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Abstract 

Traditional techniques to identify macromolecular targets for drugs utilize solely the information on a query drug and 
a putative target. Nonetheless, the mechanisms of action of many drugs depend not only on their binding affin-
ity toward a single protein, but also on the signal transduction through cascades of molecular interactions leading 
to certain phenotypes. Although using protein-protein interaction networks and drug-perturbed gene expression 
profiles can facilitate system-level investigations of drug-target interactions, utilizing such large and heterogeneous 
data poses notable challenges. To improve the state-of-the-art in drug target identification, we developed GraphDTI, a 
robust machine learning framework integrating the molecular-level information on drugs, proteins, and binding sites 
with the system-level information on gene expression and protein-protein interactions. In order to properly evaluate 
the performance of GraphDTI, we compiled a high-quality benchmarking dataset and devised a new cluster-based 
cross-validation protocol. Encouragingly, GraphDTI not only yields an AUC of 0.996 against the validation dataset, 
but it also generalizes well to unseen data with an AUC of 0.939, significantly outperforming other predictors. Finally, 
selected examples of identified drugtarget interactions are validated against the biomedical literature. Numerous 
applications of GraphDTI include the investigation of drug polypharmacological effects, side effects through offtarget 
binding, and repositioning opportunities.
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Introduction

Comprehensive knowledge of system-level interactions 

between small organic molecules and their macromo-

lecular targets is of paramount importance to modern 

drug discovery. �e vast majority of drug targets are 

proteins whose biological functions are determined by 

their interactions with other molecular species in a cell 

[1]. Because of the central roles of proteins in numerous 

biological processes, any changes in their structures and 

functions, caused by mutations and other factors, often 

lead to a disease state [2]. Pharmacotherapeutics are 

designed to bind to these disrupted proteins in order to 

mitigate disease conditions [3]. Since drug molecules 

usually bind to specific sites formed by the concave 

regions of target protein surfaces, drug-target interac-

tions (DTIs) can, in principle, be investigated using the 

complex structures of proteins in their ligand-bound 

conformational states. In the absence of experimentally 

determined complex structures, theoretical models can 

be constructed by molecular docking methods to study 
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putative, low-energy binding modes of drugs bound to 

their protein targets [4, 5].

Inverse virtual screening (IVS) is a traditional method 

to identify drug targets for small molecules. Structure-

based IVS techniques employ molecular docking to 

screen a ligand against a database of proteins in order to 

find a subset of binding sites that are putative targets for 

the query molecule [6]. An example of a docking-based 

method is TarFisDock [7], a webserver utilizing the dock-

ing program DOCK [8] to dock small molecules into 

either the Potential Drug-Target Database containing 698 

protein structures [9], or a custom list of target sites pro-

vided by a user. Candidate targets are then ranked based 

on the interaction energy computed with van der Waals 

and electrostatic terms. Encouragingly, TarFisDock pre-

dicted 10 putative targets for 4  H-tamoxifen and 12 for 

vitamin E, many of which are experimentally verified 

targets. Another docking-based IVS program is idTarget 

employing a divide-and-conquer docking approach com-

bined with quantum chemical charge models and robust 

regression-based scoring functions [10]. To constrain the 

search space for a putative binding site for a query ligand, 

a large docking box, initially covering the entire surface 

of a target protein, is constructed and then its size is 

dynamically reduced to smaller grids. idTarget conducts 

screens against nearly all protein structures present in 

the Protein Data Bank [11] and has been demonstrated 

to be able to reproduce known off-targets of drugs and 

drug-like compounds.

Nonetheless, the molecular actions of many drugs may 

be difficult to determine solely based on their interactions 

with single targets because the phenotypes of many com-

plex diseases often depend on numerous molecular inter-

actions through which the information in a cell is passed 

from one protein to another [12]. In order to account for 

this intricacy of the molecular basis of complex diseases, 

the study of molecular mechanisms of drugs and their 

system-level effects often involves the analysis of the 

structures of protein-protein interaction (PPI) networks 

[13]. Indeed, it was demonstrated that putative drug tar-

gets can be identified in a PPI network based on several 

topological features, such as the modularity, the core-

ness, and the eccentricity [14]. Further, drug targets can 

be distinguished from those proteins that are not targets 

for small molecules based on their degree, 1-N index, 

clustering coefficient, shortest distance to drug targets, 

average distance to drug targets, betweenness, and topo-

logical coefficient [15]. Interestingly, among the top 200 

proteins ranked by their topological features, as many 

as 94 are either known drug targets in DrugBank [16] or 

putative targets supported by the biomedical literature.

In addition to the analysis of PPI networks, potential 

drug targets can be identified from the differential gene 

expression profiles of various cell lines. For instance, the 

activatory and inhibitory targets of drug candidates can 

be predicted by comparing gene expression profiles col-

lected for cell lines perturbed with the chemical treat-

ment, gene knockdown, and gene overexpression [17]. 

Direct correlation methods typically analyze correlation 

coefficients between differential gene expression profiles 

measured for the chemical treatment and either a gene 

knockdown or a gene overexpression. �ese coefficients 

can be used as predictive scores not only to identify 

highly correlated drug-protein pairs, but also to suggest 

a drug mechanism of action. Essentially, a high correla-

tion between gene expression profiles for the chemical 

treatment and the gene knockdown indicates the inhibi-

tion, whereas the activation is predicted when the chemi-

cal treatment correlates with the gene overexpression 

profiles. In addition to the direct correlation methods, 

predictive models for individual target proteins can also 

be constructed using joint learning techniques. �ese 

predictive models learn shared similarities between gene 

knockdown and gene overexpression signatures in order 

to identify the activatory and inhibitory targets for small 

molecules. Importantly, selected interactions in drug-tar-

get-disease association networks predicted by compar-

ing gene expression profiles for 1,124 drugs, 829 target 

proteins, and 365 human diseases have been validated 

in vitro.

�e Library of Integrated Network-based Cellular Sig-

natures (LINCS), the largest repository of gene expres-

sion profiles collected for numerous perturbagens and 

cell lines [18], is often used in studies focused on the drug 

target identification. For instance, a method employ-

ing the tensor decomposition-based unsupervised fea-

ture extraction utilized the LINCS data to identify the 

so-called “inferred genes” and “inferred compounds” as 

being associated with the dose dependence [19]. In order 

to predict target proteins for small molecules, “inferred 

genes” can be compared to a single-gene perturbation 

using the gene list enrichment analysis tool Enrichr [20]. 

Interestingly, as many as 195 genes identified as com-

mon drug targets are significantly enriched with molec-

ular function terms related to protein-ligand binding 

according to the Gene Ontology database [21]. Another 

approach first identifies sets of deregulated genes by 

small molecules by comparing gene expression profiles 

from drug-treated and control cell lines, and then cal-

culates a proximity score for each protein in the human 

PPI network with a new measure called the local radiality 

(LR) [22]. Encouragingly, as many as 22 % of known drug 

targets were found in the 1st percentile of protein lists 

ranked by the LR.

Many contemporary studies focused on DTIs uti-

lize large, complex, and highly heterogeneous datasets 
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including biological and biochemical networks, tran-

scriptomics, bioassay and screening data, etc. Not sur-

prisingly, machine learning methods have become 

invaluable tools in computational biology to overcome 

the challenge of inferring the knowledge from these 

exponentially growing repositories [23]. Two distinct 

groups of techniques are currently employed to predict 

DTIs with supervised machine learning, similarity- and 

feature-based approaches [24]. Methods belonging to 

the former group typically first compute two similarity 

matrices, one for drugs and another for targets, which are 

then used to predict DTIs with various kernel functions, 

such as nearest neighbor [25], kernel regression [26], 

and bipartite local models [27]. Nonetheless, the major 

drawback of similarity-based methods is that these algo-

rithms often have difficulties predicting novel interac-

tions from unseen data. On the other hand, feature-based 

approaches employ feature vectors representing indi-

vidual instances as drug molecular structures and some 

information on target proteins. �ese feature vectors are 

then often used with traditional machine learning meth-

ods, such as support vector machines [28], decision trees 

[29], and random forests [30]. Feature-based approaches 

not only consider the information for drugs and proteins 

separately, but also suffer from a high computational 

complexity due to the high dimensionality of feature 

vectors.

More recently, deep neural networks (DNNs) have 

become the state-of-the-art predictors across numerous 

fields, including natural language processing [31], image 

processing [32], and big data analytics [33]. Not surpris-

ingly, DNNs are commonly employed as robust classifiers 

in the field of computational biology to extract informa-

tion from the complex biological data. For instance, a 

convolutional neural network (CNN) was utilized to clas-

sify ligand-binding sites [34], and a deep belief network 

(DBN) was applied to analyze and predict the toxicity of 

drug candidates [35]. Because of their remarkable versa-

tility, deep learning methods are well suitable to predict 

DTIs as well. An example is recently developed Deep-

DTIs, which employs a DBN with extended connectivity 

fingerprints and protein sequence composition descrip-

tors as features [36]. A similar algorithm, DeepLSTM, 

utilizes a long short-term memory (LSTM) architecture 

as the DTI predictor against multiple datasets [37]. Other 

methods, such as DeepConv-DTI [38] and DeepDTA 

[39], use CNNs to predict DTIs. DeepConv-DTI works 

with the descriptors of protein sequences and the Mor-

gan fingerprints of drugs, while DeepDTA consists of 

two separate CNNs to predict drug-target affinities from 

raw protein sequences and the SMILES strings of drugs. 

Encouragingly, the performance of DeepConv-DTI is 

0.80 in terms of the area under the curve (AUC), while 

the mean squared error (MSE) for predictions made by 

DeepDTA is 0.26.

Despite a promising progress in DTI prediction, impor-

tant challenges remain. Many previous models employ 

either the information on drugs and proteins, combined 

or separately, or drug-perturbed gene expression profiles 

and PPI networks to predict DTIs. �erefore, one appar-

ent advancement is to better integrate multiple heteroge-

neous data to infer interactions between drugs and their 

targets with a higher sensitivity and a lower false positive 

rate. Another future direction is to more carefully design 

validation protocols for supervised machine learning 

methods. In many studies reported to date, training and 

validation subsets were created by randomly splitting 

DTI datasets. Because of various redundancies present in 

these datasets in terms of drug and protein similarities, 

this procedure may lead to an inflated performance and 

poor capabilities of the trained classifiers to generalize 

to unseen data. In order to address these problems, we 

developed GraphDTI, a new method integrating multi-

ple heterogeneous data to predict DTIs. Biological data 

utilized by GraphDTI comprise target protein sequences, 

drug chemical structures, the structures of drug binding 

sites, and the information obtained from drug-perturbed 

gene expression profiles. �e effective representations of 

DTIs are derived from local graphs centered on drug tar-

gets in the human PPI network. A feature selection pro-

cedure is deployed to reduce the risk of overfitting when 

training the DNN model used as a classifier to predict 

DTIs. To mitigate the problem of redundancy in biologi-

cal datasets, not only a new cluster-based split protocol 

is used to conduct cross-validation benchmarks, but also 

the trained machine learning model is ultimately applied 

to an independent testing dataset in order to properly 

evaluate the generalizability of GraphDTI to unseen data. 

In comparative benchmarking calculations against sev-

eral other algorithms, we demonstrate that GraphDTI 

offers an unparalleled performance in large-scale DTI 

prediction.

Results and discussion

System-level data representation and integration

�e vast majority of drug candidates developed by con-

ventional target-based discovery approaches do not 

perform well in clinical trials due to either a reduced 

efficacy or unexpected adverse effects [40]. To address 

these issues, the paradigm in drug discovery has shifted 

from the concept of “one gene, one drug, one disease” 

to a system-level approach in order to account for the 

enormous complexity of biological systems involving 

the information propagation through numerous molec-

ular interactions in a cell and the simultaneous effects 

of pharmacotherapy on multiple biological processes 
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[41]. In particular, transcriptomic profiles provide 

invaluable data capturing the system-level effects of 

drug candidates in biological cells at the outset of drug 

discovery [40]. Combined with the PPI network infor-

mation, drug-perturbed differential gene expression 

profiles help understand how drug binding to molecu-

lar targets alters biological processes to produce a par-

ticular phenotype [22]. In GraphDTI, an undirected, 

weighted subgraph containing a central node corre-

sponding to the target (labeled 0 in Fig. 1) with multi-

ple connected nodes representing interacting proteins, 

is extracted from the entire human PPI network. Each 

edge is assigned a weight computed as the reciprocal 

of the confidence score for the interaction between two 

proteins in the STRING database (numbers along the 

edges in Fig. 1). Nodes in the subgraph are then ranked 

in an ascending order according to the length of their 

shortest paths to the target. �is representation cap-

tures the local network environment of a given target 

node to properly propagate the drug-perturbed differ-

ential gene expression information in machine learning.

GraphDTI architecture

�e overall architecture of GraphDTI is depicted in 

Fig. 2. In addition to the vector representation of a local 

graph centered on the target protein extracted from the 

human PPI network encoded with Graph2vec (Fig. 2A), 

the input data also contain the vector representations 

of a drug structure encoded with Mol2vec (Fig.  2B), a 

protein sequence encoded with ProtVec (Fig. 2C), and a 

drug-binding site in the target protein encoded with the 

Bionoi autoencoder (Bionoi-AE, Fig. 2D). Subsequently, 

a feature selection procedure based on the permutation 

feature importance is applied prior to the input layer in 

order to reduce the dimensionality of the feature vec-

tor mitigating the risk of overfitting (Fig. 2E). �e input 

layer comprising features selected from local network 

environment (blue), drug (yellow), protein (red), and 

drug binding site (green) descriptors (Fig.  2F) is fol-

lowed by two hidden layers, each containing 128 neu-

rons (Fig.  2G). At the end, an output layer composed 

of two neurons (Fig. 2H) evaluates the probabilities of a 

given drug-target instance to be positive (P) and nega-

tive (N).

Feature optimization for the local network environment

�e first optimization of the data representation in 

GraphDTI is to select the optimal number of nodes in 

the local network environment centered on a given tar-

get protein. In Fig. 3, the Principal Component Analysis 

[42] is employed to visualize five different subgraphs, 

represented by various marker shapes and labeled A-E, 

and seven different configurations, created using a dif-

ferent number of connected nodes N ranging from 10 

to 70, shown in various colors. As expected, distances 

between 5 subgraphs in the low-dimensional space tend 

to increase with the increasing values of N indicating that 

larger local graphs should yield a better discrimination in 

machine learning.

Next, in order to determine the optimal size of local 

networks centered on protein targets, a quantitative 

analysis is conducted by evaluating the classification per-

formance of a multilayer perceptron (MLP) trained on 

20,000 instances randomly sampled from the GraphDTI 

dataset. �e MLP model utilizes the same framework as 

GraphDTI (shown in Fig.  2), except that the number of 

neurons for the input layer is 600 (300 drug features and 

300 local network features). Table 1 reports AUC values 

for a classification by the MLP model, 5-fold cross vali-

dated on network embeddings computed for varying N 

values. �e MLP model yields the highest mean AUC 

score of 0.994 ± 0.001 when N is set to 50. �us, in all 

subsequent calculations, local network environments 

for drug targets in GraphDTI are represented by graph 

Fig. 1 Schematic representation of the local network environment 
for a target protein. The target is shown as a rounded square and 
other proteins in the network are circles. A green outline encloses the 
local environment for the target node comprising N top neighbors 
ranked by their distance to the target node (N is set to 7 in this 
simple example). Numbers inside nodes correspond to ranks by the 
distance, while numbers along edges are the confidence values for 
biological interactions between individual proteins. Nodes in the 
local environment are colored according to their differential gene 
expression values (green – upregulated, red – downregulated) with 
the transparency level depending on the magnitude of up- and 
downregulation
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embeddings calculated for 50 proteins interacting with 

the target node in the human PPI network.

Feature selection with permutation feature importance

In order to mitigate the effects of overfitting and to 

reduce the computational complexity, the optimal fea-

ture vector is determined by a feature selection pro-

cedure based on the importance scores of individual 

features [43]. Briefly, all 1412 features, comprising 300 

drug, 300 protein, 512 drug binding site and 300 local 

network features, are first ranked in a descending order 

based on their importance scores estimated with the per-

mutation feature importance algorithm. Next, the classi-

fication performance of the MLP model, pre-trained on 

the GraphDTI dataset, against the PubChem BioAssay 

dataset is calculated for a different number of the ranked 

features. In Fig.  4, we evaluate the AUC scores and the 

composition of feature vectors varying in size. Figure 4A 

shows that the MLP model yields low AUC scores for fea-

ture vectors shorter than 200 because a low-dimensional 

feature space is insufficient for the model to perform well 

against unseen data. It also does not generalize well to 

unseen data for feature vectors longer than 1200 due to 

the overfitting problem [44]. �e MLP model achieves 

the highest AUC of 0.932 when the feature vector size is 

set to 400. Figure 4B shows that the composition of fea-

ture vectors depends on their size with protein features 

dominating short vectors, and drug and local network 

features becoming more prominent in longer vectors. 

�e composition of a 400-dimensional vector yielding 

the highest classification accuracy is 3 % drug, 38 % pro-

tein, 29 % drug binding site, and 30 % local network fea-

tures. �is feature vector is employed in GraphDTI in all 

subsequent calculations.

Visualization of the machine learning model

T-distributed stochastic neighbor embedding (t-SNE) is 

a non-linear dimensionality reduction strategy developed 

to visualize high-dimensional datasets while minimizing 

the information loss [45]. Figure 5 shows the visualization 

Fig. 2 Flowchart of GraphDTI. The input to GraphDTI comprises four feature vectors, A a local network environment for the target protein encoded 
with Graph2vec, B a drug chemical structure encoded with Mol2vec, C a target protein sequence encoded by ProtVec, and D the structural and 
physicochemical properties of a binding site encoded with Bionoi-AE. E A feature selection is employed prior to the input layer in order to reduce 
the dimensionality of the feature vector. F) An input layer concatenating network environment (blue), drug (yellow), protein (red), and binding site 
(green) feature vectors. G Two hidden layers with selected connections for three neurons colored in dark gray. H An output layer consisting of two 
neurons to estimate the probability of the drug-target interaction (P—positive, N—negative)
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of 500 positive (teal) and 500 negative (salmon) instances 

from the PubChem BioAssay dataset with t-SNE. A 

dimensionality reduction applied to 400-dimensional 

feature vectors optimized with the permutation feature 

importance algorithm is presented in Fig.  5A, whereas 

Fig.  5B shows the t-SNE visualization of output-layer 

embeddings prior to the softmax activate function of the 

pre-trained MLP model. Although 400 important fea-

tures of positive instances noticeably overlap with those 

of negative instances, the output-layer embeddings of the 

MLP model actually separate into two groups, one con-

taining predominantly positive instances and the other 

composed of mostly negative instances. �is analysis 

indicates that GraphDTI should prove effective in the 

prediction of DTIs from unseen data.

Performance of DTI predictors in a random-split 

cross-validation

�e performance of GraphDTI is compared to that 

of three other machine learning methods, EnsemDT, 

EnsemKRR, and RLS-kron [46], as well as an approach 

employing molecular docking with AutoDock Vina [5]. 

EnsemDT is a feature-based algorithm utilizing the Deci-

sion Tree, a commonly used machine learning model for 

classification problems. �e other two machine learning 

methods are similarity-based. EnsemKRR employs RLS-

avg base learner [47] with the Kernel Ridge Regression 

(KRR) classifier. �e classification is performed according 

to the average of two scores calculated separately for the 

drug kernel and the target kernel. RLS-kron is a similar 

algorithm utilizing the KRR classifier, however, rather 

than the average, the prediction score is the Kronecker 

product of drug and target kernels. �e performance of 

DTI predictors is evaluated with the Receiver Operating 

Characteristic (ROC) analysis in Fig.  6 with the corre-

sponding AUC values reported in Table 2.

We first present the results obtained from a 10-fold 

cross-validation against the GraphDTI dataset randomly 

split into training and validation subsets. Figure 6A and 

the second column in Table 2 show that GraphDTI yields 

a nearly perfect classification performance with an AUC 

of as high as 0.999. EnsemDT, EnsemKRR, and RLS-kron 

also perform remarkably well when a protocol based 

on the random split of data is employed. In contrast to 

methods employing machine learning, inverse virtual 

screening with AutoDock Vina has an AUC of only 0.534 

demonstrating that this method has rather poor capa-

bilities to predict DTIs against the GraphDTI dataset. 

Although similar random-split protocols are commonly 

used to benchmark DTI predictors, the performance 

of classifiers employing supervised learning methods 

is likely overestimated on account of a possible overlap 

between training and validation subsets. Splitting data 

randomly into folds may result in interactions involving 

similar drugs and proteins to be assigned to training and 

validation subsets making it easier to achieve a high clas-

sification accuracy.

Clustering drugs and their molecular targets

In order to address the issue of overlapping data and to 

properly evaluate the generalizability of DTI predictors, 

we developed a cluster-based cross-validation protocol 

Fig. 3 Visualization of sub-graph embeddings for the target local 
environment. The scatter plot was created by reducing the number 
of dimensions with the Principal Component Analysis (PCA) of five 
different subgraphs (represented by different maker shapes), each 
with several different sizes. The size is defined as the number of highly 
confident neighbors of a target node (N) increasing from 10 to 70 
(shown in different colors)

Table 1 Optimization of the size of the target local environment 
in the PPI network

The Area Under the Curve (AUC) measures the classi�cation performance of 

the MLP model employing drug and local network embeddings in 5-fold cross-

validation against the GraphDTI dataset. Graph embeddings for target nodes 

are calculated for a number of highly con�dent neighbors of a target node (N) 

increasing from 10 to 70

N AUC 

10 0.978 ±0.003

20 0.985 ±0.002

30 0.989 ±0.002

40 0.991 ±0.002

50 0.993 ±0.001

60 0.985 ±0.002

70 0.985 ±0.002
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ensuring that instances assigned to different folds are 

distinct from one another. Specifically, 90,353 drug-pro-

tein instances in the GraphDTI dataset were clustered 

with the k-medoids algorithm, which is applicable to 

data partitioning in the Euclidean space [48]. �e result-

ing clusters were evaluated with the Silhouette coef-

ficient (SC) because it provides a convenient measure 

to evaluate a cohesion, the similarity of an object to its 

own cluster, against a separation, the dissimilarity of an 

object to other clusters [49]. SC ranges from − 1 to 1 with 

higher values indicating that objects are well matched 

to their own clusters and different from objects belong-

ing to other clusters. Because the k-medoids algorithm 

has a certain randomness, it does not always converge to 

the same solution. �us, for a given number of clusters, 

the data partitioning is repeated 50 times and the mean 

SC values with the corresponding standard error are 

computed.

In Fig.  7, we compare the consistency within clus-

ters of data obtained with three distance metrics for 

Fig. 4 Feature selection with permutation feature importance. A The area under the curve (AUC) calculated for a varying number of features 
selected by the permutation feature importance algorithm against the PubChem BioAssay dataset. B The composition of feature vectors changing 
with the vector length. Feature vectors comprise four groups of features calculated for drugs with Mol2vec (green), proteins with ProtVec (purple), 
local network environments with Graph2Vec (light blue), and binding sites with Bionoi-AE (orange)

Fig. 5 Separation of input features and output-layer embeddings in a low-dimensional space. The T-distributed Stochastic Neighbor Embedding 
(t-SNE) technique is applied to 500 positive (teal) and 500 negative (salmon) instances randomly selected from the PubChem BioAssay dataset. 
Dimensionality reduction is conducted for A 400-dimensional input feature vectors and B output-layer embeddings prior to the softmax activate 
function
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drug-protein pairs, the Feature Match Distance (FMD), 

the Perfect Match Distance (PMD) [50], and the scaled 

PMD. Using the scaled PMD consistently yields the 

highest cluster consistency compared to the other dis-

tance metrics, for instance, SC values for 200 clusters 

are 0.080 ±0.003, 0.078 ±0.003 and 0.138 ±0.008 for 

FMD, PMD and the scaled PMD, respectively. �ere-

fore, we selected the scaled PMD as the best distance 

measure for the k-medoids algorithm with the optimal 

number of clusters of 200. Next, the resulting 200 clus-

ters were randomly merged into 10 folds for cross-val-

idation. �is protocol essentially minimizes similarities 

between folds in the drug-target space not only mak-

ing the GraphDTI dataset more challenging for DTI 

predictors, but also reducing the risk of overfitting in 

supervised machine learning.

Performance of DTI predictors in a cluster-based 

cross-validation

�e performance of GraphDTI, EnsemDT, Ensem-

KRR, RLS-kron, and AutoDock Vina using a 10-fold 

Fig. 6 Cross-validated performance of algorithms to predict DTIs. Receiver Operating Characteristic (ROC) plots showing the true positive rate (TPR) 
against the false positive rate (FPR) are calculated for A random-split and B cluster-based cross-validation benchmarks against the GraphDTI dataset. 
The performance of several DTI predictors is presented, GraphDTI (solid blue lines), EnsemDT (dashed pink lines), EnsemKRR (dashed-dotted green 
lines), RLS-Kron (dotted red lines), and Vina (dashed yellow line). The gray area corresponds to the performance of a random classifier

Table 2 Performance of algorithms to classify drug–target 
interactions

The Area Under the Curve (AUC) measures the classi�cation performance 

against the GraphDTI dataset, cross-validated with random-split and cluster-

based protocols, and the PubChem Bioassay dataset containing unseen data

Algorithm GraphDTI dataset PubChem 
Bioassay 
datasetRandom-split Cluster-based 

GraphDTI 0.999 ±0.0004 0.996 ±0.0036 0.939

EnsemDT 0.924 ±0.0903 0.824 ±0.0972 0.597

EnsemKRR 0.977 ±0.0029 0.885 ±0.0365 0.488

RLS-Kron 0.976 ±0.0035 0.834 ±0.0393 0.465

Vina 0.534 ±0.0044 0.551 ±0.0372 –

Fig. 7 Optimization of the number of clusters for cross-validation. 
Silhouette coefficient values are calculated for the GraphDTI dataset 
partitioned with the k-medoids algorithm into a varying number of 
clusters. Three measures of distances between drug-protein pairs 
are used in the dataset clustering, the Feature Match Distance (FMD, 
blue), the Perfect Match Distance (PMD, red), and the scaled PMD 
(green). For a given number of clusters a mean value (circles) with the 
corresponding error (vertical bars) are plotted
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cluster-based cross-validation is evaluated with the ROC 

analysis in Fig.  6B with the corresponding AUC values 

reported in the third column of Table  2. Encouragingly, 

GraphDTI maintains its high performance in these more 

challenging benchmarks with an AUC of 0.996. In con-

trast, the performance of EnsemDT, EnsemKRR, and 

RLS-kron is notably lower compared to that obtained 

using the random-split cross-validation protocol. �ese 

results indicate that GraphDTI should have high capa-

bilities to generalize to unseen data, whereas the other 

machine learning methods are going to suffer from over-

fitting problems. As expected, the performance of Auto-

Dock Vina, which is not a supervised learning method, 

is independent of the assignment of instances to cross-

validation folds.

Performance of DTI predictors against unseen data

Although, the cluster-based cross-validation protocol 

can help reduce the overlap between training and valida-

tion instances, it should always be mandatory to evaluate 

the performance of DTI predictors against unseen data. 

On that account, we tested all machine learning meth-

ods against an independent dataset compiled from the 

PubChem BioAssay database [51] with models pretrained 

on the GraphDTI dataset. �e resulting ROC plots are 

presented in Fig.  8 with the corresponding AUC val-

ues reported in the last column of Table 2. As expected, 

GraphDTI yields the highest AUC score of 0.939, 

whereas the other machine learning approaches give 

AUC values around 0.5 demonstrating that, in contrast 

to GraphDTI, these programs do not have capabilities to 

generalize to unseen data. In the subsequent sections, we 

validate several DTIs confidently predicted by GraphDTI 

in PubChem BioAssay and GraphDTI datasets against 

the biomedical literature.

Pharmacology of fasudil

Classified as an investigational small molecule accord-

ing to DrugBank, fasudil is a potent RhoA/Rho kinase 

inhibitor used to treat carotid stenosis [52] and cerebral 

vasospasm [53]. cAMP-dependent protein kinase cata-

lytic subunit α (PRKACA) is another important target of 

fasudil. Figure 9 A depicts the interaction of fasudil with 

PRKACA and a sub-network of PRKACA containing five 

other proteins, AKAP1 (labeled 1 in Fig. 9 A), PRKR2A, 

PRKR2B, PRKR1A, PRKR1B. Among these neighbor 

proteins, A-kinase anchor protein 1 (AKAP1) is a cardio-

protective protein acting as a scaffold to recruit protein 

kinase A to the outer membrane of mitochondria [54]. 

It is important to note that fasudil has a protective effect 

on cardiac mitochondrial function and structure in rats 

with induced type 2 diabetes [55]. GraphDTI predicted 

an interaction between fasudil and PRKACA with a high 

score of > 0.99 across multiple cell lines, including a kid-

ney cell line HA1E with a confidence of 0.9997. Indeed, 

the catalytic subunit α of bovine cAMP-dependent pro-

tein kinase has been co-crystallized with fasudil with a 

Kd of 5.7 µM [56]. Further, dimethylfasudil, an analog of 

fasudil, exhibits an inhibitory effect on HA1E cells over-

expressing Myc proto-oncogene protein [57], which was 

shown to directly regulate the transcription of cAMP-

dependent protein kinase catalytic subunit β [58].

Polypharmacology of haloperidol

Haloperidol, a potent antagonist of dopamine receptors 

and the first-generation antipsychotic drug [59], is used 

to treat schizophrenia, Tourette syndrome, acute psy-

chosis, and other behavioral problems [60]. According to 

DrugBank, molecular targets of haloperidol other than 

dopamine receptors, are histamine, serotonin, adrener-

gic, and sigma non-opioid intracellular receptors [16]. 

Figure  9B shows three targets of haloperidol, histamine 

 H1 receptor (HRH1), 5-hydroxytryptamine receptor 2 C 

(HTR2C), and dopamine  D2 receptor (DRD2) along with 

a local network of interacting proteins. Histamine  H1 

receptor interacts with TAC1, BDKRB2, KNG1, HCRT, 

and GRPR, whereas 5-hydroxytryptamine receptor 2  C 

interacts with NPSR1 (labeled 1 in Fig.  9B), GNAQ, 

Fig. 8 Performance of algorithms to predict DTIs against unseen 
data. Receiver Operating Characteristic (ROC) plots showing the true 
positive rate (TPR) against the false positive rate (FPR) are calculated 
for machine learning models pre-trained on the GraphDTI dataset 
and applied to classify unseen instances from the PubChem BioAssay 
dataset. The performance of several DTI predictors is presented, 
GraphDTI (solid blue lines), EnsemDT (dashed pink lines), EnsemKRR 
(dashed-dotted green lines), and RLS-Kron (dotted red lines). The gray 
area corresponds to the performance of a random classifier
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GRM5, CCK, and NTS. A long-term treatment with 

haloperidol was found to upregulate the mRNA expres-

sion of neuropeptide S receptor (NPSR) in rat brain 

supporting the involvement of neuropeptide S in the 

pathophysiology of psychiatric disorders [61]. Among the 

network neighbors of dopamine  D2 receptor, ADRA2A 

(labeled 3 in Fig. 9B), CDH1, NCS1, ADRB2, and PENK, 

ADRA2A was shown to weakly associate with haloperi-

dol [62]. Based on the chemical structure of haloperidol 

and the sequence, structural, and network information 

for dopamine  D2 receptor, histamine  H1 receptor, and 

5-hydroxytryptamine receptor 2 C, GraphDTI predicted 

their interactions with haloperidol with a high confidence 

of > 0.99 in multiple cell lines. Indeed, the binding affini-

ties of haloperidol to these G-protein coupled receptors 

in terms of the inhibitory constant Ki are 2, 3000, and 

5000 nM, respectively [63].

Repositioning of vorinostat through o�-target binding

Vorinostat is a hydroxamic acid-based inhibitor of his-

tone deacetylases (HDAC) class I, II, and IV having anti-

proliferative effects against solid and hematologic cancers 

[64]. Figure 9C shows an interaction between vorinostat 

and histone deacetylase 2 (HDAC2) along with its 

sub-network comprising several proteins, SIN3A (labeled 

1 in Fig. 9C), RBBP7, RBBP4, MBD2, and EZH2. Many of 

these proteins and the downstream signaling are affected 

by vorinostat binding to HDAC2. For instance, HDAC2 

forms a complex with paired amphipathic helix protein 

Sin3a (SIN3A) acting as a corepressor for the p21 gene 

promoter, a negative regulator of the cell cycle progres-

sion [65]. Vorinostat disrupts this complex from bind-

ing to the p21 promoter by inhibiting the ING2 subunit 

binding to SIN3A, leading to the upregulation of the p21 

gene [66]. GraphDTI predicted an interaction between 

vorinostat and HDAC2 with a high confidence of > 0.98 

in pancreatic carcinoma cell lines, e.g., 0.9871 confidence 

for YAPC. Indeed, not only the inhibitory constant Ki of 

vorinostat measured against HDAC2 is 1 nM, but also 

the p21 gene blocking the G2/M-phase transition was 

found to be upregulated in pancreatic ductal adenocarci-

noma cells [67].

Selected HDAC inhibitors were also found to inhibit 

leukotriene A4 hydrolase (LTA4H), a key enzyme in 

the biosynthesis of leukotriene B4 (LTB4), suggesting a 

possibility of their repositioning as anti-inflammatory 

agents in the treatment of idiopathic pulmonary fibrosis 

and acute lung injury [68]. Interactions between LTA4H 

Fig. 9 Examples of drug targets and their local network environment. A Fasudil interacting with cAMP-dependent protein kinase catalytic subunit 
α (PRKACA) further connected to AKAP1, PRKR2A, PRKR2B, PRKR1A, and PRKR1B. B Haloperidol interacting with 5-hydroxytryptamine receptor 
2 C (HTR2C), dopamine  D2 receptor (DRD2), and histamine  H1 receptor (HRH1) along with a local network of connected proteins (NPSR1, PENK, 
ADRA2A, GNAQ, GRPR, TAC1, BDKRB2, KNG1, GRM5, HCRT, ADRB2, NTS, CCK, NCS1, and CDH1). C Vorinostat interacting with histone deacetylase 2 
(HDAC2) and leukotriene A4 hydrolase (LTA4H) along with a local network of connected proteins (SIN3A, EZH2, LTC4S, PGM1, MBD2, ALOX5, RBBP7, 
RBBP4, ALDOA, and 1DH1). D Clofibrate interacting with transcription factor AP-1 (JUN) and cyclin-dependent kinase 1 (CDK1) along with a local 
network of connected proteins (CKS2, UBE2C, MAPK8, MAPK9, ANAPC4, CCNB2, AURKA, FOS, MAPK10, and ATF3). Drugs are colored in salmon, 
whereas targets are purple and off-targets are cyan. Nodes in local networks are colored according to their differential gene expression between 
drug-treated and untreated cells (green—upregulated, red—downregulated) and ordered clockwise starting with the most upregulated protein, 
labeled 1
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and several other proteins, LTC4S, ALOX5 (labeled 6 in 

Fig. 9C), ALDOA, 1DH1, and PGM1, are also shown in 

Fig.  9  C. Among these neighbor proteins, polyunsatu-

rated fatty acid 5-lipoxygenase (ALOX5) initiates the 

leukotriene synthesis from arachidonic acid in the LTB4 

biosynthesis pathway [69]. GraphDTI predicted an inter-

action between vorinostat and LTA4H with a high confi-

dence of > 0.99 across multiple cell lines. Experimentally 

determined half maximal inhibitory concentration  (IC50) 

values for vorinostat and its analog M344 against LTA4H 

are 7.6 µM and 0.68 µM, respectively [68]. It is note-

worthy that GraphDTI predicted no direct interaction 

between vorinostat and 5-LOX with low scores across 

multiple cell line ranging from 0.50 to 0.59. Indeed, 

experiments showed that vorinostat and its analog M344 

are inactive against 5-LOX with a high  IC50 of > 50 µM 

[68]. �is case study demonstrates that DTIs predicted by 

GraphDTI can potentially suggest novel opportunities for 

drug repositioning.

O�-target side e�ects of clo�brate

Clofibrate belongs to the hypolipidemic fibrate group of 

agents whose primary function is to increase the level of 

high-density lipoprotein and decrease the levels of low-

density lipoprotein and triglycerides in plasma through 

the activation of peroxisome proliferator-activated recep-

tor α (PPARA) [70]. �e elevated expression of PPARA 

in the presence of clofibrate regulates mitochondrial and 

peroxisomal gene expression, which are involved in fatty 

acid metabolism in different tissues such as liver, brain, 

heart, kidney, adipose tissues, and intestine [70]. Fibrate-

induced PPARA antagonizes various transcription fac-

tors, AP-1, STAT, and NF-κB, regulating inflammatory 

genes [71]. �rough this repression, fibrate drugs modu-

late the anti-inflammatory response in the progression of 

atherosclerosis, a vascular inflammatory disease [71, 72]. 

Figure  9D shows the interaction between clofibrate and 

transcription factor AP-1 (JUN), predicted by GraphDTI 

with a high confidence of > 0.95 across various types of 

cell lines, and the corresponding sub-network of proteins 

interacting with JUN, including MAPK9, FOS, ATF3, 

MAPK8, and MAPK10. One drawback of fibrate drugs is 

that induced PPARα triggers the immediate early expres-

sion of growth regulatory genes, c-Jun, c-Fos, JunB, and 

NUP475 in liver, promoting tumor progression [73]. In 

addition, treatment with clofibrate increases β-oxidation 

of long-chain fatty acids and oxidative stress in rodent 

liver by producing hydroxyl radicals leading to hepatocel-

lular toxicity [74].

GraphDTI also predicted an interaction between clofi-

brate and cyclin-dependent kinase 1 (CDK1) with a con-

fidence of > 0.99 across multiple cell types. Interestingly, 

not only CDK1 is one of the cell proliferation markers, 

but also experiments conducted on homogenized liver 

from male rodents treated with clofibrate showed that 

the amount of CDK is significantly higher compared to 

untreated cells [74]. Figure 9D also depicts proteins inter-

acting with CDK1, including CKS2 (labeled 1 in Fig. 9D), 

AURKA, CCNB2, UBE2C, and ANAPC4. Among these 

neighbors, cyclin-dependent kinase regulatory subunit-2 

(CKS2) shows a higher expression in various hepatocel-

lular carcinoma tissues [75]. According to these find-

ings, the mechanism of hepatotoxicity of clofibrate may 

involve a putative interaction with CDK1, showing that 

interactions detected by GraphDTI can potentially reveal 

novel mechanisms of drug side effects.

Conclusions

In this study, we developed a graph-based deep learning 

method, GraphDTI, to accurately predict DTIs from mul-

tiple heterogeneous data. In contrast to conventional fea-

ture-based DTI prediction algorithms usually employing 

features derived only from drug chemical structures and 

target protein sequences, GraphDTI utilizes other types 

of biological data. In addition to sequence embeddings, 

feature vectors also include structural, evolutionary, and 

physicochemical characteristics of ligand binding sites 

in the target proteins. Moreover, rather than focusing 

on a single interaction between a drug and a target, the 

information extracted from the human PPI network inte-

grating drug-perturbed gene expression profiles of mul-

tiple proteins captures the system-level effects of a drug 

treatment. In order to avoid the curse of dimensionality, 

GraphDTI employs a state-of-the-art feature selection 

procedure. Interestingly, the optimized feature vectors 

not only yield a more robust performance, but also the 

analysis of the input vector composition demonstrates 

that the additional information on binding sites and the 

local network environment is vitally important to accu-

rately predict DTIs.

Most studies focused on benchmarking algorithms 

to detect DTIs utilize random-split protocols, in which 

individual instances are randomly assigned to cross-

validation folds. In this study, we devised a cluster-

based protocol to assign instances into folds minimizing 

similarities between training and validation subsets. 

Comparative benchmarks utilizing random-split and 

cluster-based cross-validation demonstrate that the per-

formance of many DTI predictors is overestimated when 

the former protocol is used. �is is further confirmed 

in testing calculations against an independent data-

set, in which only GraphDTI generalizes well to unseen 

data, while the performance of other methods is notably 

less satisfactory. It is also important to note that meth-

ods based on machine learning generally outperform 
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traditional DTI prediction techniques utilizing inverse 

virtual screening with molecular docking.

Overall, GraphDTI offers a robust DTI prediction from 

multiple biological data for numerous applications in bio-

medicine, including the study of polypharmacological 

effects of drugs, the exploration of new opportunities for 

the repositioning of existing drugs to treat different con-

ditions, and the investigation of drug side effects through 

off-target binding. GraphDTI is available as an open-

source program from GitHub at https:// github. com/ 

Guann an1900/ Graph DTI with the accompanying Graph-

DTI and PubChem BioAssay datasets accessible from the 

Open Science Framework at https:// osf. io/ ugvd9/.

Materials and methods

Drug-target interaction data

Experimentally determined data on DTIs were acquired 

from BindingDB, a web-accessible resource containing 

1,881,721 interactions formed by 833,792 small mol-

ecules and 7548 target proteins [76]. As a positive DTI 

set, we selected 204,542 BindingDB interactions between 

738 human proteins and 155,986 small molecules hav-

ing identifiers in ChEMBL, a manually curated database 

of bioactive compounds with drug-like properties [77]. A 

negative DTI set comprises those combinations of drug-

protein pairs, for which no similar pairs are present in the 

positive set. A similar pair is defined as the combination 

of a drug, whose chemical similarity measured by a Tan-

imoto coefficient (TC) [78] is ≥ 0.4, and a protein with 

a global sequence identity of ≥ 40 %. TC values for drug 

molecules were calculated with the kcombu program 

[79], whereas protein sequence identities were computed 

with the Needleman-Wunsch algorithm [80]. Because of 

a prohibitively large number of pairwise similarity cal-

culations for the entire collection of 155,986 small mol-

ecules having ChEMBL identifiers, only a random subset 

of 10,000 compounds uniformly covering the chemical 

space were used to construct the negative DTI set. �is 

set contains 3,745,178 negative interactions formed by 

10,000 small molecules and 375 target proteins.

Protein-protein interaction network

�e STRING database comprises the protein-protein 

interaction data for 5090 organisms, including 11,355,804 

interactions in the human proteome formed by 19,354 

proteins [81]. Experimentally discovered and/or compu-

tationally inferred PPIs in STRING are annotated with 

confidence scores ranging from 150 to 999 with higher 

scores corresponding to more confident interactions 

between two proteins. From the initial set of DTIs, we 

selected only those interactions involving human pro-

teins present in the STRING database (NCBI Taxonomy 

ID: 9606).

Di�erential gene expression

Drug-perturbed gene expression profiles were obtained 

from the next-generation Connectivity Map (CMap) 

[18]. �is resource comprises data collected for 107,404 

combinations of 41 cell lines and 1797 small molecules, 

most of which were tested at six different concentrations, 

0.04, 0.12, 0.37, 1.11, 3.33 and 10 µM. Each measure-

ment is assigned a unique signature identifier containing 

the expression levels of 12,329 genes in terms of level 5 

moderated Z-scores (MODZ). From the CMap database, 

we selected 30,461 combinations of 30 cell lines and 462 

small molecules present in the initial set of DTIs com-

piled with BindingDB and mapped to STRING. Based on 

our experience, this data size may be too small for super-

vised machine learning, which could potentially lead to 

overfitting problems. On that account, we augmented the 

data to increase the number of DTI instances according 

to the biological knowledge.

Knowledge-based data augmentation

Chemically related drugs typically share common binding 

profiles and can have similar clinical effects. For instance, 

several drugs having a TC of ≥0.8 with antihypertensive 

drug enalapril were shown to reduce high blood pressure 

and prevent heart failure [82]. At high concentrations, 

the transcriptomic profiles of chemically similar drugs 

with a TC of ≥ 0.85 tend to be similar as well [83]. Capi-

talizing on these observations, we developed a data aug-

mentation protocol to significantly increase the size of 

the GraphDTI dataset. Specifically, for those BindingDB 

compounds having no data in CMap, we assigned gene 

expression profiles from the most similar molecules with 

a TC of ≥ 0.85 and at the highest tested concentration. 

Drug similarity searches for data augmentation were 

conducted using molecular fingerprints generated with 

Open Babel [84]. �e final GraphDTI dataset comprises 

326,139 positive instances involving 3618 drugs, 421 pro-

teins, and 7590 signature identifiers, and 326,188 nega-

tive instances involving 236 drugs, 358 proteins, and 1541 

signature identifiers. In terms of the number of unique 

drug-target pairs, the positive subset contains 10,977 

pairs and the negative subset contains 79,376 pairs, total-

ing 90,353 drug-target pairs in the GraphDTI dataset.

Unseen data for independent testing

In order to properly evaluate the generalizability of DTI 

predictors employing machine learning, an independent 

test dataset was compiled from the PubChem BioAssay 

database [51]. First, we selected those drugs from CMap 

that are not present in the BindingDB database, thus not 

included in the GraphDTI dataset. Mapping these com-

pounds to the PubChem BioAssay database identified 

389,076 experimentally tested drug-target combinations 

https://github.com/Guannan1900/GraphDTI
https://github.com/Guannan1900/GraphDTI
https://osf.io/ugvd9/
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involving 195 drugs and 2152 proteins. Positive and 

negative subsets were constructed based on the bioas-

say outcome, i.e., those pairs annotated as “active” were 

considered as positive interactions, whereas “inactive” 

pairs were taken as negative interactions. After mapping 

drug-target pairs to CMap, the positive subset comprises 

14,588 instances involving 51 drugs, 151 proteins, and 

3248 signature identifiers, and the negative subset con-

tains 58,714 instances involving 82 drugs, 47 proteins, 

and 3291 signature identifiers. �e negative subset was 

randomly down-sampled to 14,588 instances involving 

82 drugs, 47 proteins, and 2988 signature identifiers. �e 

final PubChem BioAssay dataset for independent testing 

comprises 29,176 balanced instances, which are consid-

ered unseen data, viz. not present in the GraphDTI data-

set and prepared using a different data source.

Graph-based features for machine learning

For each target protein, an undirected, weighted sub-

graph is constructed according to the human PPI net-

work from the STRING database [81]. �e weights of 

edges are calculated as the reciprocal value of the confi-

dence score between two interacting proteins. �e graph 

distance between the target node and other nodes in the 

network is defined as the sum of the weights along the 

shortest path between these two nodes computed with 

Dijkstra’s algorithm [85]. Next, nodes are ranked in an 

ascending order according to their graph distances to 

the target node and then a fixed number of top-ranked 

nodes are selected to create a sub-graph centered on the 

target. �is procedure ensures that the local network 

environment for each target protein has exactly the same 

dimension and comprises only those proteins connected 

through a relatively few, highly confident biological inter-

actions according to STRING. Node features include the 

differential gene expression and the distance to the target 

node. Finally, Graph2vec is employed to learn the distrib-

uted representation of each subgraph [86]. �is neural 

framework considers the input subgraph as a document 

and utilizes the Doc2Vec mechanism [87] to compute 

a 300-dimensional feature vector for the target protein 

based on its biological network environment.

Molecular features for machine learning

Graph-based features are combined with molecular 

features to learn the representations of drug chemical 

structures, target protein sequences, and the physico-

chemical properties of drug binding sites. Drug features 

are extracted with Mol2vec, a natural language process-

ing (NLP) model utilizing the Doc2Vec mechanism [88]. 

�is approach considers chemical substructures cover-

ing all available chemical matter as the corpus of words 

and chemical compounds as sentences. �e vector 

representations of protein sequences are computed with 

another NLP-based model, ProtVec, employing a Skip-

gram neural network [89]. Another valuable data to 

infer DTIs are the representations of drug binding sites 

in target proteins. �is information is computed with 

the Bionoi-AE [90], which first converts binding pock-

ets identified in target proteins with eFindSite [91, 92] 

into Voronoi diagrams, and then generates latent vectors 

encoding the structural, evolutionary, and physicochemi-

cal features of drug binding sites. �e default lengths of 

feature vectors in GraphDTI are 300 for Mol2vec and 

ProtVec, and 512 for Bionoi-AE.

Multilayer perceptron architecture

GraphDTI utilizes the MLP, a classical feedforward neu-

ral network consisting of an input layer, two hidden lay-

ers, and an output layer, as the DTI classifier. �e output 

of the n-th layer, Ln , in the MLP model is expressed as 

[93]:

where Wn is a weight matrix for the connections from 

the (n − 1)-th layer to the n-th layer, bn are biases for neu-

rons in the n-th layer, and σn is the activation function in 

the n-th layer. �e input layer in GraphDTI contains 400 

neurons, both hidden layers have 128 neurons, and the 

output layer is composed of 2 neurons returning classes 

probabilities. �e rectified linear unit (ReLu) function 

[94] is used as the activation function in all layers except 

for the output layer utilizing the softmax activation func-

tion [95]. �e stochastic gradient descent (SGD) opti-

mizer [96] and the cross-entropy loss function [97] are 

included in order to help the model learn effectively. 

GraphDTI uses the batch size of 32, the learning rate for 

the SGD optimizer of 0.0001, and the L2 weight decay of 

0.00001. We found empirically that 30 epochs are suffi-

cient for the model training to converge.

Feature selection

Permutation feature importance is a widely used method 

for feature selection to help avoid the curse of dimen-

sionality in deep learning [98]. �is technique is applied 

against an independent testing dataset since it is impor-

tant to evaluate the generalizability of a machine learning 

model by measuring the performance on unseen data. 

In this study, we first assessed the accuracy score of the 

MLP model with original, 1412-dimensional feature vec-

tors, denoted as Sori . Next, we randomly shuffled a single 

feature j across all instances, without changing any other 

features or labels, to calculate a permutated accuracy 

score, S
perm
j  . �e importance of feature j , Ij , is defined as 

[99]:

(1)Ln = n(WnLn−1 + bn)
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Random-split cross-validation

K-fold cross-validation is often employed to evaluate 

the generalizability of machine learning models. Dur-

ing the cross-validation, the entire dataset is first divided 

into K subsets without repetitions and then K-1 subsets 

are used for training while the remaining subset is used 

to evaluate the model performance. �is procedure is 

performed iteratively until each subset has been used as 

the evaluation set. In this study, a 10-fold cross-valida-

tion is employed with two different protocols to divide 

the training data into folds. In a random-split protocol, 

cross-validation folds are created by randomly assign-

ing drug-target pairs to K subsets. In order to make the 

results reproducible, a fixed seed is used to generate a 

random number series.

Cluster-based cross-validation

�e overlapping data problem can be mitigated by creat-

ing cross-validation folds from distinct groups of train-

ing instances obtained by the clustering of drug-target 

pairs. In this study, we employed the k-medoids algo-

rithm [100], a clustering method similar to the k-means 

algorithm, to partition the GraphDTI dataset into clus-

ters minimizing distances between instances in the same 

cluster and maximizing the distances between instances 

belonging to different clusters. Data clustering was con-

ducted with three distance measures for drug-target 

pairs. �e first distance is the FMD, defined as a Euclid-

ian distance for the combined drug features calculated 

with Mol2vec [88] and protein features calculated with 

ProtVec [89]. �e second is the PMD [50] based on the 

TC [78] between drugs and the Template Modeling score 

(TM-score) [101] between proteins, ranging from 0 to 
√

2 . Mapping all 90,353 drug-target pairs in the Graph-

DTI dataset to a coordinate system in the Euclidean space 

with the PMD puts them in a circle with a radius of 
√

2 . 

Since this representation makes it difficult for common 

clustering algorithms, such as k-medoids and k-means, 

to work satisfactorily, we developed the following scaled 

version of the PMD:

�e scaled PMD is used as the third distance to clus-

ter the GraphDTI dataset with the k-medoids algorithm. 

�e quality of clustering with different distance measures 

and a varying number of clusters is evaluated with the 

(2)Ij = Sori − S
perm
j

(3)scaled PMD =
PMD

√
2 − PMD

SC [49]. After the best distance measure and the optimal 

number of clusters are determined, the resulting clus-

ters are randomly merged into 10 folds, which are then 

employed in the cluster-based cross-validation against 

the GraphDTI dataset.

Other approaches to DTI prediction

Machine learning-based DTI predictors, EnsemDT, 

EnsemKRR, and RLS-Kron [46], were selected for com-

parative benchmarks against GraphDTI. Similar to the 

original publication, these methods were deployed with 

drug features calculated with Mol2vec [88] and pro-

tein features calculated with ProtVec [89]. Inverse vir-

tual screening was conducted with the docking program 

AutoDock Vina [5]. Drug molecules were docked to 

binding pockets identified in target proteins with eFind-

Site [91, 92] using optimized docking parameters [102]. 

For each drug molecule, all proteins were ranked based 

on the binding energies computed by Vina and the top-

ranked molecules were predicted as the targets.
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scription factor AP-1; KRR: Kernel ridge regression; LINCS: Library of Integrated 
Network-based Cellular Signatures; LR: Local radiality; LSTM: Long short-term 
memory; LTA4H: Leukotriene A4 hydrolase; LTB4: Leukotriene B4; MODZ: Mod-
erated Z-scores; MSE: Mean squared error; NLP: Natural language processing; 
NPSR: Neuropeptide S receptor; PMD: Perfect match distance; PPARA : Peroxi-
some proliferator-activated receptor alpha; PPI: Protein–protein interaction; 
PRKACA : CAMP-dependent protein kinase catalytic subunit α; ReLu: Rectified 
linear unit; ROC: Receiver operating characteristic; SC: Silhouette coefficient; 
SGD: Stochastic gradient descent; SIN3A: Paired amphipathic helix protein 
Sin3a; TC: Tanimoto coefficient; TM-score: Template Modeling score; TPR: True 
positive rate; t-SNE: T-distributed stochastic neighbor embedding.
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