors; thus, by this definition, a subpath of length

cannot move freely on a path, since it cannot reverse itself.

We could also consider stricter definitions of move-

ment—for example, “rigid” movement, in which the distances

in between corresponding nodes of remain the same.

Specialized types of movements would also be of interest—for

example, “translation,” in which every node of is required

to move to a neighboring node.

It would also be of interest to study the free-movement

problem in other special types of graphs. For example, it is

clear that any can move freely in if is a clique, a path,

or a cycle. On the other hand, it is easy to see that only a path

can move freely on a tree.

An interesting open problem is to characterize the class of

graphs that a convoy of robots (or a snake) can move freely

in. A snake is modeled by a four-vertex graph linked by three

edges. We will refer to the four vertices as , , , and .

Assume that the edges are , and . To go

from position to another position, say ,

if there is a path from to , the snake can just

“creep” along this path. The problem becomes more difficult

when the snake is not oriented in a position that allows it to

start crawling from an endpoint. We have identified a list of
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conditions that allow the snake to reorient itself, but this list

does not appear to be exhaustive.

This paper has formulated a graph-theoretic framework for

studying robot mobility. It would be of interest to develop

graph-theoretic formulations of other types of robotic ac-

tivities, such as sensing and manipulation. However, these

activities do not have straightforward graph-theoretic coun-

terparts, since a graph has no concept of direction (though

it does have concepts of adjacency and distance). Thus, it

is not clear how to define vision-like sensory processes in a

general graph, since vision would seem to require some sort of

concept of a “line of sight,” which presumably would involve

distinguishing between nodes that lie in given directions from a

given node. Similarly, it is not clear how to define the concept

of one subgraph (a “gripper”) “grasping” an “object” subgraph;

we can require that certain nodes of the gripper be adjacent

to certain nodes of the object, but there is no obvious way of

distinguishing stable from unstable grasps. In future papers,

we plan to consider methods of augmenting a graph in order

to allow direction-dependent concepts to be defined.
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