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Abstract 

Weproposeadatamodelandqueaylanguagethat 
integrates an explicit modeling and querying of 
graphssmoothlyintoastandsrddambaseenvimn- 
ment For standard applications, some hey featu- 
resofobjectuientedmodeling~offesedsuchas 
object classes organized into a hierarchy, object 
identity, and attributes referencing objects. 
Queryingcanbedoneinafamiliarstylewitha 
&rive statement that can be used like a select 
. ..from . . . wkre.Gntheotherhand,themodel 
allows for an explicit mpresentation of graphs by 
partitioning object classes into simple classes, 
linkclasses,andpathclasseswhoseobjectscan 
be viewed as nodes, edges, and explicitly stored 
paths of a graph (which is the whole dambase 
ins-). For querying graphs, the derive state- 
ment has an extended meaning in that it allows 
onetoiefertosubgraphsofthedambasegraph.A 
powerful rewrite operation is offered for the 
manipulation of heterogeneous sequences of 
objects which often occur as a result of accessing 
thedambasegraph.Additionallytherearespecial 
graphoperationslikedekmnn@a&ortestpath 
or a subgmph and the model is extensible by such 
operations. Besides being attractive for standard 
applications, the model permits a natural repre- 
sentation and sophisticated querying of nelworks, 
in parhk of spatially embedded networks 
like highways, public transpart, etc. 
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1 Introduction 

The work described in this paper arose from the 
observationthatexistingdatamodelsandquaylanguages 
donotofferadequatesupportfclrthemodelingandquery- 
ing of nerworiks. In particular, we ate interested in spu- 
tially embedded networks which are an important part of 
geogrsphic information, for example, highways, rivers, 
public transport systems, power and phone lines etc. Cur- 
rent spatial dambase models and systems (e.g. [SvH!N, 

RoFM, GrMgg, GtM]) can well enough represent the 
geometry of such networks but have no concept of their 
connectivity. 

We feel that the most natural representation of a 
highway network (taking it as a prototype for spatial 
networks) is to view it as a graph whose nodes are 
highway junctions, whose edges are highway sections, 
and where highways are just certain paths over this graph. 
Thereforewewouldliketoofferadatamodelcapableto 
;~$~directly so that one can define a graph . 

compndhg node, edge, and path objects. 
Forquerying,specialgraphopetationsshouldbeprovided 
such as finding a shortest path, determining a subgraph 
withinagivenradiusfiomastartnode,etc. 

Gntheotherham&mod&ngandqueryingnetworksis 
certainlynottheonlythingauserwantstodo,hence,all 
ofthemoreuaditiclnalapplicationsshouldbesupportedss 
well, and preferably in a style that is not too different 
i?omwhatoneknewbefore.Thechallengeisthereforeto 
achieve a smooth integration of the desired graph 
modeling into a more classical environment, Ideally, if 
one is not interested in networks, this model should be 
usable like any of the well-known models, e.g. a rehuio- 
na4functi~orobject-arientedone. 

Thepmposeofthispaperistopresentadatamodel 
and query language that achieves such a smooth inte- 
gration. On the one hand. we show that traditional 
applications can be modeled and queried in a familiar 
style, and indeex$ bettex thsn before, because this model 
offers very attractive features to represent n9ationships 
betweenobjectsandtousetheminqueries.Soweclaim 
that even without considering networks, this model is 
suitable and quite interesting as a general purpose data 
model. On the other hand, sophisticated modeling and 
querying of networks is possible, as we demons&ate by a 
number of examples. out approach can be summarized as 
follows: 
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l The data model contains a few salient features of 
object-oriented models: A dambase is a collection of 
object classes. Objects have identity and a tuple 
structure; attributes may be data or object-valued. 
Classes are organ&d in an inheritance hierarchy. 
Central tool for querying is a de&e statement which 
so far offers similar capabilities as the traditional 
select . . . from . . . where. 

l lhedatamodeloffersgraphszTherearethreediffezent 
kinds of object classes called simple classes, link 
classes, and path clusses. Simple objects play the 
roleofnodesinthedambasegraph.Linkobjectsare 
objects with additional distinguished references to 
source and target simple objects. Path objects are 
objects with an additional list ofreferences tosimple 
andlinkobjectsthatformapathoverthedambase 
graph. 

l For querying the graph structure, (1) the derive 
statement has an extended meaning: In the on-clatrsc 
(the counterpart to the from . ..) one can refer to 
co~eaed subgraphs of the dambase graph and so 
specify relationships between simple objects, link 
objects. and path objects. (2) There is a special tool 
for sophisticated manipulation of heterogeneous 
sequences of objects (paths, in particular). (3) There is 
a collection of graph operations; they can specify 
argument subgraphs of the database by regular 
expressions ovet link class names (edge types). 
(4)Thedamlmsegmphcanbeextendedorresuicted 
dynamically within aquery. 
Inthispaperwegiveaformaldefinitionofthedata 

model and describe some key elements of the query 
language. This is a short version of [GU94], where many 
aspects are treated in more depth, in particular, definition 
of subclasses and rewriting of sequences (paths). In 
[Gil941 additionally a system amhitecture and implemen- 
tation strategy are described which are used in the 
GraphDB pototype we are currently implementing. 

In the literature, the manipulation of graphs in 
databaseshasmceivedquiteabitofattentiouasurveycan 
be found in [MaS90]. However, to our knowledge 
nowhere has the focus been on an explicit representation 
of graphs together with a smooth integration into 
standardmodelingandquerying.Mostau~assumethat 
graphs can be modeled implicitly in terms of the usual 
features of a given data mode& e.g. the relational model 
[Kung86, StR86, Ag87, BiRS90], or a functional model 
~os%].Inmostproposalstheauthorsdonotreallycare 
how graphs are represented but just focus on the abstract 
graph structure [CrIvlW87a, CrMW87b. CrN89, Rose861. 
For querying, two main stmtegies am to offer general pur- 
pose facilities that allow to express graph traversal pro- 
blems (like recursion, iteration) CRose86, StR861, or to 
offer special operators [Ag87, Rose86, CrN891. NRS901 
proposeanSQLextensionbasedontheideatogenemtea 
set of paths in thefrom-clause from which interesting 
paths are selected. In [CrMW87a, CrMW87b. CoIvI90, 
CoM93ltheideaistofonnulateaq~asasetofgraphs 
which a viewed as patterns; all subgraphs of the data- 
baseinstanceare-matchingthesepattems.Ind 
of these approaches there is no explicit modeling of 

graphswithinageneddatabmeenvironmentandthere 
fore no problem of integration with the data model. In 
somecaaes,gmphqueryinghasaverydiff&ntstyle8om 
therestofdatamanipuMon.-Incontrasttothework 
above, in [GyPV9Oa, GyPV9Ob. Andr92. GePTV931 the 
approachistomodelthedambasedirectlyandentirelyasa 
graphandtoexIuessrJIqueriesinuumsofafewpower- 
ful graph manipulation primitives. Gmphical user inter- 
facesareofferedfordirectinputofqueriesandvisual& 
tion of results in terms of graph structures. This is 
mainlyintendedasanenduserinterfacetoadambase 
systemthatmayitselfuseaIloberdatamodel. 

We feel that an explicit modeling of graphs is very 
desirableforseveralreasons:(i)Itkadstoamotenatuml 
modeling; graph structures am visible for the user, (ii) 
queriescanreferdirectlytothisgraphstructure.(iii)path 
objectscanbt&~(notpresentinanyoftbeothet 
models) and they are the interesting entities in most 
networks, (iv) the system can offer special data stnuzttues 
for graphs, and (v) the system can use efficient graph 
algorithms designed to utilize the special graph data 
structures. 

Ihegeneralapproa&ofthispetperhasbeenpursuedin 
our own previous work [Gtl91, ErG91] and that of 
colla- [AmS92]. In [Go911 relations and graphs 
coexist.Aproblemwiththat~histhatagraph 
consisting only of nodes is practically the same as a 
relationanditishatdtosepamtegraphsfromeachother 
andfromrehuionsinadambase&sign.InlErG91]gmphs 
occurhlanalvironmentwithobjectclassesbutarestill 
sejwateentities.Thereisthesameproblemofpartitio- 
ningadambaseintographs.Also,inboth~hesit 
becomes a nuisance tomentionthegmphargumentsin 
manyplac+shtquaies.Thequeryingfacilidesofferedin 
thispapergofarbeyondthoseof[GU91,ErG91].Amann 
and Scholl [AmS92] offer a few selected features of our 
moder(nodeaadedgeobjects,butno~)intbecontext 
of hypertext applicationa 

The paper wnsists of two major sections, describing 
thedatamodelandqllery&,~vely. 

2 The Data Model 

ThissectioninuoducesthedatamodelofGraphDB.We 
start with an overview and show the modeling of some 
example applications. In the following subsections, the 
model is developed more formally and systematically, 
defining bottom up the notions of data types, object 
types, and tuple types, three kinds of object classes, a 
dalabasandthe-graph.Ihemainpurposeinthe 
design of the data model is to achieve a “seamless” 
integration of graph structures andgraph operations into 
theusualfaciliut!sfcrdatamodelingandqueaying. 

2.1 OveNiew 

A database is a collection of object classes which are 
partitioaed into three kinds of classes, called simple 
classes, link classes, and path classes. Objects of a 
sintglcclassareontheonehandjustlikeobjectsinother 
models: They have an object type and an object identity 
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andcanhaveamibuteswhosevaluesareeitherofa&ztu 
type (e.g. integez. string) or of an object rypc (that is. an 
attribute may contain a reference to another object). So 
thestructureofanobjectisbaskallytbatofatupleor 
record.Ontheotherhand,objectsofasimpleclassare 
nodes of the datakase graph - the whok database can 
alsobeviewedasasinglegfaph.Objectsofafticlclss 
arelikeobjectsofasimpleclassbutadditionallyccmtain 
two distinguished references tosourceandtargetobjects 
(belonging to simple classes), which makes them edges 
ofthedatabegrap&Fiiy,anobjectofapattcfussis 
likeanobjeetofasimpleclass,butcantainsadditionally 
a list of references tonodeandedgeobjecrswhichforma 
pthOVertbed@XiS~ 

Besides the graph structure, object classes are 
organized into a class hierarchy and there are related 
notions of subtyping among tuple types, objezt types, 
and data types. Let us now consider some examples of 
data modeling with these fazmies. 

Standard Applications. As a simple standard 
applicatioll,considerthe~tation0fbooksandtheir 
authors. We describe the dau&ase schema by showing 
correspardingdatadefiitioncommanda 

cre8ta class book = title: STRING, 
publisher: STRING, year: INTEGER; 

create cl888 person = name: STRING, 
address: STRING; 

err&e link clams wrote fror person to 
book: 

Hemwehavetwosimpleclassesbookandpersonand 

alinkclasswrote.Observehowalinkclasscandirectly 
represent a many-many relationship. Attributes may be 
defined for link cW in the same way as for simple 
classes. Attriires may also contain object refm. For 
example, we might defme persons to contain a refetence 
tOthhhOlIECOUlUIy: 

crr8te Cl888 state = name: STRING, 
region: REGIONS; 

cra8tr cl888 person = name: STRING, 
address: STRING, country: state: 

HeseREGIONSisageometricdatatypedescribingthe 
aIeacoveredbythesrate. 

Highway Network. The highway network is a 
relatively simple example of a spatially embedded net- 
work. It is a graph whose nodes are highway junctions 
andexits;&ofthosehasaaassociatedpointinthe 
ge0metric(argeqaphic)plane.Weassumejunc&msare 
chafac&xixedbyauameandexitsbyamunbez.Edgesof 
this graph are highway sections: pieces of road between 
junctions and/or exits with an atsocbd geometry which 
isapolylineintheplanc.Themostinterestingobjectsof 
thisnetworkarehighwaystheycorrespoadtopathsover 
the graph given by junctions, exits, and highway 
!sed3ns. 

orrrta 01888 vertex = pos: POINT; 
crm8tr vertex Cl888 junction = name: 

STRING; 
create vertex Cl888 exit = nr: INTEGER; 

cre8ta link cl888 section = route: LINE, 
no-lanes: INTEGER, top-speed: INTEGER 
from vertex to vertex; 

orrrtr p8th 018~ highway - name: STRING 
88 section+: 

HelejlmdaBandexitsarein~assof 
a simple class vertex, which means they i&exit the pos 
attribute.Italsomeanstbatobjeusofbothclassescanbe 
usedas-andtargetsofsecdonedgesofthegraph. 
Inde&thesecanalsobe‘~“verrexob~tsasnodesin 
the grapk they are useful to sepamte highway sections 
with diffmt values of au&l&%3 such as noJunes. The 
highways themselves are defined to be paths over section 
M@!LEtWltidythe~~behiaddrekeywordoSiS 
a regular expression &fining a path type which in turn 
describesasetofpathsofthedambasegraph.Pathtypes 
alemaeintereshingwheadiff~ttofedgesoccluin 
agraph.Wewillseeexamplesandamoreprecisedefini- 
tion below. 

2.2 Data Types, Object Types, and Tuple Types 

Data Types. Let (D, 9 be a finite set whose elements 
afecalkidatatypes,withapartialor&r”~(%ubtype~ 
whichisrestlictedtoorganizedatatypesintotrees(that 
is,Va,b,cED:a~b~a~ccbbcvc~b).If 
two data types belong to the same tree, we call them 
related. If two data types = related, then a smallest 
common supertype. &noted Zub(u, b) exists and is uai- 
quely defined. Figure 1 shows a collection of data types 
olpeed into several trees. He!xe, fcK example, INTEGER 
is a subtype of NUM (INTEGER 5 NUM) and 
Inb(FQINTSS, LINES) = GEO. Each data type has an . 
assoclateddomainofvaluesgiveabyafun&ondwn(e.g. 
dom(BOOL) = (true, false)). If u 5 b then dam(u) s 
~~b).‘Ibepuqoseofthcdatatypehieraxchyistoallow 
polymorphic functions to be defined for example, an 
intersection test can be applied to any two geometric 
values in EXT. 

GE0 

INTEGER REAL FOINTS LlNE!s REGIONS 

Figure1 

Object Types. Thete is a finite set (07’. 5) whose 
elements are called object types with a (tree) partial order 
“57. We will see below that there is a one-to-one 
cormqmhcebetwcarobjecttypesandclassesinfhe 
~infac~anobjecttypeisnothingelsethanthe 
name of a class. The partial order on object types 
taresponds to the class hierarchy. Similarly as for data 
types,twoobjccttypesc,dmayber&ted(beIongtorhe 
same tree) in which case the smallest common supertype, 
lub(c, d), is welldefined. 
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Each object type has an associated set of object 
identifiers which is a subset of a set of object identifiers 
OID (which contains the identifiers of all objects cnzated 
so far). This set is given by a function oids: OT + 
P(OID), where P(X) denotes the power set of X. If c < d 
(c, d E OT), then oids(c) E aids(d). On the other hand, 
ifcanddareaotrelaced,thenoids(c)no~(~=O.For 
an object type c, okis contains precisely the ideaUks 
of objects created so far in the co~nding class c. 
Given an object identifier, we can determine its 
immediute type (the smdlest object type in the hierarchy 
that it belongs to) by a function itypc: OID + 0 T 
definedby: 

itype(0) = c W (0 E aids(c) A 

VdE OT: OE aids(d) a c<d) 

Tuple Types. I..& A be a set whose elements are 
calleduttributes-adomainofathibutenamesthatcanbe 
used in forming tuple types. The set of tuple zypes, 
denoted 7T, is defti as followsz 

‘IT = (+q, rl), . . . . (am. tm)> I m 2 0, 

Vie (1, . . . . m):aiE A,tiE DuOT) 

Thatis,eachtupletypeinTTisalistofpairswhem 
eachpaircontainsanattributenametogetherwitheitka 
datatypeoranobjecttype.Theemptylistoisalsoa 
tupletype.~eachoupletype,thereisadomainofzuplc 
v&esdefinedasfollows.LetT~ 27’,T=<(q,t1) ,..., 
(@tt t&. 

vulues(T)= (jl$ 

i=m 

Where Vi = (<(VI9 ul), (2~ ti, ---v (Vi9 rci)> 1 

VjE (1 , . . ..i). UjE D u OT 

A Uj E D * vj E dom(Uj) 

A ttj E OT * vj E oids(uj) 

A jSm =3 UjStj ) 

Inotherwor&atuplevalueisalsoalistofpairsof 
some length i which must be at least m. Each pair is a 
valuetogetherwithatype,andthevaluemustbeloJlgto 
the corresponding data or object identifier domain. 
Furthermore, within the first m components the type in 
the tuple value must be a subtype of the 

. 
e g 

dataorobjecttypeinthet@etypeT. 
The subtype nlationship on tuple types is defined as 

follows. Let T = <(Ul, 11). . . . . (um. tm)>, U = C(bl, 
4). a-.. (b,,, u& be two tuple types. 

TSU :m m2n A ViE (1, . . ..n). tiSUi 

That is, tuple components (attributes) are matched by 
position.TmusthaveatleastasmanycomponentsasU 
andineachofthefirstnpositionsthetypeinTmustbe 
asubtypeoftheoneiuU.At&ibutenamesdonotmatter. 
FOG tuple types T = <(Al. 11). . . . . (um. tm)>, U = <(bl. 
u1x ***. (b,,, un)> one can &&amine a smullest common 
supertype as follows: 

MT, v):=<(ul, lub(tl, ~1)). . . . . (uk, lrrb(tk, uA))> 

where k E (0, . . . . min(m,n)) suchthatfm 1 siSk,ti 
dtti~related,&eithetkE (?&R),OCtk+l andICk+ 
arenotrelated.Inothefwords,wetakethe1ongeStcom- 
monprefixofrelatedtypesandwithinitforeachpairof 
typestheirslualleatcommonsuperdataorob~type.of 
course,theresultmaybetheemptytupletype.Notethat 
attributenamesaretakenfromthefirstopezam&sothe 
ope&onisnotcommutative.Thtpmpoaeofthesedefi- 
nitionsistoallowfcra“dynamkgcneralization”ofcol- 
ktionsoftuples.Wewil.lbeabletofaminqueriesany 
unionofsetsoftup~fortheresulting~anewtuple 
typeis&zivedsuchthatallt@esintheunionmakhthis 
new type (see section 33). 

2.3 Classes and Database 

Adutubuseisapair(C,QwhereCisaftitesetof 
classcs,and”?5”(“subclaas”)atretpartialaderonC.A 
cluss c e C is a pair (crype(c), extension(c)). Tbc set of 
classescispaItitionedhltothreesubsets:c=scuLc 
u PC. Classes in SC, LC, and PC are call4 simple 
clusses, link &asses, andputh clarses, respectively. The 
SUbClaSSpartialorderrespectsthiSpartition,thatiS, 

a5b* (u.b) SSCV (u,b) rLCv (u,b) rPC 

The two components of a class, its type and its 
extension, an2 different for simple classes, link classes, 
andpathc~lnformally,thetypedefineathestructure 
ofobjectsintheclass,andtheextensionthecollectiouof 
objects currently contained in it. In the following subsect- 
ionswedescribetypeaadexfensionfofthethreekindsof 
classes, relating them to corresponding data deftition 
commands. Subclasses are treated in the full paper 
NW. 

Simple Classes. A simple class is created by a com- 
mandoftheform 

<class creation> ::= crmt* cl&s8 <class- 
name> [ - <attribute-list>] ; 

<attribute-list> ::= cattr-name> : <type> 
I <attr-name> : <type> , <attribute-list> 

The type of a simple class is a pair (c, T), if it was 
cmatedbyacommand 

crmrtr al888 c = T; 

whencistbe&ssnameusedinthedefinirionandTthe 
tupletypecorrespondin%totheattributelkIftheopti* 
nal clause is omitted, then the tuple type is the empty 
type o. For brevity, we will speak in definitions simply 
ofaclass(c,T)insteadof”aclasswithtype(c,T)”.As 
mentionedinSectioa2.2,rkeisaone+4necorrespon- 
dWCCbChVHJlClassesendOb~types.Hencc,thCCl8SS 

creationcommandcreatesatthesamethneanewobject 
typec~ OT.lheextensionofasimpleclass(c,l)isa 
subset of okis x values(T), that is, a set of pairs con- 
sisting of an objeet identifier and a tuple value. Object 
identifiers are all distinct: 

V (ol,tl). (02, a2) E extension(c): 01=02 =s tl=Q 

Link Ckwes. A link class is created by a command 
ofthefam 

300 



<class creation> ::= crratr link class 
<class-name> [ = <attribute-list>] from 

<class-name> to <class-name> ; 

ThefyPeofalinkclassisaqnadrnple(c,T,ff,e)ifit 
. wascreatedbyacommand. 

craatr link class c = T fror d to e; 

Heredandcmustbethenamesofsimpleclasses. 
The extension of a link class (c, T. d, e) is a set of 
quadruples which is a subset of aids(c) x values(T) x 
aids(d) x oids(e). 

The Lbtabase Schema and Instance Gmphs. Before 
we can define path classes, we need to understand the 
graph structnre created by a collection of simple classes 
and link classes, which consists of a database schemer 
graph and a database instance graph. We generally 
describe graphs as two sets (node3 and edges) together 
with two mappings source and turget from the edges into 
the nodes. This is because multiple edges between the 
samehvonodesateallowedinonrdatamodel. 

The database schema graph is SC = (S, L, source, 
turget), WheIe 
(i) s= (Cl((C.T),6?xt)E SC) 
(ii) L = ( c I ((c. T, d, e), ext) E LC) 
(iii) source: L + S is &tied by 

source(c) = d - ((c, T, d, e), ext) E LC 
(iv) turget: L + S is defined by 

turget(c) = e ti ((c, T, d, e), ext) E LC 

Soforeachsimpleclassandeachlinkclassthereis 
onenodeandoneedgeintheschemagraph,respectively. 
TIbesenodesandedgesarealsotheobjecttypescorrespon- 
ding to the mpeaive classes. 

The database instance graph is IG = (S, L, source, 
turget). where 
(i) S = ( 0 I3 c c SC: (0, t) E extension(c)) 
(ii) L = ( 0 I 3 c tz LC: (0, t,p, q) E extension(c)) 
(ii) source: L + S is defined by 

source(o) = p e 3 c E LC: (0, t, p, q) E 
extension(c) 

(iv) target: L + S is defined by 
turget(o)=qH3cc LC:(o,t,p,q)E 
extension(c) 

So the nodes and edges of this graph ate object 
identifiers of objects in simple and link classes, tespect- 
ively. 

A path type is a quadruple (G, p, s, F) where 
G = (V, E, source, turget) is a connected graph. 

& ~:VuE+GTisafunctionlabelingnodesand 
edgesofGwithobjecttypessttchthat 
(a) v E V * 3 ((c, T), wrt) E SC: p(v) = c 
(h) e E E * 3 ((c, T, u, b), exr) E LC: 

p(e) = c A p(source(e)) = u 
A j@rget(e)) = b 

(iii) s E V (the start nod4 
(iv) F s V (thefinuf nodes) 

Basically, a path type is nothing else than a fmite 
automaton belonging to a regular expression over link 
classnames,sisthestartstate,Fthesetoffinalstates. 
The labeling function p ensures consistency with the 
database schema graph. Each path in G from start node s 

tosomenodeinF&suibesa correspondingwofpaths 
inthedatabascmstancegraph,definedbelow.InFii2 
the path type co~ndittg to the regular expression 
“section+” from path class highway (Section 2.1) -is 
shown(acircleafoundanodeindicatesthestartnode,a 
boxoneofthefinalnodes). 

Vertex Vertex 

section 

FQplre 2 

Rtthtypesatensedinthedefmitionofpathclasso3, 
bntalsoinqUEzies,wheregraphhaversalcanberesuicted 
tographsofadesitedfonn.ApathoverIG(thedatabase . 
mstancegraph),alsocalleda&taimsepath,isaseqttence 
of object identitieas 

P = <vo, ei. vl. . . . . vn-1. en. vn> 
wherefmOSjSn:vjE Sandfor 1 SjSn:fjE L, 
source(ej ) = vi-1, and target(e * ) = vh ‘Ills @I 
matches a path type (G, p, s. F) irf there exists a path 
P = 4’0. El. VI, . . . . Vn,1, En-l, Vn> in G such that: 
(0 vo-s 
(ii) (ii) Vi E F Vi E F 
(iii) (iii) For 0 S j S n: For 0 S j S n: iQJN?(Vj) S /t(V*) (itype yields the iQJN?(Vj) S /t(V*) (itype yields the 

immediate * of object iden immediate * of object iden tit tit 
(iv) (iv) 

ier Vj) ier Vj) 

For 1 5 j S n: igP&j) S MEj) For 1 5 j S n: igP&j) S MEj) 

In other words, the database path p mnst have a 
corresponding@PiaG snchthateachobjectinthe 
pathpisofasubtypeoftheonereqniredinP.Wedenote 
by paths(G. B, s. F) the set of all database paths 
matching + type (6 CL, s, F). 

Path Classes. A path class is created by a command 
of the form: 

<class creation> ::= creata path cl888 
<class-name> [ = <attribute-list>] 88 

<link-expression> 
<link-expression> ::= <class-name>+ I 

<class-name> 
I <link-expression> <link-expression> 
I (<link-expression> or <link- 
expression>) I (<link-expression>)* 

Bssentially a link expression LE is a regular expres- 
sion over class names which must belong to link classes. 
Theregn.larexptekonmustbechoseninsuchawaythat 
itdefinesaconnectedgtaph,thatis,apathtype.’Ihecor- 
respondence-=@=- =iWtyptsk 
straightfonvard.Ifapathclasswasucatedbyacommand 

cra8te p8th cl888 c = T 88 LE; 

then its trpc is the triple (c, T, (G. p, s, F)) where (G. 
p, s, F) is the path type corresponding to LE. The 
extension of class (c, T, (G, p, s, F)) is a set of triples 
subset of aids(c) x values(T) x paths(G, CL, s, F). 

2.4 The Public Tmnsport Network 

In this s&section we introdnce a larger example which 
may give a better impression of the hind of applications 
this data model (and database system) is intended for. We 
shall also show some queries for this example in the next 
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section. The application domain to be relm-esented is pub 
lit transport, e.g. bus, tram, or train lines and sbdules. 
On closer inspection, this application is more complex 
than one might have expected. One can distinguish three 
levels of network, describing the physical network, 
lines, and time schedules. The lowest level repmsents the 
geometry of the network used for traveling. For example, 
for a railway network, at this level we find rails and 
switches, switches being the nodes and rail sections the 
edges of the graph. We call paths over this level physicul 
routes. This level is modeled as follows: 

claw vertex = pos: POINT; 

link clam8 arc = route: LINE from vertex 

to vertex; 

path clam phys-route a8 arc+: 

The next level introduce.s regular connections over the 
physical network usually called lines, for example, bus or 
underground lines traversing a certain path of the physical 
network A line may be identified with a number OT by 
givingthenamesoffinalde&ationsatbothends,andit 
contains a list of stops that we call stations. (A line is 
what is usually depicted on the wall within a bus or 
underground carriage.) Note that this level does not yet 
contain the time schedule for trips over lines. 

&a88 Station = name: STRING, lot: vertex; 

link Cla88 connection = travel-minutes: 

INT, way: phys-route from station to 

station; 
path da88 line = line-type: STRING, 

line-no: INT a8 connection+; 

Observe that this second level contains references to 
the first level, the physical network, associating stations 
by attribute lot with theii physical positions (assuming 
that for each station a vertex has been established) and 
connections as a piece of the line between two stations 
by attribute way with a corresponding path over the 
physical network. Lines are paths of this level; the 
line-type attribute may be used to distinguish types of 
connections, e.g. fast long distance trains from slow local 
trains in a railway network. 

The third level contains the actual time schedules. We 
model this as a collection of departure and arrival 
events, which will be the nodes of the third level graph. 
Adepatturtevent.forexample,saysthatatacertaintimt 
a carrier (e.g. a train) of a specified line departs from a 
given station. A specific trip of a train over a line then 
corresponds to an alternating sequence of departure and 
arrival events (Figure 3). 

D RSBl 

- Dilktlorf 0 

InFigure3DandAstandsfordeparmmandarrival, 
respectively; “RSBl” is the name of a particular line. The 
eventnodesofaspecificttipareconnec@ by traveJ and 
stuyedges.Ontheotherha&wecanchangeatastation 
fromonelinetoanother(moreprecisely,fromatripof 
onelinetoatripofanotherline).Tomodelthis,theatri- 
valanddepartureeventsatoneparticularstationarecon- 
netted by chunge and wuit edges, as shown in Figure 4. 

. 

Figure 4 

The idea is that a change edge connects an arrival 
eventwiththenextdeparmmonecanreachintimeatthis 
statio$andthatalldepattuleeveiltsarelinke!dintheorder 
of departure time. Hence changing at a station can be 
describedbyasequenceofchangeandwaitedgesofthe 
form chge wuit* (which is a path type). A complete 
trip of a traveler with possibly several changes of trains 
has a path type travel (stay truvel)8 (change wait* 
travel (stay travel)*)*. 

So the third level is modeled as follows: 
da88 event = time: INT, at-station: 

station, of line: line; 

event da88 arrival, departure; 

link da88 travel = through: connection 

from departure to arrival; 
link da88 Stay from arrival to 

departure; 

link da88 change from arrival to 

departure: 

link da88 wait from departure to 

departure; 
path da88 trip a8 travel (Stay travel)*; 

A graphical representation of this rather complex 
database schema is given in Figure 5. Hue a path class is 
remted as a cimle mund its participating simple and 
linkclasses(omittingthemorepreciseinformationinthe 
rat&type); object-vahmxi attrii am indicated by dashed 

. 

Figure 3 
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Figure 5 

3 Queries 

In this section we briefly discuss the concept of a query 
on a graph dambase, explain the structures the user 
manipulatesiuqueries,andshowsomefundameutaltools 
(statements, operations) for querying. We do uot yet 
develop a complete query language but rather introduce 
some core elements. Also at this stage the semantics of 
opelationsmonlydescribedinfamally. 

Query Concept We would like to be able to concept- 
uallymodifythedambasegraphinaquery,forexample, 
to add some edges computed by a query expression and 
then to apply a graph operation traversing old as well as 
newpartsofthedau&asegraph,ortorestrictthegraphfor 
considerationinaquery.Theref~aqueryQmayconsist 
ofseveralsteps,Q=ql; . . . . 4m. m step my wmpute 
cneormoreclassesofsimple,lir&orpathobjects.After 
eachstep,theseclasaesareaddedtothedambase(andso, 
implicitly, extend the dambase graph). Gr a step may ex- 
pressarestrictionofthedambasegraphfortbefollowing 
S~.HWWa~OPHdOllUWlh~~j"sees"tbe 
graph with the changes computed in steps 41, . . . . qj-1. 
Examples of such multistep queries llte given below. 

Slructure~ What kind of structures at the conceptual 
leveldoesauserueateandmanipulateinqueries?Candi- 
dates might be graphs, sets of objects, nested relations, 
lists of object identifiers, etc. The design goal is to keep 
this wllection simple but suf&ziently expressive. It turns 
out that for our model four kinds of structures/objects suf- 
fice, namely a ungorm sequence 4 objects, a heteroge- 
neous sequence of objects, a (single) object, and a 
valueofadatatype. 

A uniform sequence of objects contains a set of 
objects, usually from a single simple class, link class, or 
path class, in some, not necesady specified, order. More 
precisely, the objects in the sequence may come from 
different classes but are all viewed under only one 

common tuple type. We use sequences rather than sets 
because~isthen~tibletoofferoperationsinthequgr 
language making use of the order such as sorting, or 
taking head cs tail of a sequence (see [GtiZC89, MaV931). 
Such a sequence of objects is the basic structure in 
formulating queries; since each object contains a tuple, it 
is the equivalent of a relation in the relatkmal model. The 
mostsimplewaytoobtainauniformsequenceisjustto 
write the name of a class. For example, writing “person” 
yieldsasequencecontainingallpersonobjeua. 

A heterogeneous sequence of objects may contain 
objects from several classes. These objects may have 
several different object as well as tuple types. For 
example,thewdeandedgeobjectsfonninga~inthe 
da&base may be given as such a sequence. But more 
generally. heterogeneous wllecrions of objects can be 
follnedinqueriesandbemanipulatedintbisform.The 
basicwaytoobtainaheterogeneoussequenceistowrite 
the name of several classes iu angular brackets. For 
example, “<book, person, wroti” yields a sequence of 
the corresponding objects from three different classes 
(Section 2.1). 

What can one do with such a “mixed” collection of 
objects? First, there is a specialized and very powerful 
tool in the query language, called the rewrite operation, 
to deal with such sequences (Section 3.2). Second, in the 
same way as we have interpreted the set of simple, link, 
and path classes making up a database as a database 
graph. we will be able to interpret such wllections as 
gr&sorevenasnewpartsoffhedat&asegraphthatare 
addedinaquery.‘Iberefore,nospecifictypesforgraphs 
areneededintheuse?sumcept4modelforquerying. 
Third, one can apply a union operation in the query 
languagetoaheterogeneoussequenceandsotransformit 
into a unifcum sequence (Section 3.3). 

Tools for querying. The fundamental tools for 
queryingagraphdambaseare: 

The-de&e statement, which takes the role of the 
classical se&t . ..fiom . . . where, but has an extended 
meaning for gmpb, it includes the functionalities of 
selection, join. projection, and function application; 
the rewrite operation as a basic tool for the manipu- 
lation of heterogeneous sequences; it allows to replace 
objectsorsubsequencesbyother(new)ob#cts; 
the union operution for achieving “dynamic genemli- 
zation”. that is, for transforming a heterogeneous wl- 
lection of objects into a homogeneous one, viewed 
underacommonsupertupletype; 
a wllection of graph operations. e.g. shortest path 
search. 
Additionally, the query language will contain further - 

operations, e.g. for sorting, grouping, aggregate runc- 
tions, data type operations, etc. In the following subsec- 
tions we explain the four main tools listed above. 

3.1 Derive 

The &rive stutement is the most fundamental tool in the 
querylanguage.F%rhapsthebestwaytointroduceitisto 
show a few examples. The first refers to the standard 
application from Section 2.1: 
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Ql. List the titles of all books written (coauthored) by 
Hopcroft in 1983! 

on person wrote book 
where person.name = "Hopcroft" and 

book.year = 1983 
derive book.title 

Here the on-clause says that each combination of 
person, wrote, and book objects should be considered 
where the person is connected by the wrote link to the 
book. From this collection of triples of objects the whexe- 
clause selects those fulfilling the two conditions. The 
derive-clause creates for each selected triple a new object 
with a single attribute called title whose value is taken 
from the attribute title of the book object in the triple. In 
this case, simple objects of an unnamed object type are 
created. It is also possible to create link objects. for 
example; other cases and the semantics in general are 
described below. The second example query is based on 
the public transport dambase from fiection 2.4. 

Q2.Makealistingofall~fromDortmund 
mainstationintheform: 

Timeof Typeand Endstationancl 
number of arrival time 
tlain 

6.13 IC 615 MUnchen 14.23 
6.22 D308 wiesbaden 1218 

. . . 

Tbetimeofdeparturecanbefoundwithinadeparture 
event.Typeandnumberoftraincorrespondtoalinetype 
andalinenumber.ThenameofthefinaldesGnationis 
eitherinthelastnodeofalinepathorcanbefoundfrom 
the last event of a trip path. However, only the last event 
ofatripalsocontainsthearrivattime.Thequeycanbe 
formulated as follows: 

on departure at-station station, departure 
of-line line, departure in trip 

where station.name = "Dortmund" 
&rive departure.time, line.linefype, 

line.line-no,(trip end) .at-station.name, 
(trip end) .time 

Here in the onx&se all combinations of &parture 
events, stations, lines and trips are formed where (i) the 
departure object is connected through its object-valued 
attribute ot-station with the stotion object (that is, 
departure.at-station = station), (ii) the departure object 
is co~ected through attribute of line with the Zinc 
object, and (iii) the depurture object% a node in the path 
of the trip object Note that in queries object-valued attri- 
butescanbeusedquiteinthesamewayasLinkobjects. 
Thereissomefreedomherefortheusertospecifysuch 
connections in the onclause or e.g. within predicates of 
the where-clause. In this example, it would be possible to 
reduce the on-clause to departure in trip and to 
R@lX? ~theWherec~departure.at station.name 
= "Dortmund" (and to Bccess the line object similarly). 

Thereisnothingnewinthewhemandderive-chuses 
except of the use of a function end to get from a path 
object its last node object. 

Let us now consider syntax and semantics of the 
derivestatement in general. It has the following form: * 

<derive-statement> ::= [ <range 
declarations> ] on <s&graph-spec> 
[ where <condition> ] derive <object- 
spec> 

Rangedeclamdonsareneededtofeedintoadeaivesta- 
tement the result of a query expression. They ate not fur- 
ther discussed here (see [GU94]), but an example occurs in 
query QS below. A subgraph spe@xuion has the form: 

<subgraph-specs ::= <pattern> I <pattern> , 
<subgraph-spec> 

<pattern> ::= <var-intro> 
I <simple-var-intro> <link-var-intro> 
<simple-var-intro> 
I <simple-var-intro> in <path-var-intro> 
I <link-var-intro> in <path-var-intro> 
1 <var-intro><attribute-name><var-intro> 

<var-intro> ::- <object-type> I Cobject- 
type>(<newname>) 

A subgraph specification is a list of putters. A pat- 
tern either introduces just a single variable or it unmects 
two or three variables in various ways, requiring that a 
simple object is connected through a link object to 
another simple object, a simple object occurs as a node 
within a path object, a link object occurs as an edge 
within a path object, or a simple object has another 
simple object as an attribute value, respectively. A 
variable is introdtcccd by either writing the name of an 
objecttype(classname)whichisthenusedasavariable, 
or by intmducing a new name explicitly. for example, in 
the form “state(s1)“. This is needed when several 
variablesrangeoverthesameclass. 

In the evaluation of the on-clause all possible 
assigmnentsofobjectstothevtuiablcliareconsidercd 

d tIlosetuplesofobjectsdeuxmkdthatatesim . 
-twithallpatterns.Ingeneral,thepatterasinthe 
on-clausedescribeoneormorewnnectedgraphs(ifwe 
drawanedgebetweentwovariableslinkedinapatuxn).If 
hvoormoregraphsareptesen~itmeansthatthecark&n 
productofthepossibleobjecttuplesforeachgraphwill 
be formed. Therefore, if each pattern is just a variable 
name, then we have the classical cartesian product 
operationorajoin,ifthereareconnectingconditionsin 
thewhere&use.Ifthereisonlyonepattemwhichisa 
single variable, then we have a simple selection. The 
where-clause contains just a condition, used to filter 
tuplesofobjectscomingfkomtheon-clause.Thederive 
clause specifies how a resulting set of objects is to be 
forn& in the following form: 

<object-spec> ::* <variable> 
I [ <newname> = ] <attribute-spec-list> 
I <newname> [ = <attribute-spec-list> ] 
from <variable> to <variable> 

<attribute-spec-list> ::= <attr-spec> I 
Cattr-spec> , <attribute-spec-list> 

cattr-spec> ::= tvariable>.<attr-name> I 

<newname>: <expression> 

The object-specification can either be one of the 
variables of the derive statemen& which means that these 
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objects are put into the result sequence; so the whole 
statement amounts to a more4 or less complex selection. 
Ihcothercaseisthatnewobjectsafefonned.Forthesea 
new object type (name) may be given by the 
“<newname>=“psrt;ifitisomitte4&anamewillbe 
selected internally by the system (which is obviously 
unknowntorheuserandcantherefo#enotbeusedinthe 
rest of the query). Next, attributes for the new objects are 
delined. The first form is %variable~~-name9 in 
whichclrsethenewattributenameaswellasthevalueis 
taken ikom the object denoted by the ‘kvariable9’. The 
other possibility is to explicitly introduce an attribute 
nameandtoassigntoitbyanarbitrarycxplessioaavalue 
of a data or object type. So far, if the from-to-part is 
omitted, simple objects will be CrcILtcd. If the fkom-to-part 
is present, then the variables must refer to simple classes. 
In this case link objects are created connecting the 
corresponding pairs of objects assigned to the fknn- and 
to-variables. Creation of path objects in the derive 
statenlenthassofarnotbecalprovidedinthedesigL 

The following example illustrates several points, 
namely the use of explicit variables. the formulation of a 
classical join in the derive statement. the creation of link 
objects, and the dynamic modification of the database 
graph in a multistep query. We assume the following 
dzabasetobegiven: 

claw state = sname: STRING; region: 
REGIONS; 

Here REGIONS is a spatial data type describing a 
polygonal region. The query is: 

Q3. How many countries must be traversed traveling 
(byland)fKlmGemanytochina? 

on statelsl), state(s2) 
where sl.region l djacrat s2.region 
&rive neighbour-of - cblength: 

length(couon-border(sl.region, 
s2.region) from sl to s2; 

state("Germany") state(Yhina"] 
rhortest~eth[neighbour_of+l 
rewrite[state -> , neighbour-of -> 

neighbour-of] aouat 

Thisisamultistepquery;thelifststepisthederive 
statement which constructs a set of neighbour-of edges 
andaddsthemtothedatabasegraph;thesecondstepuses 
these edges to find a shortest path from Germany to 
China Here we only discuss the derive statement, the 
second step wiIl be explained below when rewrite and 
shortest-path operations have been inttvduced. Explicit 
variables are used because two variables range over the 
sameclass.Thepattemsintheon&usede!scribetwo 
in-t graphs. So a Cartesian product is formed 
which tog* with a subsequent selection condition 
amounts to a join (adjacent is a geometric predicate 
applicable to two REGIONS values). ‘IEe ~ve-clause 
creates a new link object class neighfrour-*between any 
twoqdifj4ngstotcob~asanattributeofsuchalink 

the length of the common boundary is computed, using 
two geometric data type operations length and 
common-border. This is just to give an example of 

creating attribute values for a derived link class, the 
attributeisnotnee43edforthisqueXy. 

3.2 Rewrite 

The rewrite opemtion is a very pow& tool for dealing 
with heterogeneous sequences and in particular, to mani- 
pulate paths (which are hekrogeneous sequences). One 
simplewaytouseitissimilartocasl%tatementsiopro- 
gramminglanguag~sinceonecanspecifya@eatment 
sepamklyfoceachobjecttypethatmaycomealongina 
heterogeneous sequence. But it is also possible to apply 
transformations to whole subsequences of a given se+ 
quencc.Inthiscasetheadaofelementsiathesequmce 
plays a crucial roll to understand this order, puth rypcs 
(or, more generally, sequence types) defined in Section 
2.3 are essential. Again, let us introduce the rewrite 
operation by a few examples. First, consider the second 
stepofqwyQ3: 

state("Germany") state("China") 
l horteatgath [neighbour-oft] 
rewrite[state -B , neighbour of -> 

nelghbour-of] count - 

He.re the shortestgath operator (whose arguments 
will be explained below) computes a shortest path from 
one state object (Gelmany) to another me (china). The 
two state objects are determined by a special “object 
identification” notation (see [GM]). The result is a 
heterogeneous sequence of state and neighbour of 
objects. The re&t has a sequence type (which is equi%- 
lenttoa~type,butalsomentionsttictypesofnode 
objects) 

state neighbour-of state (neighbour-of 
state)* 

We abbreviate this se+ence type as SNS(NS)*. Such 
a sequence is input to the rewrite operation which 
contains a list of tran@ormations. Each transformation 
basalepsidcandarightsi&(sepatatedbyanarrow). 
The left side of a transformation is apcrtterr, which is a 
listofoneormorevariablesdcnotingobjecttypes.Tbe 
right side is either an expression which must evaluate to 
an objeck or empty. The meaning is roughly that when- 
everasubsequezeofobjectsisawxnnteredmakhingone 
ofthepaaeXns,tbenthe camspondingtransformationis 
applied (a more precise deftition is given in [G&l]). 
Henccinourexample,theeffectisthat~~~~oftype 
skate in the sequence are thrown away whereas all 
nciglrbow-@objects are moved unchanged into the rcwllt 
sequence. So rewrite can be used to realixe a type 
rest&ion on a -=l-~ 

Applying rewrite, one should keep track of the 
manipulationofthesequencetypethatitimplies.Inouf 
example,theresultsequencewillhavetype~,thatis 

neighbour-of (neighbour-of]* 

The second example is again based ~1 the public 
transpm dambase from section-2.4. 

Q4. List all direct umnections from Dortmund to 

Munchen with the distance traveled. That means, 
lrovideatableofthefam: 
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Departmtime Arrival time Distance 
6.13 14.23 610 kms 
7.13 15.23 610 kms 
7.43 16.26 578 kms 

. . . 

To answer this query, all levels of the public transport 
network are needed The query can be formulated as 
follows: 

on departure at-station station( 
arrival at-station station(s2), departure 
in trip, arrival in trip 

where sl.name = "Dortmund" and s2.name = 
Wuenchenm 

derive dtime: departure.time, atime: 
arrival.time, distance: 
trip suffix (departure) prefix (arrival) 
rewrite 

[departure ->, arrival ->, stay ->, 
travel -> travel-dist = (dist: 

travel.through.way 
rewritr[vertex -> , 

arc -> arc-length = (len: 
lmgth(arc.route)) I 

8urflenl)l 
sur[distl 

order-by[ dtime +I 

This is already a fairly complex problem; it is still 
possible to formulate the query in a relatively concise 
way. The derive statement finds trip objects containing 
stops in Dortmund and Munchen. In the derive-clause 
objects with three attributes are produced, called dtime, 
atime, and distance, where distance is computed as 
follows: Each trip path is reduced by operations SI&X and 
prefix to the part between Dortmund and MUnchen. These 
are operations of the query language for the manipulation 
of sequences; the argument is besides the sequence an 
object,andthesequenceisreducedtothepartafterand 
including the object in case of suffix, similarly the paIt 
before the object for prefix. An object of a path class can 
behPateddkctlyasasequence,hfzncethese~are 
applicable to trip objects. The remaining part of the trip 
sequence is handled by a rewrite: departure, curival, and 
stay objects are thrown away; travel objects are 
transformed into new travel-dist objects with a single 
attribute called dist, whose vahle is computed as follows. 
From the travel object via its through attribute the 
underlying connection object is reached, fkom which via 
amibute way the -ding phys-route path object is 
obtained. We are now at the level of the physical network. 
Herethepathoftheform 

vertex arc vertex (arc vertex)* 

is again treated by a rewrite; vertex objects are thrown 
away and for each urc object a new arc-length object 
with a single attribute len is created whose value is deter- 
mined by applying a function length to the arc object’s 
route attribute (of data type LINES). Hence the result of 
the inner rewrite is a unifcam sequence of arc-length 
objects; sum is an aggregate function applicable to such a 
sequence. The result is a single number which is finally 

assigned to the dist attribute of the new travel-dist 
object. Again srun is applied to a uniform sequence of 
travel &tobjectstoobtainanumberwhichisthenused 
as b-distunce attributi value in the objects created by 
the derive statement. In a final step, the sequence of 
(tummed)objectsrehunedfromderiveissorttxlbydepar- 
ture time (dtime). 

Forlackofspace,inthispaperwecannotfurther 
elabomte on the rewrite operation. A definition of syntax 
and semantics can be found in [Gti94] where also an 
example of a more sophisticated manipuhuion of sequence 
types(“sequencerewriteprogramming”)isshown.Inthat 
respecttheexamplesofthissectionaretrivialsinceall 
patterns in rewrite operations consist only of a single 
v&iable(nosu~afeFeplaoed). 

3.3 union 

The union operation makes it possible to transform a 
heterogeneous sequence of objects into a uniform one, so 
that all objects in the sequence are viewed under a 
common tuple type. It does that by computing the 
smallest common super (tuple) type for the tuple types of 
the heterogeneous sequence. Consider the following 
example databax 

cl88a city = name: STRING, region: 
REGIONS, pop: INTEGER? 

cl8a8 village = name: STRING, position: 
POINT, pop: INTEGER; 

cl888 river = name: STRING, way: LINE; 

We can. for example, form the union of cities and 
VilhgtX 

<tit y, village> union 

Theresultisauniformsequencewithatupletype 

<(name, STRING), (region, GEO), (pop, INTEGER)> 

bemuse this is the smallest common supertype of the 
tuple types of city and village objects (see Section 2.2). 
Thenew~letypecanbeusedintherestofthequery,as 
in the following example. 

QS. List the names of all cities, villages, and rivers 
within Bavaria! (We assume that Bavaria has been 
introduced befcce as the name of a REGIONS value.) 

rurge of cvr i8 <city, village, river> 
union * 

on cvr 
where cvr.region in8idr Bavaria 
doriva cvr.name 

Intbiscasethetupletyperesultingfromthernion 
operation is <(name, STRING), (region, GEO)>. The 
geometric predicate inside has a signature GE0 x 
REGIONS + BOGL, hnce it is applicable to region 
attribute values of type GEO. This “dynamic genera- 
lization” feature is of particular impormnce for spatial 
databases where often collections of objects need to be 
formed that are just related by their spatial attributes (e.g. 
lie in the same area). For more motivation, see fGU91, 
ErG!x]. 
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3.4 Graph Operations 

In a way, we arrive now at the main goal of the 
development of tbe GraphDB data model: to be able to 
formulate graph operations and to integrate them in a 
clean way into querying. This is possible because the 
d&abase has a welldetined and explicit graph structme. In 
this section we do not yet describe a comprehensive col- 
lection of useful graph operations - this is a major task 
lefttofuturework-astbepurposeofthis~isto 
develop the right environment for the integration of such 
operations. But we show two examples. The fiit is an 
operation for finding shortest paths which has already 
been used in example query 43. It takes two simple 
objects,whichareusedasthestartandtargetnodesofthe 
search,respectively,andretumsa&ortestpathfromthe 
starttothetargetnodeinthefarmofaheterogeneous 
sequence. Further parameters ZKlZgiVWhSqUarebrackets 

behindtbeopemtcrname: 
l a path type, which identifies those parts of the data- 

basegraphtbatmaybeusedinthesearchanddefinesa 
precise structure for tbe resulting sequence (for rewri- 
ting manipulations), 

l for each class of edges (link objects) that may occur in 
the path according to the path type, a function 
assigning a cost to tbis edge. If such a function is not 
given as a parameter, a constant edge cost of 1 is 
assumedasadef&ilt. 

. for each class of nodes (simple objects) that may occur 
in tbe path according to the path type, a function 
givinganestimateddistancefromtbisnodetothetar- 
getnode.Thereasonthisparameterisneededisthat 
for the implementation of shortcstgath the A* 
algorithm (see [Ni80]) will be used, which needs to 
estimatetbedisumcefromthetargetfcrtKldese!ncoun- 
med in tbe search. As a default the function yielding 
constantly 0 is used. For A* to work correctly it is 
required that such a function must underestimate the 
distance to the target; with this function that is 
trivially true in which case A* reduces to Dijkstra’s 
algorithm. 

A further example query with a &or&t path search is 
given below. The subgtaph operation restricts the 
database graph for the following steps of a query. The 
argument (in square brackets) is a list of restrictions of the 
form “<classname> where <condition>“. One can 
mention simple classes, link classes, or path Classes. The 
semantics is that for the following steps of tbe query for 
each class that is mentioned only the objects qualified by 
the condition are part of the database graph. If, for 
example, a node class is restricted, then also only the 
edges incident with these nodes are present (or rather, 
visible) witbin the database, if edges are restricted, also 
paths going through “invalid” edges disappear. There is an 
inverse operation called fullgraph which restores the 
completedambasegraphforfurtherstepsofaquery.Botb 
&graph andjitllgraph form sepamte steps of a query. An 
efficient implementation of these opemtions is described 
in [GW] - by no means is it intended to make copies of 
tbedatabssegraph. 
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We illustrate the use of the subgraph operation in 
connection with a mote in&resting example of a shortest 
path search. Consider the following query on the highway 
network (Section 2.1): 

Q6. Find a shortest path from exit 16 to exit 252, 
avoiding a fog area described by a REGIONS value (a 
collection of polygons) fog! 

l ubgreph [section where not 
(section.route iatrr8rate fog)]; 

exit(nr = 16) exit(nr a 252) 
l horteetgath[sectiont, 

flln(s: section) 
lmgth(s.route)/s.top-speed, 
fun(v: vertex, target:vertex) 
dist'(V.pos, target.pos)/200] 

Herewehaveinthefirststepreseictedtoedgesfree 
fromfogandintbesecondstepcomputedashorte&patb 
over these edges with respect to traveling time (assuming 
lengthsanddistanMarestoredandcomputedinkms.and 
topspeedinkm.&!ur).Thesyntaxfordenotingflmction 
r (defined m [GU93]) is a variant of typed lambda 

. 

4 Conclusions 

We have pmsemed a data model that integm&s an explicit 
modeling of graph structures smoothly into a %mndard” 
object~ented modeling and querying environment. In 
particular, explicit path objects are offered, and graph 
operations can be defined whose argument graphs 
(subgrapbs of the dambase graph) can be specified by 
regular expressions over link class names. The derive 
statement extends the familiar sdect . . . from.. . where to 
aconvenientqueryingofrelationships(linkclasses,edges 
of the graph). The rewrite operation is a powerful tool for 
the manipulation of sequences, especially paths, in 
queries. The model is coupled to an implementation 
concept which offers special data structures for the 
mpresentationofgraphsandefficientgraphalgorithmsfor 
the graph operations. System architecture and 
implementation strategy ate described in the full paper 
[Gil94]. Besides being attractive for standard app&%ions, 
the model is particularly suitable for a sophisticated 
modeling and manipulation of spatially embedded 
networks, as has been demonstrated by the public 
-example. 

We are currently developing a first partial prototype 
for GraphDB following the system architecture and 
implementation plan described in [GM]. ‘I’be general 
extensible query proces&g environment will be offered 
by SECOND0 - a system based on the second-order 
signature concept described in [GU93] - which is just 
abouttobefMhed.Toreducetheimplementationeffott 
(thatis.tomaketbetaskmanageableatall)wearetry& 
touseasmuchaspossibIemodulesfromtheGralsystem 
[Gu89], for example, storage and buffer management, 
in&x structures, data types, implementations Of query 
processing operations (e.g. join algorithms). In a first 
phase. we would like to arrive at a prototype version tbat 
demonstm&4someintemstingpartoftbequery~g 



capabiLitiesne&dfccGraphDB.Tore&zetheGraphDB 
query language as such, it is necessary to implement a 
SECOND0 optimizer (perhaps along the lines of 
lBeG921) which is still a major open task. The devebp 
mentoftheGraphDBmodelandpx&typeisplatofthe 
ESPRIT project AMUSING. 

Otherfutureworkinclu&samorecompletedesignof 
thequerylanguage-inthispaperwehaveonlyintro- . 
ducedsomekeyelements-,thedesignofacorrespondurg 
SOS model level signature, and a formal definitia~ of the 
semantics of query language operations. Note that the 
extensible system architecture makes it possiti to post- 
pone a complete query language design even until the 
system is running; missing operations can always be 
tukle!dlam. 
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