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Graphene and Graphene-Based Composites: A Rising Star
in Water Purification - A Comprehensive Overview

Muniyappan Rajiv Gandhi,*[a] Subramanyan Vasudevan,[b] Atsushi Shibayama,[c] and
Manabu Yamada[d]

Graphene is an interesting two-dimensional carbon sheet pos-

sessing single-layered atom thickness that confers unique phys-

ical and chemical properties. The pristine graphene sheets have

some limited applications in water purification, but the mod-

ification of graphene into the graphene composite by the in-

corporation of some functional groups or nanoparticles on the

surface extensively increases its environmental applications. Re-

cently, graphene nanocomposites have found to show very

promising applications in all types of water purification. The

present review highlights the recent developments in the ap-

plications of graphene and graphene-based composites as ad-

sorbent, catalyst, photocatalyst, electrocatalyst, photo-

electrocatalyst, and disinfection and desalination agent in

comprehensive water purification systems. We primarily focus

on the environmental engineering applications of graphene

nanocomposites as sorbent materials for the elimination of tox-

ic inorganic (cationic and anionic), organic, and mixed/multiple

pollutants, and as catalysts for the degradation of toxic organic

contaminants using catalytic oxidation, photocatalytic oxida-

tion, electrocatalytic oxidation, and photoelectrocatalytic oxida-

tion. We have also discussed the use and feasibility of gra-

phene nanocomposites in water disinfection and desalination.

Finally, the future challenges and perspectives are discussed.

Introduction

Graphene, which is the most recent material of the carbon

group, is considered as one of the greatest smart materials of

the 21st century.[1] Graphene and graphene-based composites

show numerous potential applications owing to their distinc-

tive two-dimensional assembly and related band structure. Gra-

phene has gained attention of many scientists since its in-

novation due to its exceptional large surface area (2630 m2

g�1),[2] high electrical conductivity at room temperature[3,4]

(106 s cm�1), good mechanical properties[5] (~1.1 TPa), fracture

strength[5] (125 GPa), breaking strength[6] (42 N m�1), excellent

mobility as charge carriers[7] (~20 m2 V�1 s�1), superior thermal

conductivity (~5000 W m K�1),[6] high carrier density (~1012

cm�2),[8] good optical transmittance (~97.7%),[9] specific mag-

netism, and chemical stability.[1] Graphene and its composites

are widely used in sensors, transistors, electronics, composite

materials, photonics, bioengineering, energy production, and

storage.[10] Pure graphene is hydrophobic in nature and cannot

be dispersed in aqueous solutions,[11] therefore this factor limits

its application in water purification. Chemically converted gra-

phene, namely graphene oxide and reduced graphene oxide,

can be easily synthesized[12] and have shown numerous poten-

tial applications in water purification.[13] For example, graphene

oxide consists of many oxygen functional groups for example

carboxyl, ketone, epoxy, and hydroxyl groups at their basal as

well as edge planes. Moreover, graphene oxide is hydrophilic in

nature with large negative charge surface that helps effectively

remove cationic impurities (heavy metal cations and cationic

dyes) by electrostatic interaction.[13, 14] Graphene oxides are ca-

pable to act as adsorbent for various heavy metals.[15] Graphene

oxides undergo transformations in water over a period of sev-

eral months, which limits its application in water treatment.[15]

Reduced graphene oxide possesses large surface area, but does

not possess large negative charge, and shows effective removal

of anionic impurities (anionic dyes, As(III), As(V), and Cr(VI)).[14, 15]

In order to improve the efficiency of graphene, graphene oxide,

and reduced graphene oxide in environmental applications,

graphene nanocomposites are prepared by anchoring them

with specific functional groups and various nanomaterials.[13, 16]

Therefore, the prepared graphene-based nanocomposites show

superior water purification applications compared with un-

modified graphene, graphene oxide, and reduced graphene ox-

ide.[13,15, 17] The graphene-based composites show great im-

provements in their performance toward adsorption capacity,

catalytic/photocatalytic/electrocatalytic/photoelectrocatalytic
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activity, and disinfection and desalination ability in water purifi-

cation applications.[13–15,17–20] Many reviews have compiled envi-

ronmental applications of graphene on specific fields.[13–15,17–20]

Majority of the review articles included experiments on the ad-

sorptive/photocatalytic remediation of metal ions or dyes.

However, none of them reviewed all applications of graphene-

based materials as adsorbents, catalysts, and in water dis-

infection and desalination. Thus, in this present review an at-

tempt has been made to discuss briefly graphene-based com-

posites and their preparations and properties. Recent advances

have been shown in the adsorptive remediation of graphene-

based composites as toxic inorganic (cationic and anionic) con-

taminants, organic contaminants (dyes, micro-organic con-

taminants, polychlorinated biphenyls, personal-care products,

pharmaceuticals, pesticide, herbicides, etc.), and mixed con-

taminants. We focused on the catalytic application of gra-

phene-based nanocomposites considering the above-men-

tioned organic contaminants by using catalytic oxidative

degradation, photocatalytic oxidative degradation, electro-

catalytic oxidative degradation, and photoelectrocatalytic oxi-

dative degradation. In addition, the critically reviewed applica-

tions of graphene-based composites included water

disinfection against different kinds of disease causing micro-

organisms and the feasibility of water desalination (NaCl, KCl,

Na2SO4, MgSO4, MgCl2, As(III), As(V), and dyes). Finally, the po-

tential upcoming research work on high-efficient graphene-

based nanomaterials and future challenges and perspectives

are discussed considering the challenges in near-future water

purification applications. We believe that the present review

would help the researchers and environmental engineers un-

derstand the current needs and challenges to produce highly

efficient graphene-based materials for all kinds of water purifi-

cation in commercial applications.

Preparations and properties of graphene and
graphene – based composites

Graphene

In 2004, Novoselov et al.[21] synthesized very stable mono-

crystalline graphene films with a thickness of few atoms by me-

chanical exfoliation from pyrolytic graphite. In 2010, the Nobel

Prize in physics was awarded jointly to Geim and Novoselov

(University of Manchester, USA) for ground-breaking experi-

ments considering the two-dimensional graphene material.

This was the first highly recognized method used for the prepa-

ration of high quality graphene by using the top-down ap-

proach. Various methods have been reported to prepare gra-

phene. Until now, two primary approaches are applied for the

preparation of graphene using different carbon materials: the

top-down chemical approach, in which graphitic materials are

used as starting materials, and the bottom-up approach, in
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which small carbon-based molecules are used as precursor for

the synthesis of graphene.[22] The methods of Schafhäutl

(1840),[23] Brodie (1859),[24] Staudenmaier (1898),[25] and Humm-

er’s and Offeman (1958)[26] used the top-down approach for the

preparation of graphite oxides by the oxidative exfoliation of

graphite. Currently, Hummer’s method[26a–e] and the modified

Hummer’s method[27] are primarily used as common techniques

for the preparation of graphene oxide (GO). In these techni-

ques, graphite is oxidized into GO using strong acids and the

produced GO is dispersed in water. The top-down approach is

cost-effective but limited at a laboratory scale only.[28] In the

top-down approach, graphene sheets are prepared by exfolia-

tion peeling, cleaving, or separation from graphite,[26] graphite

oxide (GO), and graphite fluoride.[29] Researchers have success-

fully fabricated a few layers of graphene sheets using the top-

down approach.

Marcano et al.[27] reported improved methods for synthesis

of graphene oxide. They used Hummer’s methods, modified

Hummer’s methods and new improved methods for prepara-

tion of graphene oxide. They compared the yield, quality, and

advantages of the process. In Hummer’s method, 69 mL of H2

SO4, 3 g of graphite power (1 wt. equiv.) and NaNO3 (1.5 g, 0.5

wt. equiv.) were cooled to 0 8C. KMnO4 (9.0 g, 3 wt. equiv.) was

added to the mixture slowly and solution temperature in-

creased to 20 8C. The reaction mixture was heated to 35 8C and

stirred for 30 min. Additional water was added to reaction mix-

ture heated to 98 8C for 15 min and the reaction mixture was

cooled to room temperature. Further, additional water and

30% of H2O2 (3 mL) were added to the mixture and then the

mixture was purified using washing, filtration, drying, etc. The

final product was found to be 1.2 g. In the modified Hummer’s

methods, 6 wt. equivalent of KMnO4 was used and same ex-

periment conditions were used. The final product was 4.2 g.

They further improved the modified Hummer’s method using

9: 1 H2SO4/H3PO4 and obtained 5.8 g of the final product. The

advantages of this method include no generation of any toxic

gas (NOx) and the control of temperature. In this method the

graphene oxide is more oxidized than the Hummer’s methods

and modified Hummer’s method. The improved synthesis of

graphene oxide is very important for the large-scale production

and applications. In recent years, serval modified Hummer’s

method have been developed. For example, Chen et al.[26b] re-

ported an improved Hummer’s method for environment friend-

ly synthesis of graphene oxide. They reported synthesis of gra-

phene oxide without using NaNO3 and obtained the same yield

with conventional Hummer’s method. The main advantages of

the reported method is does not produce the toxic gas i. e. NO2

and N2O4, simplifies the wastewater disposal and hence it de-

creases the cost of production. Frankberg et al.[26c] synthesized

graphene oxide using modified Hummer’s methods from

graphite powder. They proposed new procedure for exfoliation,

in order to improve the yield of modified Hummer’s synthesis.

They carried out graphene oxide exfoliation via repeated ion-

exchanged water dilution and sonication in different ampli-

tudes. They improved the yield of the graphene oxide up to

70% using their proposed exfoliation method. Kang et al.[26d]

developed second oxidation step of Hummer’s method. The

first oxidation step is as usual with conventional Hummer’s

method and the second oxidation were conducted with differ-

ent time length and temperatures. The second oxidation step

influences the graphene oxide size, defects with in the layer,

thermal stability, functional group on the surface, etc. Further,

Abdolhosseinzadeh et al.[26e] reported fast and fully-scalable one

pot synthesis of reduced graphene oxide. They reported that

simultaneous oxidation as well as exfoliation, improved the

yield of few layer of graphene oxides and they reduced the gra-

phene oxide with ascorbic acid (eco-friendly reducing agents).

The developed protocols were highly suitable for large scale

production of graphene oxide.

Generally, numerous mechanical processes have been re-

ported for producing the high-quality defect-free graphene.

The common methods of the preparation are the exfoliation of

graphite, electrochemical exfoliation, thermal exfoliation, soni-

cation, acid dissolution of graphite, chemical reduction of GO,

and few more. Many researchers have extensively reviewed the

synthesis of graphene using various methods, which provide a

detailed understanding of the top-down approach.[10,22,30] The

top-down method is extensively used for the preparation of

graphene at laboratory level with high-quality properties and

low yield. The main disadvantage of the top-down approach is

that graphene structures contain a vast number of defects on

the graphene surface and it uses hazardous and toxic reagents,

which limits the practical utilization of prepared graphene in

several research fields.[31]

In the bottom-up approach, a large number of small mole-

cules (hydrocarbons and silicon carbides) are decomposed into

graphitic materials in the presence of catalyzed metal surfaces.

The SiC substrate is generally used for epitaxial growth of gra-

phene and the decomposition of SiC produces graphene lay-

ers.[22] For example, graphene can be prepared using an epitax-

ial growth method by heating silicon carbide.[33] Epitaxial

graphene is synthesized by thermal decomposition of SiC using

vacuum graphitization technique.[34] The thermal decom-

position of the SiC forms millimeter-sized constant graphene

planes after the vaporization of silicon.[35] The chemical vapor

deposition (CVD) process is used to prepare graphene on a

metal substrate under ultrahigh vacuum and at high temper-

atures. In the CVD method, a gaseous hydrocarbon material is

heated (1073 K) and then graphene is deposited on the metal

surface. The control and stability in the graphene scale are po-

tentially high in the CVD process.[15] The other standard techni-

ques, such as arc discharge, chemical conversion of CO reduc-

tion, plasma discharge etching of graphite, carbon nanotube

unzipping, chemical reduction of graphene oxides, and self-or-

ganization of surfactants, have been previously described for

the preparation of graphene and their derivatives.[10,22,30] The

bottom-up approach has several advantages, such as graphene

film is free from impurities, contains less defects, graphene-

controlled initiation, and the growth of the product, which is

tailored through the precise choice of the initial substrate. The

disadvantages of this approach are as follows: difficult for bulk

production, high-temperature requirement, use of sophisti-

cated instruments, and expensive materials.[31,35] However, the

bottom-up approach is widely preferred process for the prepa-
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ration of graphene due to control of atomic size, shape, com-

position, stability, and edge structure.[22]

Pristine graphene is hydrophobic in nature and very hard to

disperse in aqueous solution to remove the contaminant.[36] In

order to improve the dispersibility of graphene, graphene sur-

face is functionalized through chemical modification. The p-p

interaction between organic pollutant and graphene plays a vi-

tal role in the water treatment. The aggregation of the gra-

phene in aqueous solution is the major drawbacks in the water

treatment. To avoid aggregation of the graphene sheets, oxy-

gen groups are introduced by oxidation. Oxygen groups on

graphene layers reduce the aggregation and improve the re-

moval capacity of the pollutant. Graphene oxide is conjugated

in the graphene plane and possesses many functional groups

(epoxide, carboxyl, hydroxyl, carbonyl, etc.) on the surface.[36]

These oxygen functional groups present on the graphene ox-

ide surface act as an adsorbent and strongly interact with metal

ions, cationic dye, and pharmaceuticals in aqueous solutions.

Further, the reduction of graphene oxide is typically carried out

by using reducing agents such as hydrazine, sodium borohy-

dride, vitamin C, etc.[37–40] The reduced graphene oxide pos-

sesses a large surface area, lacks of negative charge, and shows

a high water cleanup efficacy toward anionic dyes, metal

anions, and other contaminants.[14] Pristine graphene, graphene

oxide, and reduced graphene oxide exhibit moderate perform-

ance in the water treatment.[36,14] Therefore, they are modified

into various forms, such as nanocomposites, nanoparticles,

membranes, etc., and used as adsorbents, catalysts, photo-

catalysts, photoelectrocatalysts, disinfectants, and in de-

salination in water treatment.

Graphene – based composites

Polymer – graphene composites

Generally, the compatibility of graphene and organic polymers

is very poor and it is difficult to prepare homogeneous compo-

sites.[41] In contrast, graphene oxides (GO) are more compatible

with organic polymers. In order to synthesize functionalized

graphene sheets, at first GO is reduced and then functionalized

with various organic polymers for various applications. Song

et al.[36] synthesized tea polyphenols functionalized graphene

nanosheets by using eco-friendly tea polyphenols as a reducing

and functionalizing reagent. The advantage of this method is

that tea polyphenols are utilized as a green reducing agent, ad-

ditional functionalizing reagents are not necessary for function-

alization of graphene oxide and thus it is environmental friend-

ly, simple, and inexpensive. In this method, graphene oxide is

synthesized from graphene using an ultrasonic exfoliation

method. First, graphite oxide is dispersed in water and soni-

cated about 1 h for thorough exfoliation, and after that the

graphite oxide dispersion is centrifuged in order to remove any

nonexfoliated material. Finally the exfoliated GO sheets are col-

lected from the supernatant liquid. In the GO sheet dispersion,

an aqueous solution of tea polyphenol powder is added and

stirred, and then sonicated. Furthermore, the solution is moved

to a stainless-steel autoclave and temperature kept at 80 8C for

8 h. The products of the reaction are washed with water

through centrifugation and then dialyzed to remove unreacted

tea polyphenols and other oxidation impurities. The synthe-

sized tea polyphenol-graphene oxide has predominant single

sheets, very stable, high surface area, and shows very good dis-

persibility in water. The average thickness of the synthesized

GO nanosheets was 1.2 nm and the thickness of the tea poly-

phenol-graphene oxide sheets was about 1.7-2.2 nm. The in-

crease in the thickness could be attributed to the functionaliza-

tion of tea polyphenols/oxidized polyphenol on both sides of

the graphene sheets.

Zhang et al.[42] made water-soluble magnetic polyacrylic

acid/graphene oxide/Fe3O4 composites (PPA/GO/Fe3O4). In this

method, azide precursor (2-(Phosphonooxy)ethyl 2-azido-2-

methylpropanoate) is added to Fe3O4 nanoparticles in order to

produce the azide-modified maghemite nanoparticles. Then,

propargyl-amine-modified GO is prepared as follows. GO is sus-

pended in SOCl2 and agitated at 65 8C for 1 day. After that un-

reacted SOCl2 is removed, and then propargyl amine CHCl3 and

anhydrous triethanolamine are added dropwise and the mix-

ture stirred for 1 h at 0 8C and then for 24 h at room temper-

ature. The solid product is isolated using centrifugation and the

obtained solid product again redispersed using THF and then

product separated through further centrifugation and redis-

persed in H2O. Graphene oxide/Fe3O4 (GO/Fe3O4) composites

are prepared by a CuSO4 catalyzed azide alkyne cycloaddition

reaction. Azide-modified Fe3O4 nanoparticles are mixed with a

solvent (4:1 DMSO and H2O) and sonicated. Copper sulfate and

sodium ascorbate are mixed to the solution and stirred. Fur-

thermore, propargyl-amine-modified GO is also mixed and stir-

red overnight. The final material is separated using magnet and

completely washed with phosphate buffer solution. PPA/GO/

Fe3O4 nanocomposites are prepared by GO/Fe3O4 nano-

composites and polyacrylic acid using carbodiimide under soni-

cation at 0 8C and then the final product is separated by a per-

manent magnet and thoroughly washed with phosphate buffer

solution. PAA/GO/Fe3O4 nanocomposites exhibit good dis-

persibility in water. The obtained thickness of GO ranges from

1.0 to 2.0 nm and the height of the GO nanosheet is ~1.6 nm.

The saturated magnetization of PAA/GO/Fe3O4, GO/Fe3O4, and

Fe3O4 is 30, 43, and 62 emu g�1, respectively. Fe3O4/GO compo-

sites show less saturated magnetization than Fe3O4 and PAA/

GO/Fe3O4 because of a reduction in the quantity of the Fe3O4 in

the composites. Magnetic b-cyclodextrin/graphene oxide nano-

composite (MCGN) was synthesized by Fan et al.[43] At first, Fe3
O4 is mixed with an aqueous solution of NH2-b-cyclodextrin and

ammonia solution. Further, Fe3O4 and NH2-b-cyclodextrin are

cross-linked with glutaraldehyde at 50 8C for 0.5 h. Homoge-

neous graphene oxide dispersion is added to this mixture and

shaken for a few minutes at 60 8C and further stirred for 3 h

and 30 min. Then, the final material is recovered by magnet

and then dried. The carboxyl groups present in the GO react

with the -NH2 groups of NH2-b-cyclodextrin and a strong bond

is formed between magnetic cyclodextrin and GO. The ob-

tained MCGN shows magnetic saturation of 50.1 emu g�1 and is

considered an environment-friendly biosorbent for water treat-

ment applications. Similarly, Fan et al.[44] also synthesized water-
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dispersible magnetic chitosan/graphene oxide composites by

using an environment-friendly biosorbent. Wang et al.[45] made

magnetic polyethylenimine-modified magnetic mesoporous

silica composites. The amine groups present in the poly-

ethyleneimide interact with the carboxyl groups on GO sheets

via chemical conjugation. The average diameter of the micro-

spheres is 260 nm and the saturation magnetization is found to

be 7.5 emu g�1.

Hu et al.[46] produced GO membrane by the layer-by-layer

deposition method from GO nanosheets, and then cross-linked

it with 1,3,5-benzenetricarbonyltrichloride on a polysulfone

support. The obtained height of GO nanosheets was found to

be 1–2 nm, showing that the GO nanosheets contain both sin-

gle and double layers. All these prepared graphene-based poly-

mer composites show better application than the individual

graphene and polymers. Their detailed applications in water

treatment are explained in the next section. Numerous gra-

phene-based polymer nanocomposites, such as polystyrene/

graphene, polyaniline/graphene, Nafion/graphene, polyvinyl al-

cohol/graphene, polycarbonate/graphene, polypropylene/gra-

phene, reduced graphene oxide/polymethylmethacrylate, etc.,

have been reported.[45,47] These graphene-based polymer nano-

composites are primarily used in the drug, gene delivery, can-

cer therapy, bioimaging, actuators, fuel cells/capacitors, and

chemical and biological sensors.[4, 30,48]

Metal/metal oxide – graphene composites

Generally, graphene acts as a good electron acceptor as well as

possess transport properties.[4, 10] Metal/metal oxide-graphene

composites absorb light on illumination and cause the photo-

excitation of electron. The excited electrons move from the va-

lence band to the conduction band by an electronic excitation

between graphene materials and metal oxide. This process ini-

tiates the electron-hole pair charge separation between metal

oxide and graphene. Graphene is a potential electron acceptor

and possesses two-dimensional p-conjugation structures that

effectively suppress the recombination of photogenerated ē-h+

pairs.[49] The photoexcited ē in the conduction band travels on

the surface of metal oxide/graphene composite and yields a

huge volume of very reactive oxyradicals, e. g., superoxide radi-

cals (O2
�) and hydroxyl radicals (*OH). The produced radicals

travel on the surface of metal oxide-graphene composites.

These oxyradicals readily degrade the organic pollutants, mi-

croorganisms, etc., and convert them into harmless substances

(CO2 and H2O).
[18,49] Graphene, reduced graphene oxide, and

graphene oxide were modified using several metal/metal ox-

ides, for example ZnO, TiO2, Mn2O, Mn3O4 Ag3PO4, COFe2, BiVO4,

Bi2Fe4O9 CuO/TiO2, Ag/ZnO, Ag/Ag3PO4, BiOI, BiOBr, WO3 Cu2O,

ZnFe2O4, La/TiO2, CdSe-TiO2, ZnFe2O4, ZnO/ZnFe2O4, La2Ti2O7,

Fe2O3/ZnO, Cu2O/SnO2, Bi5Nb3O15, ZnFe2O4, SnO2 CuFe2O4,

ZnWO4, Nd/TiO2, W18O49, BaCrO4, a-SnWO4, Bi2WO6, Ta2O5, and

ZnFe2O4, which were employed as photocatalysts for toxic or-

ganic pollutants degradation, chemical reactions, fuel cells,

etc.[18, 49–52] The advantage of using metal (Ag, La, Fe, etc.) in the

graphene/metal oxide composites is to increase the photo-

catalytic activity of the composites by prolonging the lifetime

of charged radicals and capturing the photoexcited electrons

and to further reduce the recombination of produced charged

radical ions.[18] Among the metal oxides, ZnO and TiO2 are con-

sidered the most extensively used UV-light-driven photo-

catalysts due to their too large band gap of 3–3.32 eV, and they

utilize solar energy of <5% only.[53, 54] Whereas ZnFe2O4 (band

gap=1.9 eV),[55,56] and BiVO4 (band gap=2.2 eV) act as an ex-

cellent visible light active photocatalyst.[57] Depending on the

band gap of metal/metal oxide in the graphene composite,

they can be utilized as UV/visible light induced photocatalysts.

For example, Wang et al.[58] synthesized reduced graphene ox-

ide-TiO2 nanocomposite, which showed excellent photo-

catalytic activity. At first, graphene oxide is prepared from

graphite powder by Hummer’s oxidation process. Then, RGO-

TiO2 nanocomposites are synthesized using various weight ra-

tios (1:100, 1:40, 1:20, 1:10, and 1:3) of graphene oxide and TiO2

(commercial P25) using a hydrothermal reaction and then heat-

ed to 400 8C for 2 h under argon gas. In the hydrothermal re-

action, the GO is reduced to graphene and simultaneously TiO2

is deposited onto the graphene layers. GO synthesized in this

way was characterized by AFM using the tapping mode; and

the images showed sheets of size ~5 mm, and the thickness <

6.9 nm indicating the formation of a few layers of GO.

Ameen et al.[59] made ZnO-graphene oxide nanohybrid and

effectively used it as a photocatalyst. In this process, GO is dis-

solved in water. Aqueous solutions of hydrazine monohydrate

and zinc nitrate hexahydrate are added to the GO dispersion

under stirring. Then, the NH3 aqueous solution is also mixed

and stirred for 30 min. Finally, the reaction mixture is moved to

a flask and placed in an oven at 90 8C for 12 h. After 12 h, the

produced ZnO-GO nanocomposite is centrifuged and thor-

oughly washed with water and then dried.

Ag/ZnO/chemically converted graphene (CCG) nano-

composites were synthesized by Yoo et al.[37] using solution-

based method. In this method, graphene oxide is prepared

from graphite powder by Hummer’s oxidation process, further

graphene oxide is reduced using hydrazine monohydrate, and

finally the chemically converted graphene (CCG), i. e., reduced

graphene oxide, is obtained. Further, CCG dispersion is sprayed

onto a quartz plate and the CCG film is obtained. The CCG film

is soaked with zinc acetate dehydrate in an ethanol solution.

The CCG film covered by zinc acetate thin layer is annealed at

350 8C in oxygen atmosphere for 30 min and ZnO nanorods are

obtained. Further, the CCG film is treated with zinc nitrate hex-

ahydrate and methanamine in a hot oven at 90 8C for 2 h. The

produced Ag nanoparticles are spray coated with ZnO/CCG

and then annealed at 150 8C for the complete removal of the

solvent. The composites showed ZnO nanorods with Ag nano-

particles of size 10–20 nm. Ag/ZnO/CCG showed very high

photodegradation activity compared with ZnO/CCG and Ag/

ZnO because the excited electrons are first moved to graphene

and then transferred to Ag attached to graphene.

Various methods, such as hydrothermal/solvothermal meth-

od, sol-gel method, solution mixing method, self-assembly, and

microwave irradiation, have been reported for the preparation

of metal/metal oxide-graphene composites.[18,49, 52–59] Metal/met-

al oxide-graphene composites were widely used in water split-
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ting for hydrogen generation, photodegradation of pollutants,

etc.[60–62]

Nanoparticle – graphene composites

Nanoparticle-graphene composites show enhanced properties

due to the synergistic effect between graphene materials and

the firmly fixed nanoparticles.[63, 64] The existence of oxygen

groups and defects on the surface of GO and rGO provide

them an excellent platform for the attachment of nano-

assemblies. In general, nanoparticles of Ag, Au, Pt, ZnO, CdS,

TiO2, and NiO are firmly fixed on GO/rGO surfaces for various

applications.[31, 63–69] The nanoparticle-graphene composites are

synthesized by reagent reduction, chemical method, micro-

wave irradiation, self-catalysis reduction, solution synthesis, and

electrochemical deposition.[63–69]

Wang et al.[66] made carbon nanoparticle/graphene compo-

sites using the chemical reduction method. At first, the gra-

phene oxide sheets are widely dispersed in water and mixed

with the nanocarbons. The mixture is agitated for about 30 min

and then sonicated for 60 min. Then, the hydrazine solution is

poured to the mixture and heat treated at 100 8C for 24 h. Fur-

ther, the mixture is filtered and washed with water and dried in

a vacuum oven at 60 8C for 24 h. The functionalized carbon

nanoparticles are firmly fixed on graphene surfaces. The carbon

nanoparticles are neatly packed between graphene layers and

appear as porous layer structure with a specific surface area of

1256 m2 g�1. The size of the functionalized nanocarbon par-

ticles was found to be in the range of 5–50 nm.

Du et al.[67] synthesized metal nanoparticle/graphene hydro-

gel (MNP@GHG) composites using nickel foam as substrate via

electroless deposition method. Initially, the reduced graphene

hydrogel is deposited on the porous nickel foam substrate.

Then, the graphene-hydrogel-coated nickel foam is immersed

in different metal chloride solutions (HAuCl4, H2PtCl6, H2PdCl4,

and CuCl2) for different times. Further, metal nanoparticles are

deposited on the 3D reduced graphene oxide hydrogels by a

galvanic cell reaction and MNP@GHG composites are produced.

In this method, Au, Pt, Pd, and Cu nanoparticles are all success-

fully deposited on graphene hydrogels.

Graphene/Au nanoparticle composites were prepared by

Zhuo et al.[50] using a self-catalysis reduction method. Gold

nanoparticle/graphene composites were fabricated by Hong

et al.[68] using a self-assembly method. Wang et al.[69] synthe-

sized Ni nanocrystals of GO/rGO by a hydrothermal reaction.

Nanoparticle-graphene composites are widely used in catalysis,

photocatalysis, photovoltaic devices, sensors, supercapacitors,

clean energy applications, and so on.[63–69]

Ceramic – graphene composites

Graphene possesses an outstanding mechanical property and

is widely used as a good reinforcement material in ceramic

composites.[70] Ceramics are widely used in high-temperature

applications but have poor toughness. Graphene is used to en-

hance the toughness of bulk ceramics materials. It is also used

as nanofiller in ceramic composite materials owing to its excep-

tional large surface area, fracture toughness, and extraordinary

mechanical, electrical, and thermal properties. Several studies

proved that ceramic-based matrix incorporated graphene fillers

have significantly better mechanical properties and electrical

and thermal conductivities.[70] Ceramic-graphene composites

are widely used in different applications, such as heat transfer

and thermal energy storage, oxygen reduction, dielectric be-

havior, reinforced sensors, solar cells as electrode materials, Li-

ion batteries, as catalysts and in water treatments.[31,70] Cur-

rently, ceramic-graphene composites are mainly prepared using

the techniques such as powder processing, colloidal process-

ing, sol-gel processing, pressure chemical vapor deposition, in

situ synthesis, solvothermal, spark plasma sintering, and the

dip-coating method.[70–77]

Zhou et al.[71] made highly conductive porous graphene/ce-

ramic composites using ambient pressure chemical vapor dep-

osition. They formed 3D graphene architecture on aluminum

oxide and porous Al2O3 ceramics using the heat transfer and

thermal energy storage. The formation of graphene was based

on the carbothermic reduction on Al2O3 surface, which initiated

the nucleation and growth of graphene.

Walker et al.[72] fabricated graphene platelets on silicon ni-

tride ceramics and densified them at ~1650 8C using a spark

plasma sintering method. The platelets on average contain ~3-

4 graphene sheets with a thickness of less than 2 nm. The grain

size is found to be ~500 nm, and the grains are uniform

throughout the fracture surfaces. The addition of 1.5 vol% gra-

phene in the silicon nitride ceramics increases toughness to

about 235%. Similarly, Fernández-Garcı́a et al. synthesized Al2
O3/graphene and BaTiO3/graphene composites by a spark plas-

ma sintering method and studied their dielectric properties.

Lou et al.[73] prepared graphene oxide/ceramic composite

membrane on a silane-modified ceramic support using a dip-

coating method. In this approach, an Al2O3 support (pore size

average ~110 nm and porosity about ~35%) is immersed in a

glycidoxypropyltrimethoxysilane/ethanol solution for 30 min at

40 8C. Then, the silane-modified Al2O3 support is heated for 4 h

at 110 8C. The silane-modified ceramic support is dip-coated

with graphene oxide solution. The thickness of graphene oxide

nanosheets is 0.7-1.5 nm and the lateral size is 200–1000 nm.

The GO/ceramic composite membrane is crack free and ex-

hibits selectivity for the pervaporation of ethanol/water mix-

tures.

Wu et al.[74] synthesized graphene oxide/ZrB2 nano-

composite; and then Pt nanoparticles were deposited on re-

duced graphene oxide/ZrB2 composite using a simple sol-

vothermal method. RGO/ZrB2 nanocomposite supported Pt

nanoparticles show very high catalytic activity as compared

with graphene oxide/ZrB2. Nanoconductive ZrB2 ceramic is

wedged between the Pt nanoparticle-supported graphene

sheets that act as a highly efficient catalyst for oxygen reduc-

tion.

Liu et al.[75] studied the effect of graphene platelet on

toughening of ZrO2 and Al2O3 composites. Various ratios of ce-

ramic materials (ZrO2 and Al2O3) with graphene platelet were

sintered at various temperatures (1450-1650 8C) via a spark

plasma sintering method. Graphene platelets (thickness of
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6–8 nm and level dimensions of 15–25 nm) were mixed well

with the ceramic materials; and even the material was found to

be intact after sintering at very high temperature. Ramirez

et al.[76] made conducting graphene/silicon nitride (Si3N4) com-

posites using spark plasma sintering. The produced graphene/

Si3N4 composites exhibited good electrical conductivity be-

stowed by the existence of reduced graphene.

Fan et al.[77] carried out the synthesis of graphene nano-

sheet/Al2O3 composites by using spark plasma sintering techni-

que. The prepared material showed much improved electrical

properties compared with most of the carbon nanotube/Al2O3

composites. Watcharotone et al.[78] synthesized graphene-silica

composite thin films using a sol-gel method and used them as

transparent conductors. Ceramic-graphene composites show

limited applications in water treatment. Porwal et al.[70] re-

viewed the synthesis and properties of graphene based ce-

ramic composites in detail. A limited research work has focused

on graphene ceramic matrix composites as compared with pol-

ymer composites.

Role of graphene and graphene – based
materials in the water treatment applications

Application of graphene and graphene – based materials as

an adsorbent

Adsorption of inorganic (cationic and anionic) contaminants

Many kinds of graphene-based materials were used for the re-

moval of toxic inorganic (cationic and anionic) pollutants from

aqueous media. Graphene-based materials have great potential

to adsorb variety of inorganic contaminants via electrostatic at-

traction, various p-interactions, and functional groups present

in the graphene surfaces. This section, overview the various

graphene-based materials reported for the removal of cationic

and anionic heavy metal pollutants. Graphene-based materials

were classified based on preparation method, surface area,

thickness, metal ions removed, sorption method, pH, contact

time, temperature, adsorption capacity (mg/g) and re-

generation/reusability were given in the supporting in-

formation Table S1.[36,38,42–44,79–97]

Huang et al. fabricated graphene nanosheets (GNSs) from

graphite oxide using an exfoliation process.[79] The sorption of

Pb(II) ions from aqueous solutions on pristine GNSs and ther-

mally modified GNSs was studied. The adsorption of lead ions

was better enhanced by heat treatment than pristine GNSs.

They concluded that the heat treatment of graphene favors ad-

sorption through lead ions (Lewis acid), which increases the

Lewis basicity and electrostatic attraction of graphene. The

drawback of the prepared graphene nanosheets is that it re-

quires ultrasonication for a good dispersion of graphene in

metal solutions and after sorption it also requires filtration

through microsyringe to separate the GNS/solution mixture.

Generally, graphene-based sorbents possess hydrophobicity,

which, to some extent, restricts the sorption efficiency of heavy

metal ions in water treatment. To avoid such bottleneck, Song

et al.[36] fabricated stable and water-dispersible polyphenols

functionalized graphene nanosheets. The systematic prepara-

tion of tea polyphenols functionalized graphene nanosheets is

shown in Figure 1a. The advantages of tea polyphenols include

water-solubility, low toxicity, biodegradability, and green re-

agent. Graphene nanosheets functionalized by tea polyphenols

show very good water dispersibility and superior Pb(II) sorption

capacity (1126 mg/g) and Pb(II) selectivity to Cu(II), Ni(II), Cr(III),

Co(II), and Cd(II) in aqueous solution. The regeneration and re-

usability of this adsorbent are also very efficient with 0.1 M HCl

and the Pb(II) desorption capacity was found to be 85–90%.

The limitation of this process is that it requires micron level fil-

ter to separate sorbents and metal solutions. Fan et al.[43] syn-

thesized a magnetic NH2-b-cyclodextrin/graphene oxide nano-

composite (MCGN) using the reaction between amine groups

of magnetic NH2-b-cyclodextrin and the carboxyl groups of GO.

The preparation of MCGN and their Cr(IV) removal mechanism

are shown in Figure 1b and c. The prepared MCGN composite

possesses 50.13 emu/g of saturation magnetization, which al-

lows a rapid recovery of the MCGN from aqueous solution. The

MCGN exhibited quick sorption of Cr(VI) from waste solutions

with the sorption capacity of 120 mg/g. The MCGN was reused

by desorbing from Cr (VI) sorbed MCGN using aqueous NaOH.

Zhao et al.[80] made graphene oxide nanosheets and studied

their Cd(II) and Co(II) adsorption from aqueous solutions. They

prepared graphene oxide nanosheets showing sorption effi-

ciencies of 106.3 mg/g for Cd(II) and 68.2 mg/g for Co(II). The

general heavy metal removal sorption mechanism is shown in

Figure 1d. After the metal adsorption experiments, graphene

oxide nanosheets were recovered by membrane filters. In order

to avoid the membrane filters to separate adsorbent/aqueous

solutions and for easy separation of adsorbent/aqueous sol-

ution, the superparamagnetic reduced GO-Fe3O4, reduced GO-

Fe(0)-Fe3O4, and reduced GO-Fe(0) composites were prepared.

Among these, the prepared reduced GO-Fe(0)-Fe3O4 showed a

high As(III) sorption capacity of 44 mg/g, whereas the reduced

GO-Fe3O4 and GO-Fe(0) showed capacities of 37 mg/g and

21 mg/g, respectively. The sorption efficiency of reduced GO-

Fe(0)-Fe3O4 composites was determined for toxic heavy metal

elements such as Cr(VI), Pb(II), Cd(II), Hg(II), and arsenic-con-

taminated natural water. The results showed that the prepared

reduced GO-Fe(0)-Fe3O4 adsorbed 31.2 mg/g of Cr(VI), 22 mg/g

of Hg(II), 19.2 mg/g of Pb(II), and 1.91 mg/g of Cd(II). The re-

duced GO-Fe(0)-Fe3O4 composite showed >90% of As sorp-

tion, which indicates that the reduced GO-Fe(0)-Fe3O4 can be

realistically utilized for the purification of drinking water. The

initial arsenic concentration ranges between 0.98 and 4.82 ppb

for real-field arsenic-contaminated natural water. Because the

prepared composites are superparamagnetic, they are easily

separated from the solutions with a magnet. Similarly, Zhang

et al.[42] prepared polyacrylic acid modified graphene oxide/Fe3
O4 (GO/Fe3O4) composites. The prepared magnetic PAA/GO/Fe3
O4 nanocomposites showed a sorption capacity of 0.75, 0.85,

0.9, and 0.85 mg/g for Cd(II), Cu(II), and Pb(II), respectively.

Madadrang et al.[82] synthesized graphene oxide, N-(trime-

thoxysilylpropyl) ethylenediaminetriacetic acid linked graphene

oxide (EDTA-GO) and reduced EDTA-GO. They studied it for the

sorption of Pb(II) from water, and reported that EDTA-GO

showed a high Pb(II) sorption capacity of 476 mg/g, GO
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showed 367 mg/g for Pb(II), whereas reduced EDTA-GO

showed only 228 mg/g. The schematic diagram of EDTA-GO

and its removal of metal ions are shown in Figure 2a. In addi-

tion, EDTA-GO can be regenerated and reused for a continuous

process. Cong et al.[83] produced graphene hydrogels via the re-

duction of graphene oxide. They incorporated a-FeOOH nano-

rods onto graphene sheets and assembled macroscopic gra-

phene monoliths. The macroscopic 3D graphene/a-FeOOH

hydrogel showed maximum adsorption capacities of 373.8 mg/

g and 139.2 for Pb(II), and Cr(VI) respectively. The high adsorp-

tion capacity of the 3D graphene/a-FeOOH hydrogels was ob-

tained by the ion exchange, electrostatic attraction, and surface

complexation between a-FeOOH and heavy metal ions and

also by the oxygen functional groups of the graphene and

metal ions. Water-dispersible magnetite-reduced graphene ox-

ide composites were synthesized and used for the removal of

As(V) and As(III) by Chandra et al.[38] They synthesized two dif-

ferent Fe3O4 reduced grapheme oxide (RGO) composites with

low and high concentrations of magnetite M-RGO 1 and M-

RGO 2, respectively. The As(V) and As(III) sorption capacity of

M-RGO was 5.27, and 10.20 mg/g, respectively, whereas M-

RGO2 showed the sorption capacity of 5.83 and 13.10 mg/g for

As(V) and As(III), respectively. The magnetite M-RGO compo-

sites are superparamagnetic at room temperature and there-

fore easily separated using magnets. The composites showed

an excellent and complete removal of As(III) and As(V) (<

99.9%) within 1 ppb. Therefore, M-RGO was practically used for

arsenic separation from water. Liu et al.[84] synthesized a mag-

netite/graphene oxide (M/GO) composite and studied the sorp-

tion of Co(II). The sorption capacity of Co(II) was found to be

12.98 mg/g. M/GO-adsorbed Co(II) was quickly recovered from

a solution using external magnets. The Co(II) sorption of M/GO

composite is influenced by foreign ions such as NO3
�, ClO4

�,

Cl�, K+ , Na+ , and Mg2+ . For the removal of Cr(VI), Ma et al.[85]

synthesized ethylenediamine-reduced graphene oxide (ED-

RGO). The schematic of the preparation of ED-RGO is shown in

Figure 2b. They used ED-RGO sorption of Cr(VI) from aqueous

solution at low pH. ED-RGO effectively reduced highly toxic

Cr(VI) to 300 times less toxic Cr(III) by an electrostatic attraction

and coupled reduction mechanism through pronated amine

groups of ED-RGO and carboxylic electron donors of ED-RGO.

The proposed Cr(VI) sorption mechanism of ED-RGO is shown

in Figure 2c. ED-RGO showed a sorption capacity of 4.90 mg/g

for Cr(VI). The present method is quite different from the pre-

viously reported graphene-based sorbent for Cr(VI).

Vasudevan et al.[95,96] synthesized graphene and used it for

the removal of phosphate and perchlorate. The prepared gra-

phene showed phosphate adsorption capacity of 89.37 mg/g

and perchlorate adsorbent capacity of 0.024 mg/g. The results

showed that graphene is an excellent adsorbent for removal of

PO4
3� and ClO4

� from aqueous solution. Kumar et al.[97a] pre-

pared l-cystine-functionalized graphene oxide and used for the

sorption of Hg(II). l-Cystine-functionalized GO showed

79.36 mg/g of Hg(II) sorption and unmodified graphite showed

Figure 1. a) The systematic preparation of tea polyphenols functionalized graphene nanosheets. Reproduced with permission.[36] Copyright 2012, Wiley. b) and
c) Preparation of MCGN and their Cr(IV) removal mechanism. Reproduced with permission.[43] Copyright 2012, Royal Society of Chemistry. d) General heavy
metal removal sorption mechanism of graphene oxide nanosheets. Reproduced with permission.[80] Copyright 2011, American Chemical Society.
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only 12.4 9 mg/g of Hg(II) sorption. The sorbent showed a

good sorption capacity even in the existence of various other

metal cations (Cd2+ , Co2+ , Cu2+ , Ni2+ , Pb2+ , Se2+ , Zn2+ , and

Au+) and other metal anions (PO4
3�, NO3

�, SO4
2�, and Cl�). The

adsorbent was reused for four cycles of adsorption/desorption

and the adsorbent showed the same sorption capacity even af-

ter four cycles. Similarly, Rajesh et al.[97b-d] prepared many gra-

phene based sorbents for the adsorption of fluoride and chro-

mium from aqueous solution.

Adsorption of organic pollutants

Graphene-based materials act as an excellent adsorbent materi-

al for the removal of various organics dyes, pharmaceutical

drugs, toxic chemicals, pesticides, solvents, and oils (vegetable

oil, paraffin oil, gasoline etc.). The major mechanisms of re-

moval of organic pollutants on the graphene-based materials

were p-p interaction, anion-p interaction and cation-p inter-

action and functional group interactions. In this section, we

briefly outlined the most recent graphene-based materials uti-

lised for organic pollutants.

The summary of various graphene-based materials used for

the sorption of various organic pollutants is shown in support-

ing information Table S2.[14, 98–122] Fan et al.[98] fabricated mag-

netic chitosan and graphene oxide (MCGO) composite for the

sorption of anionic dye methyl blue from aqueous solution.

The fabrication of MCGO and their methylene blue removal

mechanism is shown in Figure 3a. The maximum methyl blue

sorption ability was found to be 95.16 mg/g for MCGO,

43.5 mg/g for graphene oxide, 60.4 mg/g for magnetic chito-

san, and 46.23 mg/g for natural chitosan membranes. At acidic

pH, anionic dye methyl blue was adsorbed via protonated ami-

no groups of MCGO by ionic interactions. The dye desorption

values of H2O, HCl, and NaOH were 1.4, 5.1, and 95.0%, re-

spectively. The advantages of MCGO include stability, magnetic

separation, and easy regeneration, and its high methyl blue dye

sorption efficiency is about 90–80% even after five cycles.

Ramesha et al.[14] synthesized graphene oxide and reduced

graphene oxide (rGO) for the sorption of cationic dyes, i. e.,

Figure 2. a) The schematic diagram of EDTA-GO and its removal efficiency for metal ions. Reproduced with permission.[82] Copyright 2012, American Chemical
Society. b) Schematic of the preparation of ED-RGO. Reproduced with permission.[85] Copyright 2012, Royal Society of Chemistry. c) Proposed mechanism of the
Cr(VI) removal by ED-RGO. Reproduced with permission.[85] Copyright 2012, Royal Society of Chemistry.
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methyl violet, rhodamine B, methylene blue, and Orange G

(anionic dye) from aqueous media. They reported that gra-

phene oxide contains many oxygen functional groups (epoxy,

carboxyl, hydroxyl groups, and ketone) and it is hydrophilic in

nature with a large negatively charged surface that helps in the

effective adsorption of cationic dyes (methylene blue (17.3 mg/

g), methyl violet (2.47 mg/g), rhodamine B (1.24 mg/g). Gra-

phene oxide showed negligible adsorption capacity for Orange

G (anionic dye). In contrast, the reduced graphene oxide with a

large surface area and less negatively charged surface removed

95% of Orange G (5.98 mg/g) and about 50% of cationic dyes.

The schematics of probable interaction of studied dye with gra-

phene oxide and reduced graphene oxide are shown in Fig-

ure 3b. After the adsorption, the sorbent was precipitated and

separated by centrifugal force. Wang et al.[99] made magnetic

graphene nanocomposites (G/Fe3O) for the removal of fuchsine

(cationic dye). The dye sorption was rapid and achieved the

maximum dye sorption within 30 min with a sorption efficiency

of 89.4 mg/g. The picture of fuchsine dye solution, after sorp-

tion with G/Fe3O and their magnetic separation of G/Fe3O are

shown in Figure 3c. The G/Fe3O nanocomposite was a highly

efficient adsorbent for fuchsine and could easily be desorbed

by using acidic ethanol. The sorbent was recycled easily and

used continuously and separated using the magnetic field sep-

aration.

Graphene/iron oxide hydrogels were prepared by Cong

et al.[83] by using reduction of graphene oxide. The schematic

preparations of graphene/a-FeOOH and graphene/Fe3O4 hy-

drogels are shown in Figure 4a. Graphene/a-FeOOH hydrogels

showed maximum of 92% adsorption capacity of gasoline ow-

ing to its strong well interconnected architecture and good po-

rous nature. The Graphene/a-FeOOH hydrogels also showed

good adsorption capacity towards many nonpolar organic sol-

vents and oils, namely, cyclohexane, toluene, paraffin oil vege-

table oil, and phenoxin. The w/w adsorption capacity of the hy-

drogels was about 27 times. The images of gasoline adsorption

and its recycling are shown in Figure 4b. The adsorption per-

formance of graphene/a-FeOOH hydrogels up to 8 cycles are

shown in Figure 4c. The adsorption capacity towards many

nonpolar organic solvents and oils are shown in Figure 4d. The

main advantages of oil adsorbed graphene/a-FeOOH hydrogels

is that when burn they are converted into a-Fe2O3 (hematite)

(Figure 4e). The extraordinary oil adsorption capacity of gra-

phene hydrogels could be attributed to the hydrophobic na-

ture of hydrogels and p-p stacking of the prepared hydrogels.

Another advantage of the hydrogels is that they can easily be

separated using external magnets and reused for many cycles.

Graphene nanosheet (GNS)/magnetite (Fe3O4) composites

(GNS/Fe3O4) were prepared by Ai et al.[100] using a solvothermal

process. The schematic preparation of GNS/Fe3O4 composites

and their methylene blue adsorption are shown in Figure 5a.

After dye sorption the magnetic GNS/Fe3O4 composite was sep-

arated with an external magnet and its maximum monolayer

adsorption ability was 43.82 mg/g. The composite showed

good adsorption capacity for methylene blue in five successive

cycles of desorption-adsorption. Similarly, many researchers

Figure 3. a) Fabrication of MCGO and its methylene blue removal mechanism. Reproduced with permission.[98] Copyright 2012, Elsevier. b) Schematics of prob-
able interaction of studied dye with graphene oxide and reduced graphene oxide. Reproduced with permission.[14] Copyright 2011, Elsevier. c) Picture of
fuchsine dye solution, after sorption with G/Fe3O and their magnetic separation of G/Fe3O. Reproduced with permission.[99] Copyright 2011, Elsevier.
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synthesized various graphene composites that were prepared

by the removal of methylene blue and showed a very high dye

sorption capacity.[101–103]

Li et al.[104a] produced tri-isocyanate reinforced graphene

aerogel (RGA). RGA showed excellent crude oil sorption ca-

pacity (~169 mg/g). They reported that RGA can be considered

as an effective absorbent with ease of storage and cleanup,

and offers very safe removal of organic contaminants. The pre-

pared aerogels adsorbed crude oil by p-p stacking interactions

and abundant pore structures. The synthesis of three-dimen-

sional graphene architectures such as gelation based graphene

organo gels, hydrogels, aerogels and their recent develop-

ments has been reviewed by Min et al.[104b] Further, Zhao

et al.[104c] also reviewed preparation of various 3D graphene

based hydrogels, aerogels and their applications including wa-

ter purification.

Kabiri et al.[104d] reported graphene-carbon nanotube (CNT)

aerogels for continuous oil removal. They prepared graphene-

CNT aerogels using graphene oxide, acid treated CNTs, and fer-

rous sulfate as reducing agents. The prepared graphene-CNT

hybrid hydrogels were freeze dried in order to get graphene-

CNT aerogels. The graphene-CNT aerogels showed very good

adsorption of various pure oils, such as vegetable oil, paraffin,

gasoline, tetrahydrofuran (THF), and toluene, with an adsorp-

tion capacity of about 30 g/g. In the presence of water the ad-

sorption capacity slightly decreased due to competitive sorp-

tion of water along with oil. The graphene-CNT aerogels

showed very high recycling performance towards gasoline. The

sorption capacity of gasoline even after 8th cycle was about

22 g/g. The high oil removal capacity was attributed to the well

interconnected 3D architecture of graphene-CNT aerogel and

their superoleophilic/superhydrophobic properties.

Figure 4. a) Schematic preparations of graphene/a-FeOOH and graphene/Fe3O4 hydrogels. b) The images of gasoline adsorption and its recycling onto gra-
phene/a-FeOOH gels. c) Sorption performance of gasoline onto graphene/a-FeOOH hydrogels. d) The adsorption capacity towards many nonpolar organic
solvents and oils onto graphene/a-FeOOH hydrogel. e) The image of oil adsorbed graphene/a-FeOOH hydrogels burning and its conversation into a-Fe2O3

(hematite). Reproduced with permission.[83] Copyright 2012, American Chemical Society.
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Similarly, polydimethylsiloxane (PDMS)-graphene sponges

fabricated by Tran et al.[104e] showed very high removal capacity

towards gasoline, hexane, dimethylformamide (DMF), toluene,

tetrahydrofuran (THF), and vegetable oil. PDMS-graphene

sponges removed 4.5 L of hexane within 30 min using a non-

turbulence pressure assisted oil-water system. PDMS-graphene

sponges showed oil sorption capacity from 220–800 wt% to-

wards studied oils and organic solvents.

Guo et al.[104f] prepared graphene oxide/polyethylenimine

hydrogels (GO/PEI) and studied for the adsorption of methyl-

ene blue and rhodamine B dye. GO/PEI hydrogels exhibited

323 mg/g of methylene blue adsorption and 114 mg/g of rhod-

amine B adsorption. Graphene oxide and polyethylenimine in-

teract well in the hydrogel due to the hydrogen bonding and

electrostatic interaction between amine groups of PEI and gra-

phene oxide.

Ma et al.[104g] reported preparation of porous graphene hy-

drogel and used for the removal of ciprofloxacin drug from wa-

ter. They used hydrothermal reduction method and ascorbic

acid as a reducing agent for the preparation of 3D porous gra-

phene hydrogel sorbents. The graphene hydrogel showed

235 mg/g of ciprofloxacin removal from aqueous solution. The

major removal mechanism of ciprofloxacin was attributed to p-

p interactions, hydrogen bonding between hydrogel and cipro-

floxacin and hydrophobic interactions. The hydrogel was also

capable of removing methanol and ethanol from water. Gra-

phene hydrogel granules showed high sorption capacity than

the graphene hydrogel blocks.

Yang et al.[105] synthesized reduced graphene oxide/iron ox-

ide (GO/FeO·Fe2O3) composites. They used GO/FeO·Fe2O3 for re-

moval of naphthalene, 1-naphthol, and 1-naphthylamine. The

adsorption capacity was as follows: 1-naphthylamine

(4.96 mmol/g) > 1-naphthol (2.70 mmol/g) > naphthalene

Figure 5. a) Schematic of the preparation of GNS/Fe3O4 composites and their methylene blue adsorption. Reproduced with permission.[100] Copyright 2011,
Elsevier. b) Schematic removal mechanism of 1-naphthylamine, 1-naphthol, and naphthalene. Reproduced with permission.[105] Copyright 2012, Elsevier. c)
Schematic representation of the proposed removal mechanism of hydroquinone by CCGO. Reproduced with permission.[108] Copyright 2013, Elsevier. d) Sche-
matic preparation method of RNA-GO nanosheets and their peptide toxin removal mechanism. Reproduced with permission.[114] Copyright 2012, Elsevier. e)
Schematic adsorption of reactive black 5 onto GO-Chm. Reproduced with permission.[121] Copyright 2013, American Chemical Society.
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(2.85 mmol/g). The schematic removal mechanism of naphtha-

lene, 1-naphthol, and 1-naphthylamine is presented in Fig-

ure 5b. The main mechanism involved in the sorption of naph-

thalene, 1-naphthol, and 1-naphthylamine was electron-donor-

acceptor interaction and the sorption efficiency depended on

the dipole moment. They compared the sorption capacity of

GO/FeO·Fe2O3 with multiwalled carbon nanotubes/iron oxide

(MWCNTs/FeO·Fe2O3) and reported that the structural arrange-

ment of sorbents is very important for effective sorption of ar-

omatic compounds. The magnetic cyclodextrin-chitosan/gra-

phene oxide (CCGO) prepared by Li et al.[108] showed a sorption

capacity of 458.72 mg/g for hydroquinone. The schematic rep-

resentation of the proposed removal mechanism of hydro-

quinone by CCGO is presented in Figure 5c. The adsorbed hy-

droquinone was removed from CCGO by washing with ethanol

and it can be recycled.

Lin et al.[111] reported a rapid and extremely efficient meth-

od for tetracycline sorption from natural water by graphene ox-

ide functionalized magnetic particles (GO-MPs). They used GO-

MPs for the removal of tetracycline, oxytetracycline, chlorte-

tracycline, and doxycycline, and their sorption capacity was

found to be 39.1, 45.0, 42.6, and 35.2 mg/g, respectively. They

used acetonitrile, methanol, acetone, formic acid, acetic acid,

and oxalic acid as an eluent for the removal of adsorbed tetra-

cyclines, but could not be able to remove them from GO-MPs.

Hu et al.[114] immobilized RNA on graphene oxide nanosheets

(RNA-GO nanosheets) and used the adsorption of microgram

level peptide toxins (microcystin-LR) from drinking water sam-

ples. The schematic preparation method for RNA-GO nano-

sheets and their peptide toxin removal mechanism are shown

in Figure 5d. The maximum sorption of microcystin-LR onto

RNA-GO nanosheets was found to be 1.44 mg/mg and ad-

sorbed trace peptide toxin was removed by hot water (50 8C)

and reused. The reported RNA-GO nanosheets were potentially

useful materials for removal of biomacromolecule, and other

toxic small biomolecules. Maliyekkal et al.[115] studied the effec-

tive sorption of pesticides, malathion (ML), endosulfan (ES), and

chlorpyrifos (CP) using graphene oxide (GO) and reduced gra-

phene oxide (RGO) from aqueous solution. The chlorpyrifos

sorption capacity on RGO was found to be about ~1200 mg/g.

The chlorpyrifos sorption capacity of GO was 10–20% less than

that of RGO. They reported that RGO is an effective sorbent for

the sorption of pesticides than GO. The sorption of endosulfan

and malathion onto RGO was 1100 and 800 mg/g, respectively.

They also removed 90% adsorbed chlorpyrifos from RGO using

n-hexane and reused. The study revealed the interactions of

graphene with various pesticides and highlighted the im-

portance of graphene based sorbents in eco-friendly applica-

tions. Graphite oxide-magnetic chitosan composite (GO-Chm)

was synthesized by Travlou et al.[121] and used for the removal

of reactive black 5 (anionic dye). The schematic adsorption of

reactive black 5 onto GO-Chm is shown in Figure 5e. The max-

imum dye removal capacity was found to be 391, 401, and

425 mg/g, at 25, 45, and 65 8C respectively. GO-Chm showed a

high adsorption capacity in acidic media (pH 3) and a high de-

sorption capacity in alkaline media (pH 12).

Adsorption of multiple and mixed contaminants

The application of graphene-based materials for the adsorption

of various types of multiple and mixed contaminants were dis-

cussed in this section. The graphene-based material possesses

multifunctional characteristics and it simultaneously capable of

removing organic dyes, metals ions, organic chemicals and pes-

ticides via adsorption. Pioneering and most important gra-

phene-based materials used for the removal of mixed con-

taminants and mechanism of removal etc. were discussed.

Graphene-based adsorbents reported for the removal of

multiple and mixed pollutants are given in supporting in-

formation Table S3.[45,123–130] Sui et al.[123] reported an eco-friend-

ly method for the preparation of carbon nanotube-graphene

hybrid aerogels and applied for various water decontamination

applications. They synthesized graphene-CNT hybrid aerogel

(graphene-MWCNT) by heating graphene oxide, carbon nano-

tubes, and vitamin C via supercritical carbon dioxide drying

method. GO-MWCNT and GO-c-MWCNT were used as capacitive

deionization (CDI) electrodes for brackish water desalination.

GO-c-MWCNT and GO-MWCNT showed a highest desalination

capacity of 521.6 and 633.3 mg/g, respectively. GO-c-MWCNT

and GO-MWCNT were also utilized for the sorption of transition

metals and dyes, i. e., Cu(II), Hg(II), Ag(I), Pb(II), fuchsin, acid

fuchsin, rhodamine B, and methylene blue. The dyes adsorbed

by GO-MWCNT were removed by cetyl trimethylammonium

bromide and reused. The prepared hybrid aerogels displayed

an excellent efficiency in water treatment such as CDI of NaCl,

the removal of heavy metal ions and dyes. Reduced graphene

oxide-silver composites (RGO@Ag) prepared by Gupta et al.[124]

exhibited excellent dehalogenation as well as very good re-

moval capacity for organochlorine based pesticides from aque-

ous solution. RGO@Ag converted the persistent organochlorine

pesticide, lindane (C6H6Cl6), into different isomers of tri-

chlorobenzenes (TCBs, C6H3Cl3), whereas the reduced graphene

oxide (RGO) and Ag nanoparticles alone failed to do so. The

RGO composite showed the highest adsorption capability of

lindane as 827 mg/g. The sorption of lindane on RGO@Ag oc-

curs via physisorption, but the sorption of dehalogenated lin-

dane is performed by p-p interactions. RGO@Ag adsorbed pes-

ticides were removed using hexane and were dispersed in

aqueous NH3 solution. The efficiency of RGO@Ag was de-

creased to 70–75% after the 5th sorption and desorption cycles.

The study showed a new type of removal process for toxic hal-

ocarbons and also provided an innovative technique for re-

moval of halocarbons from water.

Koushik et al.[125] used RGO@Ag for sequential dehalogena-

tion of organohalides (aliphatic halocarbons and pesticides) by

adsorption during degradation. The RGO@Ag composite

showed a very high adsorption for the groups of pesticides

(chlorpyrifos (765 mg/g), endosulfan (622 mg/g), and di-

chlorodiphenyldichloroethylene (631 mg/g)), chlorocarbons

(carbon tetrachloride (997 mg/g), chloroform (132 mg/g), di-

chloromethane (121 mg/g), and 1,1,1,3,3,3-hexafluoro-2-prop-

anol (1534 mg/g), and 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-heptadeca

fluoro-10-iodo decane (498 mg/g). The schematic removal of

the pesticides and organohalides is shown in Figure 6a and
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their pseudo second-order kinetic parameters for various pollu-

tants are shown in Figure 6b. Liu et al.[126] studied the removal

of pharmaceutical drugs and cosmetics by graphene materials

and various carbon nanotubes materials. They used reduced

graphene oxides (rGO1 and rGO2), graphene, graphite, single

wall carbon nanotubes (SWCNTs), and multiwall carbon nano-

tubes (MWCNTs) for the removal of ketoprofen, carbamazepine,

and bisphenol A. The schematic preparation of reduced gra-

phene oxides and the sorption mechanism of pharmaceuticals

and personal care products are shown in Figure 6c. The max-

imum sorption capacity of ketoprofen, carbamazepine, and bi-

sphenol A onto rGO1 was 62.5, 115, and 152 mg/g, respectively.

The sorption capacity of pharmaceuticals and personal care

products followed the order of SWCNTs > rGO1 > rGO2 >

MWCNTs > graphene > graphite, which is consistent with the

orders of their surface areas and micropore volumes. The gra-

phene composites exhibited an excellent sorption capacity for

the removal of pharmaceuticals and personal care products.

Li et al.[127] synthesized graphene oxide nanosheets deco-

rated with Fe3O4 nanoparticles (GO/Fe3O) and used for the

sorption of Cu(II) and fulvic acid (natural organic substance).

The copper removal capacity of GO/Fe3O was found to be

18.26 mg/; and in the presence of fulvic acid it was increased

and reached to 19.9 mg/g. Furthermore, the GO/Fe3O compo-

site recovered more than 80% of fulvic acid from aqueous sol-

utions. The preparation of GO/Fe3O4 and the removal mecha-

nism of copper/fulvic acid are shown in Figure 6d. The

desorption of Cu(II) sorbed GO/Fe3O4 was carried out using

HNO3 (pH~2) and then GO/Fe3O4 was reused for many times.

The Cu(II) adsorption capacity of reused GO/Fe3O4 was de-

creased by <5% after five cycles of sorption/desorption, show-

ing that GO/Fe3O4 has a good reusability. Similarly, reduced gra-

phene oxide/iron oxide composite were used for the

adsorption of 1-naphthylamine, Pb(II), and 1-naphthol.[128]

In general, graphene oxide nanosheets/aerogels and vari-

ous functionalized graphene oxide showed high adsorption of

heavy metal ions. The native graphene oxide possess many

Figure 6. a) Schematic removal of the pesticides and organohalides. Reproduced with permission.[125] Copyright 2016, Elsevier. b) Pseudo second-order kinetic
parameter for various pollutants. Reproduced with permission.[125] Copyright 2016, Elsevier. c) Schematic preparation of reduced graphene oxides and the
removal mechanism of their pharmaceuticals and personal-care products. Reproduced with permission.[126] Copyright 2014, American Chemical Society. d)
Preparation of GO/Fe3O4 and the removal mechanism of copper/fulvic acid. Reproduced with permission.[127] Copyright 2012, American Chemical Society.
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functional groups namely, carboxyl, hydroxyl, carbonyl, etc.

which captures the heavy metals/cationic dyes from aqueous

solution via electrostatic attraction. Further, varies ligands

(amine, EDTA) functionalized graphene oxide showed very high

heavy metal sorption capacity compared to graphene oxide.

Graphene, reduced graphene oxide and functionalized/metal

oxides incorporated reduced graphene oxide showed high ad-

sorption capacity towards toxic anions (As(III/V), Cr(VI), PO4
3�,

ClO4
�) and anionic dyes. These materials possess lacks of neg-

ative charge on the surface and hence showed high sorption

capacity towards various toxic anions and anionic dyes. In the

adsorption of chemical compounds, oil, pharmaceuticals and

pesticide, the physical interactions (various p interactions) play-

ing major role for the removal. Graphene based materials

showed very high sorption capacity compared to other carbo-

naceous adsorbents (activated carbon, fly ash, and carbon

nanotubes etc.)

Graphene based materials for catalytic oxidative degradation

of organic contaminants

Graphene and graphene-based materials were wieldy used as

catalyst for the degradation of organic contaminations from

water. The graphene based materials act as an adsorbent mate-

rial for organic contamination and activates the oxidizing agent

(H2O2, KIO4, and Oxone) for the successful degradation. In the

presence of graphene based materials, the degradation per-

formances of oxidizing agent many fold increases. The present

topic summarises the various graphene materials used for the

catalytic oxidative degradation of organic contaminants and

current development in the field.

Graphene-based materials reported for catalytic oxidative

degradation of various types of organic contaminants are

enumerated in supporting information Table S4.[131–141] Xu

et al.[131] used graphene-CoFe2O4 (G-CoFe2O4) composite to acti-

vate the oxidizing agent, peroxymonosulfate (PMS), for the

degradation of dimethyl phthalate (DMP). G-CoFe2O4 was

found to be an efficient and better activating agent for PMS

than CoFe2O4. A graphene content of 22% showed optimum

degradation of DMP and excess graphene percentage led to

very high sorption of DMP as well as inadequate degradation.

G-CoFe2O4 was found to be a good activator for PMS at pH 4.0-

8.3. In the catalytic oxidative degradation of DMP, G-CoFe2O4

acts a supporting material to enhance the sorption of DMP in-

stead of catalyst. DMP decomposition performances of various

catalyst systems are shown in Figure 7a. Further, DMP was des-

orbed by PMS ions and oxidized the DMP. The DMP degrada-

tion was mainly done by the OH* and SO4
* radicals. G-CoFe2O4

degraded ~24% of total organic carbon (TOC) within 1 h. The

initial reduction of TOC may be due to degradation of aliphatic

chains in DMP. Thangavel et al.[132] synthesized graphene-oxide-

Fe3+ hybrid nanosheets (GO-Fe3+) and used for the effective

oxidation of Reactive Red 120 using a sonocatalytic method.

The commercial oxidants, such as potassium periodate (KIO4),

peroxodisulfate (PDS), hydrogen peroxide (H2O2), and perox-

ymonosulfate (PMS), were used as catalyst to enhance the so-

nocatalytic degradation. Reactive Red 120 degradation was

many fold enhanced with commercial oxidants (KIO4 < PDS <

H2O2 < PMS). During degradation, the addition of SO4
2�, Cl�,

and H2PO4
� decreased the degradation efficiency, whereas

HCO3
� increased the degradation efficiency. The decrease in

the degradation efficiency in the presence of inorganic ions

was caused by the electrostatic interaction between inorganic

anions and GO-Fe3+ . During dye degradation, the inorganic

ions interact with Fe2+-Fe4+ and thus produce less active radi-

cals than OH*. Overall, the oxidants reacted with Fe(II) and pro-

moted the Reactive Red 120 degradation through active radi-

cals. The schematic diagram of Reactive Red 120 degradation

using GO-Fe3+ hybrid is shown in Figure 7b.

Yao et al.[133] produced magnetic MnFe2O4-reduced gra-

phene oxide (rGO) hybrids and MnFe2O4 nanoparticles and

used them as catalysts to activate peroxymonosulfate to oxida-

tively degrade rhodamine B, methylene blue, methyl violet,

methyl orange, and orange II in water. The mechanism of SO4
�
*

activation by MnFe2O4-rGO/PMS is shown in Figure 8a. MnFe2O4

and MnFe2O4-rGO hybrids showed excellent fenton-like activ-

ities, could be separated using magnets, and showed high du-

rability in the degradation of organic pollutants even after four

repeated uses. MnFe2O4-rGO hybrid activates the primary radi-

cal SO4
� and oxidizing organic pollutants. MnFe2O4-rGO hybrid

showed a good catalytic performance in the oxidation of Or-

ange II dye than pure MnFe2O4, endorsing the roles of gra-

phene. The MnFe2O4-rGO hybrid showed a highly stable per-

formance and was considered a good candidate for

environmental applications as catalytic materials. Li et al.[136]

synthesized reduced graphene oxide (rGO) and used for the

catalytic oxidative transformation of 1,4-hydroquinone to 1,4-

benzoquinone. The prepared rGO (33.3 mg/L) oxidized more

than 76% of 1,4-hydroquinone to 1,4-benzoquinone within

36 h without addition of any external oxidizing agents. They

proposed that the dissolved oxygen in the aqueous solution re-

acts with rGO and generates molecular oxygen intermediates

at graphene surface. The oxygen intermediates entrap hydro-

gen ions from 1,4-hydroquinone and enable the production of

semiquinone radicals. The produced semiquinone radicals

transfer an electron to oxygen intermediates to generate super

oxide radicals (O2�). The super oxide radical (O*
2�) again react

with 1,4-hydroquinone and generate a superoxide radical and

hydrogen peroxide. The prepared rGO acts as a very good ad-

sorbent for 1,4-hydroquinone as well as promotes the catalytic

conversion of 1,4-hydroquinone to 1,4-benzoquinone at gra-

phene surface. Sun et al.[138] prepared reduced graphene oxide

and used as a catalyst for the degradation of methylene blue,

2,4-dichlorophenol, and phenol in water. The reduced gra-

phene oxide exhibited very high catalytic performance com-

pared to graphene oxide, graphite, carbon nanotube, and com-

mercial activated carbons and was also superior to popular Co3

O4 (transition metal oxide). The enhanced catalytic property of

RGO was very high for aqueous organic pollutants studied be-

cause of structure-defective graphene, which effectively acti-

vated the peroxymonosulfate and produced active sulfate radi-

cals. The activation of peroxymonosulfate by graphene and the

mechanism of the phenol degradation are shown in Figure 8b.

The catalytic performance of different carbon materials was in
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the order of RGO > multiwall carbon nanotube > graphite

powder > graphene oxide.

Sun et al.[140] synthesized nitrogen-doped reduced graphene

oxide (G�N) and nitrogen-boron-codoped reduced graphene

oxide (G�N-B) and used as a metal free catalysts for phenol

degradation from aqueous solution. G�N (5.61%) exhibited

very high catalytic performance by activating HSO5
� during the

degradation of phenol. Nitrogen-boron-codoped reduced gra-

phene oxide further improved the catalytic performance to-

wards oxidation of phenol. Reduced graphene oxide showed

only 52.5% decomposition of phenol in 180 min, whereas G�N

and G�N-B showed 100% degradation in 45 min. In the second

cycle, G�N and G�N-B showed 56.0% and 86.0% of phenol de-

composition in 180 min, respectively, showing good reusability.

The prepared metal free graphene based catalysts showed a

potential application in wastewater treatment and seemed to

be a good alternate of the widely used commercial metal

based catalysts. Peng et al.[141] produced porous reduced gra-

phene oxide and used as an adsorbent as well as catalyst for

the degradation of organic pollutant from aqueous solution.

They activated reduced graphene oxide by used CO2 in order

to get porous graphene catalysts. They used CO2 activated re-

duced graphene oxide for the sorption of phenol and as cata-

lyst for the degradation of methylene blue. The CO2 activated

reduced graphene oxide showed high catalytic ability by acti-

vation of HSO5
� to generate SO4

�
* radicals for the effective de-

composition of methylene blue. The 60-min CO2-activated re-

duced graphene oxide (A-RGO-60) showed the highest surface

area of 1200 m2/g and 100% degradation of methylene blue in

1 h. The surface area of 25-min CO2-activated RGO (A-RGO-25),

75-min CO2-activated RGO (A-RGO-75), and reduced graphene

oxide (RGO) were found to be 400, 900, and 200 m2/g, re-

spectively, and took 2.0 h, 1.5 h, and 4 h, respectively, for 100%

degradation of methylene blue. The RGO and activated RGO

also showed good catalytic properties through activation of

HSO5
� in the absence of a transition metal for degradation of

methylene blue. They reported that the prepared activated

RGO materials could be used as an eco-friendly sorbent as well

as a catalyst for waste water treatment.

Figure 7. a) DMP decomposition performances of various
catalyst systems. Reproduced with permission.[131] Copyright
2015, Elsevier. b) Schematic diagram of Reactive Red 120
degradation using GO-Fe3+ hybrid. Reproduced with per-
mission.[132] Copyright 2015, Elsevier.
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Application of graphene – based materials in photocatalytic

oxidative degradation of organic impurities

Graphene and graphene-based materials are well known for its

electron acceptor and transport properties. Graphene and gra-

phene metal nanocomposites possess very high photo catalytic

properties via generation of electron-hole pair in the present of

light sources. Graphene materials were used as photocatalyst

for the degradation of organic dyes, drugs and toxic chemicals.

This section discussing the various graphene-based materials

investigated for the photocatalytic oxidative degradation of or-

ganic pollutants and recent advances were highlighted. The

complete literature survey of various applications of graphene-

based materials in photocatalytic oxidative degradation of or-

ganic impurities is given in supporting information Ta-

ble S5.[56–59,142–161] Ai et al.[142] synthesized various graphitic car-

bon nitride (g-C3N4), RGO composites and used as hybrid

photocatalysts. Among them, the prepared g-C3N4/0.6 g gra-

phene (CN�G-0.4) showed 100% photo-oxidation of methylene

blue and 87% photo-oxidation of phenol in water solutions un-

der UV-visible irradiation. In the visible light of a wavelength

greater than 390 nm, it showed 86% methylene blue decom-

position; and at a wavelength greater than 430 nm, it showed

only 41% methylene blue decomposition. The methylene blue

decomposition highly depends on the intensity of light source.

The graphitic carbon nitride (g-C3N4) showed very less photo-

oxidation efficiency compared with the prepared graphene-car-

bon nitride hybrids. TiO2 P25-10% graphene composite (P25-

10%GN) was prepared by Li et al.[144] which showed >90%

degradation of reactive black 5 in 160 min under UV irradiation.

TiO2 nanorod decorated 5% GO sheets (TNGS) were synthe-

sized by Lee et al.[145] The sheets showed complete methylene

blue decomposition in the presence of visible light irradiation

in 3 h. The schematic sketch of the methylene blue photo-

degradation process with pristine TiO2 nanorods and TNGSs is

shown in Figure 8c. They reported that high photocatalytic ac-

tivity of TNGS was due to the high surface area, enhanced dye

Figure 8. a) Mechanism of SO4
�
* activation by MnFe2O4-rGO/PMS. Reproduced with permission.[133] Copyright 2014, Elsevier. b) Activation of peroxymonosulfate

by graphene and the mechanism of the phenol degradation. Reproduced with permission.[138] Copyright 2012, American Chemical Society. c) Schematic sketch
of the methylene blue photodegradation process with pristine TiO2 nanorods and TNGSs. Reproduced with permission.[145] Copyright 2012, Elsevier. d) Sche-
matic diagram of the CeO2-TiO2-graphene nanocomposite and the photodegradation of the contaminants. Reproduced with permission.[154] Copyright 2012,
Elsevier.
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adsorption efficiency, high electron transport properties and

their two dimensional architecture.

Ai et al.[150] synthesized the BiOBr-graphene nanocomposite

and used for the removal of NO using visible light. They pre-

pared various BiOBr-graphene composites by varying graphene

and bismuth molar ratios between 1:10 (BGC-10), 1:20 (BGC-20),

1:50 (BGC-50), and 1:100 (BGC-100). Among the prepared com-

posites, BGS-50 exhibited maximum of 40.3% of NO removal in

40 min with visible light. Based on the characterization results,

they proposed that the improved photocatalytic performance

of the BGC composites can be attributed to the excellent

charge transfer and separation in between graphene and BiOBr.

Kamegawa et al.[152] prepared TiO2 nanoparticles on a meso-

porous silica surface selectively coated with 0.15 wt% graphene

(TiO2/MCM-41/graphene) and used them as UV light photo-

catalysts for the degradation of 2-propanol. TiO2/MCM-41/gra-

phene showed the complete degradation of 2-propanol in 24 h

under UV light. They stated that the selective graphene coating

led to the enhanced photocatalytic abilities of TiO2/MCM-41 for

the degradation of 2-propanol from aqueous solution. Wang

et al.[153a] synthesized various graphene-Bi2MoO6 hybrids and

used them as visible light photocatalysts for the decomposition

of reactive brilliant red X-3B dye and phenol. They prepared

five different samples with initial GO weight of 0.5% (G-Bi2
MoO6-1), 1.0% (G-Bi2MoO6-2), 2.5% (G-Bi2MoO6-3), 5% (G-Bi2
MoO6-4), and 10% (G-Bi2MoO6-2). Among the prepared compo-

sites, G-Bi2MoO6-3 hybrid showed >90% photodegradation of

reactive brilliant red X-3B dye and phenol within 90 min under

excellent visible light. The photodegradation of reactive bril-

liant red dye X-3B onto the graphene-titania composite

showed only 39% photodegradation in 90 min. Graphene-Bi2
MoO6 showed higher photocatalytic activity compared with

pure Bi2MoO6 under visible light. The study clearly showed that

high loading of GO does not favor the photodegradation of re-

active brilliant red dye X-3B.

Jiao et al.[153b] fabricated reduced graphene oxide/chitosan/

silver nanoparticle hydrogel and used as photo catalyst for the

degradation of methylene blue and rhodamine B dye. The hy-

drogel showed about 100% methylene blue degradation under

UV light within 70 min, but the degradation was low in the ab-

sence of UV light. In case of rhodamine B, it showed 90% de-

composition under UV light, and only 70% in the absence of

UV light. The high photocatalytic dye decomposition perform-

ance of the hydrogel was due to the presence of silver nano-

particle on the reduced graphene sheets, and the chitosan

worked as a gelation medium.

A ZnO-graphene oxide nanohybrid (ZnO-GO) was prepared

by Ameen et al.[59] for the decomposition of crystal violet using

UV light. The prepared ZnO-GO showed 98% degradation in

85 min that could be attributed to GO nanosheets and high

charge separation in the presence of UV light irradiation. Gha-

semi et al.[154] synthesized CeO2-TiO2-5 wt% graphene compo-

site, which showed 90% decomposition of Reactive Red 195

and 67% decomposition of 2,4-dichlorophenoxyacetic acid in

100 min in UV light. The schematic diagram of the CeO2-TiO2-

graphene nanocomposite and the photodegradation of the

contaminants are shown in Figure 8d. CeO2-TiO2-graphene ex-

hibited very high photodecomposition ability compared with

CeO2-TiO2 and TiO2. The photocatalytic performance of CeO2-

TiO2-graphene decreased with an increase in graphene content.

They reported that CeO2-TiO2-graphene exhibited higher pho-

tocatalytic activity than CeO2-TiO2-carbon nanotube or acti-

vated carbon due to their structural architecture and electron

transport properties.

Li et al.[155] synthesized mesoporous graphene-TiO2/SiO2

composites using sol-gel technique and applied for the photo-

decomposition of endocrine-disrupting compound atrazine.

The schematics structure of CT-GR nanocomposites and their

photodegradation pathways are shown in Figure 9a. The three

prepared component junction (graphene-TiO2/SiO2) photo-

catalysts showed excellent photocatalytic degradation perform-

ance for atrazine in sunlight.

Tang et al.[156] fabricated reduced graphene oxide codeco-

rated TiO2 nanotube assembly (Ag/RGO-TiO2NTs) and used

them as photocatalysts for the removal of 2,4-dichlorophenoxy-

acetic acid (herbicide) from aqueous solution in a solar light ir-

radiation. The Ag/RGO-TiO2NTs (mixed catalyst) showed com-

plete photodecomposition of 2,4-dichlorophenoxyacetic acid.

Ag/RGO-TiO2NTs showed ~11 fold higher photodecomposition

rate than TiO2 nanotube assembly. Ag/RGO-TiO2NTs showed

97.3% degradation of herbicide even after 10 cycles with high

stability and reusability. Neppolian et al.[158] synthesized two

photocatalysts, Pt-graphene oxide-TiO2 (Pt-GO-TiO2) and gra-

phene oxide-TiO2 (GO-TiO2) for the photodegradation of a com-

monly used anionic surfactant, dodecylbenzenesulfonate in an

aqueous solution. Pt-GO-TiO2 showed 98% degradation at

pH 5.0 in 1 h, whereas GO-TiO2 showed only 78% degradation

at pH 5.0 in 1 h. The Pt-GO-TiO2 exhibited excellent photo-

degradation of dodecyl benzenesulfonate under UV as well as

visible light irradiation. The sorption of dodecylbenzenesulfo-

nate onto the catalyst under light irradiation plays a very sig-

nificant role for the photocatalytic oxidation of dodecylbenze-

nesulfonate. The Pt-GO-TiO2 catalyst degraded

dodecylbenzenesulfonate rapidly with very high decomposition

rate than commercial P-25 and synthesized GO-TiO2 or TiO2

photocatalysts. Platinum-doped GO-TiO2 showed an enhanced

dodecylbenzenesulfonate oxidation. Wang et al.[159] prepared

Cu2O/SnO2/graphene and SnO2/graphene nanocomposite for

the photodegradation of pendimethalin (herbicide) using visi-

ble light. Cu2O/SnO2/graphene showed almost 99% degrada-

tion of pendimethalin, whereas SnO2/graphene showed 85%

degradation of pendimethalin under similar experimental con-

ditions. The results revealed that when Cu2O was mixed with

SnO2/graphene materials the photodegradation activity was

significantly improved by the transfer of light-induced electrons

and holes between Cu2O and SnO2. They proposed that the

mechanism of photocatalytic reaction was based on the energy

band theory. Similarly, 0.6% Fe-doped TiO2 nanowire/graphene

was used for the photodegradation of 17b-estradiol, an endo-

crine-disrupting hormone that is commonly released into

aquatic environments.[161] Visible light solar irradiation of 0.6%

Fe-doped TiO2 nanowire/graphene showed 95% degradation

of 17b-estradiol. Hou et al.[56] made ZnFe2O4 multiporus micro-

brick/RGO hybrid (ZnFe2O4-MM/RGO) that completely degraded
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p-chlorophenol from water under visible light. The ZnFe2O4-

MM/RGO exhibited very high photocatalytic performance than

the pristine ZnFe2O4 porous materials and nanoparticles with

visible light. The feasible mechanism of the photo-

decomposition of p-chlorophenol using ZnFe2O4-MM/RGO hy-

brid with visible light source is shown in Figure 9b.

Graphene – based materials for the electrocatalytic oxidative

degradation of organic contaminants

Many graphene based materials have been successfully applied

as an electrocatalyst for the oxidative degradation of organic

contaminants. In this method, electro active oxidants were gen-

erated using graphene materials modified electrode for the

degradation of various toxic organic compounds from waste-

water. Various research investigations was carried out with gra-

phene modified electrodes. The electrocatalytic oxidative deg-

radation is an alternative technique for the photocatalytic

degradation. In the case of electrocatalytic oxidation, electron-

hole pair generated with an applied voltage. Recent research

work published on the topic and the mechanisms of organic

contaminants degradation were given in this section. Gra-

phene-based catalysts used for the electrocatalytic oxidative

degradation of organic contaminants are shown in supporting

information Table S6.[162–168] Reduced graphene oxide/TiO2/car-

bon cloth (RGO/TiO2/CC) electrodes were prepared and em-

ployed by Zhai et al.[163] for the electrodegradation of methyl-

ene blue. The prepared RGO/TiO2/CC electrode showed up to

15.6% degradation of methylene blue in 160 min with 0.9 V ap-

plied potential. Under the same conditions, the prepared RGO/

TiO2/CC showed 26.2% photodegradation of methylene blue in

visible light and the combined electrocatalytic and photo-

catalytic process showed 41.8% decomposition of methylene

blue. The photoelectrocatalytic degradation method showed

higher degradation than the electrocatalytic and photocatalytic

catalytic process for methylene blue. Zhang et al.[164] fabricated

anthraquinone@reduced graphene oxide nanohybrid cathodes

(AQ@ERGO-NC) and used them for the electrodegradation of

Figure 9. Schematics structure of CT-GR nanocomposites and their photodegradation pathways. Reproduced with permission.[155] Copyright 2013, Elsevier. b)
The feasible mechanism of the photodecomposition of p-chlorophenol using ZnFe2O4-MM/RGO hybrid with visible light source. Reproduced with permis-
sion.[56] Copyright 2013, Elsevier. c) Schematic illustration of the probable electrocatalytic oxidation mechanism of AQ@ERGO-NC electrode in MgSO4 and Na2
SO4 catholytes. Reproduced with permission.[164] Copyright 2015, The Electrochemical Society. d) Schematic diagram of the RGO/TiO2/CC electrode system and
their photoelectrocatalytic degradation process of methylene blue in the presence of visible light. Reproduced with permission.[163] Copyright 2013, Elsevier.
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rhodamine B in N2 and O2 saturated solution. AQ@ERGO-NC/N2

and AQ@ERGONC/O2 systems in 0.5 M Na2SO4 and MgSO4 sol-

utions showed only 12% degradation of rhodamine B in

120 min. The schematic illustration of the probable electro-

catalytic oxidation mechanism of AQ@ERGO-NC electrode in

MgSO4 and Na2SO4 catholytes is shown in Figure 9c. AQ@ERGO-

NC showed about 100% degradation of rhodamine B using the

FeOOH/g-Al2O3 catalyst for 60 min in 0.5 M Na2SO4 and MgSO4

electrolyte solution. The enhanced electrocatalytic degradation

of rhodamine B was caused by the high activity of FeOOH

nanoparticles and its capability to convert the electrogenerated

H2O2 molecules into oxidative radicals. The FeOOH-catalyzed

heterogeneous electro-fenton system consisting AQ@ERGONC

and FeOOH/g-Al2O3 nanoparticles showed a high degradation

rate for rhodamine B. The strong interfacial interactions of re-

duced graphene oxide nanosheets and anthraquinone mole-

cules ensured the efficient cathodic electrogeneration of H2O2

and the degradation of rhodamine B. Similarly, Wang et al.[167]

produced 1.0 wt% RGO/TiO2 film (surface area 57.2 m2g�1 and

size 19.1 nm) and studied the electrocatalytic decomposition of

acid Orange II and rhodamine B. The 1.0 wt% RGO/TiO2 film

electrode showed a maximum of 12% degradation of rhod-

amine B and acid Orange II at an applied potential of 0.6 V at

pH 6.0 in 40 min. Further, 1.0 wt% RGO/TiO2 showed 72% deg-

radation of rhodamine B and 45% degradation of Orange II un-

der the photocatalytic method. They reported that the photo-

electrocatalytic method is the best method for the complete

degradation of dyes. Zhai et al.[168] reported the electrocatalytic

oxidation of methylene blue using reduced graphene oxide

modified platinum nanoflower-TiO2 nanotube arrays (Pt-TNT/

RGO) under visible light. The ternary catalysts (Pt-TNTs/RGO)

displayed very low electrocatalytic performance (10.8%) for the

degradation of methylene blue in 120 min. However, the ter-

nary electrode also displayed efficient photoelectrocatalytic

degradation ability for methylene blue in visible light. In con-

trast, compared with other degradation processes, the photo-

electrocatalytic degradation process showed 80.9% degrada-

tion efficiency, whereas the photocatalytic process degraded

only 20.7% of methylene blue under similar conditions.

Graphene based materials for photoelectrocatalytic oxidative

degradation of organic contaminants

Photoelectrocatalytic oxidative degradation is an advanced

method for the organic pollutants degradation. The graphene

materials induced by the lightsources as well as electricity for

effective production of photogenerated oxidants and electro-

generated oxidants for the complete mineralization of organic

pollutants. The organic pollutants degradation efficiency of

photoelectrocatalytic oxidation is very high compared with

photocatalytic oxidation and electrocatalytic oxidation with

graphene materials. Currently, many organic dyes were de-

graded with this method in the present of UV light and visible

light. We have reviewed few papers on photoelectrocatalytic

oxidative degradation efficiency of graphene modified elec-

trode and summarised the current trends in this section. Vari-

ous graphene based materials developed for the photo-

electrocatalytic oxidative decomposition of organic

contaminants are shown in supporting information Ta-

ble S7.[163,166–170] Zhai et al.[166] fabricated reduced graphene ox-

ide modified TiO2 nanotube arrays (RGO-TNTs) for the photo-

electrocatalytic oxidative degradation of methyl orange in the

presence of visible light. The RGO-TNTs showed higher photo-

catalytic activity and charge transfer capacity than TiO2 nano-

tube arrays. RGO-TNTs showed 30% degradation of methyl or-

ange with a bias potential of 1.0 V under visible-light

illumination. RGO-TNTs electrode exhibited a steady and en-

hanced photoelectrocatalytic performance for the oxidative de-

composition of methyl orange than TiO2 nanotube array elec-

trode. The RGO-TNTs electrode showed high degradation

efficiency compared with the electrocatalytic and photo-

catalytic methods because of the combined effect of both pho-

tocatalytic and electrocatalytic processes involved in the degra-

dation.

Various reduced graphene oxide/TiO2 composite films with

0.2-1.5 wt% RGO/TiO2 films were synthesized by Wang et al.[167]

and used for the photoelectrocatalytic degradation of Orange II

and rhodamine B acid from aqueous solutions. Among them,

the prepared 1.0 wt% RGO/TiO2 film electrode showed ~100%

degradation of rhodamine B and ~97% degradation of acid Or-

ange II in 40 min using an applied voltage of 0.6 V under UV

light. The 0.2, 0.6, and 1.5% graphene oxide/TiO2 composites

showed 70, 83, and 92% decomposition of rhodamine B, re-

spectively with similar experimental conditions. An RGO/TiO2

film of 1 wt% showed about 4–5-fold improved photo-

electrocatalytic degradation performance for acid Orange II

rhodamine B than native TiO2 film. The higher photo-

electrocatalytic activity was primarily produced by reduced gra-

phene oxide through enhanced electron transfer onto RGO/

TiO2 film. Zhai et al.[163] synthesized reduced graphene oxide/

TiO2 modified carbon cloth electrode (RGO/TiO2/CC) and stud-

ied photoelectrocatalytic decomposition of methylene blue in

visible light. The schematic diagram of the RGO/TiO2/CC elec-

trode system and the photoelectrocatalytic degradation proc-

ess of methylene blue are showed in Figure 9d. The RGO/TiO2/

CC electrode showed 89.9% decomposition of methylene blue

photoelectrocatalytic with an applied voltage of 0.9 V. They

compared the degradation efficiency of RGO/TiO2/CC applying

the electrocatalytic and photocatalytic processes. A high degra-

dation of methylene blue was obtained applying the photo-

electrocatalytic degradation process. The improved photo-

electrocatalytic performance of the electrode was attributed to

enhanced transfer of photoinduced electrons and effective

electron-hole separation in the presence of visible light. More-

over, the catalytic activity and recyclability of the RGO/TiO2/CC

electrode were very high even after five cycles and the photo-

electrocatalytic performance did not change, which indicates

that RGO/TiO2/CC electrode is very stable and could be reused

for many cycles. Zhai et al.[168] synthesized Pt/TiO2/reduced gra-

phene oxide (Pt-TNTs/RGO) and studied photoelectrocatalytic

decomposition of methylene blue in visible light. The fab-

ricated Pt-TNTs/RGO electrode showed 80.9% degradation of

methylene blue with an applied voltage of �0.3 V in 120 min.

They compared the catalytic activity of the Pt-TNTs/RGO elec-
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trode applying the electrocatalytic and photocatalytic proc-

esses. The photoelectrocatalytic process showed a high degra-

dation compared with the electrocatalytic and photocatalytic

methods under similar conditions. The reduced graphene oxide

improves sunlight absorption and promotes charge separation

during the catalytic process. Yang et al.[170] prepared the TiO2/

graphene/Cu2O mesh for the photoelectrocatalytic oxidation of

bisphenol A. The prepared TiO2/graphene/Cu2O mesh showed

64% degradation of bisphenol A under visible light in 250 min.

To improve further the degradation rate, 50 mM H2O2 was

poured into reactor and bisphenol A degradation reaction was

conducted under similar conditions, which showed 92% degra-

dation in 250 min. The complete degradation of bisphenol A

was conducted under UV light irradiation. The TiO2/graphene/

Cu2O mesh showed 100% degradation of bisphenol A under

visible light in 150 min. To further decrease the degradation

time, about 50 mM H2O2 was poured into reactor and bi-

sphenol A degradation reaction was conducted under similar

conditions, which showed 100% degradation in 90 min. The

ternary TiO2/graphene/Cu2O catalyst exhibited very high photo-

electrocatalytic activity for the decomposition of bisphenol A

with an aid of UV/visible irradiation compared with photo-

catalytic degradation.

Modified graphene oxide/reduced graphene oxide and

metal oxide/reduced graphene oxide materials were widely

used for catalytic oxidative degradation of organic pollutants.

The graphene based materials act as adsorbent materials, on

the surface of graphene the organic pollutants degradation oc-

curs though oxidizing agent. In the case of photocatalytic oxi-

dative degradation of organic pollutants, metal oxide in-

corporated graphene oxide/reduced graphene oxide were used

as photocatalyst. Graphene based materials plays a vital role in

the photocatalytic oxidative degradation of organic pollutants.

The graphene based materials acts as an electron transporter

and suppress the recombination of photogenerated ē-h+ pairs.

The excited electron travels on the surface of metal oxide/gra-

phene composite and produce the very reactive superoxide

radicals (O2
�) and hydroxyl radicals (*OH). The produced radicals

were degrading the organic pollutants and mineralize the pol-

lutant. The photocatalytic oxidative degradation depends on

the photolight sources and energy gap of the incorporated

metal oxide. The photodegradation efficiency of graphene ma-

terial incorporated metal oxides are many fold higher com-

pared to the native metal oxide. Graphene/metal oxide modi-

fied electrode showed excellent electrocatalytic oxidative

degradation of organic pollutants. Further, graphene materials/

metal oxide modified electrode showed superior organic pollu-

tant degradation performances through photoelectrocatalytic

oxidative degradation. The photoelectrocatalytic oxidative deg-

radation of graphene based photoelectrocatalyst will be a pow-

er full tool for the organic pollutant degradation in near future.

Application of graphene based materials in water

disinfection

Metal oxide incorporated graphene oxide/reduced graphene

oxide, graphene oxide membranes/films, graphene nanorods

and graphene nanowells etc. were widely used as water dis-

infection agents through direct contact or photolight irradi-

ation. The graphene-based material inactivates/degrades the

disease causing microorganism namely, Escherichia coli (E. coli),

Staphylococcus aureus, Bacillus subtilis from water media. The

inactivation/degradation of microorganism by graphene mate-

rials takes place through the breaking of cell walls by direct

contact or photolight induced degradation. Application of vari-

ous graphene based materials used in water disinfection and

their mechanism were briefly discussed under this section. The

applications of various graphene based materials in water dis-

infection are given in supporting information Table S8.[171–186]

Akhavan et al.[172] synthesized graphene oxide nanowells

(GONWs) and reduced graphene oxide nanowells (RGONWs)

and studied their antibacterial properties on E. coli (gram-neg-

ative) and Staphylococcus aureus (gram-positive). GONWs

showed 74% and 59% antibacterial efficiency upon a direct

contact to S. aureus and E. coli, respectively, in 1 h. RGONWs

showed 84% E. coli inactivation and 95% S. aureus inactivation

within 1 h. The prepared materials showed high antibacterial

efficiency for S. aureus compared with E. coli. S. aureus contains

a peptidoglycan layer (thickness between 20–80 nm) and does

not have an external membrane; therefore, it has easy-to-break

cell membrane by the sharp edges of nanowalls, whereas E. coli

contains a thinner peptidoglycan layer (thickness between

7–8 nm) and its contains extra outer membrane and thus it is

difficult to break its cell membrane with the sharp edges of

nanowalls. The RGONWs exhibited more antibacterial property

than GONWs. The schematic illustration of cell membrane dam-

age by graphene sheets is shown in Figure 10a.[18]

Carpio et al.[175] synthesized graphene oxide functionalized

with ethylenediamine triacetic acid (GO-EDTA) and investigated

its antimicrobial activity. Its antimicrobial properties were stud-

ied using Cupriavidus metallidurans CH4 (gram-negative bac-

teria) and Bacillus subtilis (gram-positive bacteria) and the cyto-

toxicity was tested against human corneal epithelial cell line

hTCEpi. GO-EDTA showed 99.1% and 92.3% antimicrobial activ-

ity against C. metallidurans CH4 and B. subtilis under direct con-

tact for 3 h at 1000 mg mL�1 GO-EDTA concentration, whereas it

showed no activity against human corneal epithelial cell line

hTCEpi under direct contact in 24 h. The pristine graphene ox-

ide showed 92% and 82.2% antimicrobial activity against C.

metallidurans CH4 and B. subtilis under direct contact for 3 h at

1000 mgml�1 GO-EDTA concentration. The antimicrobial effect

of GO-EDTA was due to the induction of oxidative stress in the

bacterial cells. Since GO-EDTA did not show cytotoxicity against

human cells, it can conveniently be used for the biomedical

and water treatment purposes. Similarly, Cao et al.[178] synthe-

sized various combinations of TiO2/graphene sheet nano-

composites and studied their antibacterial activity against E.

coli under visible light. Among the prepared TiO2/graphene

sheet nanocomposites, TiO2 with 4.2 wt% graphene sheet

nanocomposites (TiO2/4.2 wt% GSs) showed 90.5% anti-

bacterial activity against E. coli in 12 h in visible light. The same

composite did not exhibit any antibacterial property in the ab-

sence of light. The TiO2/1.4 wt% graphene sheet nano-

composites showed about 75.2% antibacterial activity and
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TiO2/7 wt% graphene sheet nanocomposites showed 63.3%

antibacterial activity under similar conditions only with TiO2/

graphene sheet nanocomposites. The pure TiO2 showed 8.8%

bacterial inactivation performance in visible light. They re-

ported very high bacterial inactivation performance of nano-

composites owing to the prolonged light absorption, enhanced

charge separation, involvement of hydroxyl and super oxide

radicals.

Hui et al.[179] fabricated the polyelectrolyte-stabilized re-

duced graphene oxide sheets on a quartz substrate thin film

(PEL-rGO LBL) and studied its antibacterial activity against E.

coli and B. subtilis under solar irradiation. The graphical illus-

tration of the fabricated surface of the PEL-rGO LBL sheets and

their airborne bacteria killing mechanism under solar irradiation

are shown in Figure 10b . The prepared material showed >90%

antibacterial activity against both bacteria in 10 min under so-

lar irradiation. The high antibacterial activity of PEL-rGO LBL

was attributed to solar radiation in the near-infrared region,

which generated the rapid localized heating in the PEL-rGO LBL

multilayer in a short time period. They reported that the PEL-

rGO LBL multilayer can be conveniently used for disinfection of

various biomedical devices and any other materials by few mi-

nutes long solar exposure. Jiang et al.[180] fabricated the crum-

pled graphene-oxide-encapsulated Ag membrane (GOAg) and

the crumpled graphene oxide (CGO) membrane and studied

their antibacterial activity against E. coli. Both materials showed

more than 97% antibacterial activity under direct contact in

2 h. Similarly, Liu et al.[181] synthesized graphene oxide (GO) en-

wrapped Ag3PO4 (GO-Ag3PO4) and showed 100% antibacterial

activity against E. coli under visible light in 2 h. The schematic

illustration of the photocatalytic disinfection and dye degrada-

tion using the GO-Ag3PO4 composite is shown in Figure 10c.

Pham et al.[184] fabricated blade-like graphene-based nanosheet

films, i. e., graphene nanosmooth (GN�S) and graphene nano-

rough (GN�R) films for killing P. aeruginosa and S. aureus bac-

teria by direct contact. GN�S (500 nm size) showed 71.4 and

77.1% antibacterial activity against P. aeruginosa and S. aureus,

respectively, under direct contact for 18 h. GN�R (1.5 mm size)

Figure 10. a) Schematic illustration of cell membrane damage by graphene sheets. Reproduced with permission.[18] Copyright 2014, Royal Society of Chemistry.
b) Graphical illustration of the fabricated surface of the PEL-rGO LBL sheets and their airborne bacteria killing mechanism under solar irradiation. Reproduced
with permission.[179] Copyright 2015, American Chemical Society. c) Schematic illustration of the photocatalytic disinfection and dye degradation using the GO-
Ag3PO4 composite. Reproduced with permission.[181] Copyright 2012, Royal Society of Chemistry. d) Schematic diagram of the batch-mode photothermal anti-
bacterial process of MRGOGA. Reproduced with permission.[186] Copyright 2013, American Chemical Society.
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showed 43.1% inactivation against P. aeruginosa and 87.6% in-

activation against S. aureus under direct contact for 18 h. The

primary antibacterial behavior of the graphene nanosheets was

attributed to thickness of graphene edges. Wu et al.[186] fab-

ricated magnetic reduced graphene oxide functionalized gluta-

raldehyde (MRGOGA) and studied their antibacterial activity.

The schematic diagram of the batch-mode photothermal anti-

bacterial process of MRGOGA is shown in Figure 10d. The pre-

pared graphene-based material, MRGOGA, was studied for the

effective killing of S. aureus and E. coli with an aid of near-infra-

red laser irradiation. MRGOGA showed more than 99% in-

activation of E. coli and S. aureus in 10 min. After the dis-

infection of bacteria, MRGOGA entrapped bacteria were easily

separated using magnets from aqueous solution.

Graphene based materials showed an excellent application

in water disinfection by direct contact and photoirradiation.

Graphene nanomaterials (rods, wells, nanosheets, thin films)

showed disinfection properties through direct contact towards

different disease causing microorganism. Metal oxide-graphene

materials also degrading the microorganism through the pho-

toirradiation mechanism which is similar to the organic pollu-

tant degradation. Among them, solar light induced photo-

catalytic disinfection methods have a potential practical

application in the forthcoming days.

Application of graphene based materials in water

desalination

In recent days, graphene based materials showed ground

breaking applications in water desalination. Various techniques

were reported for tailoring the pore size of graphene based

surfaces/membranes. Graphene based aerogel electrodes were

reported for the desalination of brackish water using capacitive

deionization technique. Tailored graphene membranes widely

reported for the removal of NaCl, KCl, MgSO4, and MgCl2 and

various organic dyes using permeation, dead-end membrane

filtration methods. In this section, we have reviewed the vari-

ous reported graphene based materials used of the de-

salination and discussed their desalination feasibility and ad-

vantages. Various graphene based materials were used for

water desalination and their detailed experimental conditions

are shown in supporting information Table S9. The first vac-

uum tight graphene based membrane and its desalination

properties were reported by Nair et al.[187] The recent develop-

ment of various graphene oxide membrane materials and their

desalination applications were extensively reviewed by Joshi

et al.[188] They reported that graphene oxide membrane acts as

a molecular sieve allowing all solute with hydrated radius less

than ~4.5 �.[189] They fabricated micrometer thickness graphene

oxide membrane (1 cm) glued into copper foil and sealed in a

2.5 cm diameter U-shaped setup divided into two compart-

ments by graphene oxide: feed and permeated compartments.

The schematic picture of prepared membrane, U shaped filtra-

tion setup and variation of permeation rate with respect to hy-

drated radius of species are shown in Figure 11a–c. The aque-

ous species of K+ , Na+ , AsO4
3�, Mg+ , propanol, etc. were

passed through the feed compartment through a 5 micrometer

thick GO membrane. Depending on the hydrated radius of spe-

cies, their permeation rate varied. They reported that molecules

dissolved in water with a hydrated species size up to ~ 4.5 �

could pass through GO membrane. The molecule hydrated spe-

cies size more than ~ 4.5 were not able to pass through mem-

brane. For example, the hydrated radius of [Fe(CN)6]
3�, glycerol,

sucrose, [Ru(bipy)3]
2+ species were found to be more than

4.5 �, so they did not pass through GO membrane. Further the

electrical conductivity and chemical analysis of the permeate

compartment was performed and confirmed the obtained re-

sults.

Wang et al.[191] synthesized the functionalized reduced gra-

phene oxide-resol nanocomposite (RGO-RF) and applied as an

electrode material for the desalination of water via capacitive

deionization (CDI) method. They reduced the graphene oxide

Figure 11. a) Micrometer thickness graphene oxide membrane
glued into copper foil. b) Schematic of U-shaped filtration setup.
c) Variation of permeation rate with respect to hydrated radius of
species tested for separation. Reproduced with permission.[189]

Copyright 2014, Nature Publishing Group.
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using the mixture of Na2CO3, resorcinol, and methanol as cata-

lysts in a ratio of 1:200:400, respectively. Among the studied

materials, RGO-RF showed a better desalination performance

than RGO and activated carbon. The promising result indicated

that the novel RGO-RF electrode has a potential application in

water desalination in method. The electrosorptive removal per-

formances of NaCl by RGO-RF, RGO, and activated carbon were

found to be 3.2, 1.8, and 1.5 mg/g, respectively, with 20 mL

min�1 inflow of 65 mg/L NaCl solution and 2.0 V applied electric

field. The enhanced desalination of RGO-RF was attributed to

the very specific surface area (406.4 m2 g�1), which resulted in

high NaCl uptake. Sun et al.[192] synthesized RGO/TiO2 hybrid

membranes via ultraviolet radiation and used for water purifi-

cation by an ion permeation method. The prepared RGO/TO

hybrid membranes with a composition of GO (0.1 mg mL�1)

and TiO2 (0.08 mg mL�1) showed the salt rejection up to 95%

under UV irradiation for three days, whereas the pristine GO/TO

showed the salt rejection up to ~60%. The RGO/TO hybrid

membranes exhibited very high desalination capability in the

absence of external hydrostatic pressure. The schematic dia-

gram of the GO reduction process by titania under ultraviolet

irradiation and RGO/TO hybrid membrane water purification

process is shown in Figure 11a.

Surwade et al.[193] fabricated nanoporous single-layer gra-

phene and used it as a desalination membrane. They synthe-

sized porous graphene single layers using chemical vapor dep-

osition (CVD). The single layer graphene was placed on 5 mm

silicon nitride microchip hole. They created nanopores on a

graphene single layer by plasma etching method. Among the

prepared materials, the porous graphene/SiN pore with ID/IG=

0.6 showed 98.0% KCl rejection in 24 h, whereas pristine gra-

phene/SiN did not show the filterability for KCl. They reported

that the produced nanoporous single-layer graphene exhibited

excellent water desalination capacity from an aqueous solution

of Na+ , K+ , Li+ and Cl� ions. The nanoporous single-layer gra-

phene membranes displayed a 100% rejection of Na+ , K+ , Li+

and Cl� ion and water passed through rapidly. Hu et al.[46] syn-

thesized graphene oxide cross-linked trimesoyl chloride, which

Figure 12. a) Schematic diagram of the GO reduction process by titania under ultraviolet irradiation and RGO/TO hybrid membranes water purification process.
Reproduced with permission.[192] Copyright 2015, Nature Publishing Group. b) Schematic diagram of water desalination by GO nanosheet membrane. Repro-
duced with permission.[46] Copyright 2013, American Chemical Society. c) Schematic illustration of the GO membrane and the transport of alkali and alkaline
metal salts. Reproduced with permission.[195] Copyright 2014, American Chemical Society. d) Computational stimulation of pores in a single layer graphene
membrane and their water desalination mechanism. Reproduced with permission.[196] Copyright 2012, American Chemical Society.
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was deposited on a polydopamine coated polysulfone mem-

brane. They used the prepared membrane for the removal of

NaCl, Na2SO4, rhodamine WT, and methylene blue from water

using a dead-end membrane filtration method. The schematic

diagram of water desalination by the prepared membrane is

shown in Figure 11b. The prepared membranes coated with 15

layers of GO on polydopamine-coated polysulfone support

membranes showed 59 and 88% rejection of NaCl and Na2SO4,

respectively. The same membrane also showed 95% rejection

of rhodamine-WT and 66% rejection of methylene blue. It was

observed that an increase of GO layers to 50 leads to a de-

crease in the desalination of water and the optimum 15 GO lay-

ers showed the maximum desalination efficiency. Similarly, Han

et al.[194] fabricated ultrathin graphene nanofiltration mem-

branes (uGNMs) with a modified graphene oxide (34.0 mg m�2).

The modified graphene was coated on mixed cellulose ester

membrane. The thickness of the graphene oxide coating was

found to be ~22-53 nm. The uGNMs was used for desalination

of water. Ultrathin graphene nanofiltration membranes with

34.0 mg m�2 of GO content showed 99% rejection of dye

namely direct red 81 and methyl blue in 30 min using a dead-

end filtration method. uGNMs showed 60, 43, 30, and 20% re-

jection of Na2SO4, NaCl, MgSO4, and MgCl2 within 30 min using

a dead-end filtration method. The uGNMs exhibited tremen-

dous performance and high dye removal caused by electro-

static interaction and physical separation. The salt rejection was

controlled by Donnan exclusion of the ultrathin graphene

membranes.

Sun et al.[195] fabricated few layers of graphene oxide mem-

branes and used for water desalination process. They studied

the selective transmembrane transport of alkali and alkaline

metal salt solutions using graphene oxide membranes. The

schematic illustration of the prepared membrane and the trans-

port of alkali and alkaline metal salts are shown in Figure 11c.

They reported that the transport behaviors of the selected met-

al ions (K+ , Mg2+ , Ca2+ , and Ba2+) highly depend on produced

thermal motions and the interaction of metal ions on p elec-

tron network of graphene oxide membranes. They reported

that prepared graphene oxide membranes would be very use-

ful as a filter material for the separation of many gases and liq-

uids.

Cohen-Tanugi and Grossman[196] reported computational

stimulation of single layer nanopores in a graphene membrane

for the effective desalination of water. Computational modeling

of nanopores in a single layer graphene membrane and their

water desalination mechanism is shown in Figure 11d. Compu-

tational stimulation study is very useful in understanding the

next-generation graphene membranes for clean water technol-

ogy.

Micrometer thickness graphene based materials showed ex-

traordinary water desalination property. The novel graphene

materials reported namely, micrometer thickness graphene ox-

ide membrane, porous graphene/SiN pore, graphene oxide

cross-linked polydopamine-coated polysulfone membranes, ul-

trathin graphene nano-filtration membrane were showed an

excellent water desalination properties by controlling the pore

size. The pore size controlled graphene materials not allowing

any other ions (Na, dyes, As) to pass through it and it act as

molecular sieve. On the other hand graphene materials/aerogel

coated electrode showed good desalination capacity through

capacitive deionization (CDI) process and supercapacitor based

water filter. Design of future desalination technology process

using tailored graphene materials is a fast growing filed and

many research works is under progress in this field. The gra-

phene based materials will show a huge impact on the future

water desalination.

Future challenges and prospects

The applications of graphene materials in the field of water/

wastewater treatment are growing rapidly. The aggregation of

graphene in aqueous solutions is the major technical bottle-

necks in water purification. The aggregation of graphene layers

reduces contaminants and the accessibility to the surface and

limits their interaction. To overcome such technological bottle-

necks, graphene based materials were modified with various

functional groups. The hydrophilic functional groups (carboxyl,

ketone, epoxy, and hydroxyl groups) on the graphene surface

enhanced their dispersion and decreased their aggregation.

The modified graphene materials are highly interactive with

aqueous pollutants and can enhance their removal. During wa-

ter purification process, separation of graphene nanomaterials

requires membrane filters. To solve filtration problems, mag-

netic graphene based materials have been prepared. Magnetic

particles prevent the aggregation of the graphene and can

easily be separated from the solution using external magnetic

field. The graphene composites degraded various types of or-

ganic pollutants with sun light, and the electrophotolysis-as-

sisted technique showed great potential and can be applied to

industrial water treatment. The reported graphene-based mate-

rials showed groundbreaking applications in the fields of water

desalination and disinfection properties. They will have great

impact on sea water desalination and will solve the drinking

water problem all over the world and thus will be the alter-

native to reverse osmosis. The synthesis of graphene, GO, and

rGO is still a challenging process, scientists will have to develop

more simple, robust, and efficient preparation methods for gra-

phene, GO, rGO, and their nanocomposites. For the complete

understating of graphene-based materials, still exhaustive stud-

ies are required considering their structure, formation, size, via-

bility, reproducibility, methods and properties. Currently, an ex-

tensive research work is being carried out in this area. On the

other hand, commercial large scale production of graphene

materials is challenging and further work to be addressed on

their commercial production for the wide range of applications.

The toxicity of graphene based materials for living things, hu-

man exposure and ecosystem must be extensively investigated

and these issues have not been addressed to date. Graphene

based materials have many advantages as well as limitations in

water purifications, at the same time it is a most promising ma-

terial for solving various environmental problems. We finally

conclude that graphene and graphene-based composites will

emerge as a mounting star in the water purification in near fu-

ture.
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Supporting Information

Supporting Information is available from the Wiley Online Li-

brary or from the author. The complete classification of gra-

phene based materials and comparison of different materials

towards water purifications were given in the supporting in-

formation Table S1-S9. Supporting information contains the

complete literature summary of various graphene-based mate-

rials used for water purification (adsorption, degradation, dis-

infection and desalination) with respect to removal capacity, re-

usability, temperature, pH, surface area, size and time and other

parameters.
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