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Antidot lattices, defined on a two-dimensional electron gas at a semiconductor heterostructure, are a

well-studied class of man-made structures with intriguing physical properties. We point out that a closely

related system, graphene sheets with regularly spaced holes (‘‘antidots’’), should display similar phe-

nomenology, but within a much more favorable energy scale, a consequence of the Dirac fermion nature

of the states around the Fermi level. Further, by leaving out some of the holes one can create defect states,

or pairs of coupled defect states, which can function as hosts for electron spin qubits. We present a detailed

study of the energetics of periodic graphene antidot lattices, analyze the level structure of a single defect,

calculate the exchange coupling between a pair of spin qubits, and identify possible avenues for further

developments.
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Graphene is the rapidly rising star of low-dimensional

materials. Following the initial reports on fabrication by

mechanical peeling [1] and epitaxial growth [2], this ex-

ceptional material has stimulated considerable experimen-

tal [3] and theoretical research [4] as well as proposals for

novel electronic devices [5]. The promising prospects for

graphene devices are based on several remarkable proper-

ties. Mainly, the sample quality and mobility (exceeding

15 000 cm2=V s [3]) can be very high. In addition, pattern-

ing of such monolayer films by e-beam lithography [3,6]

with features as small as 10 nm [3,7] is possible. Very

recently, spintronics devices have been considered [8]. The

incentive for graphene based spintronics lies partly in the

long spin coherence time that is characteristic of carbon-

based materials. This also has obvious advantages within

the field of solid-state quantum information processing,

where confined electron spins have been promoted as

carriers of quantum information [9]. Being a light element,

carbon has a rather small spin-orbit coupling, and, more-

over, the predominant 12C isotope has a vanishing hyper-

fine interaction. This makes graphene, at least in principle,

a superior material compared to existing quantum comput-

ing implementations in GaAs [10,11].

Antidot lattices, defined on semiconductor heterostruc-

tures, display many intricate transport properties, in par-

ticular, in magnetic fields where the competing length

scales lead to rich physics [12]. In this Letter we wish to

draw attention to the possibility of forming antidot lattices

on graphene. As mentioned above, state-of-the-art e-beam

lithography has been used to carve graphene nanoribbons

with feature sizes down to tens of nanometers. We propose

to use similar techniques to create regular holes in the

graphene sheet, in order to form antidot lattices. The anti-

dot lattice has the important consequence that it turns the

semimetallic graphene into a gapped semiconductor,

where the size of the gap can be tuned via the antidot

lattice parameters. As our analysis shall show, this elec-

tronic structure can be manipulated further so as to create

coupled electron spin qubits, thus suggesting that these

perforated graphene sheets are a promising platform for a

large-scale spin qubit architecture. Localized spin qubit

states can be formed in the antidot lattice by deliberately

omitting some of the antidots. This idea has previously

been analyzed for the two-dimensional electron gas in,

e.g., GaAs heterostructures [13]. As we will now argue,

moving to graphene has three major advantages:

(i) increased coherence time; (ii) favorable energy scale

of the defect states; and (iii) increased lateral confinement.

The proposed antidot lattice is simply a triangular array

of holes in a graphene sheet, as illustrated in Fig. 1(a). The

lattice consists of hexagonal unit cells as shown in

Fig. 1(b), in which a roughly circular hole is created. We

FIG. 1 (color online). Illustration of the triangular antidot

lattice (a) with a unit cell characterized by side length L and

hole radius R (b). In (c), several examples with corresponding

fL; Rg parameters are shown.
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characterize the structure by the side length L of the

hexagonal unit cell and the radius R of the hole, both

measured in units of the graphene lattice constant a �
2:46 �A. A lattice is designated by the notation fL;Rg.
Note that while L is an integer, R can be noninteger. As

is evident from the examples in Fig. 1(c), L is equal to the

number of carbon atoms in the outermost row of the

hexagon. Also of importance are the total number of sites

in the unit cell Ntotal (equal to the number of atoms before

the hole is made) and the number of removed atoms

Nremoved. As an example, for the f7; 3g lattice Ntotal � 294

and Nremoved � 60. Below, results for structures with L �
14 and varying R have been compiled taking care that no

dangling bonds are formed, i.e., that all atoms have at least

two neighbors. While these structures are too small for

present-day lithography, results for realistic structures are

easily obtained by simple scaling laws, as demonstrated

below.

We model the structures using a tight-binding (TB)

description considering a single � orbital on each site

and assuming a nearest-neighbor hopping integral of ��,

with � � 3:033 eV [14]. In this description, energy levels

are always distributed symmetrically above and below

zero, which defines the Fermi level in the undoped case.

The TB approximation is necessary due to the large antidot

cells. It is known to accurately reproduce the low-energy

part of the density-functional (DFT) band structure of

graphene [15]. Edges, however, require a modification of

hopping integrals near the edge to ensure agreement be-

tween DFTand TB calculations [16]. We have checked that

the computed band structures are generally robust against

such modifications, which simply produce a minor addi-

tional opening of the band gap. The electronic band struc-

ture and density of states for the f7; 3g structure are

illustrated in Fig. 2. Importantly, a substantial energy gap

of approximately 0.73 eV opens around the Fermi level

[17]. Hence, as hinted above, the periodic perturbation

turns the semimetal into a semiconductor. In the top panel

of Fig. 3, band gaps Eg of several structures are plotted

versus the quantity N1=2
removed

=Ntotal. When plotted in this

manner, a roughly linear behavior is observed. This simple

result may be rationalized within the linearized

Hamiltonian approximation treating electrons as massless

Dirac fermions subject to the periodic perturbation of the

antidot lattice. In this description, the wave function is a

two-component spinor representing the two sublattices.

The corresponding Hamiltonian is the 2� 2 matrix opera-

tor

 H � V�x; y� vF�px � ipy�
vF�px � ipy� V�x; y�

� �

; (1)

where V is the periodic antidot potential, p is the momen-

tum operator, and the Fermi velocity vF �
���

3
p
�a=�2@� �

106 m=s. In the absence of a potential, the energy eigen-

values are simply E � 	@vFjkj. If the potential is ap-

proximated by infinite barriers at the positions of the

antidots, the eigenvalue problem is reduced to the form

 v2F�p2
x � p2

y� � E2 ; (2)

with the boundary condition that  vanishes in the barrier

region. The equation is mathematically similar to the usual

effective mass equation. For an antidot lattice in a usual

semiconductor material such as GaAs, simple scaling argu-

ments lead to a band gap varying as Eg / A�1
total
f�Aremoved=

Atotal�, where Atotal is the area of the unit cell and Aremoved is

the area removed inside each unit cell. In graphene, a

similar behavior is expected except that the linear band

structure changes the prefactor from A�1
total

to A�1=2
total

, i.e.,

FIG. 2. Energy band structure and associated density of states

for a f7; 3g antidot lattice. The notation �, M, and K refers to

high symmetry points of the Brillouin zone.

FIG. 3. Compilation of energy gaps (upper panel) and defect

state binding energies (lower panel). When displayed versus

N1=2
removed

=Ntotal, very simple scaling is observed. Note that

N1=2
removed

=Ntotal is small for realistic structures.
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Eg / A�1=2
total

g�Aremoved=Atotal� / N�1=2
total

g�Nremoved=Ntotal�.
The fit in Fig. 3 shows that g approximately follows a

square root behavior g�Nremoved=Ntotal� /
������������������������������

Nremoved=Ntotal

p

.

Thus, the net result is a gap varying as Eg � K �
N1=2

removed
=Ntotal with a constant K � 25 eV. For large unit

cells, N1=2
removed

=Ntotal is small and in this case the linear fit is

an excellent approximation. The weaker scaling (A�1=2
total

instead of A�1
total

) of graphene is very favorable for the

purpose of obtaining large band gaps even for relatively

large structures. The practical limits of present-day e-beam

lithography probably restrict the obtainable size of the unit

cell to around 10 nm across corresponding to a total

number of carbon atoms of Ntotal � 3000. Assuming

Nremoved � Ntotal=4 we find a substantial gap of 0.23 eV.

Hence, band gaps much larger than the thermal energy at

room temperature are certainly realistic. This feature,

which is a direct consequence of the massless Dirac fer-

mion behavior, is very important for the feasibility of the

graphene based devices considered here.

We now turn to the role of intentional defects in the

antidot lattice produced by leaving one or several unit cells

intact, i.e., without a hole. Such defects may support

localized electronic states and may consequently be uti-

lized for electron spin qubits, as we will now demonstrate.

An example of single and double defects for the f5; 2g
structure is shown in Fig. 4. For isolated single defects,

we compute localized states by periodically replicating the

supercell consisting of one intact and six perforated cells

illustrated in the figure. The states are sufficiently localized

that cross talk between neighboring super cells is negli-

gible. Periodicity is not crucial for the appearance of bound

states [13]. Defect states are identified by an energy lying

in the fundamental energy gap, i.e., the gap containing the

Fermi energy. In fact, other energy gaps may exist as

illustrated in Fig. 2; here we focus solely on states in the

fundamental gap. If the gap is sufficiently large (i.e., if

N1=2
removed

=Ntotal is large) several defect states are supported.

In the lower panel of Fig. 3, a compilation of binding

energies for the three lowest defect states is shown. We

define the binding energy Ebind as the downwards shift of

the defect state energy measured from the conduction band

edge. Hence, a defect state at the Fermi energy would have

a binding energy of Eg=2. For small band gaps, only a

single-defect state is supported but several defect states

appear in an irregular pattern as the confinement increases.

Note that the scatter in the data points in the plot reflects

actual variations and not computational inaccuracy.

Importantly, the binding energy in the limit of small band

gaps is seen to approach a constant fraction ’ 0:07 of the

energy gap. Hence, for the 10 nm unit cell considered

above, a defect state would be bound by roughly 16 meV.

This implies that liquid nitrogen cooling should be suffi-

cient to observe these states.

Next, we consider two tunnel coupled defect states in a

‘‘double defect,’’ illustrated in Fig. 4. With an electron

occupying a nondegenerate state in each defect, the spins

of the two electrons couple due to the exchange interaction

JS1 
 S2. If the two single-defect states are energetically

aligned, the exchange coupling is given as J � 4t2=U
according to the Hubbard approximation. Here, t is the

tunnel coupling between the two defect states, and U is the

single-defect Coulomb integral. As discussed in Ref. [9],

the exchange coupling constitutes a key element in quan-

tum computing architectures based on electron spins as

qubits, enabling interactions between different qubits.

Importantly, the exchange coupling can be controlled

with external gate potentials. Metallic gates could be real-

ized by lithographic methods and placed either below or on

top of the graphene sheet but will not be considered further

here. For evaluation of the exchange coupling, we calculate

the single-defect Coulomb integral U by the method pre-

sented in Ref. [18] (ignoring overlap between different

atomic � orbitals) using the Ohno form to interpolate

between the intra- and long-range interatomic Coulomb

coupling. A Hubbard U� for carbon � orbitals of 20.08 eV

[18] and dielectric constant of 2.5 [19] (as appropriate for

graphene on SiO2) are applied. The tunnel coupling t is

extracted from the single-particle energy spectrum.

Our findings for the Coulomb integral U are illustrated

in Fig. 5. In the plot, RD is the effective defect radius

calculated by including half the area of the surrounding

cells and writing the total area as �R2
D. The smallest U’s

are found for the least localized states for whichU scales as

the expected R�1
D . The inset shows, as an example, the

single-electron level diagram for single and double defects

in a f12; 7g lattice. This structure has Ntotal � 864 and

Nremoved � 348 and supports two single-defect states. Of

these, the upper one is nondegenerate and the Coulomb

FIG. 4 (color online). Single (left) and double (right) defects

for the f5; 2g antidot lattice. To compute defect states, super cells

containing defects surrounded by six intact units are repeated

periodically.
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integral is 0.315 eV. Because of the large double defect

super cell, this is about the largest structure that we have

been able to analyze. As shown, the level splitting corre-

sponds to a tunnel coupling of t � 2 meV between the two

nondegenerate single-defect states. Hence, based on the

f12; 7g values we may estimate the exchange coupling to be

on the order of J � 50 �eV. Naturally, this value could be

tuned by appropriate design of the barrier region that, for

simplicity, has been constructed from two intact unit cells.

Also, going to larger single defects would decrease U and,

in turn, increase J. Note, however, that t depends exponen-

tially on barrier width whereasU is only weakly dependent

on geometry. Hence, the geometric influence on J will be

determined mainly through t rather than U.

We believe that the approach outlined above can be

extended to more complicated structures. Going from a

single pair of spin qubits in an isolated double defect to

several coupled spins could be achieved with little added

complication. Similarly, a double defect could be replaced

by a linear array of defects. Hence, the number of qubits

can be increased essentially without complicating the fab-

rication procedure. In practice, excellent control of the

e-beam lithography process remains a critical issue.

In summary, we have shown that antidot lattices pave the

way for controlled manipulation of the electronic proper-

ties of graphene sheets. The material can be rendered

semiconducting with a significant and controllable energy

gap. The magnitude of the gap is explained by a simple

scaling argument and could reach several tenths of eVs for

realistic structures. Introducing defects into the antidot

lattice leads to the formation of localized electronic states.

Combined with the extremely long spin coherence time of

carbon-based materials this could lead to a practical real-

ization of spin qubits. With a properly designed double

defect, two-electron states derived from defect levels near

the Fermi level are found to fulfil the requirements for such

qubits.
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