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Abstract

Background: RNA plays essential roles in all known forms of life. Clustering RNA sequences with common sequence and

structure is an essential step towards studying RNA function. With the advent of high-throughput sequencing techniques,

experimental and genomic data are expanding to complement the predictive methods. However, the existing methods do

not effectively utilize and cope with the immense amount of data becoming available. Results: Hundreds of thousands of

non-coding RNAs have been detected; however, their annotation is lagging behind. Here we present GraphClust2, a

comprehensive approach for scalable clustering of RNAs based on sequence and structural similarities. GraphClust2 bridges

the gap between high-throughput sequencing and structural RNA analysis and provides an integrative solution by

incorporating diverse experimental and genomic data in an accessible manner via the Galaxy framework. GraphClust2 can

efficiently cluster and annotate large datasets of RNAs and supports structure-probing data. We demonstrate that the

annotation performance of clustering functional RNAs can be considerably improved. Furthermore, an off-the-shelf

procedure is introduced for identifying locally conserved structure candidates in long RNAs. We suggest the presence and

the sparseness of phylogenetically conserved local structures for a collection of long non-coding RNAs. Conclusions: By

clustering data from 2 cross-linking immunoprecipitation experiments, we demonstrate the benefits of GraphClust2 for

motif discovery under the presence of biological and methodological biases. Finally, we uncover prominent targets of

double-stranded RNA binding protein Roquin-1, such as BCOR’s 3
′

untranslated region that contains multiple binding

stem-loops that are evolutionary conserved.
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Background

High-throughput RNA sequencing and computational screens

have discovered hundreds of thousands of non-coding RNAs

(ncRNAs) with putative cellular functionality [1–7]. Functional

analysis and validation of this vast amount of data demand a

reliable and scalable annotation system for the ncRNAs, which

is currently still lacking for several reasons. First, it is often chal-

lenging to find homologs even for many validated functional

ncRNAs because sequence similarities can be very low. Sec-

ond, the concept of conserved domains, which is quite success-

fully applied for annotating proteins, is not well established for

RNAs.

For many ncRNAs and regulatory elements in messenger

RNAs (mRNAs), however, it is well known that the secondary

structure is better conserved than the sequence, indicating

the paramount importance of structure for the functionality.

This fact has promoted annotation approaches that try to de-

tect structural homologs in the forms of RNA “families” and

“classes” [8]. Members of an RNA family are similar and typically

stem from a common ancestor, while RNA classes combine ncR-

NAs that overlap in function and structure. A prominent exam-

ple of an RNA class whose members share a common function

without a common origin is microRNA. One common approach

to detect ncRNAs of the same class is to align them first by se-

quence, then predict and detect functionally conserved struc-

tures by applying approaches such as RNAalifold [9], RNAz [10],

or Evofold [11]. A large portion of ncRNAs from the same RNA

class, however, have a sequence identity of <70%. In this se-

quence identity range, sequence-based alignments are not suf-

ficiently accurate [12, 13]. Alternatively, approaches for simul-

taneous alignment and folding of RNAs such as Foldalign, Dy-

nalign, and LocARNA [14–16] yield better accuracy.

Clusters of ncRNAs with a conserved secondary structure

are promising candidates for defining RNA families or classes.

To detect RNA families and classes, Will et al. [17] and Hav-

gaard et al. [14] independently proposed to use the sequence-

structure alignment scores between all input sequence pairs to

perform hierarchical clustering of putatively functional RNAs.

However, their applicability is restricted by the input size, ow-

ing to the high quartic computational complexity of the align-

ment calculations over a quadratic number of pairs. Albeit the

complexity of similarity computation by pairwise sequence-

structure alignment can be reduced to quadratic O(n2) of the se-

quence length [18], it is still infeasible for most practical pur-

poses with several thousand sequence pairs. For scenarios of

this scale, alignment-free approaches such as GraphClust [19]

and Nofold [20] propose solutions.

A stochastic context-free grammar (SCFG), also known as co-

variance model (CM), encodes the sequence and structure fea-

tures of a family in a probabilistic profile. CM-based approaches

have been extensively used, e.g., for discovering homologs of

known families [21] or comparing 2 families [22]. Profile-based

methods [20, 23] such as Nofold generally rely on a CM database

of known families to annotate and cluster sequences by compar-

ing against the profiles; therefore, their applicability for de novo

family or motif discovery is affected by the characteristics of the

already known families and the provided models.

The GraphClust methodology uses a graph kernel approach

to integrate both sequence and structure information into high-

dimensional sparse feature vectors. These vectors are then

rapidly clustered, with a linear-time complexity over the num-

ber of sequences, using a locality-sensitive hashing technique.

While this solved the theoretical problem, the use case guiding

the development of the original GraphClustwork, here as Graph-

Clust1, was tailored for a user with in-depth experience in RNA

bioinformatics who already has the set of processed sequences

at hand and now wants to detect RNA family and classes in this

set. However, with the increasing amount of sequencing and ge-

nomic data, the tasks of detecting RNA family or classes andmo-

tif discovery have been broadened and are becoming a standard

as well as appealing tasks for the analysis of high-throughput

sequencing data.

To answer these demands, here we propose GraphClust2 as

a full-fledged solution within the Galaxy framework [24]. With

the development of GraphClust2, we have materialized the fol-

lowing goals; GraphClust2 is (i) allowing a smooth and seam-

less integration of high-throughput experimental data and ge-

nomic information; (ii) deployable by end users who are less ex-

perienced with the field of RNA bioinformatics; (iii) easily ex-

pandable for up- and downstream analysis, and allowing for

enhanced interoperability; (iv) allowing for accessible, repro-

ducible, and scalable analysis; and (v) allowing for efficient par-

allelizations over different platforms. To assist the end users,

we have developed auxiliary data-processing workflows and in-

tegrated alternative prediction tools. The results are presented

with intuitive visualizations and information about the cluster-

ing.

We show that the proposed solution has an improved clus-

tering quality in the benchmarks. We show the applicability of

GraphClust2 in some sought-after and prevailing domain sce-

narios. GraphClust2 supports structure-probing (SP) data such as

from SHAPE (selective 2′-hydroxyl acylation analyzed by primer

extension) and dimethyl sulfate (DMS) experiments.We demon-

strate that the SP information assists in the clustering proce-

dure and enhances the quality. By clustering ncRNAs from Ara-

bidopsis thaliana with genome-wide in vivo DMS-seq data, we

demonstrate that the genome-wide probing data can in prac-

tice be used for homologous discovery, beyond singleton struc-

ture predictions. Furthermore, an off-the-shelf procedure is in-

troduced to identify locally conserved structure candidates from

deep genomic alignments, by starting from a custom genomic

locus. By applying this methodology to a couple of well-studied

long non-coding RNAs (lncRNAs), we suggest the presence and

the sparseness of local structures with highly reliable structural

alignments. GraphClust2 can be used as a structure motif finder

to identify the precise structural preferences of RNAbinding pro-

teins (RBPs) in cross-linking immunoprecipitation (CLIP) data.

By comparing public CLIP data from 2 double-stranded RBPs,

SLBP and Roquin-1, we demonstrate the advantage of a scal-

able approach for discovering structured elements. Under sub-

jective binding preferences of Roquin-1 and the protocol biases,

a scaled clustering uncovers structured targets of Roquin-1 that

are evolutionary conserved. Finally, we propose BCOR’s mRNA

as a prominent binding target of Roquin-1 that contains multi-

ple stem-loop binding elements.
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Materials and Methods

Methods overview

The clustering workflow

The GraphClust approach can efficiently cluster thousands of

RNA sequences. This is achieved through a workflowwith 5 ma-

jor steps: (i) pre-processing the input sequences; (ii) secondary

structure prediction and graph encoding; (iii) fast linear-time

clustering; (iv) cluster alignment and refinement, with an ac-

companying search with alignment models for extra matches;

and finally (v) cluster collection, visualization, and annotation.

An overview of the workflow is presented in Fig. 1.

More precisely, the pre-processed sequences are individually

folded according to the thermodynamic free energymodels with

the structure prediction tools RNAfold [25] or RNAshapes [26]. A

decomposition graph kernel is then used to efficiently compute

similarity according to the sequence and structure features of

secondary structure graphs. TheMinHash technique [27] and in-

verse indexing are used to identify the initial clusters, which cor-

respond to dense neighborhoods of the graph feature space. For-

mal description and formulations of kernel and MinHash meth-

ods are provided in the supplementary methods. The MinHash

clustering approach is very fastwith a linear runtime complexity

over the number of entries. This accordinglymakes GraphClust2

much more efficient than the quadratic all-vs-all approach [19].

It permits the clustering of up to hundreds of thousands of RNA

sequences in a reasonable time frame.

After the MinHash clustering step, the initial clusters are re-

fined using the RNA domain-specific tools. First, from the se-

quences of each initial cluster a UPGMA tree is created to prune

the clusters. The pairwise distances of the tree are approxi-

mated from LocARNA sequence-structure alignment scores, as

is proposed and detailed by Will et al. [17]. This pruning pro-

cedure keeps the subtree that has the highest average pairwise

alignment on its leaves. Here we use the RNA domain-specific

scores from LocARNA alignments, although it would have been

possible to compute distances from the generic graph kernel

scores. LocARNA scores are used because the runtime complex-

ity is not a concern here, as the pairwise alignments are only

computed within each cluster. Each cluster has typically ∼10–

100 sequences, which is much smaller than the entire input

data. In the second step after pruning, the multiple alignment

of each pruned cluster is refined with CMfinder’s expectation

maximization algorithm [28]. Third, after the alignment is re-

fined, a homology search using Infernal [21] tools is applied over

the entire dataset. For each cluster’s refined alignment, a CM is

built using cmbuild. The CM is then used to scan the entire se-

quence database using cmsearch. This CMhomology search step

extends the clusters with additional homologs that have been

missed in the initial clustering. Finally, the sequences of each

cluster are aligned with LocARNA, and the consensus structures

are predicted, visualized, and annotated by conservation and co-

variation metrics.

In an iterative fashion, the steps downstream of the fast clus-

tering can be repeated over the sequences that are not clustered

in the previous iteration. GraphClust2 can also compute fuzzy

soft overlapping clusters. The option to report overlapping clus-

ters instead of a hard optimal partitioning can be set by the

user at the cluster report step. Furthermore, a pre-clustering op-

tional step can be invoked to remove near-identical and redun-

dant sequences using CD-HIT (RRID:SCR 007105) [29]. This pre-

clustering would be beneficial for the datasets with high redun-

dancy or very large number of sequences, e.g., metatranscrip-

tomics data.

Workflow input

GraphClust2 accepts a set of RNA sequences as input. Sequences

longer than a defined length are split and processed with a user-

defined sliding window option. Two recommended settings are

provided for ncRNA clustering and motif discovery as is dis-

cussed in the workflow flavors section. In addition to the stan-

dard FASTA formatted input, a collection of auxiliary workflows

are implemented to allow the user to start from genomic coor-

dinate intervals in BED format, or genomic alignments from or-

thologous regions in MAF format, or sequencing data from the

SP experiments. Use case scenarios are detailed in the following

sections.

Workflow output

The core output of the workflow is the set of clustered se-

quences. Clusters can be chosen either as “hard partitions” hav-

ing an empty intersection or as overlapping ”soft partitions.”

In the latter case elements can belong to multiple clusters. In-

depth information and comprehensive visualizations about the

partitions, cluster alignments, and structure conservation met-

rics are produced (Fig. 1). The consensus secondary structure of

the cluster is annotated with base-pairing information such as

statistically significant covariations that are computed with R-

scape [30]. Evaluation metrics for structure conservation are re-

ported. In the case of MAF input, color-coded UCSC tracks are

automatically generated to locate and annotate conserved clus-

ters in the genome browser. The in-browser integrated view of

the clusterings makes it possible to quickly inspect the results.

The Galaxy server keeps track of the input, intermediate, and fi-

nal outputs. The clustering results can be shared or downloaded

to the client system.

Workflow flavors

Two preconfigured flavors of the workflow are offered for the lo-

cal and the global scenarios, for ease of use without demand-

ing an in-depth knowledge about configuring complex tools.

The global flavor aims for clustering RNAs on the whole tran-

script, such as for annotating ncRNAs of short and medium

lengths. The local flavor serves as the motif finder. The moti-

vation has been to deal in an orderly fashion with putative ge-

nomic sequence contexts around the structured elements. Pre-

dictionmethods usually require different settings in these 2 sce-

narios [31]. Themain differences between the flavors are the pre-

configured window lengths (∼250 vs ∼100), the aligner parame-

ters, and the hit criteria of the covariance model search (E-value

vs “bit score”). The motif finder flavor can be for example used

to identify cis-regulatory elements, where it is expected to find

structured motifs within longer sequences.

As a feature, the fast clustering can be tuned to weigh in

sequence-based features. The graph for each entry consists of 2

disjoint parts. The primary part is the structure graph where the

vertices are labeledwith the nucleotideswhile the backbone and

paired bases are connected by edges. Besides the primary part, a

“path graph” can be included to represent the nucleotide string

(option -seq-graph-t). By including the path graphs, sequence-

only information would independently contribute to the feature

vectors.
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4 GraphClust2: Annotation and discovery of structured RNAs with accessible integrative clustering

Figure 1 Overview of the GraphClust2 methodology. The flow chart represents the major clustering steps and is supplemented by graphical representations of the

associated output data entries. The dashed arrows indicate optional data paths. Auxiliary workflows facilitate integrative clustering of experimental and genomic

data including structure-probing raw reads or processed reactivities, genomic alignments and conservation information, and genomic intervals, e.g., from the CLIP

experiments. On the right, a sample selection of the clustering outputs including the overview of the clusters, cluster alignment with LocARNA, RNAalifold consensus

structure, and R2R [32] visualization and annotation of the cluster structure by R-scape. Clusters can also be visualized and annotated for the orthology structure

conservation predictions.

Integration of SP data

RNA SP is an emerging experimental technique for determin-

ing the RNA pairing states at nucleotide resolution. Chemi-

cal treatment with reagents such as SHAPE and DMS [33, 34]

provides 1D reactivity information about the accessibility of

nucleotides in an RNA molecule. Structure probing (SP) can

considerably improve the secondary structure prediction ac-

curacy of RNAs [35–37]. SP-assisted computational prediction

methods commonly incorporate the probing data by guiding

the prediction algorithms via folding constraints and pseudo-

energies [25, 38, 39]. Deigan et al. first introduced the position-

specific pseudo-energy terms to incorporate the reactivity infor-

mation alongside the free energy terms of thermodynamicmod-

els [40]. The pseudo-energy term for position i is defined as fol-

lows:

�Gpseudo-energy(i ) = m ln[1 + reactivity(i )] + b,

where parametersm and b determine a scaled conversion of the

reactivities to the energy space. GraphClust2 supports SP data

for enabling a guided structure prediction [25, 41]. The SP sup-

port is integrated into the pre-processing and the structure pre-

diction steps to generate SP-directed structure graphs.

Implementation and installation

GraphClust2 is implemented within the Galaxy framework (RR

ID:SCR 006281) [24]. Galaxy offers several advantages to assist

our goal of developing a scalable and user-friendly solution. The

platformmakes it convenient to deploy complexworkflowswith

interoperable tools. Through the uniform user interface across

different tools, it is easier for the users to work with new, un-

familiar tools and freely interchange them. Moreover, the stan-

dardized data types will ensure that only inputs with valid types

are passed to a tool. Interactive tutorial tours are produced to

introduce the user interface and guide the user through sample

clustering procedures.

GraphClust2’s toolset has been made publicly available in

Galaxy ToolShed [42] and can be easily installed into any Galaxy

server instance. GraphClust2 is available also as a standalone

container solution for a variety of computing platforms at https:

//github.com/BackofenLab/GraphClust-2 and can be freely ac-

cessed on the European Galaxy server at https://graphclust.use

galaxy.eu.

The workflow implementation

GraphClust2 workflow is composed of tools and scripts that are

packaged in Bioconda and Biocontainers [43] and integrated into

the Galaxy framework. This has enabled automatic installation
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of the tools in a version-traceable and reproducibleway. All func-

tional units and workflows are manually validated and are un-

der extensive continuous integration tests. Strict versioning of

tools and requirements ensures reproducible results over mul-

tiple different versions of a tool while delivering updates and

enhancements.

Platform-independent virtualized container

GraphClust2 can be deployed on any Galaxy server instance,

simply by installing the GraphClust tools from the Galaxy Tool-

Shed. As a stand-alone solution, a virtualized Galaxy instance

based on Linux containers (Docker, rkt) [44] is provided that can

be executed on Linux, OSX, and Windows. This largely simpli-

fies the deployment phase, guarantees a reproducible set-up,

and makes it instantiable on numerous computation systems

from personal computers to Cloud and high-performance com-

puting (HPC) environments. The Docker image is based on the

official Galaxy Docker image [45, 46] and is customized to inte-

grate GraphClust2 tools, workflows, and tutorial tours.

Data

Rfam-based simulated SHAPE

A set of Rfam [47] sequences and the associated SHAPE reactivi-

ties were extracted from the ProbeAlign benchmark dataset [48].

The simulated SHAPE reactivities have been generated accord-

ing to the probability distributions that are fitted to experimen-

tal SHAPE data by Sükösd et al. methodology [49]. Rfam families

containing ≥10 sequences were used. A uniformly sized subset

was also extracted, in which exactly 10 random sequences were

selected per family to obtain a variationwith a uniformunbiased

contribution from each family.

Arabidopsis thaliana ncRNA DMS-seq

Arabidopsis DMS-seq reads were obtained from the SP exper-

iment by Ding et al. [50] (NCBI SRA entries SRX321617 and

SRX320218). The reads were mapped to TAIR-10 ncRNA tran-

scripts (Ensembl release-38) [51]. Reactivities were computed for

non-ribosomal RNAs based on the normalized reverse transcrip-

tion stop counts using the Structure-Fold tool in Galaxy [52]. We

used Bowtie-2 [53] with the settings recommended by Ding et al.

[54] (options –trim5=3, -N=1). Transcripts with poor read cov-

erage tend to bias towards zero-valued reactivities [55]. To me-

diate this bias, low information content profiles with <1% non-

zero reactivities were excluded. To focus on secondary structure

predictions of the paralogs that can have high sequence simi-

larity, the graphs were encoded with the primary part without

path graphs. Information about the ncRNA families is available

in Supplementary Table S4.

Orthology sequence extraction from long RNA locus

The genomic coordinates of the longest isoforms were extracted

from RefSeq hg38 annotations [56] for FTL mRNA and lncRNAs

NEAT1, MALAT1, HOTAIR, and XIST. To obtain the orthologous

genomic regions in other species, we extracted the genomic

alignment blocks in Multiz alignment format (MAF) [57] for each

gene using the UCSC table browser [58] (100way-vertebrate, ex-

tracted in August 2018). Alignments were directly transferred to

the Galaxy server via the UCSC-to-Galaxy data importer. MAF

blocks were concatenated using MAF-Galaxy toolset [59] to ob-

tain 1 sequence per species. An auxiliary workflow for this data

extraction procedure is provided. This procedure is notably scal-

able and can be applied to any locus independent of the anno-

tation availability. Alternatively, the user can provide, e.g., full

transcripts or synteny regions [60] for the downstream analysis.

For the background shuffled input, Multiperm [61] was used to

shuffle the Multiz alignment of the MALAT1 locus.

SLBP eCLIP

Binding sites of SLBP were obtained from the ENCODE eCLIP

project (experiment ENCSR483NOP) [62]. In the consortium’s

workflow, CLIPper [63] is used to extract peak regions of the read

coverage data. The peaks are annotated with both p-values and

log2 fold-change scores. These values are determined from the

read counts of the experiment compared with the read counts

of a size-matched input. We extracted the peaks with a log2
fold-change of ≥4. To diminish the chance of missing the bind-

ing motif, the peak regions were extended by 60 nucleotides

both up- and downstream. The sequences of the resulting

3,171 binding target regions were used for clustering and motif

analysis.

Roquin-1 PAR-CLIP

The 16,000+ binding sites of Roquin-1 (RC3H1) were obtained

fromMurakawa et al. [64] (hg18 coordinates from the associated

Max Delbrück Center for Molecular Medicine–Berlin web page).

The 5,000 target regions with the highest PAR-CLIP scores were

used for the downstream analysis and structural clustering.

The binding site sequences were extracted using the extract-

genomic-dna tool in Galaxy.

Structure conservation annotation with Evofold, RNAz,

and R-scape

For each of the studied long RNAs, the sequences were ex-

tracted from the orthologous genomic regions as detailed in

the Data section. Clustering was performed using the motif

finder flavor. In the pre-processing step, the sliding window

was set to 100-bp length and 70% shift. The LocARNA struc-

tural alignments of the predicted clusters were further pro-

cessed using RNAz [65], Evofold [11], and R-scape [30], to anno-

tate clusters with structure conservation potentials in the gen-

erated genomic browser tracks. RNAz uses a support vector ma-

chine (SVM) that is trained on structured RNAs and background

to evaluate the thermodynamic stability of sequences folded

freely versus constrained by the consensus structure. Evofold

uses phylo-SCFGs to evaluate a conservation model for lo-

cal structures against a competing non-structural conservation

model. R-scape quantifies the statistical significance of base-

pair covariations as evidence of structure conservation, under

the null hypothesis that alignment column pairs are evolved

independently.

RNAz was invoked (option –locarnate) with the default 50%

cut-off for SVM-class probability to annotate the clusters. Evo-

fold was also run with the default parameters over the cluster

alignments and supplied with the corresponding hg38-100way

UCSC’s phylogenetic tree [57]. Clusters that were predicted by

Evofold to contain ≥1 conserved structure with >3 bp were

annotated as Evofold hits. R-scape was also applied with the

default parameters (i.e., G-test statistics –GTp); clusters with

≥2 significant covariations were annotated. Clusters are con-

strained to have a depth of≥50 sequences. Alignmentswith spu-

rious consensus structure or no conservationwere excluded, us-

ing a structure conservation index (SCI) filter of 1% [65]. Clusters

annotated by ≥1 of the 3methods are designated as “locally con-

served structure candidates.”
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6 GraphClust2: Annotation and discovery of structured RNAs with accessible integrative clustering

Clustering performance metric

The clustering was benchmarked similarly to our previous

work [66], such that the Rfam family to which each input RNA

belongs is considered as the truth reference class. The perfor-

mance is measured using the adjusted Rand index (ARI) [67]

clustering quality metric, which is defined as follows

Adjusted Rand Index =
Rand Index − E (Rand Index)

1 − E (Rand Index)
.

The Rand index [68] measures the fraction of the entry pairs

that are related in the same way in both the predicted cluster-

ing and the reference assignment. E[RandIndex] is the expected

Rand Index (for extended details please refer toMiladi et al. [66]).

The ARI is the corrected-for-chance variation of the Rand in-

dex with a maximum value of 1. A better agreement between

the predicted clustering and the reference assignment leads to

a higher ARI value.

Results and Discussion

Clustering performance evaluation

Rfam-cliques benchmark

We evaluated GraphClust2 using known RNA families from the

Rfamdatabase [47]. The Rfam sequenceswere obtained from the

Rfam-cliques benchmark introduced in our previous work [66].

The Rfam-cliques benchmark contains sets of RNA families at

different sequence identity levels and allows for benchmarking

a tool for the cases of low and high sequence identities (“Rfam-

cliques-low” and “Rfam-cliques-high”). Each variation contains

a collection of human members of the Rfam families together

with homologs in the other species. Because we wanted to eval-

uate the performance in a simulated scenario of genome-wide

screening, we selected the human paralogs from the bench-

marks and measured (using the ARI metric) how well Graph-

Clust1 and the new pipeline GraphClust2 correctly cluster mem-

bers of the families together.

In comparison to GraphClust1, GraphClust2 provides alter-

native approaches for the identification of the secondary struc-

tures. Using similar configurations as in GraphClust1 [19], i.e.,

RNAshapes for structure prediction and bit score for CM search

hits, the clustering performance of GraphClust2 is similar or bet-

ter owing to the integration of upgraded tools. However, the al-

ternative configuration of RNAfold for structure prediction and

E-value for CM search hits consequently improves the perfor-

mance (ARI from 0.641 to 0.715 for Rfam-cliques-high; further

details in Supplementary Table S1).

SHAPE-assisted clustering improves the performance

In the previous benchmark, the clustering relies on the free

energy models for secondary structure prediction. A predicted

structure sometimes deviates from the real functional structure

owing to the cellular context and folding dynamics. In this case,

the SP SHAPE data associated with the real functional struc-

ture are expected to improve the quality of structure prediction,

which in turn should improve the clustering. We wanted to in-

vestigate how an improvement in the structure prediction qual-

ity at the early clustering steps influences the final clustering

results. To draw a conclusion, however, extensive SHAPE data

would be needed for a set of labeled homologous ncRNAs, ide-

ally with different sequence identity and under similar exper-

imental settings. Currently, such collection of data, especially

over multiple organisms, is still unavailable. However, because

the SP is turning into a standard and common procedure, data

of such nature are expected to become available soon.

One solution to the mentioned data scarcity is provided in

the literature [49], by simulating the experimental generation of

a SHAPE profile from the real functional structure. Here, start-

ing from a set of manually curated reference structures, the idea

is to simulate SHAPE profiles that reflect the known reference

structures. We used the benchmark from ProbeAlign [48] (see

Materials and Methods for details). Fig. 2 shows the effect of in-

corporating simulated SHAPE data on clustering by guiding the

structure prediction. As can be seen, the incorporation of SHAPE

data has improved the clustering performance. Notably, an im-

provement can be achieved in fewer rounds of clustering itera-

tions.

GraphClust2 is scalable

To validate GraphClust2’s scalability and linearity claims, we

used a millions-sequence biological dataset. GraphClust2 is im-

plemented with comprehensive support for parallel computa-

tion using the Galaxy framework. The MinHash-based cluster-

ing step is the only step in which the entities are evaluated alto-

gether to identify the dense neighborhoods as clusters. Thanks

to the MinHash technique, this step has only a linear complex-

ity (see Materials and Methods and Supplementary Section S1).

To empirically validate this, we clustered a large metatranscrip-

tomic dataset of a marine sample from Pfreundt et al. [69]. Af-

ter merging the paired-end reads, the metatranscriptome con-

tained 3,594,198 sequences with an average length of 250 bp. To

filter highly similar sequences, we performed sequence-based

pre-clustering with CD-HIT set at a 90% similarity threshold.

This produced ∼913,000 sequences with a total of 195 million

bases. GraphClust2 identified several large clusters of sizes >100

in 1 round. Translation-complex–related RNAs (transfer RNA,

large subunit, and 5s ribosomal RNAs) were among the domi-

nating ncRNA classes, matching the expectation due to the high

expression levels of the families (see Supplementary Table S2

for further details). Clustering the entire 3.6 million sequences

took<1 day on the EuropeanGalaxy server. To check the runtime

growth over number of inputs, we measured the wall clock run-

time for sub-samples of various sizes on the European Galaxy

server. GraphClust2 robustly scaled with a linear trend over the

size of the input (Supplementary Fig. S1).

Clustering Arabidopsis ncRNAs with DMS-seq in vivo SP

data

As shown in the previous section, we expect SP information

to improve the clustering. Information about the structure for-

mations in vivo can be obtained from SP techniques by deter-

mining the nucleotide-resolution base reactivities, where po-

sitions with high reactivity indicate unbound bases. Recently,

high-throughput sequencing has enabled SP to be applied in a

genome-wide manner, thus providing SP reactivities of an en-

tire transcriptome [70]. In this way, a large amount of SP data can

be obtained. Despite the availability of genomic-wide SP data, its

application for transcriptome-wide structure analysis is promis-

ing [71] but has remained largely underutilized.

Enhanced ncRNA annotation with in vivo SP data

We thus evaluated how the task of clustering and annotation

of ncRNAs can benefit from such genome-wide probing exper-

iments. For this, we compared clusterings of A. thaliana ncR-
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Miladi et al. 7

A B

Figure 2 Clustering quality performance over Rfam-based ProbeAlign benchmark dataset and the associated simulated SHAPE data. For comparison, GraphClust2 and

GraphClust1 performances are also shown. Incorporating the simulated SHAPE data assists in the clustering performance. (A) ARI clustering quality metric for 1–3

rounds of iterative clustering. ARI of the clusterings did not improve noticeably after 3 rounds. (B) Similar to (A) but for uniformly sized families, such that precisely

10 sequences are randomly extracted per family.

NAs with and without considering the DMS-seq data by Ding

et al. [50] (see Materials and Methods). Owing to the relatively

high sequence similarity of the annotated paralogous ncRNAs

of A. thaliana, the ARI is high even when no SP data are consid-

ered (−DMS-seq mode ARI 0.88). Nonetheless, the quality met-

ric is slightly improved by incorporating the SP data (+DMS-seq

modeARI 0.91).We furthermanually inspected the quality of the

produced clusters. Fig. 3 shows the enhanced results for identi-

fying ncRNA classes by using GraphClust2 with in vivo probing

data. In the +DMS-seq mode (Fig. 3B), all detected clusters are

pure RNA classes, while the −DMS-seq mode (Fig. 3A) produces

mixed-up clusters for the Group II Introns family plus small nu-

cleolar RNA, microRNA, and U–small nuclear RNA classes. For

example, as seen in Fig. 3C, the SP data improve the structure

prediction by predicting a conserved stem for 2 of the Group II

Introns only in the +DMS-seq mode, which leads to 1 pure clus-

ter for the family.

Discovering locally conserved structure in long RNAs

RNA-sequencing experiments from biological conditions often

result in differentially expressed transcripts, which are studied

for functionality and regulatory features. A differential expres-

sion hints at putative regulatory effects. An orthogonal source

of information for the functional importance of a transcript is

phylogenetic conservation patterns. For long non-coding RNAs,

however, sequence conservation is usually low, imposing lim-

itations on the sequence-level conservation analysis. This fact

has been onemotivating reason for a collection of recent studies

to explore the conservation and functionality of lncRNAs at the

secondary structure level [72–74]. A majority of the studies have

been focusing on identifying widely spanned structures, postu-

lating the existence of a to-be-discovered single global struc-

ture. However, some of the reported conservations have been

challenged for lacking trustworthy base-pair covariations in the

alignments [30].

Looking for locally conserved secondary structures in lncR-

NAs is alluring for several reasons. First, with an increase in

the base pair span length the prediction quality decreases [31],

which implies that global structure prediction for long RNAs

tends to be inaccurate. Second, the structure of a transcribed

RNA structure is influenced by RNA-binding proteins in vivo, and

thus a predicted global structure likely deviates from the real

functional structure. Third, in many cases and similar to the

untranslated regions (UTRs) in mRNAs, only a locally conserved

structural motif is expected to suffice to perform a function, in-

dependent of the precise global structure.We thus revert to a fre-

quently used strategy in the RNA field, namely, to look for locally

conserved structural motifs. We wanted to evaluate whether we

can use GraphClust2 for this purpose.

It should be noted that distinguishing conserved structures

from background genomic sequence similarity using base-pair

conservation signals is a challenging task. Genome-wide screen-

ing studies over genomic alignments require adjusted thresh-

olds for statistical significance discovery and report up to 22% [4]

false discovery rates, which can be even higher [75]. Despite

this and owing to the persistent expansion of genomic data,

the depth and quality of genomic alignments are continually in-

creasing. Currently, there is a lack of off-the-shelf tools for com-

prehensively analyzing locally conserved structural elements of

a specific locus. Here based on GraphClust2, we propose a data

extraction and structure conservation detection methodology

(as detailed in the Materials and Methods) that can readily be

used for desired loci and genomic alignments to identify “can-

didates” with locally conserved structure potentials.

An advantage of this clustering approach over traditional

screening methods is its ability as an unsupervised learning

method, for not imposing explicit presumption on the depth

or number of predicted motifs. This also makes it possible to

find the locally conserved structures in the regions where a sub-

set of species do not have a conserved structure. Furthermore,

this approach does not require a precise co-location of the con-
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8 GraphClust2: Annotation and discovery of structured RNAs with accessible integrative clustering

Figure 3 Clustering ncRNAs from Arabidopsis thaliana with and without incorporating in vivo DMS-seq SP data [50]. (A) The predicted clusters without probing data

(−DMS-seq) are depicted and the reference family labels are superimposed. Clusters 9 and 12 contain mixed RNA classes. Here, the Group II introns RNA family is split

between clusters 6 and 12. (B) Similar to A, for +DMS-seq where experimental SP data have been used to guide the structure prediction of the generated graphs with

pseudo-energy terms. In +DMS-seq mode, only clusters with members from single RNA classes are produced. (C) We inspected the predicted structure in more detail.

The 2 transcripts of the Intron gpII family are shown that exhibit substantial structure deviations between their minimum free energy structures (−DMS-seq) and

the structures guided by the probing data (+DMS-seq). The structures are predicted using Vienna RNAfold and drawn with forna [76]. The green highlighted branches

correspond to the conserved reference structures from Rfam that are correctly predicted only when the DMS-seq reactivities are incorporated.

served elements within the transcript, in contrast to traditional

alignment-based screening approaches. A further advantage is

the availability of the solution in the Galaxy framework because

it provides a rich collection of assets for interactive data col-

lection and analysis of genomic data. We used the 100way ver-

tebrate alignments to extract the orthologous genomic regions

for each of the studied RNAs in human and other vertebrates.

Each of the orthologous sequences is split into windows, which

are then clustered by GraphClust2. The alignment of each clus-

ter has been further annotated with some of the best-practice

complementary methods in assessing covariation patterns and

structure conservation potentials, namely, RNAz, Evofold, and

R-scape (see Materials and Methods for details). In the following

section, some example studies are presented.

Locally conserved candidates with reliable alignments

are observable but uncommon

We investigated clustering of orthologous genomic regions of

FTL mRNA and 4 well-studied lncRNAs, using the approach

described before. The selected lncRNAs have been previously

reported for having loss-of-function phenotypes [77, 78]. In

Figs 4A–D and Supplementary Fig. S3 the locations of locally

conserved candidates are displayed. These locations are au-

tomatically generated by GraphClust2 from clusters with con-

served structures (“candidate motifs” track). The track is au-

tomatically annotated and filtered using the computed met-

rics of the Evofold, RNAz, and R-scape tools (see Materials and

Methods and Fig. 4B legend). For these studied lncRNAs, an
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Miladi et al. 9

A B

C

E

F

D

Figure 4 Locally conserved structured elements predicted in FTLmRNA and lncRNAs NEAT1, MALAT1, and HOTAIR. (A–D) Locations of the predicted clusters relative to

the transcript on the human genome. The clusters under themanually curated subset track, labeled as validated, have passed a qualitativemanual screening to exclude

unreliable structural alignments (see Results and Discussion). (E) Consensus secondary structure for some of the clusters with reliable sequence-structure alignments.

Secondary structures are visualized with R2R [32]; statistically significant covariation is computed by R-scape and manually overlaid on the R2R visualizations. The

alignments are visualized in Supplementary Figs S6–S11. (F) Comparison between the number of predicted candidate motifs of MALAT1 vs 10 times Multiperm’s

preservative shufflings of the same genomic alignment.

additional track (“manually curated subset”) is provided. The

track is the selection subset of the candidate motifs track that

are manually further screened and selected by stringent ex-

pert criteria. The intention was to identify confident conserved

elements that can be used, e.g., for mutational experiments.

The clusters were manually curated in a qualitative manner by

inspecting the alignments, their consensus structures as well

as the conservation metrics. Only the highly reliable structural

alignments that posed a good level of covariation and were not

deemed to be alignment artifacts were selected. The main fil-

tering out criteria were as follows: singleton compensatory mu-

tations, avoidable column shifts producing artificial mutations,

absence of any region with a basic level of sequence conserva-

tion, and similar frequencies of variations in both unpaired and

compensatory mutated paired regions. Below we describe the

observations from these lncRNAs’ conservation analyses.
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10 GraphClust2: Annotation and discovery of structured RNAs with accessible integrative clustering

FTL

The cis-acting iron response element (IRE) is a conserved struc-

tured element that is located on the 5′ UTR of FTL (ferritin light

chain) and several other genes. Mutations that disrupt the hair-

pin structure of IRE cause disease phenotypes by changing the

binding affinity of a regulatory iron response protein [79, 80]. As

a proof of concept, we applied GraphClust2 to discover structural

motifs in the homologous regions of the FTL mRNA. The IRE el-

ement was identified as 1 of the 3 clusters detected by Evofold

(Fig. 4A).

NEAT1

The NEAT1 analysis suggests very limited but also very reliable

structure conservation at the 3
′

end of the transcript that is con-

sensually detected by the 3 evaluated tools.

MALAT1

MALAT1 has a relatively higher level of sequence conservation

among the 4 studied lncRNAs. A higher number of clusters were

predicted with a couple of reliable candidates that lean towards

the 3
′

side of the transcript.

To examine howmany of the detectedmotifs are expected to

be false-positive predictions,we ran the pipeline on 10 shufflings

of the MALAT1 100way alignment. For the shuffled background,

we used Multiperm to preserve the gap structure, local conser-

vation structure patterns, and the relative dinucleotide frequen-

cies of the MALAT1 alignment [61]. On average 16.7 candidates

were reported for the shuffled genomic alignments, in compar-

ison to the 23 candidates reported for the genomic alignment

(Fig. 4F). In the predicted set of candidates from the clustering

of the shuffled background alignments, none was consensually

annotated by the 3 methods. For the applied alignment depths

and thresholds, Evofold had a considerably higher discovery rate

than R-scape and RNAz. In total out of 10 shuffles 167, 9, and 0

clusterswere predicted to have a conserved structure by Evofold,

R-scape, and RNAz, respectively.

HOTAIR

The predicted candidates for HOTAIR are all located on the in-

tronic regions of the precursor lncRNA. Clustering from the sec-

ond exon, through skipping the first exon and intron, did not

change this observation. A dense number of candidates can be

noticed on the first intron that is overlapping with the promoter

region of HOXC11 on the opposite strand. Most notably is the

candidate cluster HOTAIR-C29, which is highly enriched in G-U

wobble base pairs (Fig. 4E). In contrast to Watson-Crick GC and

AU base pairings, the GU reverse complement AC is not a canon-

ical base pair [81]. Therefore, this structure can only be formed

on the antisense RNA and not on HOXC11’s sense strand.

XIST

The XIST candidates are mainly located on the repeat regions

and are paralog-like (Supplementary Fig. S3). Manual evalua-

tion of the cluster structural alignments was inconclusive. In

the mixture of paralog-like and homolog-like sequences of the

cluster alignments, it was not possible to conclude whether the

structural variations are merely artifacts of sequence repetition

or compensatory mutations of hypothetical structure conserva-

tion.

Clustering RNA binding protein target sites

SLBP eCLIP

A well-characterized example of an RBP with specific struc-

tural preferences is SLBP (histone stem-loop–binding protein).

We clustered target sites of human SLBP using the publicly avail-

able eCLIP data [62]. The largest cluster with a defined consen-

sus structure bears statistically significant base-pair covaria-

tions. The structure matches the SLBP’s Rfam family “histone

3′ UTR stem-loop” (RF00032). Using the family CM to identify

SLBPs on the eCLIP data,wewere able to predict exactly the same

stem-loop structure with the same level of base-pair covaria-

tion (Fig. 5A). GraphClust2 and Rfam’s CM hits have >95% over-

lap. These correspondences demonstrate that GraphClust2 can

identify the consensus structure element from CLIP data with a

high sensitivity.

The stem-loop structure of the eCLIP data has a lower covari-

ation level than Rfam’s seed alignment (Fig 5A vs B). This is be-

cause the Rfam data are phylogenetically diverse (RF00032 seed:

28 species) while eCLIP data exclusively have a human origin

(eCLIP: K562 cell line). We checked how GraphClust2 would per-

form if the eCLIP data from diverse organisms were available. To

simulate eCLIP datawith high covariation level, wemixed up the

46 seed sequences of the RF00032 family with 2,954 shuffled se-

quences to obtain 3,000 sequences such that SLBP is convoluted

with 98.5% background. The sequences from the full RF00032 set

were shuffled to obtain a background of the same length and nu-

cleotide content distribution. As can be seen in Fig. 5B, Graph-

Clust2 successfully managed to cluster the family entries as 1

cluster. Here, the cluster has the same stem-loop in the con-

sensus secondary structure with the same covariation level as

Rfam’s reference structure.

Scalable clustering identifies novel CDE-like elements in Roquin-1

PAR-CLIP data

Roquin-1 is a proteinwith conserved double-stranded RNAbind-

ing domains that binds to a constitutive decay element (CDE)

in TNF-α 3′ UTR and several other mRNAs [82, 83]. Roquin-1

promotes mRNA decay and plays an essential role in the post-

transcriptional regulation of the immune system [84]. We clus-

tered the binding sites of the publicly available Roquin-1 PAR-

CLIP data [64] with GraphClust2. Clustering identified structured

elements in 3 dominant clusters with defined consensus struc-

tures. Fig. 5C shows the alignments and consensus structures of

the 3 clusters. The consensus structures are similar to the pre-

viously reported CDE and CDE-like elements [85].

It should be noted that the union of Roquin-1’s CDE-like

motifs have a lower enrichment score based on the PAR-CLIP

ranks, in comparison to the SLBPmotif based on the eCLIP ranks

(Figs 5D and E and Supplementary Fig. S4). For example, only 6

of the CDE-like motifs are within the top 100 PAR-CLIP binding

sites. Therefore, only the clustering of a broader set of binding

targets, with a permissive score threshold, allows the CDE-like

elements to be reliably identified. We hypothesize that 2 rea-

sons contribute to the observed distinction. First, eCLIP is an

improved protocol with a size-matched input to capture back-

ground RNAs of the CLIP protocol [62]. On the other hand, PAR-

CLIP is known to have relatively higher false-positive rates [86].

Second, the ROQ domain of Roquin-1 has 2 RNA binding sites, 1

that specifically recognizes CDE-like stem-loops and 1 that binds

to double-stranded RNAs [85, 87]. This would likely broaden the

Roquin-1 binding specificity beyond CDE-like stem-loops.
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Miladi et al. 11

A B

D

E

C

Figure 5 Structured RNA motifs identified by clustering SLBP and Roquin-1 public CLIP data with GraphClust2. (A) The consensus secondary structure of the predicted

human SLBP motif from eCLIP data versus the consensus structure of cmsearch hits from Rfam’s CM for histone 3′ UTR stem-loop family RF00032. (B) Top, The

consensus secondary structure of the predicted structure motif from clustering 3,000 sequences composed of RF00032’s 46 seed sequences and 2,056 background

shuffled full sequences as 98.5% background noise. (B) Bottom, Rfam’s reference structure for RF00032 seed alignment. (C) The consensus secondary structures and

alignments of the 3 clusters with defined consensus structures. The 3 motifs overlap and have varying loop sizes and uridine content. The structures are akin to the

previously validated constitutive decay element (CDE) in TNF-α that is a target of Roquin-1. (D, E) Gene set enrichment plot of SLBP and Roquin-1 motifs according

to the corresponding CLIP scores. SLBP eCLIP has a high enrichment of the stem-loop with strong density in the first 100 target sites. Roquin-1 PAR-CLIP data have a

lower enrichment score and low presence in the top 100 target sites. The difference in the enrichment is likely due to the specificity of Roquin-1 that has multiple RNA

binding domains and false-positive biases of the PAR-CLIP protocol. Scalable clustering assists in overcoming these biases to identify the CDE-like elements. Structures

are visualized by R-scape; the color for significant base-pair covariations matches the legend in Fig. 4E. Enrichments are plotted with the Limma R package [88].

BCOR 3′ UTR is a prominent conserved target of Roquin-1

We performed a follow-up conservation study over the iden-

tified CDE-like motifs from the clustering of Roquin-1 binding

sites (Fig. 6A). By investigating RNAalifold consensus structure

predictions for Multiz alignments of the top 10 binding sites of

the conserved candidates, the BCOR’s CDE-like motif was ob-

served to have a highly reliable consensus structure with sup-

porting levels of compensatory mutations. Interestingly the re-

ported CLIP binding site region contains 2 conserved stem-loops

. Downstream of this site, further binding sites with lower affini-

ties can be seen, where one site contains another CDE-like mo-

tif. So in total BCOR’s 3′ UTR contains 3 CDE-like motifs (Fig. 6B

and C). The shorter stem-loop, at the upstream binding site, has

a double-sided base-pair covariation and the longer stem-loop

contains bulges and compensatory 1-sided mutations (Fig. 6D

and E). BCOR has been shown to be a corepressor of BCL6, which

is a major sequence-specific transcription repressor. BCL6 ex-

pression is tightly regulated and induced by cytokine signal-

ing such as interleukins IL4, IL7, and 21 [89, 90]. Overall these

results propose BCOR to be a functionally important target of

Roquin-1 and assert the role of Roquin-1 in regulating follicular

helper T cell differentiation and immune homeostasis pathways

[83].

Conclusion

We have presented a method for structural clustering of RNA

sequences with a web-based interface within the Galaxy frame-

work. The linear-time alignment-free methodology of Graph-

Clust2, accompanied by cluster refinement and extension using
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12 GraphClust2: Annotation and discovery of structured RNAs with accessible integrative clustering

Figure 6 (A) The distribution of the Roquin-1 target sites bearing the CDE-like motifs on the 3′ UTRs of genes, according to the binding affinity scores. Top 10 highest

binding sites with a conserved CDE-like motif are labeled with the associated gene names. (B) Roquin-1 binds to a highly conserved double stem-loop element

on the 3′ UTR of BCOR (BCL6 CoRepressor) with very high affinity. Another CDE-like element with lower affinity downstream of the first element is also spotted.

CDS: coding sequence. (C) Conservation track of BCOR 3′ UTR end plus the location of the CDE-like motifs on the negative strand of the locus on the human X

chromosome. (D) R2R visualization for the RNAalifold consensus secondary structure of the conserved double stem-loop element from the vertebrateMultiz alignment.

(E) Genomic alignment of the double stem-loop for 20 selected species annotated with the consensus structure and the base-pair covariation information. Alignments

and compensatory mutations are visualized with R-chie package [91]. The alignment overview for all the available species as extracted from 100way Multiz is provided

in Supplementary Fig. S12.
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RNA comparative methods and SP data, were shown to improve

the detection of ncRNA families and structurally conserved ele-

ments. We have demonstrated on real-life and complex applica-

tion scenarios that GraphClust2 provides an accessible and scal-

able way to perform RNA structure analysis and discovery.

GraphClust2 provides an integrative solution,which can start

from raw high-throughput sequencing and genomic data and

ends with predicted motifs with extensive visualizations and

evaluation metrics. The users can benefit from the vast vari-

ety of the bioinformatics tools integrated by the Galaxy commu-

nity and extend these applications in various ways. Thus, it will

be for the first time possible to start from putative ncRNAs in

transcriptomic RNA-sequencing studies and immediately clus-

ter the identified transcripts for annotation purposes in a coher-

ent manner.

Availability of Source Code and Requirements
� Project name: GraphClust2
� Project repository: https://github.com/BackofenLab/GraphCl

ust-2
� Project home page: https://graphclust.usegalaxy.eu
� Galaxy tools repository: https://github.com/bgruening/galax

ytools/tree/master/tools/GraphClust
� Operating system(s): Unix (Platform independent with

Docker)
� GraphClust2 Docker image: https://hub.docker.com/r/backo

fenlab/docker-galaxy-graphclust
� License: GNU GPL-v3
� RRID:SCR 017286

Availability of Supporting Data and Materials

The data presented here that illustrate our work are available

from Zenodo [92], and all steps taken for data analysis are acces-

sible via a collection of Galaxy histories from the project home

page at the European Galaxy server (https://graphclust.usegala

xy.eu). Archival copies of the GitHub repositories are also avail-

able from the GigaScience GigaDB repository [93].

Additional Files

Supplementary information: Supplementary Methods and Re-

sults are available via the additional file associated with this ar-

ticle.

Supplementary Figure S1: Clustering scalibility and runtime

evaluation using the marine metatranscriptomic dataset.

Supplementary Figure S2: Characteristics of the clusters pre-

dicted from the long RNA conservation analysis.

Supplementary Figure S3: Locally conserved structured ele-

ments predicted in XIST lncRNA.

Supplementary Figure S4: Distribution of SLBP motifs over the

eCLIP scores.

Supplementary Figure S5: Color legend for Supplementary Fig-

ures S6-S11.

Supplementary Figures S6-11: Sequence-structural alignments

of the selected clusters from Figure 4. Supplementary Figure

S12: Overview of BCOR’s CDE-like alignment for all the available

species.

Supplementary Table S1: Clustering benchmark performance

using Rfam-cliques datasets.

Supplementary Table S2: Statistics of the clusters predicted from

the marine metatranscriptomic study.

Supplementary Table S3: Clustering runtimes of the long RNA

conservation and CLIP analyses.

Tabular file T1: The genomic coordinates, structure conservation

scores and statistics of the GraphClust2 candidates in the long

RNA conservation analysis.

Tabular file T2: Genomic coordinates, gene names and conserva-

tion information of the identified CDE-likemotifs from Roquin-1

CLIP data.
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