
GraphDB: Modeling and Querying Graphs in Databases

RalfHiutmut Gtiting
Fkxktische Infomtik IV, FemUniversit%t Hagen

D-58084 Hagen, Germany
gueting@fernuni-hagende

Abstract

Weproposeadatamodelandqueaylanguagethat
integrates an explicit modeling and querying of
graphssmoothlyintoastandsrddambaseenvimn-
ment For standard applications, some hey featu-
resofobjectuientedmodeling~offesedsuchas
object classes organized into a hierarchy, object
identity, and attributes referencing objects.
Queryingcanbedoneinafamiliarstylewitha
&rive statement that can be used like a select
. ..from . . . wkre.Gntheotherhand,themodel
allows for an explicit mpresentation of graphs by
partitioning object classes into simple classes,
linkclasses,andpathclasseswhoseobjectscan
be viewed as nodes, edges, and explicitly stored
paths of a graph (which is the whole dambase
ins-). For querying graphs, the derive state-
ment has an extended meaning in that it allows
onetoiefertosubgraphsofthedambasegraph.A
powerful rewrite operation is offered for the
manipulation of heterogeneous sequences of
objects which often occur as a result of accessing
thedambasegraph.Additionallytherearespecial
graphoperationslikedekmnn@a&ortestpath
or a subgmph and the model is extensible by such
operations. Besides being attractive for standard
applications, the model permits a natural repre-
sentation and sophisticated querying of nelworks,
in parhk of spatially embedded networks
like highways, public transpart, etc.

This work was suppoxted by the ESPRIT Basic Resepch
Project 6881 AMUSING

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is

given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee

and/or special permission from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

1 Introduction

The work described in this paper arose from the
observationthatexistingdatamodelsandquaylanguages
donotofferadequatesupportfclrthemodelingandquery-
ing of nerworiks. In particular, we ate interested in spu-
tially embedded networks which are an important part of
geogrsphic information, for example, highways, rivers,
public transport systems, power and phone lines etc. Cur-
rent spatial dambase models and systems (e.g. [SvH!N,

RoFM, GrMgg, GtM]) can well enough represent the
geometry of such networks but have no concept of their
connectivity.

We feel that the most natural representation of a
highway network (taking it as a prototype for spatial
networks) is to view it as a graph whose nodes are
highway junctions, whose edges are highway sections,
and where highways are just certain paths over this graph.
Thereforewewouldliketoofferadatamodelcapableto
;~$~directly so that one can define a graph .

compndhg node, edge, and path objects.
Forquerying,specialgraphopetationsshouldbeprovided
such as finding a shortest path, determining a subgraph
withinagivenradiusfiomastartnode,etc.

Gntheotherham&mod&ngandqueryingnetworksis
certainlynottheonlythingauserwantstodo,hence,all
ofthemoreuaditiclnalapplicationsshouldbesupportedss
well, and preferably in a style that is not too different
i?omwhatoneknewbefore.Thechallengeisthereforeto
achieve a smooth integration of the desired graph
modeling into a more classical environment, Ideally, if
one is not interested in networks, this model should be
usable like any of the well-known models, e.g. a rehuio-
na4functi~orobject-arientedone.

Thepmposeofthispaperistopresentadatamodel
and query language that achieves such a smooth inte-
gration. On the one hand. we show that traditional
applications can be modeled and queried in a familiar
style, and indeex$ bettex thsn before, because this model
offers very attractive features to represent n9ationships
betweenobjectsandtousetheminqueries.Soweclaim
that even without considering networks, this model is
suitable and quite interesting as a general purpose data
model. On the other hand, sophisticated modeling and
querying of networks is possible, as we demons&ate by a
number of examples. out approach can be summarized as
follows:

297

l The data model contains a few salient features of
object-oriented models: A dambase is a collection of
object classes. Objects have identity and a tuple
structure; attributes may be data or object-valued.
Classes are organ&d in an inheritance hierarchy.
Central tool for querying is a de&e statement which
so far offers similar capabilities as the traditional
select . . . from . . . where.

l lhedatamodeloffersgraphszTherearethreediffezent
kinds of object classes called simple classes, link
classes, and path clusses. Simple objects play the
roleofnodesinthedambasegraph.Linkobjectsare
objects with additional distinguished references to
source and target simple objects. Path objects are
objects with an additional list ofreferences tosimple
andlinkobjectsthatformapathoverthedambase
graph.

l For querying the graph structure, (1) the derive
statement has an extended meaning: In the on-clatrsc
(the counterpart to the from . ..) one can refer to
co~eaed subgraphs of the dambase graph and so
specify relationships between simple objects, link
objects. and path objects. (2) There is a special tool
for sophisticated manipulation of heterogeneous
sequences of objects (paths, in particular). (3) There is
a collection of graph operations; they can specify
argument subgraphs of the database by regular
expressions ovet link class names (edge types).
(4)Thedamlmsegmphcanbeextendedorresuicted
dynamically within aquery.
Inthispaperwegiveaformaldefinitionofthedata

model and describe some key elements of the query
language. This is a short version of [GU94], where many
aspects are treated in more depth, in particular, definition
of subclasses and rewriting of sequences (paths). In
[Gil941 additionally a system amhitecture and implemen-
tation strategy are described which are used in the
GraphDB pototype we are currently implementing.

In the literature, the manipulation of graphs in
databaseshasmceivedquiteabitofattentiouasurveycan
be found in [MaS90]. However, to our knowledge
nowhere has the focus been on an explicit representation
of graphs together with a smooth integration into
standardmodelingandquerying.Mostau~assumethat
graphs can be modeled implicitly in terms of the usual
features of a given data mode& e.g. the relational model
[Kung86, StR86, Ag87, BiRS90], or a functional model
~os%].Inmostproposalstheauthorsdonotreallycare
how graphs are represented but just focus on the abstract
graph structure [CrIvlW87a, CrMW87b. CrN89, Rose861.
For querying, two main stmtegies am to offer general pur-
pose facilities that allow to express graph traversal pro-
blems (like recursion, iteration) CRose86, StR861, or to
offer special operators [Ag87, Rose86, CrN891. NRS901
proposeanSQLextensionbasedontheideatogenemtea
set of paths in thefrom-clause from which interesting
paths are selected. In [CrMW87a, CrMW87b. CoIvI90,
CoM93ltheideaistofonnulateaq~asasetofgraphs
which a viewed as patterns; all subgraphs of the data-
baseinstanceare-matchingthesepattems.Ind
of these approaches there is no explicit modeling of

graphswithinageneddatabmeenvironmentandthere
fore no problem of integration with the data model. In
somecaaes,gmphqueryinghasaverydiff&ntstyle8om
therestofdatamanipuMon.-Incontrasttothework
above, in [GyPV9Oa, GyPV9Ob. Andr92. GePTV931 the
approachistomodelthedambasedirectlyandentirelyasa
graphandtoexIuessrJIqueriesinuumsofafewpower-
ful graph manipulation primitives. Gmphical user inter-
facesareofferedfordirectinputofqueriesandvisual&
tion of results in terms of graph structures. This is
mainlyintendedasanenduserinterfacetoadambase
systemthatmayitselfuseaIloberdatamodel.

We feel that an explicit modeling of graphs is very
desirableforseveralreasons:(i)Itkadstoamotenatuml
modeling; graph structures am visible for the user, (ii)
queriescanreferdirectlytothisgraphstructure.(iii)path
objectscanbt&~(notpresentinanyoftbeothet
models) and they are the interesting entities in most
networks, (iv) the system can offer special data stnuzttues
for graphs, and (v) the system can use efficient graph
algorithms designed to utilize the special graph data
structures.

Ihegeneralapproa&ofthispetperhasbeenpursuedin
our own previous work [Gtl91, ErG91] and that of
colla- [AmS92]. In [Go911 relations and graphs
coexist.Aproblemwiththat~histhatagraph
consisting only of nodes is practically the same as a
relationanditishatdtosepamtegraphsfromeachother
andfromrehuionsinadambase&sign.InlErG91]gmphs
occurhlanalvironmentwithobjectclassesbutarestill
sejwateentities.Thereisthesameproblemofpartitio-
ningadambaseintographs.Also,inboth~hesit
becomes a nuisance tomentionthegmphargumentsin
manyplac+shtquaies.Thequeryingfacilidesofferedin
thispapergofarbeyondthoseof[GU91,ErG91].Amann
and Scholl [AmS92] offer a few selected features of our
moder(nodeaadedgeobjects,butno~)intbecontext
of hypertext applicationa

The paper wnsists of two major sections, describing
thedatamodelandqllery&,~vely.

2 The Data Model

ThissectioninuoducesthedatamodelofGraphDB.We
start with an overview and show the modeling of some
example applications. In the following subsections, the
model is developed more formally and systematically,
defining bottom up the notions of data types, object
types, and tuple types, three kinds of object classes, a
dalabasandthe-graph.Ihemainpurposeinthe
design of the data model is to achieve a “seamless”
integration of graph structures andgraph operations into
theusualfaciliut!sfcrdatamodelingandqueaying.

2.1 OveNiew

A database is a collection of object classes which are
partitioaed into three kinds of classes, called simple
classes, link classes, and path classes. Objects of a
sintglcclassareontheonehandjustlikeobjectsinother
models: They have an object type and an object identity

298

andcanhaveamibuteswhosevaluesareeitherofa&ztu
type (e.g. integez. string) or of an object rypc (that is. an
attribute may contain a reference to another object). So
thestructureofanobjectisbaskallytbatofatupleor
record.Ontheotherhand,objectsofasimpleclassare
nodes of the datakase graph - the whok database can
alsobeviewedasasinglegfaph.Objectsofafticlclss
arelikeobjectsofasimpleclassbutadditionallyccmtain
two distinguished references tosourceandtargetobjects
(belonging to simple classes), which makes them edges
ofthedatabegrap&Fiiy,anobjectofapattcfussis
likeanobjeetofasimpleclass,butcantainsadditionally
a list of references tonodeandedgeobjecrswhichforma
pthOVertbed@XiS~

Besides the graph structure, object classes are
organized into a class hierarchy and there are related
notions of subtyping among tuple types, objezt types,
and data types. Let us now consider some examples of
data modeling with these fazmies.

Standard Applications. As a simple standard
applicatioll,considerthe~tation0fbooksandtheir
authors. We describe the dau&ase schema by showing
correspardingdatadefiitioncommanda

cre8ta class book = title: STRING,
publisher: STRING, year: INTEGER;

create cl888 person = name: STRING,
address: STRING;

err&e link clams wrote fror person to
book:

Hemwehavetwosimpleclassesbookandpersonand

alinkclasswrote.Observehowalinkclasscandirectly
represent a many-many relationship. Attributes may be
defined for link cW in the same way as for simple
classes. Attriires may also contain object refm. For
example, we might defme persons to contain a refetence
tOthhhOlIECOUlUIy:

crr8te Cl888 state = name: STRING,
region: REGIONS;

cra8tr cl888 person = name: STRING,
address: STRING, country: state:

HeseREGIONSisageometricdatatypedescribingthe
aIeacoveredbythesrate.

Highway Network. The highway network is a
relatively simple example of a spatially embedded net-
work. It is a graph whose nodes are highway junctions
andexits;&ofthosehasaaassociatedpointinthe
ge0metric(argeqaphic)plane.Weassumejunc&msare
chafac&xixedbyauameandexitsbyamunbez.Edgesof
this graph are highway sections: pieces of road between
junctions and/or exits with an atsocbd geometry which
isapolylineintheplanc.Themostinterestingobjectsof
thisnetworkarehighwaystheycorrespoadtopathsover
the graph given by junctions, exits, and highway
!sed3ns.

orrrta 01888 vertex = pos: POINT;
crm8tr vertex Cl888 junction = name:

STRING;
create vertex Cl888 exit = nr: INTEGER;

cre8ta link cl888 section = route: LINE,
no-lanes: INTEGER, top-speed: INTEGER
from vertex to vertex;

orrrtr p8th 018~ highway - name: STRING
88 section+:

HelejlmdaBandexitsarein~assof
a simple class vertex, which means they i&exit the pos
attribute.Italsomeanstbatobjeusofbothclassescanbe
usedas-andtargetsofsecdonedgesofthegraph.
Inde&thesecanalsobe‘~“verrexob~tsasnodesin
the grapk they are useful to sepamte highway sections
with diffmt values of au&l&%3 such as noJunes. The
highways themselves are defined to be paths over section
M@!LEtWltidythe~~behiaddrekeywordoSiS
a regular expression &fining a path type which in turn
describesasetofpathsofthedambasegraph.Pathtypes
alemaeintereshingwheadiff~ttofedgesoccluin
agraph.Wewillseeexamplesandamoreprecisedefini-
tion below.

2.2 Data Types, Object Types, and Tuple Types

Data Types. Let (D, 9 be a finite set whose elements
afecalkidatatypes,withapartialor&r”~(%ubtype~
whichisrestlictedtoorganizedatatypesintotrees(that
is,Va,b,cED:a~b~a~ccbbcvc~b).If
two data types belong to the same tree, we call them
related. If two data types = related, then a smallest
common supertype. ¬ed Zub(u, b) exists and is uai-
quely defined. Figure 1 shows a collection of data types
olpeed into several trees. He!xe, fcK example, INTEGER
is a subtype of NUM (INTEGER 5 NUM) and
Inb(FQINTSS, LINES) = GEO. Each data type has an .
assoclateddomainofvaluesgiveabyafun&ondwn(e.g.
dom(BOOL) = (true, false)). If u 5 b then dam(u) s
~~b).‘Ibepuqoseofthcdatatypehieraxchyistoallow
polymorphic functions to be defined for example, an
intersection test can be applied to any two geometric
values in EXT.

GE0

INTEGER REAL FOINTS LlNE!s REGIONS

Figure1

Object Types. Thete is a finite set (07’. 5) whose
elements are called object types with a (tree) partial order
“57. We will see below that there is a one-to-one
cormqmhcebetwcarobjecttypesandclassesinfhe
~infac~anobjecttypeisnothingelsethanthe
name of a class. The partial order on object types
taresponds to the class hierarchy. Similarly as for data
types,twoobjccttypesc,dmayber&ted(beIongtorhe
same tree) in which case the smallest common supertype,
lub(c, d), is welldefined.

299

Each object type has an associated set of object
identifiers which is a subset of a set of object identifiers
OID (which contains the identifiers of all objects cnzated
so far). This set is given by a function oids: OT +
P(OID), where P(X) denotes the power set of X. If c < d
(c, d E OT), then oids(c) E aids(d). On the other hand,
ifcanddareaotrelaced,thenoids(c)no~(~=O.For
an object type c, okis contains precisely the ideaUks
of objects created so far in the co~nding class c.
Given an object identifier, we can determine its
immediute type (the smdlest object type in the hierarchy
that it belongs to) by a function itypc: OID + 0 T
definedby:

itype(0) = c W (0 E aids(c) A

VdE OT: OE aids(d) a c<d)

Tuple Types. I..& A be a set whose elements are
calleduttributes-adomainofathibutenamesthatcanbe
used in forming tuple types. The set of tuple zypes,
denoted 7T, is defti as followsz

‘IT = (+q, rl), (am. tm)> I m 2 0,

Vie (1, m):aiE A,tiE DuOT)

Thatis,eachtupletypeinTTisalistofpairswhem
eachpaircontainsanattributenametogetherwitheitka
datatypeoranobjecttype.Theemptylistoisalsoa
tupletype.~eachoupletype,thereisadomainofzuplc
v&esdefinedasfollows.LetT~ 27’,T=<(q,t1) ,...,
(@tt t&.

vulues(T)= (jl$

i=m

Where Vi = (<(VI9 ul), (2~ ti, ---v (Vi9 rci)> 1

VjE (1 ,i). UjE D u OT

A Uj E D * vj E dom(Uj)

A ttj E OT * vj E oids(uj)

A jSm =3 UjStj)

Inotherwor&atuplevalueisalsoalistofpairsof
some length i which must be at least m. Each pair is a
valuetogetherwithatype,andthevaluemustbeloJlgto
the corresponding data or object identifier domain.
Furthermore, within the first m components the type in
the tuple value must be a subtype of the

.
e g

dataorobjecttypeinthet@etypeT.
The subtype nlationship on tuple types is defined as

follows. Let T = <(Ul, 11). (um. tm)>, U = C(bl,
4). a-.. (b,,, u& be two tuple types.

TSU :m m2n A ViE (1,n). tiSUi

That is, tuple components (attributes) are matched by
position.TmusthaveatleastasmanycomponentsasU
andineachofthefirstnpositionsthetypeinTmustbe
asubtypeoftheoneiuU.At&ibutenamesdonotmatter.
FOG tuple types T = <(Al. 11). (um. tm)>, U = <(bl.
u1x ***. (b,,, un)> one can &&amine a smullest common
supertype as follows:

MT, v):=<(ul, lub(tl, ~1)). (uk, lrrb(tk, uA))>

where k E (0, min(m,n)) suchthatfm 1 siSk,ti
dtti~related,&eithetkE (?&R),OCtk+l andICk+
arenotrelated.Inothefwords,wetakethe1ongeStcom-
monprefixofrelatedtypesandwithinitforeachpairof
typestheirslualleatcommonsuperdataorob~type.of
course,theresultmaybetheemptytupletype.Notethat
attributenamesaretakenfromthefirstopezam&sothe
ope&onisnotcommutative.Thtpmpoaeofthesedefi-
nitionsistoallowfcra“dynamkgcneralization”ofcol-
ktionsoftuples.Wewil.lbeabletofaminqueriesany
unionofsetsoftup~fortheresulting~anewtuple
typeis&zivedsuchthatallt@esintheunionmakhthis
new type (see section 33).

2.3 Classes and Database

Adutubuseisapair(C,QwhereCisaftitesetof
classcs,and”?5”(“subclaas”)atretpartialaderonC.A
cluss c e C is a pair (crype(c), extension(c)). Tbc set of
classescispaItitionedhltothreesubsets:c=scuLc
u PC. Classes in SC, LC, and PC are call4 simple
clusses, link &asses, andputh clarses, respectively. The
SUbClaSSpartialorderrespectsthiSpartition,thatiS,

a5b* (u.b) SSCV (u,b) rLCv (u,b) rPC

The two components of a class, its type and its
extension, an2 different for simple classes, link classes,
andpathc~lnformally,thetypedefineathestructure
ofobjectsintheclass,andtheextensionthecollectiouof
objects currently contained in it. In the following subsect-
ionswedescribetypeaadexfensionfofthethreekindsof
classes, relating them to corresponding data deftition
commands. Subclasses are treated in the full paper
NW.

Simple Classes. A simple class is created by a com-
mandoftheform

<class creation> ::= crmt* cl&s8 <class-
name> [- <attribute-list>] ;

<attribute-list> ::= cattr-name> : <type>
I <attr-name> : <type> , <attribute-list>

The type of a simple class is a pair (c, T), if it was
cmatedbyacommand

crmrtr al888 c = T;

whencistbe&ssnameusedinthedefinirionandTthe
tupletypecorrespondin%totheattributelkIftheopti*
nal clause is omitted, then the tuple type is the empty
type o. For brevity, we will speak in definitions simply
ofaclass(c,T)insteadof”aclasswithtype(c,T)”.As
mentionedinSectioa2.2,rkeisaone+4necorrespon-
dWCCbChVHJlClassesendOb~types.Hencc,thCCl8SS

creationcommandcreatesatthesamethneanewobject
typec~ OT.lheextensionofasimpleclass(c,l)isa
subset of okis x values(T), that is, a set of pairs con-
sisting of an objeet identifier and a tuple value. Object
identifiers are all distinct:

V (ol,tl). (02, a2) E extension(c): 01=02 =s tl=Q

Link Ckwes. A link class is created by a command
ofthefam

300

<class creation> ::= crratr link class
<class-name> [= <attribute-list>] from

<class-name> to <class-name> ;

ThefyPeofalinkclassisaqnadrnple(c,T,ff,e)ifit
. wascreatedbyacommand.

craatr link class c = T fror d to e;

Heredandcmustbethenamesofsimpleclasses.
The extension of a link class (c, T. d, e) is a set of
quadruples which is a subset of aids(c) x values(T) x
aids(d) x oids(e).

The Lbtabase Schema and Instance Gmphs. Before
we can define path classes, we need to understand the
graph structnre created by a collection of simple classes
and link classes, which consists of a database schemer
graph and a database instance graph. We generally
describe graphs as two sets (node3 and edges) together
with two mappings source and turget from the edges into
the nodes. This is because multiple edges between the
samehvonodesateallowedinonrdatamodel.

The database schema graph is SC = (S, L, source,
turget), WheIe
(i) s= (Cl((C.T),6?xt)E SC)
(ii) L = (c I ((c. T, d, e), ext) E LC)
(iii) source: L + S is &tied by

source(c) = d - ((c, T, d, e), ext) E LC
(iv) turget: L + S is defined by

turget(c) = e ti ((c, T, d, e), ext) E LC

Soforeachsimpleclassandeachlinkclassthereis
onenodeandoneedgeintheschemagraph,respectively.
TIbesenodesandedgesarealsotheobjecttypescorrespon-
ding to the mpeaive classes.

The database instance graph is IG = (S, L, source,
turget). where
(i) S = (0 I3 c c SC: (0, t) E extension(c))
(ii) L = (0 I 3 c tz LC: (0, t,p, q) E extension(c))
(ii) source: L + S is defined by

source(o) = p e 3 c E LC: (0, t, p, q) E
extension(c)

(iv) target: L + S is defined by
turget(o)=qH3cc LC:(o,t,p,q)E
extension(c)

So the nodes and edges of this graph ate object
identifiers of objects in simple and link classes, tespect-
ively.

A path type is a quadruple (G, p, s, F) where
G = (V, E, source, turget) is a connected graph.

& ~:VuE+GTisafunctionlabelingnodesand
edgesofGwithobjecttypessttchthat
(a) v E V * 3 ((c, T), wrt) E SC: p(v) = c
(h) e E E * 3 ((c, T, u, b), exr) E LC:

p(e) = c A p(source(e)) = u
A j@rget(e)) = b

(iii) s E V (the start nod4
(iv) F s V (thefinuf nodes)

Basically, a path type is nothing else than a fmite
automaton belonging to a regular expression over link
classnames,sisthestartstate,Fthesetoffinalstates.
The labeling function p ensures consistency with the
database schema graph. Each path in G from start node s

tosomenodeinF&suibesa correspondingwofpaths
inthedatabascmstancegraph,definedbelow.InFii2
the path type co~ndittg to the regular expression
“section+” from path class highway (Section 2.1) -is
shown(acircleafoundanodeindicatesthestartnode,a
boxoneofthefinalnodes).

Vertex Vertex

section

FQplre 2

Rtthtypesatensedinthedefmitionofpathclasso3,
bntalsoinqUEzies,wheregraphhaversalcanberesuicted
tographsofadesitedfonn.ApathoverIG(thedatabase .
mstancegraph),alsocalleda&taimsepath,isaseqttence
of object identitieas

P = <vo, ei. vl. vn-1. en. vn>
wherefmOSjSn:vjE Sandfor 1 SjSn:fjE L,
source(ej) = vi-1, and target(e *) = vh ‘Ills @I
matches a path type (G, p, s. F) irf there exists a path
P = 4’0. El. VI, Vn,1, En-l, Vn> in G such that:
(0 vo-s
(ii) (ii) Vi E F Vi E F
(iii) (iii) For 0 S j S n: For 0 S j S n: iQJN?(Vj) S /t(V*) (itype yields the iQJN?(Vj) S /t(V*) (itype yields the

immediate * of object iden immediate * of object iden tit tit
(iv) (iv)

ier Vj) ier Vj)

For 1 5 j S n: igP&j) S MEj) For 1 5 j S n: igP&j) S MEj)

In other words, the database path p mnst have a
corresponding@PiaG snchthateachobjectinthe
pathpisofasubtypeoftheonereqniredinP.Wedenote
by paths(G. B, s. F) the set of all database paths
matching + type (6 CL, s, F).

Path Classes. A path class is created by a command
of the form:

<class creation> ::= creata path cl888
<class-name> [= <attribute-list>] 88

<link-expression>
<link-expression> ::= <class-name>+ I

<class-name>
I <link-expression> <link-expression>
I (<link-expression> or <link-
expression>) I (<link-expression>)*

Bssentially a link expression LE is a regular expres-
sion over class names which must belong to link classes.
Theregn.larexptekonmustbechoseninsuchawaythat
itdefinesaconnectedgtaph,thatis,apathtype.’Ihecor-
respondence-=@=- =iWtyptsk
straightfonvard.Ifapathclasswasucatedbyacommand

cra8te p8th cl888 c = T 88 LE;

then its trpc is the triple (c, T, (G. p, s, F)) where (G.
p, s, F) is the path type corresponding to LE. The
extension of class (c, T, (G, p, s, F)) is a set of triples
subset of aids(c) x values(T) x paths(G, CL, s, F).

2.4 The Public Tmnsport Network

In this s§ion we introdnce a larger example which
may give a better impression of the hind of applications
this data model (and database system) is intended for. We
shall also show some queries for this example in the next

301

section. The application domain to be relm-esented is pub
lit transport, e.g. bus, tram, or train lines and sbdules.
On closer inspection, this application is more complex
than one might have expected. One can distinguish three
levels of network, describing the physical network,
lines, and time schedules. The lowest level repmsents the
geometry of the network used for traveling. For example,
for a railway network, at this level we find rails and
switches, switches being the nodes and rail sections the
edges of the graph. We call paths over this level physicul
routes. This level is modeled as follows:

claw vertex = pos: POINT;

link clam8 arc = route: LINE from vertex

to vertex;

path clam phys-route a8 arc+:

The next level introduce.s regular connections over the
physical network usually called lines, for example, bus or
underground lines traversing a certain path of the physical
network A line may be identified with a number OT by
givingthenamesoffinalde&ationsatbothends,andit
contains a list of stops that we call stations. (A line is
what is usually depicted on the wall within a bus or
underground carriage.) Note that this level does not yet
contain the time schedule for trips over lines.

&a88 Station = name: STRING, lot: vertex;

link Cla88 connection = travel-minutes:

INT, way: phys-route from station to

station;
path da88 line = line-type: STRING,

line-no: INT a8 connection+;

Observe that this second level contains references to
the first level, the physical network, associating stations
by attribute lot with theii physical positions (assuming
that for each station a vertex has been established) and
connections as a piece of the line between two stations
by attribute way with a corresponding path over the
physical network. Lines are paths of this level; the
line-type attribute may be used to distinguish types of
connections, e.g. fast long distance trains from slow local
trains in a railway network.

The third level contains the actual time schedules. We
model this as a collection of departure and arrival
events, which will be the nodes of the third level graph.
Adepatturtevent.forexample,saysthatatacertaintimt
a carrier (e.g. a train) of a specified line departs from a
given station. A specific trip of a train over a line then
corresponds to an alternating sequence of departure and
arrival events (Figure 3).

D RSBl

- Dilktlorf 0

InFigure3DandAstandsfordeparmmandarrival,
respectively; “RSBl” is the name of a particular line. The
eventnodesofaspecificttipareconnec@ by traveJ and
stuyedges.Ontheotherha&wecanchangeatastation
fromonelinetoanother(moreprecisely,fromatripof
onelinetoatripofanotherline).Tomodelthis,theatri-
valanddepartureeventsatoneparticularstationarecon-
netted by chunge and wuit edges, as shown in Figure 4.

.

Figure 4

The idea is that a change edge connects an arrival
eventwiththenextdeparmmonecanreachintimeatthis
statio$andthatalldepattuleeveiltsarelinke!dintheorder
of departure time. Hence changing at a station can be
describedbyasequenceofchangeandwaitedgesofthe
form chge wuit* (which is a path type). A complete
trip of a traveler with possibly several changes of trains
has a path type travel (stay truvel)8 (change wait*
travel (stay travel)*)*.

So the third level is modeled as follows:
da88 event = time: INT, at-station:

station, of line: line;

event da88 arrival, departure;

link da88 travel = through: connection

from departure to arrival;
link da88 Stay from arrival to

departure;

link da88 change from arrival to

departure:

link da88 wait from departure to

departure;
path da88 trip a8 travel (Stay travel)*;

A graphical representation of this rather complex
database schema is given in Figure 5. Hue a path class is
remted as a cimle mund its participating simple and
linkclasses(omittingthemorepreciseinformationinthe
rat&type); object-vahmxi attrii am indicated by dashed

.

Figure 3

302

WY Xge

Figure 5

3 Queries

In this section we briefly discuss the concept of a query
on a graph dambase, explain the structures the user
manipulatesiuqueries,andshowsomefundameutaltools
(statements, operations) for querying. We do uot yet
develop a complete query language but rather introduce
some core elements. Also at this stage the semantics of
opelationsmonlydescribedinfamally.

Query Concept We would like to be able to concept-
uallymodifythedambasegraphinaquery,forexample,
to add some edges computed by a query expression and
then to apply a graph operation traversing old as well as
newpartsofthedau&asegraph,ortorestrictthegraphfor
considerationinaquery.Theref~aqueryQmayconsist
ofseveralsteps,Q=ql; 4m. m step my wmpute
cneormoreclassesofsimple,lir&orpathobjects.After
eachstep,theseclasaesareaddedtothedambase(andso,
implicitly, extend the dambase graph). Gr a step may ex-
pressarestrictionofthedambasegraphfortbefollowing
S~.HWWa~OPHdOllUWlh~~j"sees"tbe
graph with the changes computed in steps 41, qj-1.
Examples of such multistep queries llte given below.

Slructure~ What kind of structures at the conceptual
leveldoesauserueateandmanipulateinqueries?Candi-
dates might be graphs, sets of objects, nested relations,
lists of object identifiers, etc. The design goal is to keep
this wllection simple but suf&ziently expressive. It turns
out that for our model four kinds of structures/objects suf-
fice, namely a ungorm sequence 4 objects, a heteroge-
neous sequence of objects, a (single) object, and a
valueofadatatype.

A uniform sequence of objects contains a set of
objects, usually from a single simple class, link class, or
path class, in some, not necesady specified, order. More
precisely, the objects in the sequence may come from
different classes but are all viewed under only one

common tuple type. We use sequences rather than sets
because~isthen~tibletoofferoperationsinthequgr
language making use of the order such as sorting, or
taking head cs tail of a sequence (see [GtiZC89, MaV931).
Such a sequence of objects is the basic structure in
formulating queries; since each object contains a tuple, it
is the equivalent of a relation in the relatkmal model. The
mostsimplewaytoobtainauniformsequenceisjustto
write the name of a class. For example, writing “person”
yieldsasequencecontainingallpersonobjeua.

A heterogeneous sequence of objects may contain
objects from several classes. These objects may have
several different object as well as tuple types. For
example,thewdeandedgeobjectsfonninga~inthe
da&base may be given as such a sequence. But more
generally. heterogeneous wllecrions of objects can be
follnedinqueriesandbemanipulatedintbisform.The
basicwaytoobtainaheterogeneoussequenceistowrite
the name of several classes iu angular brackets. For
example, “<book, person, wroti” yields a sequence of
the corresponding objects from three different classes
(Section 2.1).

What can one do with such a “mixed” collection of
objects? First, there is a specialized and very powerful
tool in the query language, called the rewrite operation,
to deal with such sequences (Section 3.2). Second, in the
same way as we have interpreted the set of simple, link,
and path classes making up a database as a database
graph. we will be able to interpret such wllections as
gr&sorevenasnewpartsoffhedat&asegraphthatare
addedinaquery.‘Iberefore,nospecifictypesforgraphs
areneededintheuse?sumcept4modelforquerying.
Third, one can apply a union operation in the query
languagetoaheterogeneoussequenceandsotransformit
into a unifcum sequence (Section 3.3).

Tools for querying. The fundamental tools for
queryingagraphdambaseare:

The-de&e statement, which takes the role of the
classical se&t . ..fiom . . . where, but has an extended
meaning for gmpb, it includes the functionalities of
selection, join. projection, and function application;
the rewrite operation as a basic tool for the manipu-
lation of heterogeneous sequences; it allows to replace
objectsorsubsequencesbyother(new)ob#cts;
the union operution for achieving “dynamic genemli-
zation”. that is, for transforming a heterogeneous wl-
lection of objects into a homogeneous one, viewed
underacommonsupertupletype;
a wllection of graph operations. e.g. shortest path
search.
Additionally, the query language will contain further -

operations, e.g. for sorting, grouping, aggregate runc-
tions, data type operations, etc. In the following subsec-
tions we explain the four main tools listed above.

3.1 Derive

The &rive stutement is the most fundamental tool in the
querylanguage.F%rhapsthebestwaytointroduceitisto
show a few examples. The first refers to the standard
application from Section 2.1:

303

Ql. List the titles of all books written (coauthored) by
Hopcroft in 1983!

on person wrote book
where person.name = "Hopcroft" and

book.year = 1983
derive book.title

Here the on-clause says that each combination of
person, wrote, and book objects should be considered
where the person is connected by the wrote link to the
book. From this collection of triples of objects the whexe-
clause selects those fulfilling the two conditions. The
derive-clause creates for each selected triple a new object
with a single attribute called title whose value is taken
from the attribute title of the book object in the triple. In
this case, simple objects of an unnamed object type are
created. It is also possible to create link objects. for
example; other cases and the semantics in general are
described below. The second example query is based on
the public transport dambase from fiection 2.4.

Q2.Makealistingofall~fromDortmund
mainstationintheform:

Timeof Typeand Endstationancl
number of arrival time
tlain

6.13 IC 615 MUnchen 14.23
6.22 D308 wiesbaden 1218

. . .

Tbetimeofdeparturecanbefoundwithinadeparture
event.Typeandnumberoftraincorrespondtoalinetype
andalinenumber.ThenameofthefinaldesGnationis
eitherinthelastnodeofalinepathorcanbefoundfrom
the last event of a trip path. However, only the last event
ofatripalsocontainsthearrivattime.Thequeycanbe
formulated as follows:

on departure at-station station, departure
of-line line, departure in trip

where station.name = "Dortmund"
&rive departure.time, line.linefype,

line.line-no,(trip end) .at-station.name,
(trip end) .time

Here in the onx&se all combinations of &parture
events, stations, lines and trips are formed where (i) the
departure object is connected through its object-valued
attribute ot-station with the stotion object (that is,
departure.at-station = station), (ii) the departure object
is co~ected through attribute of line with the Zinc
object, and (iii) the depurture object% a node in the path
of the trip object Note that in queries object-valued attri-
butescanbeusedquiteinthesamewayasLinkobjects.
Thereissomefreedomherefortheusertospecifysuch
connections in the onclause or e.g. within predicates of
the where-clause. In this example, it would be possible to
reduce the on-clause to departure in trip and to
R@lX? ~theWherec~departure.at station.name
= "Dortmund" (and to Bccess the line object similarly).

Thereisnothingnewinthewhemandderive-chuses
except of the use of a function end to get from a path
object its last node object.

Let us now consider syntax and semantics of the
derivestatement in general. It has the following form: *

<derive-statement> ::= [<range
declarations>] on <s&graph-spec>
[where <condition>] derive <object-
spec>

Rangedeclamdonsareneededtofeedintoadeaivesta-
tement the result of a query expression. They ate not fur-
ther discussed here (see [GU94]), but an example occurs in
query QS below. A subgraph spe@xuion has the form:

<subgraph-specs ::= <pattern> I <pattern> ,
<subgraph-spec>

<pattern> ::= <var-intro>
I <simple-var-intro> <link-var-intro>
<simple-var-intro>
I <simple-var-intro> in <path-var-intro>
I <link-var-intro> in <path-var-intro>
1 <var-intro><attribute-name><var-intro>

<var-intro> ::- <object-type> I Cobject-
type>(<newname>)

A subgraph specification is a list of putters. A pat-
tern either introduces just a single variable or it unmects
two or three variables in various ways, requiring that a
simple object is connected through a link object to
another simple object, a simple object occurs as a node
within a path object, a link object occurs as an edge
within a path object, or a simple object has another
simple object as an attribute value, respectively. A
variable is introdtcccd by either writing the name of an
objecttype(classname)whichisthenusedasavariable,
or by intmducing a new name explicitly. for example, in
the form “state(s1)“. This is needed when several
variablesrangeoverthesameclass.

In the evaluation of the on-clause all possible
assigmnentsofobjectstothevtuiablcliareconsidercd

d tIlosetuplesofobjectsdeuxmkdthatatesim .
-twithallpatterns.Ingeneral,thepatterasinthe
on-clausedescribeoneormorewnnectedgraphs(ifwe
drawanedgebetweentwovariableslinkedinapatuxn).If
hvoormoregraphsareptesen~itmeansthatthecark&n
productofthepossibleobjecttuplesforeachgraphwill
be formed. Therefore, if each pattern is just a variable
name, then we have the classical cartesian product
operationorajoin,ifthereareconnectingconditionsin
thewhere&use.Ifthereisonlyonepattemwhichisa
single variable, then we have a simple selection. The
where-clause contains just a condition, used to filter
tuplesofobjectscomingfkomtheon-clause.Thederive
clause specifies how a resulting set of objects is to be
forn& in the following form:

<object-spec> ::* <variable>
I [<newname> =] <attribute-spec-list>
I <newname> [= <attribute-spec-list>]
from <variable> to <variable>

<attribute-spec-list> ::= <attr-spec> I
Cattr-spec> , <attribute-spec-list>

cattr-spec> ::= tvariable>.<attr-name> I

<newname>: <expression>

The object-specification can either be one of the
variables of the derive statemen& which means that these

304

objects are put into the result sequence; so the whole
statement amounts to a more4 or less complex selection.
Ihcothercaseisthatnewobjectsafefonned.Forthesea
new object type (name) may be given by the
“<newname>=“psrt;ifitisomitte4&anamewillbe
selected internally by the system (which is obviously
unknowntorheuserandcantherefo#enotbeusedinthe
rest of the query). Next, attributes for the new objects are
delined. The first form is %variable~~-name9 in
whichclrsethenewattributenameaswellasthevalueis
taken ikom the object denoted by the ‘kvariable9’. The
other possibility is to explicitly introduce an attribute
nameandtoassigntoitbyanarbitrarycxplessioaavalue
of a data or object type. So far, if the from-to-part is
omitted, simple objects will be CrcILtcd. If the fkom-to-part
is present, then the variables must refer to simple classes.
In this case link objects are created connecting the
corresponding pairs of objects assigned to the fknn- and
to-variables. Creation of path objects in the derive
statenlenthassofarnotbecalprovidedinthedesigL

The following example illustrates several points,
namely the use of explicit variables. the formulation of a
classical join in the derive statement. the creation of link
objects, and the dynamic modification of the database
graph in a multistep query. We assume the following
dzabasetobegiven:

claw state = sname: STRING; region:
REGIONS;

Here REGIONS is a spatial data type describing a
polygonal region. The query is:

Q3. How many countries must be traversed traveling
(byland)fKlmGemanytochina?

on statelsl), state(s2)
where sl.region l djacrat s2.region
&rive neighbour-of - cblength:

length(couon-border(sl.region,
s2.region) from sl to s2;

state("Germany") state(Yhina"]
rhortest~eth[neighbour_of+l
rewrite[state -> , neighbour-of ->

neighbour-of] aouat

Thisisamultistepquery;thelifststepisthederive
statement which constructs a set of neighbour-of edges
andaddsthemtothedatabasegraph;thesecondstepuses
these edges to find a shortest path from Germany to
China Here we only discuss the derive statement, the
second step wiIl be explained below when rewrite and
shortest-path operations have been inttvduced. Explicit
variables are used because two variables range over the
sameclass.Thepattemsintheon&usede!scribetwo
in-t graphs. So a Cartesian product is formed
which tog* with a subsequent selection condition
amounts to a join (adjacent is a geometric predicate
applicable to two REGIONS values). ‘IEe ~ve-clause
creates a new link object class neighfrour-*between any
twoqdifj4ngstotcob~asanattributeofsuchalink

the length of the common boundary is computed, using
two geometric data type operations length and
common-border. This is just to give an example of

creating attribute values for a derived link class, the
attributeisnotnee43edforthisqueXy.

3.2 Rewrite

The rewrite opemtion is a very pow& tool for dealing
with heterogeneous sequences and in particular, to mani-
pulate paths (which are hekrogeneous sequences). One
simplewaytouseitissimilartocasl%tatementsiopro-
gramminglanguag~sinceonecanspecifya@eatment
sepamklyfoceachobjecttypethatmaycomealongina
heterogeneous sequence. But it is also possible to apply
transformations to whole subsequences of a given se+
quencc.Inthiscasetheadaofelementsiathesequmce
plays a crucial roll to understand this order, puth rypcs
(or, more generally, sequence types) defined in Section
2.3 are essential. Again, let us introduce the rewrite
operation by a few examples. First, consider the second
stepofqwyQ3:

state("Germany") state("China")
l horteatgath [neighbour-oft]
rewrite[state -B , neighbour of ->

nelghbour-of] count -

He.re the shortestgath operator (whose arguments
will be explained below) computes a shortest path from
one state object (Gelmany) to another me (china). The
two state objects are determined by a special “object
identification” notation (see [GM]). The result is a
heterogeneous sequence of state and neighbour of
objects. The re&t has a sequence type (which is equi%-
lenttoa~type,butalsomentionsttictypesofnode
objects)

state neighbour-of state (neighbour-of
state)*

We abbreviate this se+ence type as SNS(NS)*. Such
a sequence is input to the rewrite operation which
contains a list of tran@ormations. Each transformation
basalepsidcandarightsi&(sepatatedbyanarrow).
The left side of a transformation is apcrtterr, which is a
listofoneormorevariablesdcnotingobjecttypes.Tbe
right side is either an expression which must evaluate to
an objeck or empty. The meaning is roughly that when-
everasubsequezeofobjectsisawxnnteredmakhingone
ofthepaaeXns,tbenthe camspondingtransformationis
applied (a more precise deftition is given in [G&l]).
Henccinourexample,theeffectisthat~~~~oftype
skate in the sequence are thrown away whereas all
nciglrbow-@objects are moved unchanged into the rcwllt
sequence. So rewrite can be used to realixe a type
rest&ion on a -=l-~

Applying rewrite, one should keep track of the
manipulationofthesequencetypethatitimplies.Inouf
example,theresultsequencewillhavetype~,thatis

neighbour-of (neighbour-of]*

The second example is again based ~1 the public
transpm dambase from section-2.4.

Q4. List all direct umnections from Dortmund to

Munchen with the distance traveled. That means,
lrovideatableofthefam:

305

Departmtime Arrival time Distance
6.13 14.23 610 kms
7.13 15.23 610 kms
7.43 16.26 578 kms

. . .

To answer this query, all levels of the public transport
network are needed The query can be formulated as
follows:

on departure at-station station(
arrival at-station station(s2), departure
in trip, arrival in trip

where sl.name = "Dortmund" and s2.name =
Wuenchenm

derive dtime: departure.time, atime:
arrival.time, distance:
trip suffix (departure) prefix (arrival)
rewrite

[departure ->, arrival ->, stay ->,
travel -> travel-dist = (dist:

travel.through.way
rewritr[vertex -> ,

arc -> arc-length = (len:
lmgth(arc.route)) I

8urflenl)l
sur[distl

order-by[dtime +I

This is already a fairly complex problem; it is still
possible to formulate the query in a relatively concise
way. The derive statement finds trip objects containing
stops in Dortmund and Munchen. In the derive-clause
objects with three attributes are produced, called dtime,
atime, and distance, where distance is computed as
follows: Each trip path is reduced by operations SI&X and
prefix to the part between Dortmund and MUnchen. These
are operations of the query language for the manipulation
of sequences; the argument is besides the sequence an
object,andthesequenceisreducedtothepartafterand
including the object in case of suffix, similarly the paIt
before the object for prefix. An object of a path class can
behPateddkctlyasasequence,hfzncethese~are
applicable to trip objects. The remaining part of the trip
sequence is handled by a rewrite: departure, curival, and
stay objects are thrown away; travel objects are
transformed into new travel-dist objects with a single
attribute called dist, whose vahle is computed as follows.
From the travel object via its through attribute the
underlying connection object is reached, fkom which via
amibute way the -ding phys-route path object is
obtained. We are now at the level of the physical network.
Herethepathoftheform

vertex arc vertex (arc vertex)*

is again treated by a rewrite; vertex objects are thrown
away and for each urc object a new arc-length object
with a single attribute len is created whose value is deter-
mined by applying a function length to the arc object’s
route attribute (of data type LINES). Hence the result of
the inner rewrite is a unifcam sequence of arc-length
objects; sum is an aggregate function applicable to such a
sequence. The result is a single number which is finally

assigned to the dist attribute of the new travel-dist
object. Again srun is applied to a uniform sequence of
travel &tobjectstoobtainanumberwhichisthenused
as b-distunce attributi value in the objects created by
the derive statement. In a final step, the sequence of
(tummed)objectsrehunedfromderiveissorttxlbydepar-
ture time (dtime).

Forlackofspace,inthispaperwecannotfurther
elabomte on the rewrite operation. A definition of syntax
and semantics can be found in [Gti94] where also an
example of a more sophisticated manipuhuion of sequence
types(“sequencerewriteprogramming”)isshown.Inthat
respecttheexamplesofthissectionaretrivialsinceall
patterns in rewrite operations consist only of a single
v&iable(nosu~afeFeplaoed).

3.3 union

The union operation makes it possible to transform a
heterogeneous sequence of objects into a uniform one, so
that all objects in the sequence are viewed under a
common tuple type. It does that by computing the
smallest common super (tuple) type for the tuple types of
the heterogeneous sequence. Consider the following
example databax

cl88a city = name: STRING, region:
REGIONS, pop: INTEGER?

cl8a8 village = name: STRING, position:
POINT, pop: INTEGER;

cl888 river = name: STRING, way: LINE;

We can. for example, form the union of cities and
VilhgtX

<tit y, village> union

Theresultisauniformsequencewithatupletype

<(name, STRING), (region, GEO), (pop, INTEGER)>

bemuse this is the smallest common supertype of the
tuple types of city and village objects (see Section 2.2).
Thenew~letypecanbeusedintherestofthequery,as
in the following example.

QS. List the names of all cities, villages, and rivers
within Bavaria! (We assume that Bavaria has been
introduced befcce as the name of a REGIONS value.)

rurge of cvr i8 <city, village, river>
union *

on cvr
where cvr.region in8idr Bavaria
doriva cvr.name

Intbiscasethetupletyperesultingfromthernion
operation is <(name, STRING), (region, GEO)>. The
geometric predicate inside has a signature GE0 x
REGIONS + BOGL, hnce it is applicable to region
attribute values of type GEO. This “dynamic genera-
lization” feature is of particular impormnce for spatial
databases where often collections of objects need to be
formed that are just related by their spatial attributes (e.g.
lie in the same area). For more motivation, see fGU91,
ErG!x].

306

3.4 Graph Operations

In a way, we arrive now at the main goal of the
development of tbe GraphDB data model: to be able to
formulate graph operations and to integrate them in a
clean way into querying. This is possible because the
d&abase has a welldetined and explicit graph structme. In
this section we do not yet describe a comprehensive col-
lection of useful graph operations - this is a major task
lefttofuturework-astbepurposeofthis~isto
develop the right environment for the integration of such
operations. But we show two examples. The fiit is an
operation for finding shortest paths which has already
been used in example query 43. It takes two simple
objects,whichareusedasthestartandtargetnodesofthe
search,respectively,andretumsa&ortestpathfromthe
starttothetargetnodeinthefarmofaheterogeneous
sequence. Further parameters ZKlZgiVWhSqUarebrackets

behindtbeopemtcrname:
l a path type, which identifies those parts of the data-

basegraphtbatmaybeusedinthesearchanddefinesa
precise structure for tbe resulting sequence (for rewri-
ting manipulations),

l for each class of edges (link objects) that may occur in
the path according to the path type, a function
assigning a cost to tbis edge. If such a function is not
given as a parameter, a constant edge cost of 1 is
assumedasadef&ilt.

. for each class of nodes (simple objects) that may occur
in tbe path according to the path type, a function
givinganestimateddistancefromtbisnodetothetar-
getnode.Thereasonthisparameterisneededisthat
for the implementation of shortcstgath the A*
algorithm (see [Ni80]) will be used, which needs to
estimatetbedisumcefromthetargetfcrtKldese!ncoun-
med in tbe search. As a default the function yielding
constantly 0 is used. For A* to work correctly it is
required that such a function must underestimate the
distance to the target; with this function that is
trivially true in which case A* reduces to Dijkstra’s
algorithm.

A further example query with a &or&t path search is
given below. The subgtaph operation restricts the
database graph for the following steps of a query. The
argument (in square brackets) is a list of restrictions of the
form “<classname> where <condition>“. One can
mention simple classes, link classes, or path Classes. The
semantics is that for the following steps of tbe query for
each class that is mentioned only the objects qualified by
the condition are part of the database graph. If, for
example, a node class is restricted, then also only the
edges incident with these nodes are present (or rather,
visible) witbin the database, if edges are restricted, also
paths going through “invalid” edges disappear. There is an
inverse operation called fullgraph which restores the
completedambasegraphforfurtherstepsofaquery.Botb
&graph andjitllgraph form sepamte steps of a query. An
efficient implementation of these opemtions is described
in [GW] - by no means is it intended to make copies of
tbedatabssegraph.

307

We illustrate the use of the subgraph operation in
connection with a mote in&resting example of a shortest
path search. Consider the following query on the highway
network (Section 2.1):

Q6. Find a shortest path from exit 16 to exit 252,
avoiding a fog area described by a REGIONS value (a
collection of polygons) fog!

l ubgreph [section where not
(section.route iatrr8rate fog)];

exit(nr = 16) exit(nr a 252)
l horteetgath[sectiont,

flln(s: section)
lmgth(s.route)/s.top-speed,
fun(v: vertex, target:vertex)
dist'(V.pos, target.pos)/200]

Herewehaveinthefirststepreseictedtoedgesfree
fromfogandintbesecondstepcomputedashorte&patb
over these edges with respect to traveling time (assuming
lengthsanddistanMarestoredandcomputedinkms.and
topspeedinkm.&!ur).Thesyntaxfordenotingflmction
r (defined m [GU93]) is a variant of typed lambda

.

4 Conclusions

We have pmsemed a data model that integm&s an explicit
modeling of graph structures smoothly into a %mndard”
object~ented modeling and querying environment. In
particular, explicit path objects are offered, and graph
operations can be defined whose argument graphs
(subgrapbs of the dambase graph) can be specified by
regular expressions over link class names. The derive
statement extends the familiar sdect . . . from.. . where to
aconvenientqueryingofrelationships(linkclasses,edges
of the graph). The rewrite operation is a powerful tool for
the manipulation of sequences, especially paths, in
queries. The model is coupled to an implementation
concept which offers special data structures for the
mpresentationofgraphsandefficientgraphalgorithmsfor
the graph operations. System architecture and
implementation strategy ate described in the full paper
[Gil94]. Besides being attractive for standard app&%ions,
the model is particularly suitable for a sophisticated
modeling and manipulation of spatially embedded
networks, as has been demonstrated by the public
-example.

We are currently developing a first partial prototype
for GraphDB following the system architecture and
implementation plan described in [GM]. ‘I’be general
extensible query proces&g environment will be offered
by SECOND0 - a system based on the second-order
signature concept described in [GU93] - which is just
abouttobefMhed.Toreducetheimplementationeffott
(thatis.tomaketbetaskmanageableatall)wearetry&
touseasmuchaspossibIemodulesfromtheGralsystem
[Gu89], for example, storage and buffer management,
in&x structures, data types, implementations Of query
processing operations (e.g. join algorithms). In a first
phase. we would like to arrive at a prototype version tbat
demonstm&4someintemstingpartoftbequery~g

capabiLitiesne&dfccGraphDB.Tore&zetheGraphDB
query language as such, it is necessary to implement a
SECOND0 optimizer (perhaps along the lines of
lBeG921) which is still a major open task. The devebp
mentoftheGraphDBmodelandpx&typeisplatofthe
ESPRIT project AMUSING.

Otherfutureworkinclu&samorecompletedesignof
thequerylanguage-inthispaperwehaveonlyintro- .
ducedsomekeyelements-,thedesignofacorrespondurg
SOS model level signature, and a formal definitia~ of the
semantics of query language operations. Note that the
extensible system architecture makes it possiti to post-
pone a complete query language design even until the
system is running; missing operations can always be
tukle!dlam.

Acknowledgments

Helpful discussions with Hieu-Thien Pham and Frank
Schoppmeier and their work on implementing the
GraphDBprototypearegratefullyacknowledged.Thanks
also to Martin Envig, Hieu-Thien Pham and Markus
Schneiderforreadingdraftsofthispaper,andtothereft-
rees for their comments.

References

[Ag87] Agrawal. R., ALPHA: An Extension of Relational
Algebra to Express a Class of Recursive Queries. Proc.
IEEE Dam Engineer@ Conf. 1987,580-590.

[AmS92] Amann, B., and M. Scholl, Grun: A Graph Data
Model and Query Language. Proc. ECHT’92, Milano.
December 1992.

[A&92] Andries, M., M. Gemis, J. Puedaens, I.
Thyssem. and J. Van den Buss&e, Concepts for Grrph-
Oriented Object Manipulation. Proc. 3rd EDBT 1992
(LNCS 580). 21-38.

[BeG92] Beeher. L, and R.H. GUthrg, Rule-Based Optimi-
zation 8nd Quay Recessing in au Extensible Geometric
Database System. ACM Tmnwctious on Database System
17 (1992). 247-303.

lBiRS90] Bishup, J., U. Rirch, and H. Stiefelmg, An
Extension of SQL for Querying Graph Relations. Com-
puter Languages 15 (1990). 65-82.

[CoM90] Consens, M.. and A. Mend&on, GmphLog: A
Visual Formaliim for Real Life Recursion. Proc. ACM
Cod. on Rinciples of Database Systems 1990,404-416.

[CoM93] Consens. M.. and A. Mendelxon. Hy+: A
Hygraph-based Query and Visualixation System (Video
Demonstration). Proc. ACM SIGMOD 93, 511-516.

[CrMW87r] cruz. I.F.. 410. Meardelxou, and P.T. Wood, A
Graphical Query Language Supportiq Recursion. Proc.
SIGMOD Conf. 1987, 323330.

[CrMW87b] CNZ, I.F., A-0. Mendelzon, aml P.T. Wood,

G+: Recursive Quaia Without Recursi= Proc. ~IKI Ind.
collf. on Expert D8tabue system& 1989, 355-368.

[CrN89] Cruz, I.F.. ard T.S. Norvell, Aggregative Closurez
An Extension of Transitive Closure. Rot. of the 5th Intl.
Cod on Dam Engineering, 1989, 384-391.

ml] Erwig. M., and R.H. Gttting. Explicit Gmphs in a
Functional Model for Spatial Databases. FemUniversitit
Hagen, Inform&k-Report 114 1991, to qpcar in IEEE
Tnznsactrionr 011 iKnowledge and Data Engineer&.

[GeP’I’V93] Gemis. M.. J. Paw&ens. I. Thyssens. and J.
van den Bussche, GOOD: A Gmph-Oriented Object
Database System (Vi&o Demonstmtion). Proc. ACM
SIGMOD 93. 505-510.

[Gg89] G~ting. R.H., Grab An Extensible Relational
Database System for Geometric Applications. Proc. of the
15th Intl. Conf. on Very Large Data Bases, 1989. 3344.

[GO911 GUthrg, R.H., Extending a Spatial Database System
by Graphs and Object Class Hiemrchies. In: G. Gambosi,
H. Six, aud M. Scholl (eds.) Rot. Int. Workshop on
Database Mmtagement Systems for Geographical Appli-
cations (Cqri, May 1991). Springer, 1992, 34-55.

[GU93] Gtlting, R.H., Second-orda Signature A Tool for
Specifying Data Models, Query Recessing, and
Optimization. Rot. ACM SIGMOD Conf. (Washington,
1993). 277-286.

[GW] GUting, R.H.. GraphDB: A Data Model and Query
Language for Graphs in Databases. Femuniversitgt Hagen,
Report 155. 1994.

[GuZC!89] Guting, R.H.. R. Zicari, and D.M. Choy, An
Algebra for Structured Office Documents. ACM Tranwct-
ion9 on I~omation SysteJlw 7 (1989). 123-157.

[GyPV9Oa] Gymens, M.. J. Pllredrms, and D. vm Gucht, A
Orapb-Orientcd Object Database Model. Proc. ACM Conf.
on Principles of Database Systems 1990. 417424.

[GyPV9ObJ Gymens, M.. I. Pam&ens, and D. van Gucht, A
Graph-Oriented Object Model for Database End-User
&ucrfacu. Rot. ACM SIGMOD Conf. 1990.24-33.

[Kung86] Kung, R., et d., Heuristic Search in Database
Systems. In: L. Kerrchberg (ed.). Expert Database
Systems. Benjamhr Cummings, 1986.

[M&90] Mb, M.. ml L. Shapiro, Extensions to
Query Languages for Graph Traversal Problems. IEEE
Trans. on howkdgc and Data Engineering 2 (1990).
353-363.

[MaV93] Maim, D., and B. Vance, A Call to Order. Proc.
ACM Symposium on Principles of Database Systems
(Washington, 1993). 1-16.

[Ni80] Nilsson, N.J., Principles of Artificial Intelligence.
Tiogr Publ. Company, Palo Alto, CA, 1980.

[OrMSS] Oreustein, J., snd F., Mano4 PROBE Spatial Dam
Modeling and Query Processing in an Image Database
Appliction. IEEE Tram. CM Softwcv Engineering 14
(1988). 611629.

[RoFS88] Rossopoulos, N., C. Faloutsos. and T. Sellis, An
Effieka Pietorid Databa System for PSQL. fEEE Tram.
01) S&ware E&WUiUg 14 (1988). 639-650.

[Rose861 Rosenthal, A., S. Heiler, U. Dayal, and F.
Manola, Traversal Recursion: A Practical Approach to
Supper@ Recursive Applications. Rot. SIGMOD Conf.
1986, 166-176.

[StR86] Stonebraker. hi.. and LA. Rowe, The Design of
POSTGRES. Rot. of the 1986 SIGMOD Conf.
(Washington, DC. May 1986). 340-355.

[SvH91] Svensson, P., and 2. Husng. Geo-sAL A Query
Language for Spatial Data Analysis. Proc. SSD 91 (Zurich,
Switzerland), 1991. 119-140.

308

