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Abstract

We propose a data model and query language that
integrates an explicit modeling and querying of
graphs smoothly into a standard database environ-
ment. For standard applications, some key featu-
res of object-oriented modeling are offered such as
object classes organized into a hierarchy, object
identity, and attributes referencing objects.
Querying can be done in a familiar style with a
derive statement that can be used like a select
...from ... where. On the other hand, the model
allows for an explicit representation of graphs by
partitioning object classes into simple classes,
link classes, and path classes whose objects can
be viewed as nodes, edges, and explicitly stored
paths of a graph (which is the whole database
instance). For querying graphs, the derive state-
ment has an extended meaning in that it allows
one to refer to subgraphs of the database graph. A
powerful rewrite operation is offered for the
manipulation of heterogeneous sequences of
objects which often occur as a result of accessing
the database graph. Additionally there are special
graph operations like determining a shortest path
or a subgraph and the model is extensible by such
operations. Besides being attractive for standard
applications, the model permits a natural repre-
sentation and sophisticated querying of networks,
in particular of spatially embedded networks
like highways, public transport, etc.
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1 Introduction

The work described in this paper arose from the
observation that existing data models and query languages
do not offer adequate support for the modeling and query-
ing of networks. In particular, we are interested in spa-
tially embedded networks which are an important part of
geographic information, for example, highways, rivers,
public transport systems, power and phone lines etc. Cur-
rent spatial database models and systems (e.g. [SvH91,
RoFS88, OrM88, Gii89]) can weil enough represent the
geometry of such networks but have no concept of their
connectivity.

We feel that the most natural representation of a
highway network (taking it as a prototype for spatial
networks) is to view it as a graph whose nodes are
highway junctions, whose edges are highway sections,
and where highways are just certain paths over this graph.
Therefore we would like to offer a data model capable to
express this directly so that one can define a graph
structure with corresponding node, edge, and path objects.
For querying, special graph operations should be provided
such as finding a shortest path, determining a subgraph
within a given radius from a start node, etc.

On the other hand, modeling and querying networks is
certainly not the only thing a user wants to do; hence, all
of the more traditional applications should be supported as
well, and preferably in a style that is not too different
from what one knew before. The challenge is therefore to
achieve a smooth integration of the desired graph
modeling into a more classical environment. Ideally, if
one is not interested in networks, this model should be
usable like any of the well-known models, e.g. a relatio-
nal, functional, or object-oriented one.

The purpose of this paper is to present a data model
and query language that achieves such a smooth inte-
gration. On the one hand, we show that traditional
applications can be modeled and queried in a familiar
style, and indeed, better than before, because this model
offers very attractive features to represent relationships
between objects and to use them in queries. So we claim
that even without considering networks, this model is
suitable and quite interesting as a general purpose data
model. On the other hand, sophisticated modeling and
querying of networks is possible, as we demonstrate by a
number of examples. Our approach can be summarized as
follows:



» The data model contains a few salient features of
object-oriented models: A database is a collection of
object classes. Objects have identity and a tuple
structure; attributes may be data or object-valued.
Classes are organized in an inheritance hierarchy.
Central tool for querying is a derive statement which
so far offers similar capabilities as the traditional
select ... from ... where.

« The data model offers graphs: There are three different
kinds of object classes called smple classes, link
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role of nodes in the database graph. Link objects are
objects with additional distinguished references to
source and target simple objects. Path objects are
objects with an additional list of references to simple
and link objects that form a path over the database
graph.

* For querying the graph structure, (1) the derive
statement has an extended meamng In the on-clause
(the counterpart to the from ...) one can refer to
connected subgraphs of the database graph and so
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objects, and path objects ) There isa specml tool

for sophisticated manipulation of heterogeneous

sequences of objects (paths, in particular). (3) There is

a collection of graph operations; they can specify

argument subgraphs of the database by regular

expressions over link class names (edge types).

(4) The database graph can be extended or restricted

dynamically within a query.

In this paper we give a formal definition of the data
model and describe some key elements of the query
language. This is a short version of [Gii94], where many
aspects are treated in more depth, in particular, definition
of subclasses and rewriting of sequences (paths). In
[Gii94] additionally a system architecture and implemen-
tation strategy are described which are used in the
GraphDB prototype we are currently implementing.

In the literature, the manipulation of graphs in
databases has received quite a bit of attention, a survey can
be found in [MaS90]. However, to our knowledge
nowhere has the focus been on an explicit representation
of graphs together with a smooth integration into
standard modeling and querying. Most authors assume that
graphs can be modeled implicitly in terms of the usual
features of a given data model, e.g. the relational model
[Kung86, StR86, Ag87, BiRS90], or a functional model
[Rose86]. In most proposals the authors do not really care
how graphs are represented but just focus on the abstract
graph structure [CrMW87a, CrMW87b, CIN89, Rose86].
For querying, two main strategies are to offer general pur-
pose facilities that allow to express graph traversal pro-
blems (like recursion, iteration) [Rose86, SIR86], or to
offer special operators [Ag87, Rose86, CIN89). [BiRS90]
propose an SQL. extension based on the idea to generate a
set of paths in the from-clause from which interesting
paths are selected. In [CrMW87a, CrMW87b, CoM90,
CoM93] the idea is to formulate a query as a set of graphs
which are viewed as patterns; all subgraphs of the data-
base instance are returned matching these patterns. In all
of these approaches there is no explicit modeling of

graphs within a general database environment and there-
fore no problem of integration with the data model. In
some cases, graph querying has a very different style from
the rest of data i ion. — In contrast to the work
above, in [GyPV90a, GyPV90b, Andr92, GePTV93] the
approach is to model the database directly and entirely as a
graph and to express all queries in terms of a few power-
ful graph manipulation primitives. Graphical user inter-
facesareofferedfordirectinputofqucriesandvisualiza—
tion of results in terms of graph structures. This is
mainly intended as an end user interface to a database
system that may itself use another data model.

We feel that an explicit modeling of graphs is very
desirable for several reasons: (i) It leads to a more natural
modeling; graph structures are visible for the user, (ii)
queries can refer directly to this graph structure, (iii) path
objects can be defined (not present in any of the other
models) and they are the interesting entities in most
networks, (iv) the system can offer special data structures
for graphs, and (v) the system can use efficient graph
algorithms designed to utilize the special graph data
struchures,

The general approach of this paper has been pursued in
our own previous work [Gi91, ErG91] and that of
collaborators [AmS92]. In [Gi91] relations and graphs
coexist. A problem with that approach is that a graph
consisting only of nodes is practically the same as a
relation and it is hard to separate graphs from each other
and from relations in a database design. In [ErG91] graphs
occur in an environment with object classes but are still
scparate entities. There is the same problem of partitio-
ning a database into graphs. Also, in both approaches it
beoomesanmsancetomenuondleyaphargumem.sm
many places in queries. The querying facilities offered in
this paper go far beyond those of [Gii91, ErG91]. Amann
and Scholl [AmS92] offer a few selected features of our
model (node and edge objects, but no paths) in the context
of hypertext applications.

The paper consists of two major sections, describing
the data model and querying, respectively.

2 The Data Model

This section introduces the data model of GraphDB. We
start with an overview and show the modeling of some
example applications. In the following subsections, the
model is developed more formally and systematically,
defining bottom up the notions of data types, object
types, and tuple types, three kinds of object classes, a
database and the database graph. The main purpose in the
design of the data model is to achieve a “seamless”
integration of graph structures and graph operations into
the usual facilities for data modeling and querying.

2.1 Overview

A database is a collection of object classes which are
partitioned into three kinds of classes, called simple
classes, link classes, and path classes. Objects of a
simple class are on the one hand just like objects in other
models: They have an object type and an object identity
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and can have attributes whose values are either of a data
type (e.g. integer, string) or of an object type (that is, an
attribute may contain a reference to another object). So
the structure of an object is basically that of a tuple or
record. On the other hand, objects of a simple class are
nodes of the database graph — the whole database can
also be viewed as a single graph. Objects of a link class
are like objects of a simple class but additionally contain
two distinguished references to source and target objects
(belonging to simple classes), which makes them edges
of the database graph. Finally, an object of a path class is
like an object of a simple class, but contains additionally
a list of references to node and edge objects which form a
path over the database graph.

Besides the graph structure, object classes are
organized into a class hierarchy and there are related
notions of subtyping among tuple types, object types,
and data types. Let us now consider some examples of
data modeling with these facilities.

Standard Applications. As a simple standard
application, consider the representation of books and their
authors. We describe the database schema by showing
corresponding data definition commands.

create class book = title: STRING,

publisher: STRING, year: INTEGER;

create class person = name: STRING,

address: STRING;

create link class wrote from person to

book;

Here we have two simple classes book and person and
a link class wrote. Observe how a link class can directly
represent a many-many relationship. Attributes may be
defined for link classes in the same way as for simple
classes. Attributes may also contain object references. For
example, we might define persons to contain a reference
to their home country:
create class state = name:
region: REGIONS;:
create class person = name: STRING,
address: STRING, country: state;

Here REGIONS is a geometric data type describing the
area covered by the state.

Highway Network. The highway network is a
relatively simple example of a spatially embedded net-
work. It is a graph whose nodes are highway junctions
and exits; each of those has an associated point in the
geometric (or geographic) plane. We assume junctions are
charactenzedbyanameandexnsbyanumber Edges of
this graph are highway sections: pieces of road between
junctions and/or exits with an associated geometry which
is a polyline in the plane. The most interesting objects of
this network are highways: they correspond to paths over
the graph given by junctions, exits, and highway
sections.

create class vertex = pos: POINT;

create vertex class junction = name:

STRING;
create vertex class exit = nr:

STRING,

INTEGER;
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create link class section = route: LINE,
no_lanes: INTEGER, top_speed: INTEGER
from vertex to vertex;

create path class highway = name:
as section+;

Here junctions and exits are introduced as subclasses of
a simple class vertex, which means they inherit the pos
attribute. It also means that objects of both classes can be
used as sources and targets of section edges of the graph.
Indeed, there can also be “pure” vertex objects as nodes in
the graph; they are useful to separate highway sections
with different values of attributes such as no_lanes. The
highways themselves are defined to be paths over section
edges. Essentially the expression behind the keyword as is
a regular expression defining a path type which in turn
describes a set of paths of the database graph. Path types
are more interesting when different kinds of edges occur in
a graph. We will see examples and a more precise defini-
tion below.

STRING

22 Data Types, Object Types, and Tuple Types

Data Types. Let (D, <) be a finite set whose elements
are called data types, with a partial order “<” (“subtype”™)
which is restricted to organize data types into trees (that
is,Va,b,ceD:asbarasc=>b<cvcsh).If
two data types belong to the same tree, we call them
related. If two data types are related, then a smallest
common supertype, denoted lub(a, b) exists and is uni-
quely defined. Figure 1 shows a collection of data types
orgamwdmmsevemlm Here, for example, INTEGER
is a subtype of NUM (INTEGER < NUM) and
lub(POINTS, LINES) = GEO. Each data type has an
associated domain of values given by a function dom (e.g.
dom(BOOL) = {true, false}). If a < b then dom(a) C
dom(b). The purpose of the data type hierarchy is to allow
polymorphic functions to be defined, for example, an
intersection test can be applied to any two geometric
values in EXT.

7\”/6%

INTEGER REAL POINTS LINES REGIONS

Figure 1

Object Types. There is a finite set (OT, <) whose
elements are called object types with a (tree) partial order
“<”. We will see below that there is a one-to-one
correspondence between object types and classes in the
database; in fact, an object type is nothing else than the
name of a class. The partial order on object types
corresponds to the class hierarchy. Similarly as for data
types, two object types c, d may be related (belong to the
same tree) in which case the smallest common supertype,
lub(c, d), is well-defined.



Each object type has an associated set of object
identifiers which is a subset of a set of object identifiers
OID (which contains the identifiers of all objects created
so far). This set is given by a function oids: OT —
P(OID), where P(X) denotes the power setof X.If c <d
(c, d € OT), then oids(c) < oids(d). On the other hand,
if ¢ and d are not related, then oids(c) N oids(d) = . For
an object type ¢, oids(c) contains precisely the identifiers
of objects created so far in the corresponding class c.
Given an object identifier, we can determine its
immediate type (the smallest object type in the hierarchy
that it belongs to) by a function itype: OID —» OT
defined by:

itype(o)=c & (o0 € oids(c) A

Vde OT: o€ oids(d) = c<d)

Tuple Types. Let A be a set whose elements are
called atiributes — a domain of attribute names that can be
used in forming tuple types. The set of tuple types,
denoted 7T, is defined as follows:

IT = {<(a1,t1), ..., (Gm, tm)>1m 20,

Vie {1,...,m):a;€ A, tje D OT)

That is, each tuple type in 7T is a list of pairs where
each pair contains an attribute name together with either a
data type or an object type. The empty list <> is also a
tuple type. For each tuple type, there is a domain of tuple
values defined as follows. Let T € TT, T=<(ayl, 11), ...,
(am, t)n)>. oo

values(n = | JV;
i=m
where V; = (<(v1, 1), (v2, ¥2), ..., (vj, 4j)> |
Vje (1,....i}: uje D UOT
A uje D = vje dom(u))
A uje OT = vje oids(uj)
A j€m = uj <tj }

In other words, a tuple value is also a list of pairs of
some length i which must be at least m. Each pair is a
value together with a type, and the value must belong to
the corresponding data or object identifier domain.
Furthermore, within the first m components the type in
the tuple value must be a subtype of the corresponding
data or object type in the tuple type T.

The subtype relationship on tuple types is defined as
follows. Let T = <(ai, f1), ..., (@m, tm)>, U = <(b1,
u1), ..., (bp, un)> be two tuple types.

TSU :©& m2n A Vie (1,..,n):tiSy

That is, tuple components (attributes) are matched by
position. T must have at least as many components as U
and in each of the first a positions the type in T must be
a subtype of the one in U. Attribute names do not matter.
For tuple types T = <(ay, t1), ..., (@Gm. tm)>, U = <(b],
1), ..., (by, up)> one can determine a smallest common
supertype as follows:

lulb(T, U):=<(a1, lub(t1, &1)), ..., (ak, lub(tk, uk))>

where ke {0, ..., min(m, n)} such that for 1 S i<k, ¢;
and u; are related, and either k €. {m, n}, or 1541 and ug+1
are not related. In other words, we take the longest com-
mon prefix of related types and within it for each pair of
types their smallest common super data or object type. Of
course, the result may be the empty tuple type. Note that
attribute names are taken from the first operand, so the
operation is not commutative. The purpose of these defi-
nitions is to allow for a “dynamic generalization” of col-
lections of tuples. We will be able to form in queries any
union of sets of ples; for the resulting set, a new tuple
type is derived such that all tuples in the union match this
new type (see Section 3.3).

2.3 Classes and Database

A database is a pair (C, <) where C is a finite set of
classes, and “<” (“subclass™) a tree partial orderon C . A
class ¢ € C is a pair (ctype(c), extension(c)). The set of
classes C is partitioned into three subsets: C =SC U LC
U PC. Classes in SC, LC, and PC are called simple
classes, link classes, and path classes, respectively. The
subclass partial order respects this partition, that is,
asb=>(a,b}cSCv {a,b) cLC v {a,b) cPC

The two components of a class, its type and its
extension, are different for simple classes, link classes,
and path classes. Informally, the type defines the structure
of objects in the class, and the extension the collection of
objects currently contained in it. In the following subsect-
ions we describe type and extension for the three kinds of
classes, relating them to corresponding data definition
commands. Subclasses are treated in the full paper
[Gu94).

Simple Classes. A simple class is created by a com-
mand of the form

<class creation> ::= create class <class-

name> [ = <attribute-list>} ;
<attribute-list> ::= <attr-name> : <type>
| <attr-name> : <type> , <attribute-~list>

The type of a simple class is a pair (c, T), if it was
created by a command

create class c = T;

where ¢ is the class name used in the definition and T the
tuple type corresponding to the attribute list. If the optio-
nal clause is omitted, then the tuple type is the empty
type <. For brevity, we will speak in definitions simply
of a class (c, T) instead of “a class with type (c, T)". As
mentioned in Section 2.2, there is a one-to-one correspon-
dence between classes and object types. Hence, the class
creation command creates at the same time a new object
type ¢ € OT. The extension of a simple class (¢, T) is a
subset of oids(c) X values(T), that is, a set of pairs con-
sisting of an object identifier and a tuple value. Object
identifiers are all distinct:

V (01, t1), (02, 12) € extension(c): 01=02 = t1=£2

Link Classes. A link class is created by a command
of the form
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<class creation> ::= create link class
<class-name> [ = <attribute-list>] from
<class-name> to <class-name> ;

The type of a link class is a quadruple (c, T, d, e) if it
was created by a command:

create link class ¢ = T from d to e;

Here d and ¢ must be the names of simple classes.
The extension of a link class (¢, T, d, e) is a set of
quadruples which is a subset of oids(c) X values(T) x
oids(d) x oids(e).

The Database Schema and Instance Graphs. Before
we can define path classes, we need to understand the
graph structure created by a collection of simple classes
and link classes, which consists of a database schema
graph and a database instance graph. We generally
describe graphs as two sets (nodes and edges) together
with two mappings source and target from the edges into
the nodes. This is because multiple edges between the
same two nodes are allowed in our data model.

The database schema graph is SG = (S, L, source,
target), where
@ S={cl{(c.T),ext)e SC}

) L=(cl{cT,d,e)ext)e LC)
(iii) sowrce: L — S is defined by

source(c)=d & ((,T.d,e),ext)e LC
(iv) target: L — S is defined by

target(c)=e & ((c,T,d,e),ext) e LC

So for each simple class and each link class there is
one node and one edge in the schema graph, respectively.
These nodes and edges are also the object types correspon-
ding to the respective classes.

The database instance graph is IG = (S, L, source,
target), where
@ S={ol3ce SC:(o,1) € extension(c)}

(i) L={ol3ce LC:(o,1,p,q)€ extension(c)}
(iii) source: L — S is defined by
source(o)=pe Ice LC: (o,t,p,q) €
extension(c)
(iv) target: L — § is defined by
target(o)=q= 3ce LC: (o,t,p,q) €
extension(c)

So the nodes and edges of this graph are object
identifiers of objects in simple and link classes, respect-
ively.

A path type is a quadruple (G, M, s, F) where
(i) G=(V,E, source, target) is a connected graph.
(i) p:VuE > OT is a function labeling nodes and

edges of G with object types such that
@ veV = 3((c,T,ex)e SC: p(v)=c¢
® ecE = 3(cT,a,b),ext)e LC:
pe)=c A W(source(e)) =a
A W(target(e)) =b
(iii) se V (the start node)
@iv) F cV (the final nodes)

Basically, a path type is nothing else than a finite
automaton belonging to a regular expression over link
class names, s is the start state, F the set of final states.
The labeling function i ensures consistency with the
database schema graph. Each path in G from start node s
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to some node in F describes a corresponding set of paths
in the database instance graph, defined below. In Figure 2
the path type corresponding to the regular expression
“section+” from path class highway (Section 2.1)"is
shown (a circle around a node indicates the start node, a
box one of the final nodes).

vertex vertex
i
@ (@] scton
Figure 2
Path types are used in the definition of path classes,
but also in queries, where graph traversal can be restricted
to graphs of a desired form. ApathoverIG(thedatabase

instance graph), also called a database path, is a sequence
of object identifiers

P =<v(, e1, V1, ..., Vu-1, €p, V>
where for 0 < j S n: vJeSandforlsJSn ejeL,
source(e;j )= vj-1, and target(e; ) = vj. This path
matches a path type (G, M, s, F) lff there exists a path
P =<V, E1, V1, ..., Vp-1, Ep-1, Vp> in G such that:
@ Vo=s
(ii) VyeF
@iii) ForO0<j<n: itype(vj) < u(V)) (itype yields the

immediate type of object identi wrvj)
(iv) Forlsjsn: itype(ej) < JUEj)

In other words, the database path p must have a
corresponding path P in G such that each object in the
path p is of a subtype of the one required in P, We denote
by paths(G, i, s, F) the set of all database paths
matching path type (G, W, s, F).

Path Classes. A path class is created by a command
of the form:

<class creation> ::= create path class

<class-name> [ = <attribute-list>] as

<link-expression>
<link-expression> ::=

<class-name>

| <link-expression> <link-expression>

| (<link-expression> or <link-

expression>) | (<link-expression>)*

Essentially a link expression LE is a regular expres-
sion over class names which must belong to link classes.
The regular expression must be chosen in such a way that
it defines a connected graph, that is, a path type. The cor-
respondence between regular expressions and path types is
straightforward. If a path class was created by a command

create path class ¢ = T as LE;
then its type is the triple (c, T, (G, |, s, F)) wheze (G,
M, s, F) is the path type corresponding to LE. The
extension of class (c, T, (G, |, s, F)) is a set of triples
subset of oids(c) X values(T) X paths(G, W, s, F).

2.4 The Public Transport Network

In this subsection we introduce a larger example which
may give a better impression of the kind of applications
this data model (and database system) is intended for. We
shall also show some queries for this example in the next

<class-name>+ |



section. The application domain to be represented is pub-
lic transport, ¢.g. bus, tram, or train lines and schedules.
On closer inspection, this application is more complex
than one might have expected. One can distinguish three
levels of network, describing the physical network,
lines, and iime scheduies. The iowesi levei represenis ihe
geometry of the network used for traveling. For example,
for a railway network, at this level we find rails and
switches, switches being the nodes and rail sections the
edges of the graph. We call paths over this level physical
routes. This level is modeled as follows:

class vertex = pos: POINT;

link class arc = route: LINE from vertex

to vertex;
path class phys_route as arc+;

The next level introduces regular connections over the
physical network usually called lines, for example, bus or
underground lines traversing a certain path of the physical
network. A line may be identified with a number or by
giving the names of final destinations at both ends, and it
contains a list of stops that we call stations. (A line is
what is usually depicted on the wall within a bus or
underground carriage.) Note that this level does not yet
contain the time schedule for trips over lines.

class station = name: STRING, loc: vertex;

link class connection = travel minutes:

INT, way: phys_route from station to
station;

path class line = line type: STRING,

line_no: INT as connection#;

Observe that this second level contains references to
the first level, the physical network, associating stations
by attribute loc with their physical positions (assuming
that for each station a vertex has been established) and
connections as a piece of the line between two stations
by attribute way with a corresponding path over the
physical network. Lines are paths of this level; the
line_type attribute may be used to distinguish types of
connections, e.g. fast long distance trains from slow local
trains in a railway network.

The third level contains the actual time schedules. We
model this as a collection of departure and arrival
events, which will be the nodes of the third level graph.
A departure event, for example, says that at a certain time
a carrier (e.g. a train) of a specified line departs from a
given station, A specific trip of a train over a line then
corresponds to an alternating sequence of departure and
arrival events (Figure 3).

D RS?I wravel
7.1 -
Kéln
D RSB1
7.50
1dorf
Figure 3

In Figure 3 D and A stands for departure and arrival,
respectively; “RSB1” is the name of a particular line. The
event nodes of a specific trip are connected by travel and
stay edges. On the other hand, we can change at a station
from one line to another (more precisely, from a trip of
one line 1o a trip of another line). To model this, the arri-
val and departure events at one particular station are con-
nected by change and wait edges, as shown in Figure 4.

wait
travel A.%f,?l stay D.%ggl travel
’ Diisseldorf ’ Diisseldorf ’
Figure 4

The idea is that a change edge connecis an arrival
event with the next departure one can reach in time at this
station, and that all departure events are linked in the order
of departure time. Hence changing at a station can be
described by a sequence of change and wait edges of the
form change wait* (which is a path type). A complete
trip of a traveler with possibly several changes of trains
has a path type travel (stay travel)* (change wair*
travel (stay travel)*)*.

So the third level is modeled as follows:

class event = time: INT, at_station:

station, of line: line;

event class arrival, departure;

link class travel = through: connection

from departure to arrival;

link class stay from arrival to

departure;

link class change from arrival to

departure;

link class wait from departure to

departure;

path class trip as travel (stay travel)*;

A graphical representation of this rather complex
database schema is given in Figure 5. Here a path class is
represented as a circle around its participating simple and
link classes (omitting the more precise information in the
path type); object-valued attributes are indicated by dashed
lines.
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3 Queries

In this section we briefly discuss the concept of a query
on a graph database, explain the structures the user
manipulates in queries, and show some fundamental tools
(statements, operations) for querying. We do not yet
develop a complete query language but rather introduce
some core elements. Also at this stage the semantics of
operations are only described informally.

Query Concept. We would like to be able to concept-
uvally modify the database graph in a query, for example,
to add some edges computed by a query expression and
then to apply a graph operation traversing old as well as
new parts of the database graph, or to restrict the graph for
consideration in a query. Therefore a query Q may consist
of several steps, Q = ¢1; ...; gm. Each step may compute
one or more classes of simple, link, or path objects. After
each step, these classes are added to the database (and so,
implicitly, extend the database graph). Or a step may ex-
press a restriction of the database graph for the following
steps. Hence a graph operation used in step gj “sees” the
graph with the changes computed in steps q1, ..., gj-1.
Examples of such multistep queries are given below.

Structures. What kind of structures at the conceptual
level does a user create and manipulate in queries? Candi-
dates might be graphs, sets of objects, nested relations,
lists of object identifiers, etc. The design goal is to keep
this collection simple but sufficiently expressive. It turns
out that for our model four kinds of structures/objects suf-
fice, namely a uniform sequence of objecis, a heteroge-
neous sequence of objects, a (single) object, and a
value of a data type.

A uniform sequence of objects contains a set of
objects, usually from a single simple class, link class, or
path class, in some, not necessarily specified, order. More
precisely, the objects in the sequence may come from
different classes but are all viewed under only one
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common tuple type. We use sequences rather than sets
because it is then possible to offer operations in the query
language making use of the order such as sorting, or
taking head or tail of a sequence (see [GiiZC89, MaV93]).
Such a sequence of objects is the basic structure in
formulating queries; since each object contains a tuple, it
is the equivalent of a relation in the relational model. The
most simple way to obtain a uniform sequence is just to
write the name of a class. For example, writing *“person”
yields a sequence containing all person objects.

A heterogeneous sequence of objects may contain
objects from several classes. These objects may have
several different object as well as tuple types. For
example, the node and edge objects forming a path in the
database may be given as such a sequence. But more
generally, heterogeneous collections of objects can be
formed in queries and be manipulated in this form. The
basic way to obtain a heterogeneous sequence is to write
the name of several classes in angular brackets. For
example, “<book, person, wrote>" yields a sequence of
the corresponding objects from three different classes
(Section 2.1).

What can one do with such a “mixed” collection of
objects? First, there is a specialized and very powerful
tool in the query language, called the rewrite operation,
to deal with such sequences (Section 3.2). Second, in the
same way as we have interpreted the set of simple, link,
and path classes making up a database as a database
graph, we will be able to interpret such collections as
graphs or even as new parts of the database graph that are
added in a query. Therefore, no specific types for graphs
are needed in the user's conceptual model for querying.
Third, one can apply a union operation in the query
language to a heterogeneous sequence and so transform it
into a uniform sequence (Section 3.3).

Tools for querying. The fundamental tools for
querying a graph database are:

« The derive statement, which takes the role of the
classical select ... from ... where, but has an extended
meaning for graphs; it includes the functionalities of
selection, join, projection, and function application;

« the rewrite operation as a basic tool for the manipu-
lation of heterogeneous sequences; it allows to replace
objects or subsequences by other (new) objects;

« the union operation for achieving “dynamic generali-
zation”, that is, for transforming a heterogeneous col-
lection of objects into a homogeneous one, viewed
under a common super tuple type;

« a collection of graph operations, e.g. shortest path
search.

Additionally, the query language will contain further
operations, e.g. for sorting, grouping, aggregate func-
tions, data type operations, etc. In the following subsec-
tions we explain the four main tools listed above.
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The derive statement is the most fundamental tool in the
query language. Perhaps the best way to introduce it is to
show a few examples, The first refers to the standard
application from Section 2.1:

Derive



Q1. List the titles of all books written (coauthored) by
Hopcroft in 1983!

on person wrote book

where person.name = "Hopcroft™ and
book.year = 1983

derive book.title

Here the on-clause says that each combination of
person, wrote, and book objects should be considered
where the person is connected by the wrote link to the
book. From this collection of triples of objects the where-
clause selects those fulfilling the two conditions. The
derive-clause creates for each selected triple a new object
with a single attribute called fitle whose value is taken
from the attribute title of the book object in the triple. In
this case, simple objects of an unnamed object type are
created. It is also possible to create link objects, for
example; other cases and the semantics in general are
described below. The second example query is based on
the public transport database from Section 2.4.

Q2. Make a listing of all departures from Dortmund
main station in the form:

Time of Typeand  End station and
departure number of  arrival time
train
6.13 IC 615 Miinchen 14.23
6.22 D308  Wiesbaden 12.18

The time of departure can be found within a departure
event. Type and number of train correspond to a line type
and a line number. The name of the final destination is
either in the last node of a line path or can be found from
the last event of a trip path. However, only the last event
of a trip also contains the arrival time. The query can be
formulated as follows:

on departure at_station station, departure

of_line line, departure in trip

where station.name = "Dortmund®™

derive departure.time, line.line_ type,

line.line_no, (trip end).at_station.name,
(trip end).time

Here in the on-clause all combinations of departure
events, stations, lines and trips are formed where (i) the
departure object is connected through its object-valued
attribute at_station with the station object (that is,
departure.at_station = station), (ii) the departure object
is connected through attribute of line with the line
object, and (iii) the departure object is a node in the path
of the trip object. Note that in queries object-valued attri-
butes can be used quite in the same way as link objects.
There is some freedom here for the user to specify such
connections in the on-clause or e.g. within predicates of
the where-clause. In this example, it would be possible to
reduce the on-clause to departure in trip and to
require in the where-clause departure.at_station.name
= "portmund" (and to access the 1ine object similarly).

There is nothing new in the where- and derive-clauses
except of the use of a function end to get from a path
object its last node object.

Let us now consider syntax and semantics of the
derive-statement in general. It has the following form:
<derive-statement> :
declarations> ] on <subgraph-spec>
[ where <condition> ] derive <object-
spec>

Range declarations are needed to feed into a derive sta-
tement the result of a query expression. They are not fur-
ther discussed here (see [Gil94]), but an example occurs in
query Q5 below. A subgraph specification has the form:

<subgraph-spec> ::= <pattern> | <pattern> ,

<subgraph-spec>

<pattern> ::= <var-intro>

| <simple-var-intro> <link-var-intro>

<simple-var-intro>

| <simple~-var-intro> im <path-var-intro>

} <link-var-intro> ia <path-var-intro>

| <var-intro><attribute-name><var-intro>
<var-intro> ::= <object-type> | <object-

type> (<newname>)

A subgraph specification is a list of patterns. A pat-
tern either introduces just a single variable or it connects
two or three variables in various ways, requiring that a
simple object is connected through a link object to
another simple object, a simple object occurs as a node
within a path object, a link object occurs as an edge
within a path object, or a simple object has another
simple object as an attribute value, respectively. A
variable is introduced by either writing the name of an
object type (class name) which is then used as a variable,
or by introducing a new name explicitly, for example, in
the form “state(s1)”. This is needed when several
variables range over the same class.

In the evaluation of the on-clause all possible
assignments of objects to the variables are considered and
those tuples of objects determined that are simultaneously
consistent with all patterns. In general, the patterns in the
on-clause describe one or more connected graphs (if we
draw an edge between two variables linked in a pattern). If
two or more graphs are present, it means that the cartesian
product of the possible object tuples for each graph will
be formed. Therefore, if each pattern is just a variable
name, then we have the classical cartesian product
operation of a join, if there are connecting conditions in
the where-clause. If there is only one pattern which is a
single variable, then we have a simple selection. The
where-clause contains just a condition, used to filter
tuples of objects coming from the on-clause. The derive-
clause specifies how a resulting set of objects is to be
formed, in the following form:

<object-spec> ::= <variable>

| { <newname> = ] <attribute-spec-list>
| <newname> [ = <attribute-spec~list> ]
from <variable> to <variable>
<attribute-spec-1list> ::= <attr-spec> |
<attr-spec> , <attribute-spec-list>
<attr-spec> ::= <variable>.<attr-name> |
<newname>: <expression>

The object-specification can either be one of the
variables of the derive statement, which means that these

:= [ <range
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objects are put into the result sequence; so the whole
statement amounts to a8 more or less complex selection.
The other case is that new objects are formed. For these a
new object type (name) may be given by the
“<newname>="pan;ifitisomitted.anamewillbe
selected internally by the system (which is obviously
unknown 0 the user and can therefore not be used in the
rest of the query). Next, attributes for the new objects are
defined. The first form is “<variable>.<attr-name>" in
which case the new attribute name as well as the value is
taken from the object denoted by the “<variable>". The
other possibility is to explicitly introduce an attribute
name and to assign to it by an arbitrary expression a value
of a data or object type. So far, if the from-to-part is
omitted, simple objects will be created. If the from-to-part
is present, then the variables must refer to simple classes.
In this case link objects are created connecting the
corresponding pairs of objects assigned to the from- and
to-variables. Creation of path objects in the derive
statement has so far not been provided in the design.

The following example illustrates several points,
namely the use of explicit variables, the formulation of a
classical join in the derive statement, the creation of link
objects, and the dynamic modification of the database
graph in a multistep query. We assume the following
database to be given:

class state = sname:

REGIONS;

Here REGIONS is a spatial data type describing a
polygonal region. The query is:

Q3. How many countries must be traversed traveling

(by land) from Germany to China?

on state(sl), state(s2)

where sl.region adjacent s2.region

derive neighbour_ of = cblength:

length (common_border(sl.region,
s2.region) from sl to s2;

STRING; region:

state ("Germany™) state("China")

shortest_pathineighbour_of+}

rewrite[state -> , neighbour_of ->

neighbour_of] count

This is a multistep query; the first step is the derive
statement which constructs a set of neighbour_of edges
and adds them to the database graph; the second step uses
these edges to find a shortest path from Germany to
China. Here we only discuss the derive statement, the
secongd step will be explained below when rewrite and
shortest-path operations have been introduced. Explicit
variables are used because two variables range over the
same class. The patterns in the on-clause describe two
independent graphs. So a cartesian product is formed
which together with a subsequent selection condition
amounts to a join (adjacent is a geometric predicate
applicable to two REGIONS values). The derive-clause
creates a new link object class neighbour_of between any
two qualifying state objects; as an attribute of such a link
the length of the common boundary is computed, using
two geometric data type operations length and
common_border. This is just to give an example of
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creating attribute values for a derived link class, the
attribute is not needed for this query.

3.2 Revwrite

The rewrite operation is a very powerful tool for dealing
with heterogencous sequences and in particular, to mani-
pulate paths (which are heterogeneous sequences). One
snmplewaytouseulssnmﬂartocase-statemmtsmpm-
gramming languages, since one can specify a treatment
separately foreachobpcttypeﬂmmaycomealongma
heierogencous sequence. Bui ii is also possibie 0 apply
transformations to whole subsequences of a given se-
quence. In this case the order of elemeats in the sequence
plays a crucial role; to understand this order, path types
(or, more generally, sequence types) defined in Section
2.3 are essential. Again, let us introduce the rewrite
operation by a few examples. First, consider the second
step of query Q3:

state("Germany") state("China"™)

shortest_path([neighbour_of+]

rewrite[state -> , neighbour_of ->

llc.&l’llUUUL_UL ] wVHHY

Here the shortest_path operator (whose arguments
will be explained below) computes a shortest path from
one state object (Germany) to another one (China). The
two state objects are determined by a special “object
identification™ notation (see [G{194]). The result is a
heterogencous sequence of state and neighbour_of
objects. The result has a sequence type (which is equiva-
lent to a path type, but also mentions the types of node
objects)

state neighbour_of state (neighbour_of

state) *

We abbreviate this sequence type as SNS(NS)*. Such
a sequence is input to the rewrite operation which
contains a list of transformations. Each transformation
has a left side and a right side (separated by an arrow).
The left side of a transformation is a pattern which is a
list of one or more variables denoting object types. The
right side is either an expression which must evaluate to
an object, or empty. The meaning is roughly that when-
ever a subsequence of objects is encountered matching one
of the pattems, then the corresponding transformation is
applied (a more precise definition is given in [G94]).
Hence in our example, the effect is that all objects of type
state in the sequence are thrown away whereas all
neighbour_of objects are moved unchanged into the result
sequence. So rewrite can be used to realize a type
restriction on a he(erogeneous uence.

Applying rewrite, one should keep track of the
manipulation of the sequence type that it implies. In our
example, the result sequence will have type NN*, that is

neighbour_of (neighbour_of)*

The second example is again based on the public
transpoit database from Section 2.4.

Q4. List all direct connections from Dortmund to
Miinchen with the distance traveled. That means,
provide a table of the form:



Departure time  Arrival time  Distance

6.13 14.23 610 kms
7.13 15.23 610 kms
7.43 16.26 578 kms

To answer this query, all levels of the public transport
network are needed. The query can be formulated as
follows:

on departure at_station station(sl), _

arrival at_station station(s2), departure
in trip, arrival in trip

where sl.name = "Dortmund" and s2.name =

"Muenchen"™
derive dtime: departure.time, atime:
arrival.time, distance:
trip suffix(departure) prefix(arrival)
rewrite
[departure ->, arrival ->, stay ->,
travel -> travel dist = (dist:
travel.through.way
rewrite(vertex -> ,
arc -> arc_length = (len:
length(arc.route))}
sum{lenl])]
sum(dist]
order_by[dtime +]

This is already a fairly complex problem; it is still
possible to formulate the query in a relatively concise
way. The derive statement finds #rip objects containing
stops in Dortmund and Miinchen. In the derive-clause
objects with three attributes are produced, called drime,
atime, and distance, where distance is computed as
follows: Each trip path is reduced by operations suffix and
prefix to the part between Dortmund and Miinchen. These
are operations of the query language for the manipulation
of sequences; the argument is besides the sequence an
object, and the sequence is reduced to the part after and
including the object in case of suffix, similarly the part
before the object for prefix. An object of a path class can
be treated directly as a sequence, hence these operations are
applicable to trip objects. The remaining part of the trip
sequence is handled by a rewrite: departure, arrival, and
stay objects are thrown away; travel objects are
transformed into new travel_dist objects with a single
attribute called dist, whose value is computed as follows.
From the travel object via its through attribute the
underlying connection object is reached, from which via
attribute way the corresponding phys_route path object is
obtained. We are now at the level of the physical network.
Here the path of the form

vertex arc vertex (arc vertex)*

is again treated by a rewrite; vertex objects are thrown
away and for each arc object a new arc_length object
with a single attribute len is created whose value is deter-
mined by applying a function length to the arc object’s
route attribute (of data type LINES). Hence the result of
the inner rewrite is a uniform sequence of arc_length
objects; sum is an aggregate function applicable to such a
sequence. The result is a single number which is finally

assigned to the dist attribute of the new travel_dist
object. Again sum is applied to a uniform sequence of
travel_dist objects to obtain a number which is then used
as the distance attribute value in the objects created by
the derive statement. In a final step, the sequence of
(unnamed) objects returned from derive is sorted by depar-
ture time (dtime).

For lack of space, in this paper we cannot further
elaborate on the rewrite operation. A definition of syntax
and semantics can be found in [(Gii94] where also an
example of a more sophisticated manipulation of sequence
types (““sequence rewrite programming”) is shown. In that
respect the examples of this section are trivial since all
patterns in rewrite operations consist only of a single

variable (no subsequences are replaced).
3.3 Union

The union operation makes it possible to transform a
heterogeneous sequence of objects into a uniform one, so
that all objects in the sequence are viewed under a
common tuple type. It does that by computing the
smallest common super (tuple) type for the tuple types of
the heterogeneous sequence. Consider the following
example database:
class city = name: STRING, region:
REGIONS, pop: INTEGER;
class village = name: STRING, position:
POINT, pop: INTEGER;
class river = name: STRING, way: LINE;

We can, for example, form the union of cities and
villages:

<city, village> union

The result is a uniform sequence with a tuple type

<(name, STRING), (region, GEO), (pop, INTEGER)>

because this is the smallest common supertype of the
tuple types of city and village objects (see Section 2.2).
The new tuple type can be used in the rest of the query, as
in the following example.

Q5. List the names of all cities, villages, and rivers
within Bavarial (We assume that Bavaria has been
introduced before as the name of a REGIONS value.)

range of cvr is <city, village, river>
uanion,

on cvr

where cvr.region inside Bavaria

derive cvr.name

In this case the tuple type resulting from the union
operation is <(name, STRING), (region, GEO)>. The
geometric predicate inside has a signature GEO X
REGIONS — BOOL, hence it is applicable to region
attribute values of type GEO. This “dynamic genera-
lization” feature is of particular importance for spatial
databases where often collections of objects need to be
formed that are just related by their spatial attributes (e.g.
lie in the same area). For more motivation, see {Gii91,
ErG91).
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3.4 Graph Operations

In a way, we arrive now at the main goal of the
development of the GraphDB data model: to be able to
formulate graph operations and to integrate them in a
clean way into querying. This is possible because the
database has a well-defined and explicit graph structure. In
this section we do not yet describe a comprehensive col-
lection of useful graph operations - this is a major task
left to future work — as the purpose of this paper is to
develop the right environment for the integration of such
operations. But we show two examples. The first is an
operation for finding shortest paths which has already
been used in example query Q3. It takes two simple
objects, which are used as the start and target nodes of the
search, respectively, and returns a shortest path from the
start to the target node in the form of a heterogeneous
sequence. Further parameters are given in square brackets
behind the operator name:

* apath type, which identifies those parts of the data-
base graph that may be used in the search and defines a
precise structure for the resulting sequence (for rewri-
ting manipulations),

« for each class of edges (link objects) that may occur in
the path according to the path type, a function
assigning a cost to this edge. If such a function is not
given as a parameter, a constant edge cost of 1 is
assumed as a default.

» for each class of nodes (simple objects) that may occur
in the path according to the path type, a function
giving an estimated distance from this node to the tar-
get node. The reason this parameter is needed is that
for the implementation of shortest_path the A*
algorithm (see [Ni80]) will be used, which needs to
estimate the distance from the target for nodes encoun-
tered in the search. As a default the function yielding
constantly 0 is used. For A* to work correctly it is
required that such a function must underestimate the
distance to the target; with this function that is
trivially true in which case A* reduces to Dijkstra’s
algorithm.

A further example query with a shortest path search is
given below. The subgraph operation restricts the
database graph for the following steps of a query. The
argument (in square brackets) is a list of restrictions of the
form “<classname> where <condition>”. One can
mention simple classes, link classes, or path classes. The
semantics is that for the following steps of the query for
each class that is mentioned only the objects qualified by
the condition are part of the database graph. If, for
example, a node class is restricted, then also only the
edges incident with these nodes are present (or rather,
visible) within the database; if edges are restricted, also
paths going through “invalid” edges disappear. There is an
inverse operation called fullgraph which restores the
complete database graph for further steps of a query. Both
subgraph and fullgraph form separate steps of a query. An
efficient implementation of these operations is described
in [Gii94] — by no means is it intended to make copies of
the database graph.
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We illustrate the use of the subgraph operation in
connection with a more interesting example of a shortest
path search. Consider the following query on the highway
network (Section 2.1):

Q6. Find a shortest path from exit 16 to exit 252,
avoiding a fog area described by a REGIONS value (a
collection of polygons) fog!
subgraph(section where not
(section.route intersects fog)];
exit(nr = 16) exit(nr = 252)
shortest_path([section+,
fun(s: section)
length(s.route)/s.top_speed,
fun(v: vertex, target:vertex)
dist (v.pos, target.pos)/200}

Here we have in the first step restricted to edges free
from fog and in the second step computed a shortest path
over these edges with respect to traveling time (assuming
lengths and distances are stored and computed in kms, and
top-speed in kms/hour). The syntax for denoting function
parameters (defined in [Gii93]) is a variant of typed lambda
calculus.

4 Conclusions

We have presented a data model that integrates an explicit
modeling of graph structures smoothly into a “standard”
object-oriented modeling and querying environment. In
particular, explicit path objects are offered, and graph
operations can be defined whose argument graphs
(subgraphs of the database graph) can be specified by
regular expressions over link class names. The derive
statement extends the familiar select ... from... where 10
a convenient querying of relationships (link classes, edges
of the graph). The rewrite operation is a powerful tool for
the manipulation of sequences, especially paths, in
queries. The model is coupled to an implementation
concept which offers special data structures for the
representation of graphs and efficient graph algorithms for
the graph operations. System architecture and
implementation strategy are described in the full paper
[Gii94]. Besides being attractive for standard applications,
the model is particularly suitable for a sophisticated
modeling and manipulation of spatially embedded
networks, as has been demonstrated by the public
transport example.

We are currently developing a first partial prototype
for GraphDB following the system architecture and
implementation plan described in [Gii94]. The general
extensible query processing environment will be offered
by SECONDO - a system based on the second-order
signature concept described in [Gii93] - which is just
about to be finished. To reduce the implementation effort
(that is, to make the task manageable at all) we are trying
to use as much as possible modules from the Gral system
[Gii89], for example, storage and buffer management,
index structures, data types, implementations of query
processing operations (e.g. join algorithms). In a first
phase, we would like to arrive at a prototype version that

" demonstrates some interesting part of the query processing



capabilities needed for GraphDB. To realize the GraphDB
query language as such, it is necessary to implement a
SECONDO optimizer (perhaps along the lines of
[BeG92]) which is still a major open task. The develop-
ment of the GraphDB model and prototype is part of the
ESPRIT project AMUSING.

Other future work includes a more complete design of
the query language - in this paper we have only intro-
duced some key elements —, the design of a corresponding
SOS model level signatre, and a formal definition of the

amea of anaruv lanomoaoa anaratinne Nnta Qhat tl\n
semantics of Gucry anguage OpOraucns. NOW

extensible system architecture makes it possible to post-
pone a complete query language design even until the
system is running; missing operations can always be
added later.
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