
USENIX Association 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 31

GraphChi: Large-Scale Graph Computation on Just a PC

Aapo Kyrola
Carnegie Mellon University

akyrola@cs.cmu.edu

Guy Blelloch
Carnegie Mellon University

guyb@cs.cmu.edu

Carlos Guestrin
University of Washington

guestrin@cs.washington.edu

Abstract
Current systems for graph computation require a dis-
tributed computing cluster to handle very large real-world
problems, such as analysis on social networks or the web
graph. While distributed computational resources have be-
come more accessible, developing distributed graph algo-
rithms still remains challenging, especially to non-experts.

In this work, we present GraphChi, a disk-based system
for computing efficiently on graphs with billions of edges.
By using a well-known method to break large graphs into
small parts, and a novel parallel sliding windows method,
GraphChi is able to execute several advanced data mining,
graph mining, and machine learning algorithms on very
large graphs, using just a single consumer-level computer.
We further extend GraphChi to support graphs that evolve
over time, and demonstrate that, on a single computer,
GraphChi can process over one hundred thousand graph
updates per second, while simultaneously performing com-
putation. We show, through experiments and theoretical
analysis, that GraphChi performs well on both SSDs and
rotational hard drives.

By repeating experiments reported for existing dis-
tributed systems, we show that, with only fraction of the
resources, GraphChi can solve the same problems in very
reasonable time. Our work makes large-scale graph com-
putation available to anyone with a modern PC.

1 Introduction
Designing scalable systems for analyzing, processing and
mining huge real-world graphs has become one of the most
timely problems facing systems researchers. For exam-
ple, social networks, Web graphs, and protein interaction
graphs are particularly challenging to handle, because they
cannot be readily decomposed into small parts that could
be processed in parallel. This lack of data-parallelism ren-
ders MapReduce [19] inefficient for computing on such
graphs, as has been argued by many researchers (for ex-
ample, [13, 30, 31]). Consequently, in recent years several
graph-based abstractions have been proposed, most notably

Pregel [31] and GraphLab [30]. Both use a vertex-centric
computation model, in which the user defines a program
that is executed locally for each vertex in parallel. In addi-
tion, high-performance systems that are based on key-value
tables, such as Piccolo [36] and Spark [45], can efficiently
represent many graph-parallel algorithms.

Current graph systems are able to scale to graphs of
billions of edges by distributing the computation. However,
while distributed computional resources are now available
easily through the Cloud, efficient large-scale computation
on graphs still remains a challenge. To use existing graph
frameworks, one is faced with the challenge of partition-
ing the graph across cluster nodes. Finding efficient graph
cuts that minimize communication between nodes, and are
also balanced, is a hard problem [27]. More generally, dis-
tributed systems and their users must deal with managing
a cluster, fault tolerance, and often unpredictable perfor-
mance. From the perspective of programmers, debugging
and optimizing distributed algorithms is hard.

Our frustration with distributed computing provoked us
to ask a question: Would it be possible to do advanced
graph computation on just a personal computer? Handling
graphs with billions of edges in memory would require
tens or hundreds of gigabytes of DRAM, currently only
available to high-end servers, with steep prices [4]. This
leaves us with only one option: to use persistent storage as
memory extension. Unfortunately, processing large graphs
efficiently from disk is a hard problem, and generic solu-
tions, such as systems that extend main memory by using
SSDs, do not perform well.

To address this problem, we propose a novel method,
Parallel Sliding Windows (PSW), for processing very large
graphs from disk. PSW requires only a very small number
of non-sequential accesses to the disk, and thus performs
well on both SSDs and traditional hard drives. Surprisingly,
unlike most distributed frameworks, PSW naturally imple-
ments the asynchronous model of computation, which
has been shown to be more efficient than synchronous
computation for many purposes [7, 29].

We further extend our method to graphs that are continu-

32 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

ously evolving. This setting was recently studied by Cheng
et. al., who proposed Kineograph [15], a distributed sys-
tem for processing a continuous in-flow of graph updates,
while simultaneously running advanced graph mining al-
gorithms. We implement the same functionality, but using
only a single computer, by applying techniques developed
by the I/O-efficient algorithm researchers [42].

We further present a complete system, GraphChi, which
we used to solve a wide variety of computational problems
on extremely large graphs, efficiently on a single consumer-
grade computer. In the evolving graph setting, GraphChi
is able to ingest over a hundred thousand new edges per
second, while simultaneously executing computation.

The outline of our paper is as follows. We introduce
the computational model and challenges for the external
memory setting in Section 2. The Parallel Sliding Windows
method is described in Section 3, and GraphChi system
design and implementation is outlined in Section 4. We
evaluate GraphChi on very large problems (graphs with
billions of edges), using a set of algorithms from graph min-
ing, machine learning, collaborative filtering, and sparse
linear algebra (Sections 6 and 7).

Our contributions:

• The Parallel Sliding Windows, a method for process-
ing large graphs from disk (both SSD and hard drive),
with theoretical guarantees.

• Extension to evolving graphs, with the ability to in-
gest efficiently a stream of graph changes, while si-
multaneously executing computation.

• System design, and evaluation of a C++ implementa-
tion of GraphChi. We demonstrate GraphChi’s ability
to solve such large problems, which were previously
only possible to solve by cluster computing. Complete
source-code for the system and applications is re-
leased in open source: http://graphchi.org.

2 Disk-based Graph Computation
In this section, we start by describing the computational
setting of our work, and continue by arguing why straight-
forward solutions are not sufficient.

2.1 Computational Model
We now briefly introduce the vertex-centric model of com-
putation, explored by GraphLab [30] and Pregel [31]. A
problem is encoded as a directed (sparse) graph, G =
(V,E). We associate a value with each vertex v ∈ V , and
each edge e = (source, destination) ∈ E. We assume
that the vertices are labeled from 1 to |V |. Given a directed

Algorithm 1: Typical vertex update-function
Update(vertex) begin1

x[] ← read values of in- and out-edges of vertex ;2

vertex.value ← f(x[]) ;3

foreach edge of vertex do4

edge.value ← g(vertex.value, edge.value);5

end6

end7

edge e = (u, v), we refer to e as vertex v’s in-edge, and
as vertex u’s out-edge.

To perform computation on the graph, programmer spec-
ifies an update-function(v), which can access and modify
the value of a vertex and its incident edges. The update-
function is executed for each of the vertices, iteratively,
until a termination condition is satisfied.

Algorithm 1 shows the high-level structure of a typical
update-function. It first computes some value f(x[]) based
on the values of the edges, and assigns f(x[]) (perhaps after
a transformation) as the new value of the vertex. Finally,
the edges will be assigned new values based on the new
vertex value and the previous value of the edge.

As shown by many authors [15, 29, 30, 31], the vertex-
centric model can express a wide range of problems, for
example, from the domains of graph mining, data mining,
machine learning, and sparse linear algebra.

Most existing frameworks execute update functions in
lock-step, and implement the Bulk-Synchronous Parallel
(BSP) model [41], which defines that update-functions
can only observe values from the previous iteration. BSP
is often preferred in distributed systems as it is simple
to implement, and allows maximum level of parallelism
during the computation. However, after each iteration, a
costly synchronization step is required and system needs to
store two versions of all values (value of previous iteration
and the new value).

Recently, many researchers have studied the asyn-
chronous model of computation. In this setting, an update-
function is able to to use the most recent values of the edges
and the vertices. In addition, the ordering (scheduling) of
updates can be dynamic. Asynchronous computation ac-
celerates convergence of many numerical algorithms; in
some cases BSP fails to converge at all [7, 30]. The Par-
allel Sliding Windows method, which is the topic of this
work, implements the asynchronous1 model and exposes
updated values immediately to subsequent computation.
Our implementation, GraphChi, also supports dynamic se-

1In the context of iterative solvers for linear systems, asynchronous
computation is called the Gauss-Seidel method.

2

USENIX Association 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 33

lective scheduling, allowing update-functions and graph
modifications to enlist vertices to be updated2.

2.1.1 Computational Constraints

We state the memory requirements informally. We assume
a computer with limited memory (DRAM) capacity:

1. The graph structure, edge values, and vertex values
do not fit into memory. In practice, we assume the
amount of memory to be only a small fraction of the
memory required for storing the complete graph.

2. There is enough memory to contain the edges and
their associated values of any single vertex in the
graph.

To illustrate that it is often infeasible to even store just
vertex values in memory, consider the yahoo-web graph
with 1.7 billion vertices [44]. Associating a floating point
value for each vertex would require almost 7 GB of mem-
ory, too much for many current PCs (spring 2012). While
we expect the memory capacity of personal computers
to grow in the future, the datasets are expected to grow
quickly as well.

2.2 Standard Sparse Graph Formats
The system by Pearce et al. [34] uses compressed sparse
row (CSR) storage format to store the graph on disk, which
is equivalent to storing the graph as adjacency sets: the out-
edges of each vertex are stored consecutively in the file. In
addition, indices to the adjacency sets for each vertex are
stored. Thus, CSR allows for fast loading of out-edges of a
vertex from the disk.

However, in the vertex-centric model we also need to
access the in-edges of a vertex. This is very inefficient
under CSR: in-edges of a vertex can be arbitrarily located
in the adjacency file, and a full scan would be required
for retrieving in-edges for any given vertex. This problem
can be solved by representing the graph simultaneously in
the compressed sparse column (CSC) format. CSC format
is simply CSR for the transposed graph, and thus allows
fast sequential access to the in-edges for vertices. In this
solution, each edge is stored twice.

2.3 Random Access Problem
Unfortunately, simply storing the graph simultaneously in
CSR and CSC does not enable efficient modification of the
edge values. To see this, consider an edge e = (v, w), with

2BSP can be applied with GraphChi in the asynchronous model by
storing two versions of each value.

value x. Let now an update of vertex v change its value
to x′. Later, when vertex w is updated, it should observe
its in-edge e with value x′. Thus, either 1) when the set
of in-edges of w are read, the new value x′ must be read
from the the set of out-edges of v (stored under CSR); or
2) the modification x ⇒ x′ has to be written to the in-edge
list (under CSC) of vertex w. The first solution incurs a
random read, and latter a random write. If we assume,
realistically, that most of the edges are modified in a pass
over the graph, either O(|E|) of random reads or O(|E|)
random writes would be performed – a huge number on
large graphs.

In many algorithms, the value of a vertex only depends
on its neighbors’ values. In that case, if the computer has
enough memory to store all the vertex values, this problem
is not relevant, and the system by Pearce et al. [34] is
sufficient (on an SSD). On the other hand, if the vertex
values would be stored on disk, we would encounter the
same random access problem when accessing values of the
neighbors.

2.3.1 Review of Possible Solutions

Prior to presenting our solution to the problem, we discuss
some alternative strategies and why they are not sufficient.

SSD as a memory extension. SSD provides relatively
good random read and sequential write performance, and
many researchers have proposed using SSD as an extension
to the main memory. SSDAlloc [4] presents the current
state-of-the-art of these solutions. It enables transparent
usage of SSD as heap space, and uses innovative methods
to implement object-level caching to increase sequentiality
of writes. Unfortunately, for the huge graphs we study,
the number of very small objects (vertices or edges) is
extremely large, and in most cases, the amounts of writes
and reads made by a graph algorithm are roughly equal,
rendering caching inefficient. SSDAlloc is able to serve
some tens of thousands of random reads or writes per
second [4], which is insufficient, as GraphChi can access
millions of edges per second.

Exploiting locality. If related edges appear close to each
other on the disk, the amount of random disk access could
be reduced. Indeed, many real-world graphs have a sub-
stantial amount of inherent locality. For example, web-
pages are clustered under domains, and people have more
connections in social networks inside their geographical
region than outside it [27]. Unfortunately, the locality of
real-world graphs is limited, because the number of edges
crossing local clusters is also large [27]. As real-world
graphs have typically a very skewed vertex degree distri-
bution, it would make sense to cache high-degree vertices
(such as important websites) in memory, and process the

3

34 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

rest of the graph from disk.
In the early phase of our project, we explored this op-

tion, but found it difficult to find a good cache policy to
sufficiently reduce disk access. Ultimately, we rejected this
approach for two reasons. First, the performance would
be highly unpredictable, as it would depend on structural
properties of the input graph. Second, optimizing graphs
for locality is costly, and sometimes impossible, if a graph
is supplied without metadata required to efficiently cluster
it. General graph partitioners are not currently an option,
since even the state-of-the-art graph partitioner, METIS
[25], requires hundreds of gigabytes of memory to work
with graphs of billions of edges.

Graph compression. Compact representation of real-
world graphs is a well-studied problem, the best algorithms
can store web-graphs in only 4 bits/edge (see [8, 12, 17,
23]). Unfortunately, while the graph structure can often
be compressed and stored in memory, we also associate
data with each of the edges and vertices, which can take
significantly more space than the graph itself.

Bulk-Synchronous Processing. For a synchronous sys-
tem, the random access problem can be solved by writing
updated edges into a scratch file, which is then sorted (us-
ing disk-sort), and used to generate input graph for next
iteration. For algorithms that modify only the vertices, not
edges, such as Pagerank, a similar solution has been used
[14]. However, it cannot be efficiently used to perform
asynchronous computation.

3 Parallel Sliding Windows
This section describes the Parallel Sliding Windows (PSW)
method (Algorithm 2). PSW can process a graph with
mutable edge values efficiently from disk, with only a small
number of non-sequential disk accesses, while supporting
the asynchronous model of computation. PSW processes
graphs in three stages: it 1) loads a subgraph from disk; 2)
updates the vertices and edges; and 3) writes the updated
values to disk. These stages are explained in detail below,
with a concrete example. We then present an extension to
graphs that evolve over time, and analyze the I/O costs of
the PSW method.

3.1 Loading the Graph
Under the PSW method, the vertices V of graph G =
(V,E) are split into P disjoint intervals. For each interval,
we associate a shard, which stores all the edges that have
destination in the interval. Edges are stored in the order of
their source (Figure 1). Intervals are chosen to balance the
number of edges in each shard; the number of intervals, P ,
is chosen so that any one shard can be loaded completely

shard(1)

interval(1) interval(2) interval(P)

shard(2) shard(P)

1 |V| v1 v2

Figure 1: The vertices of graph (V,E) are divided into P
intervals. Each interval is associated with a shard, which
stores all edges that have destination vertex in that interval.

into memory. Similar data layout for sparse graphs was
used previously, for example, to implement I/O efficient
Pagerank and SpMV [5, 21].

PSW does graph computation in execution intervals,
by processing vertices one interval at a time. To create the
subgraph for the vertices in interval p, their edges (with
their associated values) must be loaded from disk. First,
Shard(p), which contains the in-edges for the vertices
in interval(p), is loaded fully into memory. We call thus
shard(p) the memory-shard. Second, because the edges
are ordered by their source, the out-edges for the vertices
are stored in consecutive chunks in the other shards, requir-
ing additional P − 1 block reads. Importantly, edges for
interval(p+1) are stored immediately after the edges for
interval(p). Intuitively, when PSW moves from an interval
to the next, it slides a window over each of the shards. We
call the other shards the sliding shards. Note, that if the
degree distribution of a graph is not uniform, the window
length is variable. In total, PSW requires only P sequential
disk reads to process each interval. A high-level illustration
of the process is given in Figure 2, and the pseudo-code of
the subgraph loading is provided in Algorithm 3.

3.2 Parallel Updates

After the subgraph for interval p has been fully loaded from
disk, PSW executes the user-defined update-function for
each vertex in parallel. As update-functions can modify the
edge values, to prevent adjacent vertices from accessing
edges concurrently (race conditions), we enforce external
determinism, which guarantees that each execution of PSW
produces exactly the same result. This guarantee is straight-
forward to implement: vertices that have edges with both
end-points in the same interval are flagged as critical, and
are updated in sequential order. Non-critical vertices do
not share edges with other vertices in the interval, and
can be updated safely in parallel. Note, that the update of
a critical vertex will observe changes in edges done by

4

USENIX Association 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 35

����������� ����������� ����������� �����������

Shard 1 Shard 2 Shard 3 Shard 4 Shard 1 Shard 2 Shard 3 Shard 4 Shard 1 Shard 2 Shard 3 Shard 4 Shard 1 Shard 2 Shard 3 Shard 4

Figure 2: Visualization of the stages of one iteration of the Parallel Sliding Windows method. In this example, vertices
are divided into four intervals, each associated with a shard. The computation proceeds by constructing a subgraph of
vertices one interval a time. In-edges for the vertices are read from the memory-shard (in dark color) while out-edges
are read from each of the sliding shards. The current sliding window is pictured on top of each shard.

Algorithm 2: Parallel Sliding Windows (PSW)
foreach iteration do1

shards[] ← InitializeShards(P)2
for interval ← 1 to P do3

/* Load subgraph for interval, using Alg. 3. Note,4
that the edge values are stored as pointers to the
loaded file blocks. */
subgraph ← LoadSubgraph (interval)5
parallel foreach vertex ∈ subgraph.vertex do6

/* Execute user-defined update function,7
which can modify the values of the edges */8
UDF updateVertex (vertex)9

end10
/* Update memory-shard to disk */11
shards[interval].UpdateFully()12
/* Update sliding windows on disk */ for13
s ∈ 1, .., P , s �= interval do

shards[s].UpdateLastWindowToDisk()14
end15

end16

end17

preceding updates, adhering to the asynchronous model of
computation. This solution, of course, limits the amount of
effective parallelism. For some algorithms, consistency is
not critical (for example, see [29]), and we allow the user
to enable fully parallel updates.

3.3 Updating Graph to Disk

Finally, the updated edge values need to be written to disk
and be visible to the next execution interval. PSW can do
this efficiently: The edges are loaded from disk in large
blocks, which are cached in memory. When the subgraph
for an interval is created, the edges are referenced as point-
ers to the cached blocks; modifications to the edge values
directly modify the data blocks themselves. After finish-
ing the updates for the execution interval, PSW writes the
modified blocks back to disk, replacing the old data. The

Algorithm 3: Function LoadSubGraph(p)
Input : Interval index number p
Result: Subgraph of vertices in the interval p
/* Initialization */1
a ← interval[p].start2
b ← interval[p].end3
G ← InitializeSubgraph (a, b)4

/* Load edges in memory-shard. */5
edgesM ← shard[p].readFully()6
/* Evolving graphs: Add edges from buffers. */7
edgesM ← edgesM ∪ shard[p].edgebuffer[1..P]8
foreach e ∈ edgesM do9

/* Note: edge values are stored as pointers. */10
G.vertex[edge.dest].addInEdge(e.source, &e.val)11
if e.source ∈ [a, b] then12

G.vertex[edge.source].addOutEdge(e.dest, &e.val)13
end14

end15

/* Load out-edges in sliding shards. */16
for s ∈ 1, .., P , s �= p do17

edgesS ← shard[s].readNextWindow(a, b)18
/* Evolving graphs: Add edges from shard’s buffer p */19
edgesS ← edgesS ∪ shard[s].edgebuffer[p]20
foreach e ∈ edgesS do21

G.vertex[e.src].addOutEdge(e.dest, &e.val)22
end23

end24

return G25

memory-shard is completely rewritten, while only the ac-
tive sliding window of each sliding shard is rewritten to
disk (see Algorithm 2). When PSW moves to the next inter-
val, it reads the new values from disk, thus implementing
the asynchronous model. The number of non-sequential
disk writes for a execution interval is P , exactly same as the
number of reads. Note, if an algorithm only updates edges
in one direction, PSW only writes the modified blocks to
disk.

5

36 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Shard 1 Shard 2 Shard 3
src dst value src dst value src dst value
1 1 2

2 0.3 3 0.4 5 0.6
3 2 3

2 0.2 3 0.3 5 0.9
4 3 6 1.2

1 1.4 4 0.8 4
5 5 5 0.3

1 0.5 3 0.2 5
2 0.6 6 6 1.1

6 4 1.9
2 0.8

(a) Execution interval (vertices 1-2)

1

2

3

4

5

6

(b) Execution interval
(vertices 1-2)

Shard 1 Shard 2 Shard 3
src dst value src dst value src dst value
1 1 2

2 0.273 3 0.364 5 0.545
3 2 3

2 0.22 3 0.273 5 0.9
4 3 6 1.2

1 1.54 4 0.8 4
5 5 5 0.3

1 0.55 3 0.2 5
2 0.66 6 6 1.1

6 4 1.9
2 0.88

(c) Execution interval (vertices 3-4)

1

2

3

4

5

6

(d) Execution interval
(vertices 3-4)

Figure 3: Illustration of the operation of the PSW method on a toy graph (See the text for description).

3.4 Example

We now describe a simple example, consisting of two
execution intervals, based on Figure 3. In this example,
we have a graph of six vertices, which have been divided
into three equal intervals: 1–2, 3–4, and 5–6. Figure 3a
shows the initial contents of the three shards. PSW begins
by executing interval 1, and loads the subgraph containing
of edges drawn in bold in Figure 3c. The first shard is
the memory-shard, and it is loaded fully. Memory-shard
contains all in-edges for vertices 1 and 2, and a subset of
the out-edges. Shards 2 and 3 are the sliding shards, and the
windows start from the beginning of the shards. Shard 2
contains two out-edges of vertices 1 and 2; shard 3 has only
one. Loaded blocks are shaded in Figure 3a. After loading
the graph into memory, PSW runs the update-function for
vertices 1 and 2. After executing the updates, the modified
blocks are written to disk; updated values can be seen in
Figure 3b.

PSW then moves to the second interval, with vertices 3
and 4. Figure 3d shows the corresponding edges in bold,
and Figure 3b shows the loaded blocks in shaded color.
Now shard 2 is the memory-shard. For shard 3, we can see
that the blocks for the second interval appear immediately
after the blocks loaded in the first. Thus, PSW just “slides”
a window forward in the shard.

3.5 Evolving Graphs

We now modify the PSW model to support changes in the
graph structure. Particularly, we allow adding edges to the
graph efficiently, by implementing a simplified version of
I/O efficient buffer trees [2].

Because a shard stores edges sorted by the source, we
can divide the shard into P logical parts: part j contains
edges with source in the interval j. We associate an in-
memory edge-buffer(p, j) for each logical part j, of shard
p. When an edge is added to the graph, it is first added to the
corresponding edge-buffer (Figure 4). When an interval of
vertices is loaded from disk, the edges in the edge-buffers
are added to the in-memory graph (Alg. 2).

interval(1)

interval(2)

interval(P)

shard(j)

edge-buffer(j, 1)

edge-buffer(j, 2)

edge-buffer(j, P)

Figure 4: A shard can be split into P logical parts cor-
responding to the vertex intervals. Each part is associated
with an in-memory edge-buffer, which stores the inserted
edges that have not yet been merged into the shard.

After each iteration, if the number of edges stored in
edge-buffers exceeds a predefined limit, PSW will write the
buffered edges to disk. Each shard, that has more buffered
edges than a shard-specific limit, is recreated on disk by
merging the buffered edges with the edges stored on the
disk. The merge requires one sequential read and write.
However, if the merged shard becomes too large to fit in
memory, it is split into two shards with approximately
equal number of edges. Splitting a shard requires two se-
quential writes.

PSW can also support removal of edges: removed edges
are flagged and ignored, and permanently deleted when
the corresponding shard is rewritten to disk.

Finally, we need to consider consistency. It would be
complicated for programmers to write update-functions
that support vertices that can change during the computa-
tion. Therefore, if an addition or deletion of an edge would
affect a vertex in current execution interval, it is added to
the graph only after the execution interval has finished.

6

USENIX Association 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 37

3.6 Analysis of the I/O Costs
We analyze the I/O efficiency of PSW in the I/O model by
Aggarwal and Vitter [1]. In this model, cost of an algorithm
is the number of block transfers from disk to main memory.
The complexity is parametrized by the size of block trans-
fer, B, stated in the unit of the edge object (which includes
the associated value). An upper bound on the number of
block transfers can be analyzed by considering the total
size of data accessed divided by B, and then adding to this
the number of non-sequential seeks. The total data size is
|E| edge objects, as every edge is stored once. To simplify
the analysis, we assume that |E| is a multiple of B, and
shards have equal sizes |E|

P . We will now see that QB(E),
the I/O cost of PSW, is almost linear in |E|/B, which is
optimal because all edges need to be accessed:

Each edge is accessed twice (once in each direction)
during one full pass over the graph. If both endpoints of
an edge belong to the same vertex interval, the edge is
read only once from disk; otherwise, it is read twice. If
the update-function modifies edges in both directions, the
number of writes is exactly the same; if in only one direc-
tion, the number of writes is half as many. In addition, in
the worst (common) case, PSW requires P non-sequential
disk seeks to load the edges from the P − 1 sliding shards
for an execution interval. Thus, the total number of non-
sequential seeks for a full iteration has a cost of Θ(P 2)
(the number is not exact, because the size of the sliding
windows are generally not multiples of B).

Assuming that there is sufficient memory to store one
memory-shard and out-edges for an execution interval a
time, we can now bound the I/O complexity of PSW:

2|E|
B

≤ QB(E) ≤ 4|E|
B

+ Θ(P 2)

As the number of non-sequential disk seeks is only
Θ(P 2), PSW performs well also on rotational hard drives.

3.7 Remarks
The PSW method imposes some limitations on the com-
putation. Particularly, PSW cannot efficiently support dy-
namic ordering, such as priority ordering, of computa-
tion [29, 34]. Similarly, graph traversals or vertex queries
are not efficient in the model, because loading the neigh-
borhood of a single vertex requires scanning a complete
memory-shard.

Often the user has a plenty of memory, but not quite
enough to store the whole graph in RAM. Basic PSW
would not utilize all the available memory efficiently, be-
cause the amount of bytes transferred from disk is inde-
pendent of the available RAM. To improve performance,
system can pin a set of shards to memory, while the rest
are processed from disk.

4 System Design & Implementation
This section describes selected details of our implementa-
tion of the Parallel Sliding Windows method, GraphChi.
The C++ implementation has circa 8,000 lines of code.

4.1 Shard Data Format
Designing an efficient format for storing the shards is
paramount for good performance. We designed a com-
pact format, which is fast to generate and read, and ex-
ploits the sparsity of the graph. In addition, we separate the
graph structure from the associated edge values on disk.
This is important, because only the edge data is mutated
during computation, and the graph structure can be often
efficiently compressed. Our data format is as follows:

• The adjacency shard stores, implicitly, an edge array
for each vertex, in order. Edge array of a vertex starts
with a variable-sized length word, followed by the
list of neighbors. If a vertex has no edges in this
shard, zero length byte is followed by the number of
subsequent vertices with no edges in this shard.

• The edge data shard is a flat array of edge values, in
user-defined type. Values must be of constant size3.

The current compact format for storing adjacency files
is quite simple, and we plan to evaluate more efficient
formats in the future. It is possible to further compress the
adjacency shards using generic compression software. We
did not implement this, because of added complexity and
only modest expected improvement in performance.

4.1.1 Preprocessing

GraphChi includes a program, Sharder, for creating shards
from standard graph file formats. Preprocessing is I/O
efficient, and can be done with limited memory (Table 1).

1. Sharder counts the in-degree (number of in-edges)
for each of the vertices, requiring one pass over the
input file. The degrees for consecutive vertices can
be combined to save memory. To finish, Sharder com-
putes the prefix sum [10] over the degree array, and
divides vertices into P intervals with approximately
the same number of in-edges.

2. On the second pass, Sharder writes each edge to a
temporary scratch file of the owning shard.

3. Sharder processes each scratch file in turn: edges are
sorted and the shard is written in compact format.

3The model can support variable length values by splitting the shards
into smaller blocks which can efficiently be shrunk or expanded. For
simplicity, we assume constant size edge values in this paper.

7

38 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

4. Finally, Sharder computes a binary degree file con-
taining in- and out-degree for each vertex, which is
needed for the efficient operation of GraphChi, as
described below.

The number of shards P is chosen so that the biggest
shard is at most one fourth of the available memory, leaving
enough memory for storing the necessary pointers of the
subgraph, file buffers, and other auxiliary data structures.
The total I/O cost of the preprocessing is 5|E|

B + |V |
B .

4.2 Main Execution

We now describe how GraphChi implements the PSW
method for loading, updating, and writing the graph. Figure
5 shows the processing phases as a flow chart.

4.2.1 Efficient Subgraph Construction

The first prototypes of GraphChi used STL vectors to store
the list of edges for each vertex. Performance profiling
showed that a significant amount of time was used in resiz-
ing and reallocating the edge arrays. Therefore, to elimi-
nate dynamic allocation, GraphChi calculates the memory
needs exactly prior to an execution interval. This optimiza-
tion is implemented by using the degreefile, which was
created at the end of preprocessing and stores the in- and
out-degrees for each vertex as a flat array. Prior to initial-
izing a subgraph, GraphChi computes a prefix-sum of the
degrees, giving the exact indices for edge arrays for every
vertex, and the exact array size that needs to be allocated.
Compared to using dynamic arrays, our solution improved
running time by approximately 30%.

Vertex values: In our computational model, each vertex
has an associated value. We again exploit the fact that the
system considers vertices in sequential order. GraphChi
stores vertex values in a single file as flat array of user-
defined type. The system writes and reads the vertex values
once per iteration, with I/O cost of 2�|V |/B�.

Multithreading: GraphChi has been designed to overlap
disk operations and in-memory computation as much as
possible. Loading the graph from disk is done by concur-
rent threads, and writes are performed in the background.

4.2.2 Sub-intervals

The P intervals are chosen as to create shards of roughly
same size. However, it is not guaranteed that the number
of edges in each subgraph is balanced. Real-world graphs
typically have very skewed in-degree distribution; a vertex
interval may have a large number of vertices, with very
low average in-degree, but high out-degree, and thus a full
subgraph of a interval may be too large to load in memory.

Load degree data for
vertices in interval [a,b]

Preallocate edge
arrays and vertex

objects.

... in-edges and internal out-
edges from memory shard

... out-edges from P-1 sliding
shards

... vertex values

LOAD FROM DISK...

Execute vertex
update-functions

... memory shard edge data.

... edge values of the P-1
sliding windows.

... updated vertex values.

WRITE TO DISK...

Next
interval

Figure 5: Main execution flow. Sequence of operations
for processing one execution interval with GraphChi.

We solve this problem by dividing execution intervals
into sub-intervals. As the system already loads the degree
of every vertex, we can use this information to compute
the exact memory requirement for a range of vertices, and
divide the original intervals to sub-intervals of appropriate
size. Sub-intervals are preferred to simply re-defining the
intervals, because it allows same shard files to be used with
different amounts of memory. Because sub-intervals share
the same memory-shard, I/O costs are not affected.

4.2.3 Evolving Graphs

We outlined the implementation in previous section. The
same execution engine is used for dynamic and static
graphs, but we need to be careful in maintaining auxil-
iary data structures. First, GraphChi needs to keep track of
the changing vertex degrees and modify the degreefile ac-
cordingly. Second, the degreefile and vertex data file need
to grow when the number of vertices increases, and the ver-
tex intervals must be maintained to match the splitting and
expansion of shards. Adding support for evolving graphs
was surprisingly simple, and required less than 1000 lines
of code (15% of the total).

4.3 Selective Scheduling
Often computation converges faster on same parts of a
graph than in others, and it is desirable to focus computa-
tion only where it is needed. GraphChi supports selective
scheduling: an update can flag a neighboring vertex to
be updated, typically if edge value changes significantly.
In the evolving graph setting, selective scheduling can be
used to implement incremental computation: when an edge
is created, its source or destination vertex is added to the
schedule [15].

GraphChi implements selective scheduling by represent-
ing the current schedule as a bit-array (we assume enough
memory to store |V |/8 bytes for the schedule). A simple

8

USENIX Association 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 39

optimization to the PSW method can now be used: On
the first iteration, it creates a sparse index for each shard,
which contains the file indices of each sub-interval. Using
the index, GraphChi can skip unscheduled vertices.

5 Programming Model
Programs written for GraphChi are similar to those written
for Pregel [31] or GraphLab [29], with the following main
differences. Pregel is based on the messaging model, while
GraphChi programs directly modify the values in the edges
of the graph; GraphLab allows programs to directly read
and modify the values of neighbor vertices, which is not
allowed by GraphChi, unless there is enough RAM to
store all vertex values in memory. We now discuss the
programming model in detail, with a running example.

Running Example: As a running example, we use a
simple GraphChi implementation of the PageRank [32]
algorithm. The vertex update-function is simple: at each up-
date, compute a weighted sum of the ranks of in-neighbors
(vertices with an edge directed to the vertex). Incomplete
pseudo-code is shown in Algorithm 4 (definitions of the
two internal functions are model-specific, and discussed
below).The program computes by executing the update
function for each vertex in turn for a predefined number of
iterations.4

Algorithm 4: Pseudo-code of the vertex update-
function for weighted PageRank.

typedef: VertexType float1
Update(vertex) begin2

var sum ← 03
for e in vertex.inEdges() do4

sum += e.weight * neighborRank(e)5
end6
vertex.setValue(0.15 + 0.85 * sum)7
broadcast(vertex)8

end9

Standard Programming Model: In the standard set-
ting for GraphChi, we assume that there is not enough
RAM to store the values of vertices. In the case of PageR-
ank, the vertex values are floating point numbers corre-
sponding to the rank (Line 1 of Algorithm 4).

The update-function needs to read the values of its neigh-
bors, so the only solution is to broadcast vertex values via
the edges. That is, after an update, the new rank of a vertex
is written to the out-edges of the vertex. When neighboring

4Note that this implementation is not optimal, we discuss a more
efficient version in the next section

vertex is updated, it can access the vertex rank by reading
the adjacent edge’s value, see Algorithm 5.

Algorithm 5: Type definitions, and implementations
of neighborRank() and broadcast() in the standard
model.

typedef: EdgeType { float weight, neighbor rank; }1
neighborRank(edge) begin2

return edge.weight * edge.neighbor rank3
end4
broadcast(vertex) begin5

for e in vertex.outEdges() do6
e.neighbor rank = vertex.getValue()7

end8

end9

If the size of the vertex value type is small, this model
is competitive even if plenty of RAM is available. There-
fore, for better portability, it is encouraged to use this form.
However, for some applications, such as matrix factoriza-
tion (see Section 6), the vertex value can be fairly large
(tens of bytes), and replicating it to all edges is not efficient.
To remedy this situation, GraphChi supports an alternative
programming model, discussed next.

Alternative Model: In-memory Vertices: It is com-
mon that the number of vertices in a problem is relatively
small compared to the number of edges, and there is suf-
ficient memory to store the array of vertex values. In this
case, an update-function can read neighbor values directly,
and there is no need to broadcast vertex values to incident
edges (see Algorithm 6).

Algorithm 6: Datatypes and implementations of
neighborRank() and broadcast() in the alternative
model.

typedef: EdgeType { float weight; }1
float[] in mem vert2
neighborRank(edge) begin3

return edge.weight * in mem vert[edge.vertex id]4
end5
broadcast(vertex) /* No-op */6

We have found this model particularly useful in several
collaborative filtering applications, where the number of
vertices is typically several orders of magnitude smaller
than the number of edges, and each vertex must store a
vector of floating point values. The ability to access directly
vertex values requires us to consider consistency issues.
Fortunately, as GraphChi sequentializes updates of vertices
that share an edge, read-write races are avoided assuming
that the update-function does not modify other vertices.

9

40 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

6 Applications
We implemented and evaluated a wide range of applica-
tions, in order to demonstrate that GraphChi can be used
for problems in many domains. Despite the restrictive ex-
ternal memory setting, GraphChi retains the expressivity of
other graph-based frameworks. The source code for most
of the example applications is included in the open-source
version of GraphChi.

SpMV kernels, Pagerank: Iterative sparse-matrix
dense-vector multiply (SpMV) programs are easy to repre-
sent in the vertex-centric model. Generalized SpMV algo-
rithms iteratively compute xt+1 = Axt =

⊕n
i=1 Ai ⊗ xt,

where xt represents a vector of size n and A is a m×n ma-
trix with row-vectors Ai. Operators ⊕ and ⊗ are algorithm-
specific: standard addition and multiplication operators
yields standard matrix-vector multiply. Represented as a
graph, each edge (u, v) represents non-empty matrix cell
A(u, v) and vertex v the vector cell x(v).

We wrote a special programming interface for SpMV
applications, enabling important optimizations: Instead of
writing an update-function, the programmer implements
the ⊕ and ⊗ operators. When executing the program,
GraphChi can bypass the construction of the subgraph, and
directly apply the operators when edges are loaded, with
improved performance of approx. 25%. We implemented
Pagerank [32] as iterated matrix-vector multiply.

Graph Mining: We implemented three algorithms for
analyzing graph structure: Connected Components, Com-
munity Detection, and Triangle Counting. The first two
algorithms are based on label propagation [47]. On first
iteration, each vertex writes its id (“label”) to its edges. On
subsequent iterations, vertex chooses a new label based on
the labels of its neighbors. For Connected Components,
vertex chooses the minimum label; for Community Detec-
tion, the most frequent label is chosen [28]. A neighbor
is scheduled only if a label in a connecting edge changes,
which we implement by using selective scheduling. Fi-
nally, sets of vertices with equal labels are interpreted as
connected components or communities, respectively.

The goal of Triangle Counting is to count the number
of edge triangles incident to each vertex. This problem is
used in social network analysis for analyzing the graph
connectivity properties [43]. Triangle Counting requires
computing intersections of the adjacency lists of neighbor-
ing vertices. To do this efficiently, we first created a graph
with vertices sorted by their degree (using a modified pre-
processing step). We then run GraphChi for P iterations:
on each iteration, adjacency list of a selected interval of
vertices is stored in memory, and the adjacency lists of

vertices with smaller degrees are compared to the selected
vertices by the update function.

Collaborative Filtering: Collaborative filtering is used,
for example, to recommend products based on purchases of
other users with similar interests. Many powerful methods
for collaborative filtering are based on low-rank matrix
factorization. The basic idea is to approximate a large
sparse matrix R by the product of two smaller matrices:
R ≈ U × V ′.

We implemented the Alternating Least Squares (ALS)
algorithm [46], by adapting a GraphLab implementation
[30]. We used ALS to solve the Netflix movie rating pre-
diction problem [6]: in this model, the graph is bipartite,
with each user and movie represented by a vertex, con-
nected by an edge storing the rating (edges correspond
to the non-zeros of matrix R). The algorithm computes
a D-dimensional latent vector for each movie and user,
corresponding to the rows of U and V . A vertex update
solves a regularized least-squares system, with neighbors’
latent factors as input. If there is enough RAM, we can
store the latent factors in memory; otherwise, each vertex
replicates its factor to its edges. The latter requires more
disk space, and is slower, but is not limited by the amount
of RAM, and can be used for solving very large problems.

Probabilistic Graphical Models: Probabilistic Graph-
ical Models are used in Machine Learning for many struc-
tured problems. The problem is encoded as a graph, with
a vertex for each random variable. Edges connect related
variables and store a factor encoding the dependencies.
Exact inference on such models is intractable, so approxi-
mate methods are required in practice. Belief Propagation
(BP) [35], is a powerful method based on iterative message
passing between vertices. The goal here is to estimate the
probabilities of variables (“beliefs”).

For this work, we adapted a special BP algorithm pro-
posed by Kang et. al. [22], which we call WebGraph-BP.
The purpose of this application is to execute BP on a graph
of webpages to determine whether a page is “good” or
“bad”. For example, phishing sites are regarded as bad and
educational sites as good. The problem is bootstrapped by
declaring a seed set of good and bad websites. The model
defines binary probability distribution of adjacent web-
pages and after convergence, each webpage – represented
by a vertex – has an associated belief of its quality. Repre-
senting Webgraph-BP in GraphChi is straightforward, the
details of the algorithm can be found elsewhere [22].

10

USENIX Association 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 41

7 Experimental Evaluation
We evaluated GraphChi using the applications described
in previous section and analyzed its performance on a
selection of large graphs (Table 1).

7.1 Test setup
Most of the experiments were performed on a Apple Mac
Mini computer (“Mac Mini”), with dual-core 2.5 GHz In-
tel i5 processor, 8 GB of main memory and a standard
256GB SSD drive (price $1,683 (Jan, 2012)). In addition,
the computer had a 750 GB, 7200 rpm hard drive. We ran
standard Mac OS X Lion, with factory settings. Filesystem
caching was disabled to make executions with small and
large input graphs comparable . For experiments with mul-
tiple hard drives we used an older 8-core server with four
AMD Opteron 8384 processors, 64GB of RAM, running
Linux (“AMD Server”).

Graph name Vertices Edges P Preproc.
live-journal [3] 4.8M 69M 3 0.5 min

netflix [6] 0.5M 99M 20 1 min
domain [44] 26M 0.37B 20 2 min

twitter-2010 [26] 42M 1.5B 20 10 min
uk-2007-05 [11] 106M 3.7B 40 31 min

uk-union [11] 133M 5.4B 50 33 min
yahoo-web [44] 1.4B 6.6B 50 37 min

Table 1: Experiment graphs. Preprocessing (conversion
to shards) was done on Mac Mini.

7.2 Comparison to Other Systems
We are not aware of any other system that would be able
to compute on such large graphs as GraphChi on a sin-
gle computer (with reasonable performance). To get flavor
of the performance of GraphChi, we compare it to sev-
eral existing distributed systems and the shared-memory
GraphLab [29], based mostly on results we found from
recent literature5. Our comparisons are listed in Table 2.

Although disk-based, GraphChi runs three iterations
of Pagerank on the domain graph in 132 seconds, only
roughly 50% slower than the shared-memory GraphLab
(on AMD Server)6. Similar relative performance was ob-
tained for ALS matrix factorization, if vertex values are
stored in-memory. Replicating the latent factors to edges
increases the running time by five-fold.

A recently published paper [38] reports that Spark [45],
running on a cluster of 50 machines (100 CPUs) [45] runs

5The results we found do not consider the time it takes to load the
graph from disk, or to transfer it over a network to a cluster.

6For GraphLab we used their reference implementation of Pagerank.
Code was downloaded April 16, 2012.

five iterations of Pagerank on the twitter-2010 in 486.6
seconds. GraphChi solves the same problem in less than
double of the time (790 seconds), with only 2 CPUs. Note
that Spark is implemented in Scala, while GraphChi is
native C++ (an early Scala/Java-version of GraphChi runs
2-3x slower than the C++ version). Stanford GPS [37] is
a new implementation of Pregel, with compelling perfor-
mance. On a cluster of 30 machines, GPS can run 100
iterations of Pagerank (using random partitioning) in 144
minutes, approximately four times faster than GraphChi
on the Mac Mini. Piccolo [36] is reported to execute one
iteration of synchronous Pagerank on a graph with 18.5B
edges in 70 secs, running on a 100-machine EC2 cluster.
The graph is not available, so we extrapolated our results
for the uk-union graph (which has same ratio of edges to
vertices), and estimated that GraphChi would solve the
same problem in 26 minutes. Note, that both Spark and
Piccolo execute Pagerank synchronously, while GraphChi
uses asynchronous computation, with relatively faster con-
vergence [7].

GraphChi is able to solve the WebGraph-BP on yahoo-
web in 25 mins, almost as fast as Pegasus [24], a Hadoop-
based 7 graph mining library, distributed over 100 nodes
(Yahoo M-45). GraphChi counts the triangles of the twitter-
2010 graph in less then 90 minutes, while a Hadoop-based
algorithm uses over 1,600 workers to solve the same prob-
lem in over 400 minutes [39]. These results highlight the
inefficiency of MapReduce for graph problems. Recently,
Chu et al. proposed an I/O efficient algorithm for trian-
gle counting [18]. Their method can list the triangles of a
graph with 106 mil. vertices and 1.9B edges in 40 minutes.
Unfortunately, we were unable to repeat their experiment
due to unavailability of the graph.

Finally, we include comparisons to PowerGraph [20],
which was published simultaneously with this work (Pow-
erGraph and GraphChi are projects of the same research
team). PowerGraph is a distributed version of GraphLab
[29], which employs a novel vertex-partitioning model and
a new Gather-Apply-Scatter (GAS) programming model
allowing it to compute on graphs with power-law degree
distribution extremely efficiently. On a cluster of 64 ma-
chines in the Amazon EC2 cloud, PowerGraph can execute
one iteration of PageRank on the twitter-2010 graph in less
than 5 seconds (GraphChi: 158 s), and solves the trian-
gle counting problem in 1.5 minutes (GraphChi: 60 mins).
Clearly, ignoring graph loading, PowerGraph can execute
graph computations on a large cluster many times faster
than GraphChi on a single machine. It is interesting to
consider also the relative performance: with 256 times the
cores (or 64 times the machines), PowerGraph can solve

7http://hadoop.apache.org/

11

42 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Application & Graph Iter. Comparative result GraphChi (Mac Mini) Ref
Pagerank & domain 3 GraphLab[30] on AMD server (8 CPUs) 87 s 132 s -
Pagerank & twitter-2010 5 Spark [45] with 50 nodes (100 CPUs): 486.6 s 790 s [38]
Pagerank & V=105M, E=3.7B 100 Stanford GPS, 30 EC2 nodes (60 virt. cores), 144 min approx. 581 min [37]
Pagerank & V=1.0B, E=18.5B 1 Piccolo, 100 EC2 instances (200 cores) 70 s approx. 26 min [36]
Webgraph-BP & yahoo-web 1 Pegasus (Hadoop) on 100 machines: 22 min 27 min [22]
ALS & netflix-mm, D=20 10 GraphLab on AMD server: 4.7 min 9.8 min (in-mem)

40 min (edge-repl.) [30]
Triangle-count & twitter-2010 - Hadoop, 1636 nodes: 423 min 60 min [39]
Pagerank & twitter-2010 1 PowerGraph, 64 x 8 cores: 3.6 s 158 s [20]
Triange-count & twitter- 2010 - PowerGraph, 64 x 8 cores: 1.5 min 60 min [20]

Table 2: Comparative performance. Table shows a selection of recent running time reports from the literature.

the problems 30 to 45 times faster than GraphChi.
While acknowledging the caveats of system compar-

isons, this evaluation demonstrates that GraphChi provides
sufficient performance for many practical purposes. Re-
markably, GraphChi can solve as large problems as re-
ported for any of the distributed systems we reviewed, but
with fraction of the resources.

7.3 Scalability and Performance
Here, we demonstrate that GraphChi can handle large
graphs with robust performance. Figure 7 shows the nor-
malized performance of the system on three applications,
with all of our test graphs (Table 1). The x-axis shows
the number of edges of the graph. Performance is mea-
sured as throughput, the number of edges processed in
second. Throughput is impacted by the internal structure
of a graph (see Section 3.6), which explains why GraphChi
performs slower on the largest graph, yahoo-web, than on
the next largest graphs, uk-union and uk-2007-5, which
have been optimized for locality. Consistent with the I/O
bounds derived in Section 3.6, the ratio between the fastest
and slowest result is less than two. For the three algorithms,
GraphChi can process 5-20 million edges/sec on the Mac
Mini.

The performance curve for SSD and hard drive have
similar shape, but GraphChi performs twice as fast on an
SSD. This suggests that the performance even on a hard
drive is adequate for many purposes, and can be improved
by using multiple hard drives, as shown in Figure 8a. In
this test, we modified the I/O-layer of GraphChi to stripe
files across disks. We installed three 2TB disks into the
AMD server and used stripe-size of 10 MB. Our solution
is similar to the RAID level 0 [33]. At best, we could get a
total of 2x speedup with three drives.

Figure 8b shows the effect of block size on performance
of GraphChi on SSDs and HDs. With very small blocks, the
observed that OS overhead becomes large, affecting also

��� ���� ���� ���� ���� ����� �����

��������������������

���������

���������

�����������������

���������

���������

����������������

���������

���������

�������� ����������������������������

Figure 6: Relative runtime when varying the number of
threads used used by GraphChi. Experiment was done on
a MacBook Pro (mid-2012) with four cores.

the SSD. GraphChi on the SSD achieves peak performance
with blocks of about 1 MB. With hard drives, even bigger
block sizes can improve performance; however, the block
size is limited by the available memory. Figure 8c shows
how the choice of P affects performance. As the number
of non-sequential seeks is quadratic in P , if the P is in the
order of dozens, there is little real effect on performance.

Application SSD In-mem Ratio
Connected components 45 s 18 s 2.5x
Community detection 110 s 46 s 2.4x
Matrix fact. (D=5, 5 iter) 114 s 65 s 1.8x
Matrix fact. (D=20, 5 iter.) 560 s 500 s 1.1x

Table 3: Relative performance of an in-memory version
of GraphChi compared to the default SSD-based imple-
mentation on a selected set of applications, on a Mac Mini.
Timings include the time to load the input from disk and
write the output into a file.

12

USENIX Association 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 43

0 2 4 6 8
x 109

0.5

1

1.5

2

2.5

3x 107

Number of edges

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

Pagerank

WebBP

Conn. comp.

(a) Performance: SSD

0 2 4 6 8
x 109

4

6

8

10

12

14 x 106

Number of edges

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

Conn. comp.

WebBP

Pagerank

(b) Performance : Hard drive

0

500

1000

1500

2000

2500

1 thread 2 threads 4 threads

Disk IO Graph construction Exec. updates

(c) Runtime breakdown

Figure 7: (a,b) Computational throughput of GraphChi on the experiment graphs (x-axis is the number of edges)
on SSD and hard drive (higher is better), without selective scheduling, on three different algorithms. The trend-line
is a least-squares fit to the average throughput of the applications. GraphChi performance remains good as the input
graphs grow, demonstrating the scalability of the design. Notice different scales on the y-axis. . (c) Breakdown of the
processing phases for the Connected Components algorithm (3 iterations, uk-union graph; Mac Mini, SSD).

0

500

1000

1500

2000

2500

3000

Pagerank Conn. components

Secs 1 disk 2 disks 3 disks

(a) Multiple hard drives

102 104 106 1080

5

10

15
x 106

Blocksize (bytes)

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

SSD

Hard drive

(b) Disk block size

101 102 1030

0.5

1

1.5

2x 107

Number of shards (P)

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

Conn comp. (SSD)

Pagerank (SSD)

Pagerank (HD)

Conn comp. (HD)

(c) Number of shards

Figure 8: (a) Runtime of 3 iterations on the uk-union graph, when data is striped across 2 or 3 hard drives (AMD
server). (b) Impact of the block size used for disk I/O (x-axis is in log-scale). (c) The number of shards has little impact
on performance, unless P is very large.

Next, we studied the bottlenecks of GraphChi. Figure
7c shows the break-down of time used for I/O, graph con-
struction and actual updates with Mac Mini (SSD) when
running the Connected Components algorithm.We disabled
asynchronous I/O for the test, and actual combined running
time is slightly less than shown in the plot. The test was
repeated by using 1, 2 and 4 threads for shard processing
and I/O. Unfortunately, the performance is only slightly
improved by parallel operation. We profiled the execution,
and found out that GraphChi is able to nearly saturate the
SSD with only one CPU, and achieves combined read/write
bandwidth of 350 MB/s. GraphChi’s performance is lim-
ited by the I/O bandwidth. More benefit from parallelism
can be gained if the computation itself is demanding, as
shown in Figure 6. This experiment was made with a mid-
2012 model MacBook Pro with a four-core Intel i7 CPU.

We further analyzed the relative performance of the

disk-based GraphChi to a modified in-memory version of
GraphChi. Table 3 shows that on tasks that are computa-
tionally intensive, such as matrix factorization, the disk
overhead (SSD) is small, while on light tasks such as com-
puting connected components, the total running time can
be over two times longer. In this experiment, we compared
the total time to execute a task, from loading the graph
from disk to writing the results into a file. For the top two
experiments, the live-journal graph was used, and the last
two experiments used the netflix graph. The larger graphs
did not fit into RAM.

Evolving Graphs: We evaluated the performance of
GraphChi on a constantly growing graph. We inserted
edges from the twitter-2010 graph, with rates of 100K and
200K edges in second, while simultaneously running Pager-
ank. Edges were loaded from the hard drive, GraphChi
operated on the SSD. Figure 9a shows the throughput over

13

44 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

0 2 4 6
0

2

4

6

8

10 x 106

Time (hours)

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

Static graph

Ingest goal: 100K/s

Ingest goal: 200K/s

(a) Evolving Graph: Throughput

0 2 4 6
0

0.5

1

1.5

2

2.5x 105

Time (hours)

In
ge

st
 ra

te
 (e

dg
es

/s
ec

)

Target (200K/s)

Target (100K/s)

Actual

Actual

(b) Ingest rate

Figure 9: (a,b) Evolving graphs: Performance when
twitter-2010 graph is ingested with a cap of 100K or 200K
edges/sec, while simultaneously computing Pagerank.

time. The throughput varies as the result of periodic flush-
ing of edge-buffers to disk, and the bumps in throughput,
just after half-way of execution, are explained by a a series
of shard splits. Throughput in the evolving graph case is
roughly 50% compared to normal execution on the full
graph. GraphChi currently favors computation over ingest
rate, which explains the decreasing actual ingest rate over
time shown in Figure 9b. A rate of 100K edges/sec can
be sustained for a several hours, but with 200K edges/sec,
edge buffers fill up quickly, and GraphChi needs to flush
the updates to disk too frequently, and cannot sustain the in-
gestion rate. These experiments demonstrate that GraphChi
is able to handle a very quickly growing graph on just one
computer.

8 Related Work
Pearce et al. [34] proposed an asynchronous system for
graph traversals on external and semi-external memory.
Their solution stores the graph structure on disk using the
compressed sparse row format, and unlike GraphChi, does
not allow changes to the graph. Vertex values are stored in
memory, and computation is scheduled using concurrent
work queues. Their system is designed for graph traversals,
while GraphChi is designed for general large-scale graph
computation and has lower memory requirements.

A collection of I/O efficient fundamental graph algo-
rithms in the external memory setting was proposed by
Chiang et. al. [16]. Their method is based on simulating
parallel PRAM algorithms, and requires a series of disk
sorts, and would not be efficient for the types of algorithms
we consider. For example, the solution to connected com-
ponents has upper bound I/O cost of O(sort(|V |)), while
ours has O(|E|). Many real-world graphs are sparse, and
it is unclear which bound is better in practice. A similar ap-
proach was recently used by Blelloch et. al. for I/O efficient
Set Covering algorithms [9].

Optimal bounds for I/O efficient SpMV algorithms was
derived recently by Bender [5]. Similar methods were
earlier used by Haveliwala [21] and Chen et. al. [14].
GraphChi and the PSW method extend this work by al-
lowing asynchronous computation and mutation of the
underlying matrix (graph), thus representing a larger set of
applications. Toledo [40] contains a comprehensive survey
of (mostly historical) algorithms for out-of-core numerical
linear algebra, and discusses also methods for sparse ma-
trices. For most external memory algorithms in literature,
implementations are not available.

Finally, graph databases allow for storing and querying
graphs on disk. They do not, however, provide powerful
computational capabilities.

9 Conclusions
General frameworks such as MapReduce deliver disap-
pointing performance when applied to real-world graphs,
leading to the development of specialized frameworks for
computing on graphs. In this work, we proposed a new
method, Parallel Sliding Windows (PSW), for the external
memory setting, which exploits properties of sparse graphs
for efficient processing from disk. We showed by theoret-
ical analysis, that PSW requires only a small number of
sequential disk block transfers, allowing it to perform well
on both SSDs and traditional hard disks.

We then presented and evaluated our reference imple-
mentation, GraphChi, and demonstrated that on a consumer
PC, it can efficiently solve problems that were previously
only accessible to large-scale cluster computing. In addi-
tion, we showed that GraphChi relatively (per-node basis)
outperforms other existing systems, making it an attractive
choice for parallelizing multiple computations on a cluster.
Acknowledgments
We thank Joey Gonzalez, Yucheng Low, Jay Gu, Joseph Bradley,
Danny Bickson, Phillip B. Gibbons, Eriko Nurvitadhi, Julian
Shun, the anonymous reviewers and our shepherd Prof. Arpaci-
Dusseau for feedback and helpful discussions. Funded by ONR
PECASE N000141010672, Intel Science & Technology Center
on Embedded Computing, ARO MURI W911NF0810242.

14

USENIX Association 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 45

References
[1] A. Aggarwal, J. Vitter, et al. The input/output com-

plexity of sorting and related problems. Communica-
tions of the ACM, 31(9):1116–1127, 1988.

[2] L. Arge. The buffer tree: A new technique for opti-
mal i/o-algorithms. Algorithms and Data Structures,
pages 334–345, 1995.

[3] L. Backstrom, D. Huttenlocher, J. Kleinberg, and
X. Lan. Group formation in large social networks:
membership, growth, and evolution. The 12th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD’06. ACM, 2006.

[4] A. Badam and V. S. Pai. Ssdalloc: hybrid ssd/ram
memory management made easy. In Proc. of the 8th
USENIX conference on Networked systems design
and implementation, NSDI’11, pages 16–16, Boston,
MA, 2011. USENIX Association.

[5] M. Bender, G. Brodal, R. Fagerberg, R. Jacob, and
E. Vicari. Optimal sparse matrix dense vector mul-
tiplication in the i/o-model. Theory of Computing
Systems, 47(4):934–962, 2010.

[6] J. Bennett and S. Lanning. The netflix prize. In Proc.
of the KDD Cup Workshop 2007, pages 3–6, San Jose,
CA, Aug. 2007. ACM.

[7] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and dis-
tributed computation: numerical methods. Prentice-
Hall, Inc., 1989.

[8] D. K. Blandford, G. E. Blelloch, and I. A. Kash. Com-
pact representations of separable graphs. In In Proc.
of the Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 679–688, 2003.

[9] G. Blelloch, H. Simhadri, and K. Tangwongsan. Par-
allel and i/o efficient set covering algorithms. In
Proc. of the 24th ACM symposium on Parallelism in
algorithms and architectures, pages 82–90, 2012.

[10] G. E. Blelloch. Prefix sums and their applications.
Synthesis of Parallel Algorithms, 1990.

[11] P. Boldi, M. Santini, and S. Vigna. A large time-
aware graph. SIGIR Forum, 42(2):33–38, 2008.

[12] P. Boldi and S. Vigna. The webgraph framework
i: compression techniques. In Proc. of the 13th in-
ternational conference on World Wide Web, pages
595–602. ACM, 2004.

[13] R. Chen, X. Weng, B. He, and M. Yang. Large graph
processing in the cloud. In Proceedings of the 2010
ACM SIGMOD International Conference on Man-
agement of data, SIGMOD ’10, pages 1123–1126,
Indianapolis, Indiana, USA, 2010. ACM.

[14] Y. Chen, Q. Gan, and T. Suel. I/O-efficient techniques
for computing pagerank. In Proc. of the eleventh
international conference on Information and knowl-
edge management, pages 549–557, McLean, Virginia,
USA, 2002. ACM.

[15] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng,
M. Wu, F. Yang, L. Zhou, F. Zhao, and E. Chen.
Kineograph: taking the pulse of a fast-changing and
connected world. In Proc. of the 7th ACM european
conference on Computer Systems, EuroSys ’12, pages
85–98, Bern, Switzerland, 2012. ACM.

[16] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamas-
sia, D. E. Vengroff, and J. S. Vitter. External-memory
graph algorithms. In Proc. of the sixth annual ACM-
SIAM symposium on Discrete algorithms, SODA ’95,
pages 139–149, Philadelphia, PA, 1995. Society for
Industrial and Applied Mathematics.

[17] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzen-
macher, A. Panconesi, and P. Raghavan. On com-
pressing social networks. In Proc. of the 15th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 219–228, Paris,
France, April 2009. ACM.

[18] S. Chu and J. Cheng. Triangle listing in massive
networks and its applications. In In Proc. of the 17th
ACM SIGKDD international conf. on Knowledge dis-
covery and data mining, pages 672–680, 2011.

[19] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. In Proc. of the 6th
USENIX conference on Operating systems design and
implementation, OSDI’04, pages 10–10, San Fran-
cisco, CA, 2004. USENIX.

[20] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: Distributed graph-parallel
computation on natural graphs. In Proc. of the 10th
USENIX conference on Operating systems design and
implementation, OSDI’12, Hollywood, CA, 2012.

[21] T. Haveliwala. Efficient computation of pagerank.
Technical report, Stanford University, 1999.

[22] U. Kang, D. Chau, and C. Faloutsos. Inference of be-
liefs on billion-scale graphs. In The 2nd Workshop on
Large-scale Data Mining: Theory and Applications,
Washington, D.C., 2010.

15

46 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

[23] U. Kang and C. Faloutsos. Beyond’caveman com-
munities’: Hubs and spokes for graph compression
and mining. In 11th International Conference on
Data Mining (ICDM’11), pages 300–309, Vancouver,
Canada, 2011.

[24] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pega-
sus: A peta-scale graph mining system implementa-
tion and observations. ICDM ’09. IEEE Computer
Society, 2009.

[25] G. Karypis and V. Kumar. Multilevel k-way partition-
ing scheme for irregular graphs. J. Parallel Distrib.
Comput., 48(1):96–129, 1998.

[26] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In Proc.
of the 19th international conference on World wide
web, pages 591–600. ACM, 2010.

[27] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney.
Community structure in large networks: Natural clus-
ter sizes and the absence of large well-defined clus-
ters. Internet Mathematics, 6(1):29–123, 2009.

[28] X. Liu and T. Murata. Advanced modularity-
specialized label propagation algorithm for detecting
communities in networks. Physica A: Stat. Mechan-
ics and its Applications, 389(7):1493–1500, 2010.

[29] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. GraphLab: A
new parallel framework for machine learning. In
Conference on Uncertainty in Artificial Intelligence
(UAI), Catalina Island, CA, July 2010.

[30] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Distributed
GraphLab: A Framework for Machine Learning and
Data Mining in the Cloud. PVLDB, 2012.

[31] G. Malewicz, M. H. Austern, A. J. Bik, J. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. SIGMOD
10: Proc. of the 2010 international conference on
Management of data, Indianapolis, IN, 2010.

[32] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical Report 1999-66, Stanford InfoLab, 1999.

[33] D. A. Patterson, G. Gibson, and R. H. Katz. A case
for redundant arrays of inexpensive disks (RAID).
In Proc. of the 1988 ACM SIGMOD international
conference on Management of data, SIGMOD ’88,
pages 109–116, Chicago, IL, 1988.

[34] R. Pearce, M. Gokhale, and N. Amato. Multithreaded
Asynchronous Graph Traversal for In-Memory and
Semi-External Memory. In SuperComputing, 2010.

[35] J. Pearl. Reverend Bayes on inference engines: A
distributed hierarchical approach. Cognitive Sys-
tems Laboratory, School of Engineering and Applied
Science, University of California, Los Angeles, 1982.

[36] R. Power and J. Li. Piccolo: building fast, distributed
programs with partitioned tables. In Proc. of the 9th
USENIX conference on Operating systems design and
implementation, OSDI’10, pages 1–14, 2010.

[37] S. Salihoglu and J. Widom. GPS: a graph processing
system. Technical report, Stanford University, 2012.

[38] I. Stanton and G. Kliot. Streaming graph partition-
ing for large distributed graphs. Technical report,
Microsoft Research, 2012.

[39] S. Suri and S. Vassilvitskii. Counting triangles and
the curse of the last reducer. In In Proc. of the 20th
international conference on World wide web, pages
607–614, Lyon, France, 2011. ACM.

[40] S. Toledo. A survey of out-of-core algorithms in nu-
merical linear algebra. External Memory Algorithms
and Visualization, 50:161–179, 1999.

[41] L. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103–111, 1990.

[42] J. Vitter. External Memory Algorithms. ESA, 1998.

[43] D. Watts and S. Strogatz. Collective dynamics of
small-world networks. Nature, 393(6684):440–442,
1998.

[44] Yahoo WebScope. Yahoo! altavista web page hyper-
link connectivity graph, circa 2002, 2012. http:
//webscope.sandbox.yahoo.com/.

[45] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster comput-
ing with working sets. In HotCloud, 2010.

[46] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan.
Large-scale parallel collaborative filtering for the
netflix prize. In In Proc. of the 4th international
conference on Algorithmic Aspects in Information
and Management, AAIM ’08, pages 337–348, Berlin,
Heidelberg, 2008. Springer-Verlag.

[47] X. Zhu and Z. Ghahramani. Learning from labeled
and unlabeled data with label propagation. Technical
report, Carnegie Mellon University, 2002.

16

