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Abstract

Optical modulators (OMs) are a key device in modern optical systems. Due to its unique optical properties, graphene

has been recently utilized in the fabrication of optical modulators, which promise high performance such as broadband

response, high modulation speed, and high modulation depth. In this paper, the latest experimental and theoretical

demonstrations of graphene optical modulators (GOMs) with different structures and functions are reviewed. Particularly,

the principles of electro-optical and all-optical modulators are illustrated. Additionally, the limitation of GOMs and

possible methods to improve performance and practicability are discussed. At last, graphene terahertz modulators

(GTMs) are introduced.
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Introduction

As one of the key components in photonics systems, an

optical modulator is a device used to control the funda-

mental characteristics of a carrier light propagating in free

space or in an optical waveguide upon an external elec-

tronics/photonics signal [1]. In order to meet specific re-

quirements in applications, such as modern lasers, optical

communication, and terahertz communication, various

designs have been demonstrated. And thanks to the latest

development in nanotechnology and material science,

advanced-function materials are progressively involved in

device fabrication. For instance, group III-V materials [2],

germanium [3,4], polymers [5,6], and graphene [7,8] have

been applied and incorporated to silicon-based modula-

tors to form hybrid devices, with the aim to improve the

modulation speed, broaden the modulation range, and re-

duce the device footprint and energy consumption. Accord-

ing to the parameters being modulated, these devices can be

categorized as amplitude, phase, or polarization modulators.

Generally, amplitude modulation is the most common due

to its classified system. And the performance can be charac-

terized by optical bandwidth, modulation depth, modulation

speed, insertion loss, area efficiency (footprint), and power

consumption [9].

As the prime material for the semiconductor industry,

silicon modulators have to be fabricated in large scale to

obtain enough modulation depth, due to a relatively weak

high-order electro-optical effect. On the other hand, modu-

lators based on germanium and other compounds have

problems to be integrated with current complementary

metal-oxide-semiconductor (CMOS) techniques. For mod-

ulators with resonators, narrow modulation bandwidth

limits their development. By contrast, graphene can cover

the needs of scale, speed, and techniques. And integration

with graphene can help current modulators to improve

their performance.

Graphene, a single layer of hexagonally packed carbon

atoms, was first isolated from graphite via mechanical exfoli-

ation in 2004. For these highly confined two-dimensional

crystals, in-plane carbon atoms are connected by strong σ-

bonds, while adjacent layers only share weak van de Waals

force. The unique crystalline structure endows graphene

extraordinary electronic, optical, thermal, and mechanical

properties. Graphene is expected to grow into the new sili-

con in future electronics and photonics. Many proof-of-

concept photonics devices based on graphene, including

photodetectors [10,11], ultrafast lasers [12,13], polarization

controllers [14], and plasmonic structures [15-17], have been

demonstrated.
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For applications in optical modulators, graphene has its

unique advantages as follows: (1) High modulation speed:

With a carrier mobility as high as 200,000 cm2/(V · s) at

room temperature, graphene is considered as one of the

fundaments of next-generation ultrafast electronics/pho-

tonics devices [18]. Ultrafast (picoseconds) processes in

graphene, such as photocarrier generation and relaxation,

offer graphene a possibility to operate at over hundreds of

GHz [19]. Thus, the Fermi level, which is directly related

to the optical absorption of graphene, can be rapidly mod-

ulated through gating voltage doping. (2) Wide optical

bandwidth: Due to its unique electronic structure [10,11],

graphene has a constant absorption of πα = 2.293% from

visible to infrared wavelengths [12], where α= e2/hc denotes

the fine-structure constant [13], as is shown in Figure 1a.

This bandwidth covers the optical fiber communication

bandwidth, typically from 1,300 to 1,600 nm. (3) High op-

tical absorption: Considering only one atom thickness, an

optical absorption of approximately 2.3%, which is approxi-

mately 50 times higher than that of GaAs of the same

thickness, is quite high. By integrating graphene along with

a waveguide, the light-graphene interaction length can be

further improved [14], as shown in Figure 1b,c. In this ori-

ginal structure, an absorption (modulation depth per unit

length) of 0.2 ~ 1 dB/μm can be achieved. Higher absorp-

tion will help to reduce the scale of the device (footprint).

(4) CMOS-compatible: During the past decade, large-scale

graphene can be integrated using CMOS-compatible pro-

cesses [15,16]. Moreover, because of Pauli blocking (band

filling), saturable absorption has been observed [17,20],

which makes it possible to fabricate all-optical graphene

optical modulators.

In this review article, we provide a brief overview of

graphene-based optical modulators. Our survey is not

intended to cover every single device reported in prior

publication, but rather to introduce some typical designs

and highlight some recent notable work. Classified by

whether electrical elements are involved or not, the

principle and paradigms of electro-optical and all-optical

graphene optical modulators are elaborated in the ‘Electro-

optical graphene optical modulator’ and ‘All-optical graph-

eme optical modulator’ sections, respectively. In addition,

graphene-based material systems for THz wave modula-

tion are discussed in the ‘Graphene terahertz modulator’

section. The article closes with a final conclusion and out-

look in the ‘Conclusions’ section.

Electro-optical graphene optical modulator

Mechanism of electro-absorption

Due to the sp2 hybridization of carbon atoms, graphene

has a unique electronic structure in that the conduction

band and valence band meet at Dirac points like two

cones [10,11]. A linear energy-momentum dispersion rela-

tion can be noted in the vicinity of Dirac points and car-

ries behavior that can be modeled as massless Dirac

fermions.

For pristine graphene, electrons can be excited by incident

photons with a broad range of energies and only interband

transition is permitted (Figure 2a). As a consequence of uni-

versal optical conductance, the transmittance of pristine gra-

phene is frequency-independent and only determined by the

fine-structure constant α= e2/ħc (where e is the electronic

charge, ħ is Planck’s constant divided by 2π, and c is the vel-

ocity of light) [13]:

T ¼ 1þ 2πG=cð Þ−2≈1−πα≈0:977 ð1Þ

While sufficiently doped, the optical transition of gra-

phene is mainly determined by chemical potential μ

(Fermi level EF), which can be controlled by chemical

doping or electrical gating. The Kubo formula can be

used to describe the dynamic response of graphene, in-

cluding interband transition and intraband transition [1]:

σ ¼ σ intra þ σ inter’þ iσ inter” ð2Þ

σ intra ¼ σ0
4μ

π

1

ℏτ1−iℏω
ð3Þ

Figure 1 Optical absorption in graphene. (a) Optical absorption of approximately 2.3% for pristine graphene from ref. [13]. (Inset) Graphene

crystallites were placed over a metal with several apertures. (b) For vertical incident light, an optical absorption of approximately 2.3% can be

achieved by single-layer graphene. (c) By integrating graphene along with a waveguide (i.e., light transmits horizontally through graphene), large

light-graphene interaction and higher absorption can be achieved. Reproduced from ref. [14].
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Both interband transition and intraband transition are

related to chemical potential μ and the frequency of inci-

dent light ω. When μ = 0, no intraband transition will

happen. When |μ| < ħ ω/2, (slightly n-doped or p-doped)

optical transition is dominated by interband transition.

In n- and p-doped (corresponding to positive and nega-

tive gating voltage) graphene, the incident photons with

energy less than 2EF cannot be absorbed. This is because

the electron states in the conduction band are filled up

as shown in Figure 2b or there are no electrons in the

valence band available for interband transition as shown

in Figure 2c. Thus, if the incident light is fixed, by elec-

trically tuning the Fermi level, interband transitions can

be turned on and off [21,22]. When |μ| < ħ ω/2, the

intraband transition related to the terahertz range will

be dominant [23-25]. At this condition, plasmon mo-

mentum enhancement is allowed and propagation of

surface plasmon in graphene becomes possible [26-28].

In earlier theory demonstrations, graphene was treated

as an isotropic material [29,30]. Graphene can transfer

from dielectric-like to metallic-like when the permittivity

is tuned to approach zero. Recently, graphene became

well accepted as an anisotropic material. When graphene

was treated as an anisotropic material [31,32], a linear

relation between its in-plane permittivity and effective

mode index can be observed. The electric distributions

are also different in or out of graphene when it is treated

as an isotropic or anisotropic material [33]. In this case,

the in-plane permittivity can be tuned by the chemical

potential, while the out-of-plane permittivity (in a direc-

tion perpendicular to the graphene sheet) does not [33].

Basic designs of electro-optical graphene optical modulator

(GOM)

In 2011, Liu et al. first experimentally demonstrated a

GOM by integrating a monolayer graphene sheet on a Si

waveguide as shown in Figure 3a [7]. The waveguide

propagates light and graphene will offer absorption. The

field distribution of the propagating light is shown in

Figure 3b, which is very important to modulation depth.

External gating voltage was used to control the Fermi

level of graphene and resulted in changes of transmis-

sion in the Si waveguide as shown in Figure 3c. This ori-

ginal modulator can work at a broad bandwidth from

1,350 to 1,600 nm, which covers the wavelength of the

optical fiber communication system we are using today.

A modulation depth per unit length of 0.1 dB/μm was

achieved, and the footprint of this modulator was

25 μm2. Right after the first demonstration, they further

improved the modulator by integrating double-layer gra-

phene on the top of a Si waveguide [8], as is shown in

Figure 3d. This double-layer GOM has a similar trans-

mission property to that of the single-layer GOM in

their former work, as is shown in Figure 3e. The two

graphene layers with a p-oxide-n-like structure are sim-

ultaneously absorptive or transparent for incident light,

as is shown in Figure 3f. As is expected, a higher modu-

lation depth of 0.16 dB/μm was observed due to the

double-layer graphene, which implies a smaller footprint

at 3-dB modulation. This performance is comparable to

that of traditional optical modulators made of Si [9] and

GeSi [34].

Advanced structures for electro-optical GOM

With the aim to achieve higher performance, different

structures have been developed. High modulation depth

not only brings a higher signal quality but also helps to re-

duce the footprint. Simply increasing the peak-to-peak gate

voltage swing can achieve high modulation depth at the

expense of increased power consumption. Improving the

graphene-light interaction can fundamentally increase the

performance. Similar to Liu et al.’s work, Koester and Li

Figure 2 Possible optical transitions in graphene. (a) Optical transition in pristine graphene. (b) Optical transition in n-doped (or driven by

large positive voltage) graphene. (c) Optical transition in p-doped (or driven by large negative voltage) graphene. (d) Intraband transition in

graphene. Reproduced from ref. [1].
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simulated a graphene-on-silicon structure [35] as shown in

Figure 4a. Although a modulation speed of 120 GHz is pos-

sible, the interaction length is 60 μm when achieving a 3-

dB modulation (corresponding to 0.05 dB/μm). Lu and

Zhao theoretically showed that graphene sheets should be

placed at the maximum of the electric field [30]. They

designed a structure in which the graphene sheet is

sandwiched in the center of the waveguide as shown in

Figure 4b. A modulation depth of 3.75 dB/μm was achieved,

which is much higher than that of the graphene-on-silicon

structure. However, placing the graphene sheet in the wave-

guide is difficult to be realized. Imperfect fabrication such as

mismatch of the upper part and bottom part of the wave-

guide may influence the signal quality. Gosciniak and Tan

Figure 3 Single-layer and double-layer GOMs. (a) Schematic of a single-layer GOM. The graphene film is separated from the silicon waveguide by

a thin Al2O3 layer which is not shown. Pt- and Si-doped layers are deposited to connect graphene and gold electrode. The Si waveguide is also

shallowly doped with boron to reduce the cascade resistance. (b) Cross section of a single-layer GOM. Left: cross section of the device with

optical field distribution. Right: electric field distribution in the waveguide. (c) Transmission at different gating voltages in a single-layer GOM.

When the Fermi level is close to the Dirac point, optical absorption occurs and transmission reduces. When large gating voltages are applied,

optical absorption blocks and transmission increases. Reproduced from ref. [7]. (d) Schematic of a double-layer GOM. The two graphene layers are

separated by a thin film of Al2O3. And the bottom graphene layer directly contacts the Si waveguide. (e) Transmission of carrier light at different

gating voltages, which is similar to that of the single-layer GOM. (f) Tuned Fermi level and optical absorption behavior in double-layer graphene.

Even though the Fermi levels are different when large gating voltages are applied, both layers tend to be transparent. When the Fermi levels are

close to the Dirac point, both layers absorb the incident light, which results in a higher modulation depth. Reproduced from ref. [8].
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theoretically proposed a method to avoid the technique

challenges and at the same time placed graphene sheets

close to the maximum of the electric field [36], as is shown

in Figure 4c. A Si rib waveguide was deposited on the sub-

strate covering the double-layer graphene sheet. The Si

waveguide was specially designed in size to form an egg-like

field distribution which is represented by the black line in

Figure 4c. The double-layer graphene was separated by a

thin dielectric spacer forming a parallel capacitor model.

Modulation depths of 5.05 dB/μm for TM mode and

0.29 dB/μm for TE mode were achieved. With this high

modulation depth, nanoscale devices with 3-dB modulation

depth are possible. It should be noted that in this structure,

part of the mode was pushed into the buffer layer, which

may make the mode field weaker. Thus, balance designa-

tion is necessary. Without waveguides, transmission and

reflection structures provide different applications. Lee

et al. fabricated a reflection GOM within sub-wavelength

thickness [37]. Later, by improving graphene supercapaci-

tors, Polat and Kocabas achieved broadband GOMs and

compared the performance of transmission and reflection

[38]. As is expected, the reflection structure showed a

higher modulation depth. In the aspect of insertion loss,

an insertion loss of 3.3 dB with a modulation of 16 dB was

experimentally demonstrated, recently [39].

Integration of graphene with other optical modulators

By integrating graphene, the performance of current optical

modulators can be further enhanced. Hao et al. theoretically

demonstrated a Mach-Zehnder modulator with eight-layer

graphene embedded [31], as is shown in Figure 5a. The em-

bedded graphene sheets significantly enhanced the electro-

refraction, which is helpful to reduce the footprint to 4 ×

30 μm2 and modulation arm length of 27.57 μm in the

Mach-Zehnder modulator. And they further reduced the

modulation arm length to 16.5 μm [32]. Moreover, graphene

also helps to reduce the chirp in the Mach-Zehnder modu-

lator [29]. The graphene-embedded design also benefits the

ring modulator. An optical modulator based on the critical

coupling concept [40] can be realized when assisted by gra-

phene [41]. With the driving voltage lower than 1.2 V, this

modulator was compatible with low-voltage CMOS technol-

ogy. Recently, Du et al. demonstrated a ring modulator with

a shift rate of 1.08 nm/V at resonance peak, which is two

orders of magnitude higher than that of current ring modu-

lators [42], as is shown in Figure 5b. By simulating a

graphene-silica permittivity-tunable metamaterial, a GOM

with a footprint of 0.01 μm2 was reported recently [43], as is

shown in Figure 5c.

In addition, a device integrating both GOMs and a

graphene optical photodetector was experimentally

demonstrated [44]. Recently, Zhou et al. first theoretic-

ally found a quasilinear relation between the phase

change and chemical potential of graphene, which im-

plied an optical phase modulator [45].

RC constant limit in electro-optical GOM

In theory, the high carrier mobility of graphene will lead

to an ultrahigh modulation speed. However, in experimen-

tal demonstration, the modulation speed is still limited at

approximately 1 GHz [7,8] lower [39] in electro-optical

GOMs. The reason is the ‘electrical bottleneck’ - RC

constant. The electronic circuit of this device can be

equivalent to RC low-pass filter (LPF). The 3 dB cut-off

frequency of electronic signal can be calculated by f = 1/

2πRC, where R is the total cascade resistance and C is the

total capacitance between counter electrodes. These fac-

tors can be measured by a network analyzer. The all-

optical method is an efficient way to avoid this bottleneck.

Figure 4 GOM with double-layer graphene at different positions. (a)

On the top of the waveguide (reproduced from ref. [35]); (b) in the

center of the waveguide (reproduced from ref. [30]); (c) at the bottom

of the ridge of the rib waveguide (reproduced from ref. [36]).
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All-optical graphene optical modulator

The future optical fiber communication system requires

a modulator whose operation speed is larger than 100

Ghz [46]. Although the graphene-based modulator has

the potential to obtain a modulation rate of 500 GHz,

the practical electro-absorption modulator based on gra-

phene is limited to approximately 1 GHz due to the RC

constant [7,8]. A direct method to avoid this ‘electrical

bottleneck’ is to make the modulator all-optical. That is,

light modulates light. The all-optical graphene optical

modulators demonstrated at present are based on satur-

able absorption in graphene.

Mechanism of saturable absorption

Saturable absorption is a property of materials where the

absorption of light is decreased to a steady level at suffi-

ciently high incident light intensity [1]. This optical non-

linearity is widely applied to generate short laser pulses

as optical absorber in mode-locked lasers [20,47]. It is

worth noting that high incident optical intensity may

damage the material during absorption. Although many

semiconductors such as GaAs also show saturable ab-

sorption, only those whose saturable intensity is much

lower than the optical damage threshold can be used in

practical devices [48]. Optical devices based on graphene

with high optical damage threshold have been fabricated

[49]. Moreover, in saturable absorption devices, com-

pared with single-walled carbon nanotubes (SWNTs)

[17] or semiconductor saturable absorber mirrors

(SESAMs) [50], graphene is much easier to be fabricated

without band gap engineering or chirality (diameter)

control.

The schematic saturable absorption process is shown in

Figure 6 [51]. Excited by pump light, optical interband tran-

sition occurs as shown in Figure 6a. Graphene absorbs inci-

dent light regardless of wavelength. Then the thermalized

photogenerated carriers will cool down and redistribute a

Fermi-Dirac distribution. Electron–hole recombination and

intraband phonon scattering accompany this redistribution

as shown in Figure 6b. With sufficient intensity of pump

light, the conduction band and valence band will be filled up

by electrons and holes, respectively. Thus, due to Pauli

blocking (no two electrons can fill the same state), further

absorption is blocked, achieving saturable absorption or ab-

sorption blenching as is shown in Figure 6c. Above all, in

this circumstance, other light whose energy is less than the

pump light will not be absorbed by graphene. When pump

light (high energy) and carrier light (low energy) simultan-

eously transmit through graphene, sufficiently increasing the

intensity of pump light can limit the absorption of carrier

light. As a result, as is shown in Figure 7b,c,d, the intensity

of carrier light will follow that of pump light, which implies

all-optical modulation.

Basic designs of all-optical GOM

Liu et al. firstly experimentally showed all-optical modula-

tion using a graphene-covered microfiber, which is compat-

ible with the optical fiber system [52]. A chemical vapor

deposition (CVD)-synthesized graphene film is dry trans-

ferred by polydimethylsiloxane (PDMS) to cover the micro-

fiber on MgF2 substrate, as is shown in Figure 7a. In the

substrate-supported structure, the substrate should have a

low refractive index to guarantee the total reflection. Pump

light (1,060 nm) and carrier (signal) light (1,550 nm)

together transmit through the microfiber and the intensity

of carrier light varied with pump light, as is shown in

Figure 7b,c,d. In this work, a modulation speed of only

1 MHz is achieved due to the low switching frequency of

pump light. A modulation depth of approximately 5 dB is

achieved by single-layer graphene. And as is expected, a

higher modulation depth of approximately 13 dB is achieved

by double-layer graphene.

Advanced structures for all-optical GOM

Actually, the all-optical graphene modulator is able to

reach ultrafast modulation speed without RC limitation. A

practical ultrafast all-optical graphene optical modulator,

which is compatible with the current high-speed fiber

Figure 5 Graphene-enhanced optical modulator. (a) Mach-Zehnder modulator with eight-layer graphene integrated in the arms. Reproduced

from ref. [36]. (b) Ring modulator with graphene embedded in the ring resonator. Reproduced from ref. [41]. (c) Metamaterial channel with

multi-layer graphene embedded in the resonator. Reproduced from ref. [42].
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optical communication system, was fabricated by Li et al.

[53]. The structure they used is a graphene-clad micro-

fiber (GCM), as is shown in Figure 8a, which has been

reported for mode-locked fiber lasers [54,55]. When

1,060-nm pump laser pulses (approximately 5 ns, 24 kHz)

and 1,550-nm CW light were coupled to the GCM

(Figure 8b, Module 2), it was found that the photo-

detector cannot follow due to the slow recovery time. As

is shown in Figure 8c,d, the long tail (approximately 80 ns)

may mistake the ultrafast measurement of modulation

speed. Considering this, successively releasing femto-

second pump light and carrier light by using a delay line

(Figure 8b, Module 1) and detecting the intensity of carrier

light can measure the response of saturable absorption.

This absorption has an ultrafast excitation and approxi-

mately 2.2 ps decay time as shown in Figure 8e. The decay

time include the relaxation time of carrier-carrier scatter-

ing (tens to hundreds of femtoseconds) and that of carrier-

phonon scattering (approximately 1 to a few picoseconds)

[56-58]. This ultrafast response time implies a potential to

achieve a modulation speed of approximately 200 GHz for

Gaussian pulses. Finally, a modulation depth of 38% was

achieved within 30-μm-long graphene.

Theoretically, if the intensity of pump light is strong

enough (lower than the optical damage threshold), gra-

phene can be totally transparent to carrier light. Thus,

the maximum modulation depth is determined by the

optical absorption when the pump light is off, which is

largely related to the interaction length and position of

the graphene sheet. However, in the works above, suffi-

ciently saturable absorption is not achieved and absorp-

tion of carrier light is gradually varied with the changes

of pump intensity as shown in the inset of Figure 8e

[53]. In the aspect of transmission property, graphene

integrated with a microfiber has higher absorption along

Figure 6 Processes of saturable absorption in graphene. (a) Optical interband transition excited by incident light. (b) The photogenerated carriers

redistribute a Fermi-Dirac distribution. (c) Further absorption is blocked under sufficient intensity of incident light. Reproduced from ref. [50].

Figure 7 Schematic of a graphene-covered microfiber structure and

modulation result. (a) Schematic structure of a graphene-covered

microfiber. A PDMS-supported graphene covered on the microfiber.

Pump light and carrier light (signal) propagate in the waveguide

simultaneously and the intensity of carrier light follow the changes

of pump light with a modulation speed of (b) 10 kHz, (c) 100 kHz,

and (d) 1 MHz. Reproduced from ref. [51].
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with increasing wavelength, which can be explained by

higher evanescent field for longer wavelength at the gra-

phene interface [59]. In addition, different polarization of

the pump light can result in approximately 1 dB change of

modulation depth [55].

Graphene terahertz modulator (GTM)

In the past decades, terahertz (THz) technology was found

to be applied in diverse areas such as astronomy, biology/

medicine [60], communications [61], and defense [62]. Al-

though numerous advances have been achieved, most of

them focus on emitters and detectors. Devices like active fil-

ters and modulators which can be integrated with current

solid-state continuous-wave (CW) terahertz sources and de-

tectors such as quantum cascade lasers [63], resonant tun-

neling diode oscillators [64], Schottky diodes [65], backward

diodes [66], or future graphene-based terahertz devices [67]

still need to be improved [68]. As a gapless semiconductor,

graphene is a natural material for long-wave applications

such as THz. With the advantages mentioned in the intro-

duction, graphene shows great potential in modulators and

detectors [67].

The optical conductivity of graphene is determined by

interband transition and intraband transition, respectively,

mainly for short wavelength (infrared and visible) and long

wavelength (terahertz) [23-25]. Thus, electrostatically tun-

ing the density of states (DOS) available for intraband tran-

sitions provides the possibility to effectively control the

terahertz absorption [69,70]. As a result, large gating volt-

age is usually used. A high modulation depth of >90% has

been shown by employing graphene in place of a metal gate

in an AlGaAs/GaAs two-dimensional electron-gas (2DEG)

terahertz modulator, which provides a modulation of <30

only [70].

Electro-optical GTM

In 2012, Sensale-Rodriguez et al. first experimentally dem-

onstrated a GTM enabled only by intraband transitions

[71]. Later on, they successfully used an electro-absorption

GTM to control the reflectance of the terahertz wave [72].

The reflection structure they used is shown in Figure 9a.

When the Fermi level in graphene is tuned to the Dirac

point, intraband transition is blocked. Thus, absorption is

at its minima and the reflectance of the device is at its max-

ima. On the other hand, when the Fermi level shifts into

the valence or conduction band of graphene, the increase

of density of states available for intraband transitions leads

to a higher absorption. It should be noted that if a reflection

structure is used, the optical thickness of the substrate

needs to be well controlled. When the substrate optical

thickness is an odd-multiple of a quarter-wavelength, the

electric field in graphene is maximized and absorption

can be deeply modulated. On the contrary, when the sub-

strate optical thickness is an even-multiple of a quarter-

wavelength, the electric field in graphene disappears and

absorption does not occur. As a result, a modulation depth

of 64% and a low insertion loss of approximately 2 dB are

achieved. Recently, they experimentally applied arrays of

electro-absorption GTMs as electrically reconfigurable pat-

terns for terahertz cameras [73]. A similar structure was

also adopted by Lee et al. to fabricate modulators for IR

range within sub-wavelength thickness [37].

Figure 8 Schematic illustration and ultrafast property of all-optical graphene optical modulator. (a) Graphene-clad microfiber (GCM) structure. (b) Schematic

illustration of measurement. Module 1: light source for ultrafast measurement. This module simultaneously outputs 789-nm pulses and 1,550-nm pulses by

transforming a 789-nm femtosecond laser source. A delay line is used to adjust the delay between 789-nm pulse and 1,550-nm pulse. Module 2: light source

for modulation. (c) 1,550-nm carrier light modulated by a 5-ns 1,064-nm pump light pulse train. The light sources are in Module 2. (d) Time profile of

switched-out pulse. Each modulated pulse has an approximately 80-ns tail owing to the slow recovery time of the photodetector. (e) Measurement of

response time showing approximately 2.2 ps. The inset shows the dependence of modulation depth on pump intensity. Reproduced from ref. [52].
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All-optical GTM

Following Sensale-Rodriguez et al.’s first demonstration of

GTM [71], Weis et al. fabricated an all-optical GTM in the

same year, 2012 [74]. They deposited graphene on silicon

(GOS) to enhance the absorption as shown in Figure 9b.

Upon infrared photodoping, a broadband modulation from

0.2 to 2 THz was achieved. Moreover, the modulator

showed a maximum modulation depth of 99%.

GTM with resonators

Due to accurate and deep modulation in the THz range,

integration with resonators shows a way to cover special

needs [75-77]. In graphene-integrated modulators, the res-

onators not only enhance the interaction between gra-

phene and terahertz wave but also bring the advantage to

decrease the bias [78]. Degl’Innocenti et al. recently inte-

grated metallic split-ring resonators (SRRs) and single-

layer graphene on one substrate [79]. A modulation depth

of 18% and a bandwidth from 2.2 to 3.1 THz were

achieved. Additionally, the structure, as is shown in

Figure 9c, showed a low bias of 0.5 V [80]. Recently, using

resonators, terahertz modulators based on metamaterial

and graphene have also been studied [81]. However, com-

plex design and fabrication increase the difficulty and cost.

Conclusions

Optical modulators are an important device to the current

and future optical systems and still need to be improved.

Graphene shows great potential in fabricating broadband

and ultrafast optical modulators. Optical transition includ-

ing interband and intraband transitions in graphene is the

main process during absorption. Electro-optical GOMs

have been demonstrated while the modulation speed is lim-

ited to approximately 1 GHz due to the RC constant. The

position of the graphene sheet efficiently influences the

light-graphene interaction. Higher modulation depth can

be easily achieved by placing graphene close to the max-

imum of the electric field. Following the first demonstra-

tion, many optical modulators enhanced by graphene have

been theoretically and experimentally demonstrated. How-

ever, higher modulation speed is necessary for current

electro-optical GOMs. Driven by saturable absorption, all-

optical GOMs show a potential of ultrafast modulation

speed due to the ultrafast relaxation time. But direct meas-

urement of ultrafast modulation has not been demon-

strated. In the field of terahertz, graphene has a prominent

advantage of high modulation depth. Electro-optical and

all-optical modulation are both possible. In principle, theor-

etical simulations go much further than experiment. GOMs

with new structures and high performance tend to be dem-

onstrated in the near future.
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