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Abstract

patterns and phenotype.

Background: Recent advancements in experimental biotechnology have produced large amounts of protein-
protein interaction (PPI) data. The topology of PPl networks is believed to have a strong link to their function.
Hence, the abundance of PPl data for many organisms stimulates the development of computational techniques
for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for
PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand
planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to
real ones. However, exact network comparison is computationally intractable and therefore several heuristics have
been used instead. Some of these heuristics are easily computable “network properties,” such as the degree
distribution, or the clustering coefficient. An important special case of network comparison is the network
alignment problem. Analogous to sequence alignment, this problem asks to find the “best” mapping between
regions in two networks. It is expected that network alignment might have as strong an impact on our
understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPl networks is
another example of an important network analysis problem that can uncover relationships between interaction

Results: We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant

extension of GraphCrunch which implements the most popular random network models and compares them with
the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner
algorithm ("GRAAL") for purely topological network alignment. GRAAL can align any pair of networks and exposes

large, dense, contiguous regions of topological and functional similarities far larger than any other existing tool.
Finally, GraphCruch 2 implements an algorithm for clustering nodes within a network based solely on their
topological similarities. Using GraphCrunch 2, we demonstrate that eukaryotic and viral PPl networks may belong
to different graph model families and show that topology-based clustering can reveal important functional
similarities between proteins within yeast and human PPI networks.

Conclusions: GraphCrunch 2 is a software tool that implements the latest research on biological network analysis.
It parallelizes computationally intensive tasks to fully utilize the potential of modern multi-core CPUs. It is open-
source and freely available for research use. It runs under the Windows and Linux platforms.

Background

Motivation

Many complex systems can be conveniently represented
using networks. The most prominent examples are: bio-
logical, social, informational, physical and transportation
networks. There are many different types of biological
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networks, but perhaps the most interesting of them are
protein-protein interaction (PPI) networks. Proteins
rarely function alone; instead they cooperate together to
form complex networks of protein-protein interactions,
which make our cells work. In PPI networks, nodes cor-
respond to proteins and edges correspond to physical or
functional interactions between them. The topology of
PPI networks can give us new insight into the function
of the individual proteins, as well as protein complexes
and the whole cellular machinery as one complex
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system [1-7]. PPI datasets come from experimental stu-
dies such as yeast-two-hybrid (Y2H), tandem affinity
purifications (TAP), high-throughput mass spectro-
metric protein complexes identification (HMS-PCI), and
others. Recent studies have published a vast amount of
PPI data for various organisms from viruses to human
[8-18]. The amount of interaction data of different types
and the number of organisms for which such data is
available are only going to increase in the foreseeable
future. Hence, the problems of biological network mod-
eling, comparison, alignment and clustering are becom-
ing of particular importance. To address these problems,
we introduce GraphCrunch 2 - a major upgrade with
added functionality to our first version of the Graph-
Crunch software for network analysis [19]. The following
features were added to GraphCrunch 2: 1) implementa-
tions of two biologically-motivated network models:
scale-free gene duplication and mutation [20] and
geometric gene duplication and mutation [21] models;
2) implementation of the GRAph ALigner (GRAAL) algo-
rithm for topological network alignment [22]; 3) imple-
mentation of a topology-based algorithm for clustering
nodes in the network [6]; 4) massive computational
parallelization and results reuse functionality for added
computational efficiency that enables analyses of large
networks data sets; and 5) an easy-to-use graphical user
interface for Windows and Linux platforms.

Previous tools for network analysis
Modeling, comparison, alignment and node clustering in
complex networks are important problems across many
domains and therefore several software tools addressing
these problems have been introduced. In the biological
network domain, some of the most commonly used
ones are: Cytoscape [23], Visant [24] TopNet [25] with
its successor tYNA [26], MAVisto [27], FANMOD [28],
Pajek [29], Mfinder [30] with its visualization interface
mDraw and the initial version of GraphCrunch [19].
Since exact network comparison is computationally
intractable due to the NP-completeness of the underly-
ing subgraph isomorphism problem, it is usually
addressed by comparing various easily-computed net-
work properties including degree distributions, cluster-
ing coefficients, and average pathlengths. tYNA [26] and
Pajek [29] can be used to compute and compare these
network properties, whereas Mfinder [30], MAVisto [27]
and FANMOD [28] do not offer such functionality and
are used for motif detection in the networks. Cytoscape,
GraphCrunch [19] and now its successor GraphCrunch
2 are the only software tools that implement, in addition
to basic network properties (e.g. degrees, clustering coef-
ficients, pathlengths), highly constraining graphlet-based
heuristics for network comparison (see Implementation
section for details) [4,31]. Cytoscape does it via
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additional plugins that a user needs to install. In terms
of network models, GraphCrunch 2 implements seven
of the most commonly used random network models,
whereas Cytoscape, the original version of Graph-
Crunch, Mfinder, FANMOD, Pajek and MAVisto imple-
ment 6, 5, 3, 3, 2 and 1 models, respectively, and other
software tools do not support model generation at all.

The network alignment problem has been addressed
by several local [32-35] and global [22,36-38] network
alignment algorithms. Local network alignment algo-
rithms aim to find small regions of structural similarities
in two networks, whereas global network alignment
algorithms align all nodes in the smaller network to
nodes in the larger network. Most of these algorithms
have been designed to use sequence similarity between
nodes (e.g. proteins) in two networks, which makes them
applicable only to networks for which such information is
available, i.e., to biological networks. GRAAL, H-GRAAL,
and IsoRank are the only algorithms for global network
alignment that can align a pair of networks based solely
on their topologies. In our previous work, we have demon-
strated that GRAAL and H-GRAAL substantially outper-
form the IsoRank algorithm with respect to the number of
aligned interactions [22,38]. Since GRAAL and H-GRAAL
produce alignments of approximately the same quality
[38] while GRAAL runs significantly faster, GraphCrunch
2 contains an implementation only of the GRAAL
algorithm.

Our contribution

GraphCrunch 2 is the only software that simultaneously
implements methods for network modeling, comparison,
alignment and topological node clustering. Moreover, it
implements more random network models than any
other modeling software. Also, it is the only software
tool that implements all of the following: (i) pairwise
network comparison using advanced graphlet-based
heuristics; (ii) the GRAAL algorithm for network align-
ment, and (iil) signature similarity-based clustering (see
Implementation section for details).

We demonstrate the utility of GraphCrunch 2 by per-
forming two case studies. First, we use its model genera-
tion and network comparison functionality to show that
eukaryotic and viral PPI networks may belong to differ-
ent network model families. Second, we use its topologi-
cal node clustering functionality to demonstrate a
strong link between topology and function in the yeast
and human PPI networks. GRAAL, its application, and
comparison with other methods is found in [22].

Implementation

Models

Finding well-fitting network models for biological net-
works is an important problem in systems biology, since
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it can improve our understanding of biological phenom-
ena [21], provide essential ingredients for statistical tests
such as network motif identification [2], and even
empower practical applications like the de-noising of
PPI network [39]. The network modeling problem is
formulated as follows: given a data network with »
nodes and m edges, define a random graph family such
that if we sample a graph with # nodes and m edges
from this family (i.e. if we generate a model instance), it
will be structurally similar to our data network. We dis-
cuss structural similarities between graphs in the “Net-
work Comparison” section. GraphCrunch 2 implements
the following network models: Erdés-Rényi random
graphs (ER) [40], Erd6s-Rényi random graphs with the
same degree distribution as the data (ER-DD), scale-free
Barabdsi-Albert preferential attachment models (SF) [1],
geometric random graphs (GEO) [4,41], stickiness-index
based models (STICKY) [42], scale-free gene duplication
models (SF-GD) [20], and geometric gene duplication
models (GEO-GD) [21].

The model network generators are implemented as
follows. Erdés-Rényi random graphs are generated by
using the LEDA random graph generator [43]. ER-DD
graphs are generated by using the “stubs method” [44]:
the number of “stubs” (to be filled by edges) is assigned
to each node in the model network according to the
degree distribution of the real-world network being
modeled; edges are created between pairs of nodes
picked at random; after an edge is created, the number
of “stubs” left available at the corresponding “end-
nodes” of the edge is decreased by one. Scale-free (SF)
networks are generated by using the Barabdsi-Albert
preferential attachment model [1]. Geometric random
graphs are defined as follows: nodes correspond to uni-
formly randomly distributed points in a metric space
and edges are created between pairs of nodes if the cor-
responding points are close enough in the metric space
according to some distance norm [4,19]. In our imple-
mentation, we use boxes in Euclidean metric space,
where dimensionality is a user-defined parameter. The
STICKY model is based on stickiness indices, numbers
that summarize node connectivities and thus also the
complexities of binding domains of proteins in protein-
protein interaction (PPI) networks [42]. The SF-GD and
GEO-GD models are implemented by simulating gene
duplication and mutation events as described in [20]
and [21], respectively.

Network Comparisons

GraphCrunch 2 uses several methods to compare the
structures of two networks including: average clustering
coefficients, average pathlengths, diameters, degree
distributions, clustering and eccentricity spectra, [44] as
well as the more constraining graphlet-based heuristics
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[4,31]. We provide the definitions of these concepts
below.

GraphCrunch 2 can calculate all the following proper-
ties of a graph. The degree deg(u) of a node u is the
number of neighbors it has in the network. The degree
distribution of the network, P(k), describes the probabil-
ity that a node has degree k. The clustering coefficient
of node u is defined as c(u) = 2E,/(deg(u)(deg(u) - 1)),
where E, is the number of edges between neighbors
of u. For nodes with deg(u) < 1, c(u) is defined to be 0
[44]. The eccentricity of node u, eccen(u), is the maxi-
mum shortest path distance from node u to some other
node in the network. The average pathlength of a net-
work is the average shortest path length across all pairs
of nodes in the network. The distributions of the clus-
tering coefficients and eccentricities of all nodes of
degree k in a network are called the clustering and
eccentricity spectra, respectively. In addition, it com-
putes Pearson and Spearman correlation coefficients
between the degree distributions, and clustering and
eccentricity spectra of two networks [45]. If two distri-
butions do not have the same length, GraphCrunch 2
disregards nodes with the smallest degrees from the
larger distribution.

Recently, more constraining, graphlet-based heuristics
have been introduced for network comparison [4,6,31].
Graphlets are small connected induced non-isomorphic
subgraphs of a network [4]. By counting graphlets in the
networks it is possible to quantify local topological simi-
larities between networks or individual nodes. Hence,
relative Graphlet Frequency distance (RGF-distance) is a
measure that compares the frequencies of appearance of
all 2 to 5 node graphlets in two networks [4]. Since
there are 30 possible graphlets on up to 5 nodes,
RGF-distance encompasses 30 similarity constraints by
examining the fit of 30 graphlet frequencies between two
networks. The smaller the RGF-distance, the more simi-
lar the two networks are [4]. From a topological point of
view, it is relevant to distinguish between automorphism
orbits of each graphlet. For example, in a 3-node path,
the “end-nodes” are identical from the topological point
of view (i.e., can be mapped to each other by an auto-
morphism, an isomorphism of a graph with itself-see [31]
for details), whereas the “middle node” is different; there-
fore, a 3-node path has two different automorphism
orbits. There are 73 automorphism orbits for the 30
graphlets on 2 to 5 nodes. The Graphlet degree vector (or
signature) of node v is a 73-component vector, such that
its i coordinate represents number of times this node is
touched by an automorphism orbit i. The signature of a
node is a highly constraining measure of local topology
in the node’s vicinity and comparing the signatures of
two nodes is a highly constraining measure of local topo-
logical similarity between them [6,31]. The Graphlet
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Degree Distribution agreement (GDD-agreement) is a
similarity measure between topologies of two networks
based on graphlet degree vector distributions (see [31]
for details). That is, it is used to compare the structural
similarities between two networks. It is a number
between 0 and 1 meaning that two networks are similar
if they have high GDD-agreement.

Network Alignment
Sequence comparison and alignment has had an enor-
mous impact on our understanding of evolution, biology
and disease. Comparison and alignment of biological
networks will probably have a similar impact and hence
network alignment is a foremost problem in systems
biology [46]. Existing network alignments use informa-
tion external to the networks, such as sequence. Our
algorithm, GRAAL [22], uses purely topological infor-
mation based on graphlets in order to perform network
alignment. Since we use only topological information,
GRAAL can be applied to any two networks, not just
biological ones. We have applied GRAAL to biological
networks to produce by far the most complete topologi-
cal alignments of biological networks to date [22]. In
that paper we demonstrated that both species phylogeny
(i.e. phylogenetic trees similar to ones produced by
sequence) and detailed biological function of individual
proteins can be extracted from our alignments. Topol-
ogy-based alignments can provide a completely new,
independent source of phylogenetic information.
Furthermore, we aligned the protein-protein interaction
networks of two very different species-yeast and human-
and found that even these two distant species share a
surprising amount of network topology, and that aligned
protein pairs share a significant amount of biological
similarity. This provides strong evidence for broad simi-
larities in internal cellular wiring across all life on Earth.
It has been shown that pairwise network alignment
algorithms, including our algorithm called GRAAL that
is implemented in GraphCrunch 2 [22], can be used to
successfully address the following important problems:

1. Finding conserved modules in PPI networks of
different species [22,36,38,46]

2. Identifying functional orthologs in PPI networks
of different species [22,36,38]

3. Reconstructing phylogenetic relationships among
a group of species [22,38]

For these reasons, we have added an easy-to-use inter-
face to GRAAL [22] in GraphCrunch 2. Given two net-
works, GRAAL finds an “embedding” of the smaller
network into the larger one such that every node in the
smaller network is aligned to exactly one node in the
larger one. The goal is to expose as much topological
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similarity between the networks as is possible. GRAAL
is a seed-and-extend algorithm that greedily aligns
nodes based on their signature similarities while traver-
sing both networks simultaneously in a breadth- first
manner. In [22] it was shown that GRAAL produces
topological alignments that expose regions of functional
similarity that are far larger, denser, and superior in
many ways to other available methods. Note however,
that GRAAL should not be used for aligning noisy bio-
logical networks, since it uses topology only and hence
it is not be expected to align such data correctly.
Instead, it should be used to align as clean and complete
biological networks as possible, e.g. high-confidence
parts of PPI networks, metabolic networks of closely
related species, or protein structure networks.

Since GRAAL is based solely on network topology, it
is applicable to all types of networks. However, such
generality comes with a price GRAAL does not utilize
any additional information which might be available
about nodes in the networks (e.g., sequence similarity,
structural similarity, etc.). Even though it may seem easy
to add such information to the GRAAL algorithm [22],
finding an elegant and scientifically sound way of doing
it is a subject of future research.

Clustering

It is has been shown that similar interaction patterns
imply functional similarities between proteins [6,47,48].
Hence, one way to detect functionally similar proteins
in a network is to cluster its nodes based on their topo-
logical similarities. Also, such clustering might provide
insights into how proteins perform their functions by
interacting with each other. GraphCrunch 2 contains an
easy-to-use implementation of the k-medoids algorithm
for clustering nodes in the network with a signature-
based distance matrix [47]. The algorithm works as
follows. It randomly initializes k cluster centers and
then assigns the remaining nodes in the network to the
clusters represented by nearest centers. Then cluster
centers are recomputed and the process is repeated
until convergence. The only difference between
k-medoids and the more conventional k-means algorithm
[45] is that the latter uses means of points in the cluster
to represent the new cluster center, while the former
requires all cluster centers to be the existing data points
(nodes from the network). This minor difference has an
important implication: in the case of k-medoids, a net-
work’s nodes do not have to be represented as points in
some metric space. All we need to have in order to apply
the k-medoids algorithm is an all-to-all matrix of dis-
tances between nodes. GraphCrunch 2 can load any
user-provided distance matrix, or it can automatically
compute all-to-all signature similarities between nodes in
the network and use as the distance between any two
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nodes u and v, D(u, v) = 1 - S(u, v), where S(u, v) is the
signature similarity between « and v.

Among signature similarity-based methods that
produce non-overlapping clusters (hierarchical cluster-
ing, k-medoids, and signature threshold-based cluster-
ing), k-medoids has been shown to produce the best
results [47]. Therefore, we chose this algorithm as our
default implementation. In addition, in our “Case study
2” section below we use the human PPI network to
demonstrate that our clustering method outperforms
the Markov Cluster Algorithm (MCL) [49,50].

Finally, GraphCrunch 2 allows several clustering sce-
narios. If the user wishes to use a signature similarities
matrix with any other clustering algorithm, Graph-
Crunch 2 can compute and save such a matrix into a
file for future usage with other clustering software. In
addition, such similarity matrix can be constructed for a
pair of different networks, if the user wants to analyze
topological similarities across different networks.

Development

We developed GraphCrunch 2 in C++ using the QT fra-
mework 4.6 to allow the same user experience and high
performance across popular Windows and Linux distri-
butions [51]. Additionally, GraphCrunch 2 uses the free
edition of LEDA 6.2 [43] and Qwt 5.2 libraries [52]. The
LEDA library is used for standardized handling of net-
work input and basic computational analysis, while the
Qwt library provides plotting capabilities.

We tested GraphCrunch 2 under Microsoft Windows
(XP, Vista, Windows 7) and Linux (Ubuntu 9.10 and
Arch Linux) operating systems. GraphCrunch 2 can be
compiled (and we provide the binaries on the website)
for 32- and 64-bit platforms.

User Interface

We designed GraphCrunch 2 with two main goals in
mind: 1) to integrate and simplify the most important
tasks of biological network analyses and 2) to provide an
intuitive and easy to use graphical user interface for
people whose primary area of expertise is not computer
science, enabling them to run computationally expensive
analyses on their laptops.

To achieve the second goal we created a simple, user-
friendly graphical user interface (GUI) depicted in
Figure 1. Also, we have taken full advantage of the intui-
tive drag-and-drop functionality to simplify many com-
mon tasks. Finally, our implementation follows the
Model/View/Controller architecture to separate the GUI
from the application logic and, therefore, make Graph-
Crunch 2 easily expandable.

Input and output

GraphCrunch 2 supports two input formats for repre-
senting networks: the LEDA graph format (.gw) [43] and
the “edge list” format (.txt and .edgeLst). The edge list
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format is simply the graph adjacency list, i.e., the list of
node pairs (edges of the network) separated by tabs or
spaces, with one edge per line. GraphCrunch 2 automa-
tically converts from edge list to LEDA graph format.
The current implementation of GraphCrunch 2 deals
with undirected, simple (i.e., no loops or multiple
edges), unweighted graphs. Thus, for either of the above
two formats, GraphCrunch 2 automatically removes all
self-loops, multiple edges and edge directions.

The summarized output statistics of each analysis
completed by GraphCrunch 2 can be saved in either of
the following two formats: comma-separated format
(.csv) or tab-separated format (.tsv). Additionally, the
user can copy/paste the resulting tables into a separate
application for further analysis. If the user clicks on the
“Save results” button in the Main Menu, GraphCrunch
2 will save the results from the currently active tab.
Also, GraphCrunch 2 has a basic plotting functionality,
being able to plot the degree distributions of the data
networks, GDD-agreement, RGF-distance and other
statistics of the data versus models or pairwise data ana-
lyses. Furthermore, the plotting functionality allows the
user to select subsets of the results to be plotted, allow-
ing the user to focus on results that are of interest. Our
plots can be exported in .png format, or as a table; the
latter can be used by other programs for producing
plots in other formats, if desired.

Parallelization

GraphCrunch 2 automatically parallelizes many complex
tasks by splitting them into smaller independent tasks
that can be run in parallel. GraphCrunch 2 automati-
cally determines the number of logical processors/cores
available and runs as many basic tasks as is practical.
More specifically, complex tasks (i.e. finding the best fit-
ting model for the data, network comparison and align-
ment, clustering) are split into the following 8 basic
tasks: model generation, counting graphlets, computing
RGF-distance, computing GDD-agreement, GRAAL
execution, computing signature similarities, k-medoids
clustering and comparing basic network properties. It is
important to note that there might be multiple depen-
dencies between tasks. For example, before computing
GDD-agreement between two networks, GraphCrunch 2
must finish counting graphlets in both networks. Since
all such dependencies can be predetermined at runtime,
GraphCrunch 2 automatically calculates dependencies
between tasks and schedules them for parallel execution
without any intervention from the user.

For example, if the user has 3 data networks and
wants to determine which model best fits the data by
comparing the data networks to 10 instances of each
model, GraphCrunch 2 will split the computations into
the following basic tasks: model generation (1 task for
each data network; for each model type, 7 models are
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Figure 1 GraphCrunch 2 user-interface. GraphCrunch 2 user-interface screenshot. Using the main menu, the user can load and delete
networks, and save the results of the analysis. The “Networks" panel on the left contains a list of networks currently loaded into GraphCrunch 2.
The right hand side of the user interface is a tab-based control that contains several tabs corresponding to different features implemented in
GraphCrunch 2. The “Network Properties” tab is used to compute the basic properties of the data, such as the average pathlength and the
average clustering coefficient, and display the degree distribution of the data. The “Pairwise Data Analysis” tab is used to perform pairwise
comparison of the data networks. The "GRAAL" tab is used to align any two networks using the GRAAL algorithm. The “Node Clustering” tab is
used to compute all-to-all signature similarities between nodes in any pair of networks and to topologically cluster nodes in a network. the
“Results plot” tab is used for plotting the results. the “Task Manager” tab displays the list of all generated basic tasks and their current status.

supported, and for each model network instance; hence
3 x 7 x 10 = 210 tasks), counting graphlets (separate
tasks for each data network and generated model net-
work 3 + 3 x 7 x 10 = 213 tasks), computing GDD-
agreement, RGF-distance and basic properties for each
pair of data-model networks (3 x 3 x 7 x 10 = 630
tasks). Hence, in total such analysis is split into 1,053
basic tasks; however at any given moment in time,
GraphCrunch 2 runs only as many tasks as there are
CPU cores available given that all their dependencies
are satisfied.

GraphCrunch automatically saves the results of each
basic task for possible re-use in subsequent analyses (if
applicable). The user can interrupt and then resume any
analyses from practically any point without losing or
recomputing any results.

GraphCrunch 2 performance
The following tests use a ThinkPad with an Intel Core
i3 CPU (4 cores), 4Gb of RAM and Windows 7.

1. Comparing 5 viral PPI networks [18] against all
models (30 instances per model): about 4 hours.

2. Aligning the yeast (16, 127 interactions amongst
2,390 proteins) [16] and human (41,456 interactions
amongst 9, 141 proteins) [53] PPI networks using
GRAAL: about 3 hours. (See [22] for a discussion of
the biological significance of this alignment.)

3. Aligning any pair of the viral PPI networks listed
in [18] takes several seconds. Performing all-to-all
pairwise data comparison (i.e. computing and com-
paring all the parameters for all pairs of networks)
of these networks also takes several seconds.

4. Clustering nodes in the high-confidence yeast PPI
network (9, 074 interactions amongst 1,622 proteins)
[16] takes about 2 hours with the most of the time
being spent on counting graphlets. Once counting of
the graphlets is done, GraphCrunch 2 can re-use
these results and cluster the nodes in this network
in about 2 minutes for any k which we analyzed (we
varied k from 5 to 50).
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As mentioned above, the most computationally inten-
sive basic task in GraphCrunch 2 is counting of graph-
lets [4,19]. The time complexity of counting of graphlets
is O(|V|®). However, as it has been shown before
[19,54], the running time of graphlets count depends
both on the size of the network and on its density, with
sparser networks being processed much faster than the
denser ones. Since PPI networks are known to be sparse,
and since GraphCrunch 2 has parallel computing cap-
abilities, it has competitive performance for processing
the currently available PPI networks.

Results and Discussion

Case study 1: Modeling viral PPl networks

We analyze viral PPI networks of: varicella-zoster virus
(VZV), Kaposi’s sarcoma-associated herpesvirus (KSHV),
herpes simplex virus 1 (HSV-1), Epstein-Barr virus (EBV)
and murine cytomegalovirus (mCMV) [18]. Fossum et al.
noticed that PPI networks of these viruses differ from
PPI networks of eukaryotic organisms (including yeast,
fruit fly, worm and human). Among the reported differ-
ences were: different degree distributions, smaller cluster-
ing coefficients and higher attack tolerance and
robustness in the sense of smaller loss of connectivity in
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response to random node deletions [18]. Hence, it is nat-
ural to ask if viral and eukaryotic PPI networks belong
to the same network model. We use GraphCrunch 2 to
demonstrate that these viral PPI networks may belong to
a different network family than do PPI networks of the
above mentioned eukaryotic organisms. This is the first
time that this has been demonstrated. Using Graph-
Crunch 2, we compare the five viral PPI networks with
30 random instances of each of the following network
models that are of the size of the data networks: ER [40],
ER-DD, SF [1], GEO [4,41], STICKY [42], SE-GD [20],
and GEO-GD [21] (see Models section for details).
Figure 2 and 3 present GDD-agreement and RGF-
distance between the viral PPI networks and the corre-
sponding model networks. For clarity, in these figures
we present GEO-GD probability cutoff model only for
p =0.5,0.3 and 0.7 and SF-GD model only for g = 0.5
and 0.2. As it follows from Figure 2 and 3, according to
both GDD-agreement and RGF-distance, the best-fitting
model for viral PPI networks is the stickiness-index
based model (STICKY) [42].

This result is interesting because we have previously
demonstrated that the best-fitting model (with respect
to GDD-agreement and RGF-distance) for high-quality
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PPI networks of eukaryotic organisms is the geometric
gene duplication model (GEO-GD) [21]. Hence, the dif-
ferences in simple network properties between eukaryo-
tic and viral interactomes noticed by Fossum ez al. [18]
may be attributable to their belonging to different net-
work models.

Case study 2: Topological clustering of nodes in the
human PPI network

Many studies have shown that there is a link between
PPI network topology and biological function [2,6,22,
36,38,50]. It has been demonstrated that signature
similarity-based clustering produces biologically mean-
ingful clusters [6,47]. In particular, it can be used for
protein function prediction [6] and cancer gene identi-
fication [47].

The intuition behind signature similarity-based clus-
tering is as follows. In order to perform their functions,
proteins interact with each other and, therefore, topolo-
gically similar interaction patterns should result in func-
tional similarities between proteins. Since signature
similarity is a very powerful measure of topological simi-
larity between nodes in a network [6], we use signature-
based clustering implemented in GraphCrunch 2 to

check if topological similarities in nodes’ neighborhoods
indeed result in biological similarities.

We take the human PPI network published by Radivo-
jac et al. [53] (which consists of 41, 456 interactions
amongst 9,141 proteins) and cluster its nodes using
GraphCrunch 2 into k = 10, 20, 30, 40, 50, 60, 70, 80,
90, and 100 clusters (the clusters are available from the
GraphCrunch 2 website). We use the Gene Ontology
(GO) database to see if our clusters contain functionally
similar proteins [55]. We perform our analyses consider-
ing only “biological process” GO terms. Hence, we
exclude from our analysis GO terms corresponding to
“molecular function” and “cellular component.” We do
so because “cellular component” GO terms might be
too general in this context and “molecular function”
terms reflect proteins’ chemical properties rather than
their biological functions. Hence, for each k, we analyze
GO term enrichment of each cluster [55].

To analyze the statistical significance of GO term
enrichments of our clusters we use the GO Terms Fin-
der (version 0.86) software package [56]. This software
tool examines a list of proteins to determine if there is a
set of GO terms, or parents of those GO terms (since
the GO ontology is organized as a tree), that is shared
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by a statistically significant fraction of proteins in the
list. Hence, for each k we run GO Term Finder on each
of the k clusters to determine which GO terms are
shared by a statistically significant fraction of proteins in
the cluster. The GO Terms Finder calculates p-values
based on the model of sampling without replacements
using the hypergeometric distribution. Therefore, in
order to obtain valid p-values, we use as the background
set not the set of all yeast proteins, but only those pro-
teins which are present in the human PPI network that
we analyze [53]. Also, GO Terms Finder performs Bon-
ferroni adjustment for its p-values and below we report
only Bonferroni-adjusted p-values; for details see [56].
We downloaded the GO annotation data for this case
study on May 1, 2010 from the Gene Ontology website
[55]. In our experiments, we used 0.01 as the statistical
significance cut-off for our p-values.

The results of this analysis are presented in Table 1.
Below we elaborate on several examples from Table 1.
For k = 10, there are 9 clusters that are statistically sig-
nificantly enriched with GO terms. In total, 693 “biolo-
gical process” GO terms are shared by a statistically
significant fraction of proteins in at least one of these
clusters. For example, there is a cluster in which 158
out of 283 proteins are responsible for positive regula-
tion of cellular process (GO:0048522), with the p-value
of 5 x 10!, In the same cluster, 149 proteins are in a
signaling pathway (G0O:0023033), with the p-value of 2.5
x 107, In total, this cluster is statistically significantly
enriched with 377 GO terms (some of which are

Table 1 Clustering nodes in the human PPI network

k # Significant # Significant Best # Best
Clusters Terms Enrichment Clusters
10 9 693 92.58% 1
20 14 694 95.16% 1
30 17 777 97.87% 1
40 24 814 94.08% 1
50 22 855 94.08% 1
60 24 860 97.01% 1
70 28 852 93.92% 1
80 40 892 94.11% 1
90 38 862 100% 1
100 44 867 98% 1
115 49 873 98% 1

k-medoids clusters statistics for the human PPI network [53]. The first column
corresponds to the number of clusters (k) used in the k-medoids algorithm.
The column labeled “# Significant Clusters” contains the number of clusters
for which at least one “biological process” GO term is shared by a statistically
significant fraction of proteins in that cluster. The column “# Significant
Terms” contains the number of “biological process” GO terms that are shared
by a statistically significant fraction of proteins in at least one cluster. The
column “Best Enrichment” contains the highest percentage of proteins in
some cluster that have the same “biological process” GO term. The column “#
Best Clusters” contains the number of clusters corresponding to the best
enrichment.
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“parent” terms of the others). In another cluster, 16 out
of 183 proteins are responsible for negative regulation
of ubiquitin-protein ligase activity during mitotic cell
cycle (GO:0051436), with the p-value of 1.7 x 10°
because only 61 proteins are annotated with this GO
terms in the PPI network. In total, this cluster is
enriched with 39 different GO terms.

For k = 100, there are 44 clusters statistically signifi-
cantly enriched with GO terms. For example, there is
cluster of 46 proteins that contains 5 proteins responsi-
ble for blood coagulation (GO:0030193) and wound
healing, with the p-value of 8.5 x 10", Another cluster
of 34 proteins contains 5 (out of 11 in the network) pro-
teins responsible for drug metabolic process
(GO:0017144), with the p-value of 7.9 x 10%; 3 of these
5 proteins (out of 5 in the network) are also responsible
for exogenous drug catabolic process (GO:0042738),
with the p-value of 1.2 x 10, In another cluster of 35
proteins there are 6 proteins (out of 33 in the network)
that are responsible for tRNA processing (GO:0008033),
with the p-value of 8.4 x 1077, There is a cluster in
which 8 out of 32 proteins are responsible for negative
(GO:0051436) and positive (GO:0051437) regulation of
ubiquitin-protein ligase activity during mitotic cell cycle
with p-values lower than 2.1 x 108 In general, there are
867 GO terms which are shared by a statistically signifi-
cant fraction of proteins in at least one of these clusters.

To further explore the biological significance of our
clusters, for each k, we examine each cluster in the
human network with respect to the enrichment with
proteins corresponding to: aging genes http://genomics.
senescence.info/, HIV-1 interacting genes http://www.
ncbi.nlm.nih.gov/RefSeq/HIVInteractions/, pathogen-
interacting genes http://staff.vbi.vt.edu/dyermd/publica-
tions/dyer2008a.html, and cancer-related genes [6]. To
determine the significance of enrichments, we compute
p-values using the hyper-geometric distribution and use
the p-value cutoff of 0.01. For k = 100, there are 4 clus-
ters statistically significantly enriched with aging genes,
13 clusters statistically significantly enriched with HIV-1
interacting genes, 10 clusters statistically significantly
enriched with pathogen-interacting genes, and 8 clusters
statistically significantly enriched with cancer-related
genes. Interestingly, there is one particular cluster of
183 proteins that is statistically significantly enriched
with genes from all 4 categories. In particular, 39.34% of
the proteins in that cluster correspond to aging genes,
63.93% of the proteins correspond to HIV-1 interacting
genes, 33.88% of the proteins correspond to pathogen
interacting genes, and 36.06% of the proteins correspond
to cancer related genes (the maximum p-value is 1.34 x
10™'"). According to GO Terms Finder, this particular
cluster is statistically significantly enriched with 366 dif-
ferent GO terms (some of them are parents of others),
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among which are: interspecies interaction between
organisms (GO:0044419, p-value 2.43 x 10'%), regulation
of signaling pathway (GO:0035466, p-value 2.14 10™'®),
regulation of cell death (GO:G0O:0010941, p-value 1.42 x
1072?) and 9 other death-related terms (GO:0043067,
G0O:0060548, GO:0043069, GO:0043068, GO:0010942,
G0:0012502, GO:0012501, GO:0008219, GO:0016265).

To confirm that our clustering does in fact capture a
meaningful biological signal, we perform random clus-
tering of the same human PPI networks into the same
numbers of clusters as described above. Then, we ana-
lyzed these random clusters with Go Term Finder soft-
ware [56]. Not surprisingly, there is no biological signal
in these random clusters. For k = 50, 60, 70, and 90 GO
Term Finder reported statistically significant enrichment
with GO terms for 2, 1, 3, and 1 clusters, respectively,
with the maximum enrichment with 4 GO terms (com-
pared to the minimum enrichment with 693 terms,
when we used GraphCrunch 2). Given the amount of
generated clusters (550) and the amount of GO terms in
the database, this can be expected at random. Therefore,
the amount of “false” biological signal in our clusters is
minimal.

As with many other clustering algorithms, the
k-medoids algorithm implemented in GraphCrunch 2
requires the number of clusters to be predefined in
advance by the user. Determining the right number of
clusters is an important research question, and its value
depends on the particular situation. We suggest trying
several k’s and examining all configurations for biologi-
cal meaningfulness using, for example, GO Term Finder
(as we did above) [56].

The Markov Cluster Algorithm (MCL) is another pop-
ular graph clustering algorithm which can cluster graphs
based solely on their topology [49,50]. Unlike k-medoids,
it does not require the number of clusters to be given in
advance; however, it requires an inflation (or granular-
ity) parameter [49]. We ran MCL (the latest version
(20 Jul 2010 mcl 10-201) from http://micans.org/mcl/)
on the same human PPI network using the inflation
parameter / from 1.2 to 4, as recommended. For I = 1.2,
the algorithm produced 115 clusters while for other
values of the parameter (> 1.5) it produced more than
2,700 clusters (for clustering 9,141 nodes in the net-
work) many of which contained only 1 or 2 nodes. We
used GraphCrunch 2 to produce 115 clusters and com-
pared their GO term enrichment with that of the clus-
ters produced with MCL (for I = 1.2), using GO Terms
Finder. Out of 115 clusters produced by GraphCrunch
2, 49 were found to be statistically significantly enriched
with 875 GO terms. Also, the smallest cluster produced
by GraphCrunch 2 had 6 proteins. In the clustering
produced by MCL, 76 out of 115 contained 2 proteins
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and therefore it is not possible to judge the statistical
significance of their GO term enrichment. Out of the
remaining 39 clusters, GO Terms Finder found 25 clus-
ters to be statistically significantly enriched with 333
GO terms. Hence, for this particular network, clustering
produced by GraphCrunch 2 has twice as many signifi-
cantly enriched clusters and with more GO terms. Thus,
GraphCrunch 2 appears to produce better results than
MCL for these particular datasets. In addition, it pro-
duces better results than hierarchical or signature
threshold-based clustering [47].

We also compare the performance of our method
with that of Aragues et al. [57], which also predicts
from PPI networks the involvement of genes in cancer.
While [57] focus only on direct network neighbours of
cancer genes, we account for complex wirings of their
up to 4-deep neighbourhoods, using 5-node graphlets;
we demonstrate [47] that out of all known cancer gene
pairs that have similar topological signatures, 96 per-
cent are not direct neighbours in the PPI network.
Moreover, in addition to network topology, [57] also
use gene expression data and structural and functional
properties of cancer proteins, while we use the net-
work topology only. Even though we do not use any
information external to PPI network topology, our
approach is superior, as it results in higher prediction
accuracy [47]. Thus, graphlet degree signatures provide
a better prediction accuracy than less constraining net-
work properties such as nodes’ direct neighbours, even
when nodes’ direct neighbourhoods are integrated with
other data types.

Comparison with existing tools

We compare GraphCrunch 2 with eleven of the most
commonly used tools: the initial version of GraphCrunch
[19], Cytoscape [23], Visant [24] Mfinder [30], MAVisto
[27], FANMOD [28], tYNA [26], Pajek [29], IsoRank [36],
Graemlin [34], and GraphM [37]. The summary of the
functionality of these tools is presented in Table 2. Cytos-
cape is the closest in functionality to GraphCrunch 2, but
GraphCrunch 2 has the following unique features. None
of the tools other than GraphCrunch 2 can compute sig-
nature similarities between nodes in a network, or between
two networks. Cytoscape has a plugin “GraphletCounter”
that can compute node signatures, but it cannot find sig-
nature similarities between nodes, cluster nodes based on
these similarities, or compare networks based on RGF-
distances or GDD-agreements (thus, we put “Limited” in
the entry of Table 2). Hence, GraphCrunch 2 is the only
software tool that can cluster network nodes based on
their topological signature similarities. Furthermore,
GraphCrunch 2 is the only tool that can compare real net-
works to one another or to model networks based on
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Table 2 Comparison of software tools for biological network analysis

Software package Graph Properties #of models Graphlets Visualization Clustering GNA
GraphCrunch 2 Yes 7 Yes Yes (Results) Yes Yes
GraphCrunch Yes 5 Yes Yes (Results) No No
Cytoscape Yes 6 Limited Yes Yes No
Visant Yes 1 No Yes No No
mFinder No 3 No Yes (mDraw) No No
MAVisto No 1 No Yes No No
FANMOD No 3 No Yes No No
tYNA Yes 0 No Yes No No
pajek Yes 2 No Yes Yes No
IsoRank No 0 No No No Yes
Graemlin No 0 No No No Yes
GraphM No 0 No No No Yes

The “Graph Properties” column contains “Yes” if the package can compute at least the average diameter and clustering coefficient. The “# models” column
corresponds to the number of random network model families supported by the package. The “Graphlets” column contains “Yes” if the package can count all
graphlets and orbits in the network with up to 5 nodes and if it can compute signature similarities. The “Visualization” column contains “Yes” if the package is
able to visualize graphs (graph drawing) or results (statistics). The “Clustering” and “GNA” Columns indicate whether the package supports clustering and Global

Network Alignment (GNA), respectively.

RGF-distances and GDD-agreements. Note that mFinder
finds network motifs, not graphlets. GraphCrunch 2 is the
only software tool that implements the GRAph ALigner
(GRAAL) algorithm; this is in addition to its ability to gen-
erate model networks, compute graph properties (global
and local) and comparing networks based on them, visua-
lizing the results, computing node signature similarities
and performing topological node clustering. Also, Graph-
Crunch 2 offers the largest number of network models.
With regards to clustering, GraphCrunch 2 implements
k-medoids applied to graphlet-based node signature simi-
larity (see Clustering section above); this clustering
method has been shown to outperform hierarchical clus-
tering, signature threshold-based clustering [47] and the
MCL algorithm (see Case study 2 above). Cytoscape has
plugins for many clustering methods, but it cannot cluster
nodes based on their topological signatures. Also note that
Cytoscape and its plug-ins are all written in Java, while
GraphCrunch 2 is written in compiled C++. For example,
computing all signatures for a network with 1,278 nodes
and 1,809 edges in Cytoscape takes about 5 minutes, while
GraphCrunch 2 can do this and cluster this network in
about 1 minute. Furthermore, compared to GraphCrunch
2, Cytoscape lacks task-based parallelization features for
counting graphlets (e.g. simultaneously count graphlets in
more than 1 network). Hence, it is not able to provide fast
processing of larger data sets by compute intensive algo-
rithms, such as graphlet and orbit counts, or network
alignment. We further note that Cytoscape is a plugin-
based platform and therefore, to enable certain features,
the user needs to install additional plugins; to summarize
its functionality in comparison with other tools in Table 2
we used a list of all available plugins from http://chianti.
ucsd.edu/cyto_web/plugins/.

Conclusions

GraphCrunch 2 is a software tool that implements the
latest research on biological network analyses. Graph-
Crunch 2 includes implementations of network model-
ing, comparison, alignment and clustering. We have
demonstrated that GraphCrunch 2 can be used to
extract biological information from the network topol-
ogy. We believe that our case studies barely scratch the
surface of the knowledge that can be extracted from the
interaction data. As more interaction data for multiple
species are becoming available, software tools such as
GraphCrunch 2 will become increasingly useful.

Availability and requirements
Project name: GraphCrunch 2
License: GNU GPL
Project homepage: http://bio-nets.doc.ic.ac.uk/
graphcrunch2/
Operating systems Microsoft Windows (XP, Vista,
7), Linux
Programming language: C++
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