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Graphene-based tunable hyperbolic

metamaterials and enhanced near-field

absorption

Mohamed A. K. Othman, Caner Guclu, and Filippo Capolino∗

Department of Electrical Engineering and Computer Science, University of California, Irvine,

CA, 92697, USA
∗f.capolino@uci.edu

Abstract: We investigate a novel implementation of hyperbolic metama-

terial (HM) at far-infrared frequencies composed of stacked graphene sheets

separated by thin dielectric layers. Using the surface conductivity model of

graphene, we derive the homogenization formula for the multilayer structure

by treating graphene sheets as lumped layers with complex admittances.

Homogenization results and limits are investigated by comparison with a

transfer matrix formulation for the HM constituent layers. We show that

infrared iso-frequency wavevector dispersion characteristics of the proposed

HM can be tuned by varying the chemical potential of the graphene sheets

via electrostatic biasing. Accordingly, reflection and transmission properties

for a film made of graphene-dielectric multilayer are tunable at terahertz

frequencies, and we investigate the limits in using the homogenized model

compared to the more accurate transfer matrix model. We also propose to

use graphene-based HM as a super absorber for near-fields generated at its

surface. The power emitted by a dipole near the surface of a graphene-based

HM is increased dramatically (up to 5 × 102 at 2 THz), furthermore we

show that most of the scattered power is directed into the HM. The validity

and limits of the homogenized HM model are assessed also for near-fields

and show that in certain conditions it overestimates the dipole radiated

power into the HM.

© 2013 Optical Society of America

OCIS codes: (160.3918) Metamaterials; (230.4170) Multilayers; (250.5403) Plasmonics;

(240.0310) Thin films.
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1. Introduction

A stack of graphene sheets, separated by subwavelength dielectric spacers, can be regarded as a

composite material with uniaxial electric properties under certain conditions. Graphene layers

strongly affect the complex effective permittivity of the composite for electric field compo-

nents polarized parallel to the graphene sheets. Uniaxial anisotropic materials in general offer

a variety of interesting electromagnetic properties. In particular, we investigate here a subcat-

egory denoted as hyperbolic metamaterials (HMs), named after the hyperbolic iso-frequency

wavevector dispersion that arise due to the negative permittivity experienced by the electric

field component along either the axis of anisotropy or a direction orthogonal to the axis of

anisotropy [1, 2].

Strong interest in HMs is based on their specific property that enables propagation in a very

wide spatial spectrum, that would be otherwise evanescent in free space, which is in principle

unbounded for the ideal case of purely hyperbolic iso-frequency wavevector dispersion. In case

of realistic hyperbolic-like dispersion, the spatial spectrum allowed for propagation can still be

extremely wide, as shown in [3–5]. This property is shared with uniaxial anisotropic materials

having elliptic iso-frequency dispersion diagram, with a very large axial ratio. Though in prac-

tical cases purely hyperbolic dispersion cannot be obtained, effective medium models based on

hyperbolic dispersion proves to be a very useful tool for understanding the physics behind the

interesting electromagnetic properties of these metamaterials with extremely subwavelength

features.

Recently, metal-dielectric multilayers were proposed as candidates to realize HMs at optical

frequencies [3, 6, 7]. The wide spatial spectrum of propagation supported by these HMs can

lead to novel phenomena as increasing the power emitted by imposed dipoles [3,8] or scattered

by nanoparticles [3,9] on HM surfaces, and this power is mostly directed into HMs. This exotic
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property enables features like focusing with very subwavelength resolution [10,11], controlling

absorption [12], enhancement of spontaneous emission [13], increasing the decay rate of emit-

ters [6], designing quantum and thermal emitters [14]. HMs can also host backwards waves

and thus they are utilized for achieving negative refraction as in [15]. As stated in [4], HMs

are considered to be promising materials for advancement in the fields of tunable surface plas-

mon polaritons, super Planckian thermal emission [5], radiative decay engineering [16], and

nano-imaging.

HMs attract attention also because they are easy to fabricate using metal-dielectric mul-

tilayers or metallic nanowires embedded in dielectric substrates. Also, doped semiconduc-

tors [17, 18] and conductive oxides used for generating surface plasmons can be used for HM

designs in near- and mid-IR frequency bands [15]. In multilayer structures, metal is used as a

negative permittivity layer-spaced by dielectric layers, overall creating a negative permittivity

effect for the electric field components tangential to the layers. This effect does not rely on any

resonant behavior and thus is a very wide-frequency-band.

In this paper we investigate a multilayer HM design based on stacking dielectric layers and

graphene sheets. A graphene sheet (a one-atom-thick carbon layer) is able to support surface

plasmon modes at terahertz frequencies [19–23]. A recent work in [24] a discussed HM based

on a semi-infinite stack of graphene-dielectric multilayers, studied at a temperature of 4 K, thus

assuming graphene losses negligible, leading to purely real permittivity and wavenumbers. Our

analysis instead accounts for losses at a room temperature of 300 K and their effect on (i) the

effective permittivity that assumes complex values, (ii) the hyperbolic-like dispersion (it is not

exactly hyperbolic), hence (iii) wavenumbers that may assume complex values, and (iv) on the

radiated power by a dipole near the HM surface, where losses play an important role. More-

over, we investigate practical cases with a finite number of graphene-dielectric layers, and quan-

titatively show tunability aspects of graphene-based HMs using electrostatic biasing. We also

show a detailed study about the dependence of power spectrum emitted by a dipole source in the

proximity of the graphene-based HM on the number of layers, as well as on frequency. Alterna-

tive to the HM implemented as a graphene-dielectric multilayer studied here, in [25] graphene

stripes analogous to a metallic wire medium, are utilized for realizing hyperbolic dispersion

in cylindrical wavenumber coordinates, with the aim of designing a hyperlens. The peculiar

electronic properties of graphene [26, 27], have been investigated for different electromagnetic

applications such as lensing [28], transformation optics [29], nanomechanical resonators [30],

and solar cells [31]. Moreover, based upon periodic patterning of graphene, bi-periodic and/or

multilayered graphene structures were extensively studied for enhanced transmission [32], op-

tical absorption [33], and tunable metasurfaces in [34], as well as isolators and polarizers in the

microwave regime [35–37]. It was shown that crystalline Graphite (the 3D parent of graphene)

possess indefinite permittivity at UV frequencies [38].

A graphene sheet has properties at THz frequencies similar to those of a thin metal film at

optical frequencies, as shown in our work. In principle, any inductive infinitesimally-thin layer

can be used to realize HMs, however, in the terahertz regime, designing inductive layers is

difficult due to metallic losses and spatial and frequency dispersion introduced by periodically

patterned conductive layers. For this aim, metallic meshes are mainly effective only in lower

microwave regime [39–41]. On the other hand, the use of highly dispersive metals is practi-

cal the optical frequencies below the plasma frequency. Here we show that stacking graphene

sheets can be utilized for designing tunable HMs in a wide frequency spectrum ranging from

millimeter-waves up to tens of terahertz frequencies, encompassing the whole far-infrared band.

In Section 2, we develop an effective medium approximation (EMA) to facilitate the character-

ization of graphene-based multilayer structure and its use in possible devices and we assess its

limits. Moreover, in Section 2 we describe the basic properties of graphene and the associated
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hyperbolic wavenumber dispersion of the multilayer structure composed of graphene-dielectric

layers. In Section 3 we investigate plane wave transmission and reflection for a thin slab made

of several graphene sheets, as well as their tunability features, and we also show how EMA

is able to describe these properties. In Section 4 we investigate the radiation of a dipole at the

interface of a finite thickness HM and we show that the HM is able to enhance the total power

radiated by several orders of magnitude, reporting an enhancement of 5× 102 at 2 THz. We

also show that most of the power is directed into the HM, offering a viable route for wide band

and wide incidence-angle super absorption interfaces at far-infrared frequencies, as previously

discussed in [3,9,13,42] for optical frequencies. We show that this large enhancement of power

emission is associated to the wide spatial spectrum being able to propagate inside the HM, that

would be otherwise evanescent in free space.

2. Tunable hyperbolic metamaterial made of graphene-dielectric multilayers

A graphene monolayer is electrically characterized by its surface conductivity σ(ω,µc), where

µc is the chemical potential related to the electrostatic biasing, which quantifies the electronic

transport properties [43]. The frequency dependent conductivity follows the interband (bound-

electrons) and the intraband (free-electrons) sum rules [44, 45]. Spatial dispersion of graphene

has negligible effects, since the graphene lattice constant a ≈0.246 nm is extremely subwave-

length at THz frequencies [34]. Therefore, a graphene layer is modeled by the local isotropic

surface conductivity σ(ω,µc) = σ ′ + jσ ′′ (assuming time-harmonic fields of the form e jωt )

that is calculated by the Kubo formula

σ(ω,µc) =
− j4πe2kBT

h2(ω − j2Γ)

(

µc

kBT
+2ln

(

e−µc/(kBT )+1
)

)

− j4πe2(ω − j2Γ)

h2

∫ ∞

0

fD(−ζ )− fD(ζ )

(ω − j2Γ)2 −16(πζ/h)2
dζ , (1)

where kB is the Boltzmann constant, h is the Planck constant, fD(ζ ) = [e(ζ−µc)/(kBT )+1]−1 is

the Fermi-Dirac distribution, and Γ is the phenomenological scattering rate. Throughout our

discussion, we assume Γ = 0.1 meV, which is within the range of values considered in other

studies [21,37,46,47], at room temperature T = 300 K. Consider a periodic stack of graphene-

dielectric layers, as depicted in Fig. 1. Each dielectric spacer has a subwavelength thickness d

and relative permittivity εd . In this premise, we assume that graphene sheets are electronically

isolated, i.e., the electronic band structure of a graphene sheet is not affected by the neigh-

boring graphene sheets (interlayer electronic coupling mechanisms as well as tunneling effects

are ignored, due to the significant thickness of the dielectric with respect to quantum scales).

We model graphene sheets as lumped complex-admittance layers, due to their extremely sub-

wavelength thickness. Wave propagation in the multilayer structure, depicted in Fig. 1, can be

modeled using (i) EMA that models the multilayer as a homogeneous medium and (ii) by ap-

plying Bloch theory (as in Chapter 8 in [48]) using the transfer matrix of a unit cell. When

applying EMA, the multilayered structure is modeled as a homogeneous uniaxial anisotropic

medium (with axis of anisotropy along z) whose effective relative permittivity tensor εεε eff is a

diagonal matrix in Cartesian coordinates given as

εεε eff = εt(x̂x̂+ ŷŷ)+ εzẑẑ . (2)

Since a graphene sheet is infinitesimally thin with respect to the dielectric thickness, one

may assume that εz = εd , because z−directed electric field would not excite any current in

the graphene sheet. The transverse effective relative permittivity εt is determined as follows,

considering a unit cell made of a dielectric layer with dielectric constant εd between z = 0 and

#182584 - $15.00 USD Received 2 Jan 2013; revised 12 Feb 2013; accepted 3 Mar 2013; published 20 Mar 2013
(C) 2013 OSA 25 March 2013 / Vol. 21,  No. 6 / OPTICS EXPRESS  7618



Fig. 1. Composite multilayer material made by stacking graphene sheets and dielectric

layers. Under certain conditions it exhibits hyperbolic-like iso-frequency wavevector dis-

persion as depicted in the inset, where vg indicates the direction of the group velocity.

z = d, and a graphene sheet at z = 0. Within this unit cell one can write ∇×H = jωε0εdE+
J = jωε0εεεd ·E, where the current density J [A/m2] in the graphene sheet is reduced to the

surface current along the sheet J = δ (z)σEt , and Et is the transverse component of the electric

field. Therefore, one has εεεd = εdI− j σ
ωε0

δ (z)(x̂x̂+ ŷŷ), where I is the unit tensor, that when

averaged over a period along z leads to the effective relative “transverse” permittivity εt ,

εt = ε ′t − jε ′′t = εd − j
σ(ω,µc)

ωε0d
. (3)

The formula for εt in Eq. (3) could be obtained alternatively by following the method used

for homogenization involving thin metal-dielectric layers [49]. Accordingly, a graphene sheet

may be treated as a layer with extremely subwavelength, but finite, thickness with bulk prop-

erties. Exploiting the continuity of the electric field, along x and y, at the boundaries between

graphene and dielectric layers, and averaging the transverse component of the effective dis-

placement current over a period d also leads to Eq. (3) (here the effective displacement current

account for the displacement current in the dielectric and the conduction current in the graphene

sheets ). In Eq. (3), we have highlighted that the graphene conductivity is strongly dependent

on the frequency and chemical potential. It is important to note that if a graphene sheet has

a sufficiently large inductive susceptance, i.e., if σ ′′ < −ωε0εdd, then the effective relative

permittivity term εt = ε ′t − jε ′′t has a negative real part, i.e., ε ′t < 0. Under this condition, and

recalling that εz > 0, extraordinary waves, with TMz polarization (magnetic field transverse to

z), are allowed to propagate inside the HM, with wavevectors exhibiting iso-frequency hyper-

bolic dispersion as explained in [3]; whereas ordinary waves with TEz polarization (electric

field transverse to z) are mainly evanescent. This allows for the propagation of TMz waves with

transverse wavenumber kt > ω
√

µ0ε0εd , that would be otherwise evanescent in free space.

To better illustrate the possible homogenized parameters that can be obtained, we report in

Fig. 2 the real and imaginary parts of εt = ε ′t − jε ′′t using the EMA formula Eq. (3), assum-

ing that graphene sheets are spaced by silica layers with permittivity εd = 2.2 and thickness

d= 0.1 µm. Note that ε ′t approaches εd at higher frequencies due to saturation of the graphene

conductivity to its universal value πe2/(2h) [44] which gives a negligible contribution com-

pared to εd . Moreover, the imaginary part of the effective permittivity term (ε ′′t ) is remarkably

small in a certain frequency band, showing that waves in this composite material can propa-

gate with minimal attenuation. Indeed, it is known that a graphene layer may support weakly

attenuated plasmonic modes in at terahertz frequencies [45]. We note that εt is very sensitive to

the chemical potential µc, and we show that the zero-crossing frequency of ε ′t , occurring when
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Fig. 2. Effective medium complex relative permittivity term εt = ε ′t − jε ′′t for biased and

unbiased graphene multilayer configuration.

Fig. 3. Relative effective medium complex permittivity term εt = ε ′t − jε ′′t of graphene HM

versus the graphene sheets’ chemical potential for various spacer thicknesses at 12 THz.

σ ′′ =−ωε0εdd, occurs at 6.6, 11, and 24.6 THz, for different values of µc = 0, 0.1, and 0.4 eV,

respectively. The tunability of the proposed HM structure is then quantified, as seen in Figs.

3(a) and 3(b), where the chemical potential and stacking density (thickness of dielectric layer

d) are varied assuming a frequency of 12 THz. When the dielectric thickness d is increased,

one should note that ε ′t increases toward 0. Note also that as the chemical potential (tuned by

electrostatic biasing) increases ε ′t takes smaller values. Hence, at 12 THz, ε ′t is positive (≈ 2.2)

for zero chemical potential, and at higher chemical potential values, ε ′t becomes negative: for

example at µc =0.5 eV, with d= 0.1 µm, one has ε ′t ≈−9.5. In summary, a composite material

made by layered graphene sheets possesses desirable performance in terms of losses, inductive

response, and tunability from millimeter-waves up to mid-infrared frequencies, hard to find in

any other known material. This makes it a good candidate for realizing HM designs in the THz

range.

When considering plane waves propagating in a homogeneous uniaxial anisotropic medium

it is useful to decompose them into the modal polarizations TEz and TMz. A description us-

ing EMA, when valid, gives a neat physical insight into wave propagation in this structure.

Wavevector dispersion relations for ordinary (TEz) and extraordinary (TMz) waves in a uniax-

ial anisotropic materials are written as
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k2
z + k2

t = εtk
2
0, TEz (4)

k2
z

εt

+
k2

t

εz

= k2
0, TMz (5)

where k0 = ω
√

µ0ε0 is the wavenumber in vacuum, and we use kt =
√

k2
x + k2

y thanks to sym-

metry about the z axis. It is apparent that TMz waves in a medium with εt < 0 exhibit an iso-

frequency wavenumber dispersion with hyperbolic shape, as explained in [3,5,50]. This allows

the propagation of the extraordinary waves (TMz) with any transverse wavenumber kt >
√

εdk0,

that would be otherwise evanescent in a homogeneous dielectric with permittivity εd . However,

one should note that TEz waves are mainly evanescent when εt < 0, for any kt . The proposed

graphene-dielectric metamaterial can be used for realizing hyperbolic dispersion with εt < 0

and εz > 0, and with the present implementation it is not possible to have anisotropy such that

εt > 0 and εz < 0. Elliptic dispersion regime occurring when both εt > 0 and εz > 0, inher-

ently implies a propagating spectrum with kt <
√

εzk0. Considering the multilayered structure

depicted in Fig. 1, we shall consider the root of k2
z , solution of Eq. (5), that corresponds to a

wave whose Poynting vector is directed toward the graphene-based HM, i.e, in the −z direc-

tion, as shown with vg in Fig. 1. We assume here that the z-directed wavenumber may assume

complex values, i.e., kz = βz − jαz, since the graphene conductivity σ is complex, modeling

the inhomogeneous plane wave spectrum. Accordingly, a wave that carries power in the −z

direction shall have the attenuation constant (αz) with negative sign, associated to field decay

(due to possible losses) along the −z direction. In general βz can have both signs, though in

our case it is positive, implying that the TMz mode is a backward wave for kt >
√

εdk0, since

βzαz < 0 [51, 52].

With the aim of assessing the validity of EMA in Eq. (4), we calculate the iso-frequency

wavevector dispersion with the more accurate Bloch theory for the periodic structures. This

is done by treating each graphene layer as a complex lumped admittance Ys = σ (where the

subscript “s” denotes surface) as a shunt load in a transverse equivalent network (TEN, see

Chapters 2 and 3 in [1]). This leads to the dispersion relation as (see Appendix A for more

details)

cos(kzd) = cos(κdd)+ j
1

2
σZd sin(κdd), (6)

where κd =
√

εdk2
0 − k2

t is the z-directed wavenumber of a wave inside the dielectric, ZTE
d =

ωµ0/κd , and ZTM
d = κd/(ωε0εd) are the characteristic wave impedances for TEz and TMz

waves, respectively. Here we report only the dispersion curves that belong to TMz modes for

brevity, since they are those exhibiting hyperbolic-like dispersion.. We report in Figs. 4(a)-

4(b), and Figs. 4(c)-4(d) the plots of kz = βz − jαz versus kt , for TMz waves at 2 and 12 THz,

respectively, by applying EMA Eq. (5) and Bloch theory Eq. (6), for the graphene-dielectic HM

(with εd = 2.2 and d= 0.1 µm), for various chemical potentials µc. We plot only the dispersion

branch relative to power propagation in the downward direction (see Fig. 1). However one

should note the ±kz symmetry in the solutions of Eq. (6). One can observe in Fig. 4 that EMA

and Bloch theory are in very good agreement for a wide range of transverse wavenumber kt

showing a hyperbolic relation, whereas the curves obtained from the two methods diverge for

large kt and the dispersion curve obtained via Bloch theory shows a switching to a mainly

evanescent spectrum after certain kt . This observation is in accordance with the simplification

of the dispersion relation obtained from Bloch theory as follows. Let us consider the special

but important case with |κdd| ≪ 1, and |kzd| ≪ 1, i.e., the period d is subwavelength, with

respect to the wavenumber in the dielectric and with respect to the Bloch wavenumber (the
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Fig. 4. Iso-frequency wavevector dispersion (kz = βz − jαz) versus kt computed by both

Bloch theory (dashed-dotted lines) and EMA (solid lines), for different chemical potential

levels at 2 THz (a,b), and at 12 THz (c,d).

second inequality also implies that kz is far from the edge of the first Brillouin zone where

βz = ±π/d). Thus, we approximate Eq. (6) by taking into account the first and second order

Taylor expansion terms corresponding to the approximations cos(κdd) ≈ 1 − (κdd)2/2 and

sin(κdd)≈ κdd, that lead to

1− (kzd)
2

2
≈ 1− (κdd)2

2
+ j

σ

2
Zdκdd. (7)

After substituting the characteristic impedance by its corresponding value for TEz and TMz

waves, Eq. (7) leads to

k2
z = κ2

d − j
σωµ0

d
, TEz (8)

k2
z = κ2

d − j
σκ2

d

ωε0εdd
, TMz. (9)

By substituting κd =
√

εdk2
0 − k2

t , we find that for TEz

k2
z =

[

εd − j
σ

ωε0d

]

k2
0 − k2

t , (10)

and similarly for TMz

k2
z =

[

εd − j
σ

ωε0d

]

k2
0 −

[

εd − j
σ

ωε0d

]

1

εd

k2
t . (11)
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Note that if one defines an effective transverse permittivity as in Eq. (3), the wavenumber dis-

persions, just found above, become

k2
z = εtk

2
0 − k2

t , TEz (12)

k2
z = εtk

2
0 −

εt

εz

k2
t , TMz (13)

which are identical to the wavevector dispersion relations provided in Eqs. (4) and (5) using

EMA.

It is clear from the analytical analysis above and from Fig. 4 that EMA well describes the

wavevector dispersion when |κdd|≪ 1 and |kzd|≪ 1, which can be verified when the transverse

wavenumber kt is not too large. For larger and larger values of kt , the two assumptions would not

be valid anymore. In Fig. 4, we also report the evolution of the dispersion curves by varying the

chemical potential µc at 2 THz and 12 THz. For example at 2 THz, when µc = 0.4 eV, the spatial

spectrum is bounded by kt ≈ 36k0 after which αz increases dramatically. However, by increasing

the chemical potential, ε ′t assumes larger negative values and βz−kt dispersion in Fig. 4 evolves

to a flatter curve, thus the Brillouin zone edge is reached at larger values of kt . Note that at larger

spatial spectrum, the attenuation constant αz increases due to finite losses, as shown in Fig. 4(b).

By tuning the chemical potential, the dispersion characteristics can be controlled, for example,

at 12 THz the dispersion for unbiased graphene is elliptic as well as when µc = 0.1 eV. This

behavior appears since ε ′t exhibits zero crossing and becomes positive at 6.6 THz and 11 THz,

when µc = 0 and µc = 0.1 eV, respectively. However, when the chemical potential is increased

to 0.4 eV, hyperbolic dispersion arises at 12 THz, as shown in Figs. 4(c) and 4(d) where the

inset of Fig. 4(c) shows the elliptic behavior for kt <
√

εdk0. At high frequencies where the

conductivity saturates to its universal value, the TMz plasmonic modes are extremely confined

to graphene layers (σ ′′ becomes very small) and higher frequencies, once σ ′′ > 0, graphene

layers are incapable of supporting those modes [21]. Hence, the spectrum kt >
√

εdk0 becomes

mainly evanescent at frequencies with ε ′t > 0. In other words, after ε ′t exhibits a zero-crossing

and becomes positive, the wavevector dispersion becomes elliptic.

3. Plane wave reflection and transmission by a thin film made of graphene-dielectric

multilayers

A finite thickness graphene-dielectric multilayer film is considered comprising N graphene

sheets stacked with silica SiO2 dielectric spacer, such that a graphene sheet is at the topmost

layer. The thickness of each SiO2 spacer is 0.1 µm, and the total multilayered film thickness

is D = Nd. For simplicity, all graphene layers are biased equally using a constant electrostatic

potential [34]. For practical consideration, suppose that a thin film of silica (in the order of

100 nm) is deposited on an epitaxially-grown graphene monolayer repeatedly until creating

an N layer stack; though larger thicknesses could be considered, it is rather simple to achieve

the biasing range (µc up to 0.5 eV) using relatively lower electrostatic potential for smaller

thicknesses [34, 53].

We investigate reflection and transmission under normal plane wave incidence, and at 30◦

oblique incidence for both TEz and TMz polarizations (here kt = k0 sin(θ i), where θ i is the

incidence angle). Reflection and transmission coefficients are reported using the transfer matrix

method (solid lines), and using EMA (circles) as well, for the two cases with N = 10 (D = 1

µm) and N = 20 (D = 2 µm), when µc= 0 eV and 0.4 eV in Fig. 5 and Fig. 6, respectively.

As discussed in Section 2, at lower frequencies, TEz waves are evanescent for any kt when

ε ′t < 0, while for TMz waves the iso-frequency wavenumber dispersion is hyperbolic (when

ε ′t < 0), consequently, a plane wave impinging on the structure with kt <
√

εdk0 is very weakly
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Fig. 5. Reflection and transmission versus frequency for a finite thickness graphene-silica

multilayered HM, at normal, and oblique incidence for both TEz and TMz polarizations,

calculated by transfer matrix method (solid lines) and EMA (circles) when graphene layers

are unbiased, i.e., µc = 0 eV.

transferred, specifically by evanescent coupling. This property is demonstrated in Fig. 5 at

frequencies lower than 6 THz, and in Fig. 6 at frequencies lower than 24.6 THz. However,

after ε ′t exhibits a zero-crossing and becomes positive, the plane wave is able to propagate,

and the hyperbolic wavevector dispersion turns into elliptic (thus waves with kt <
√

εdk0 can

propagate). The transmission peak for normal incidence occurs when the effective ε ′t is near

unity (matched to the free space, where the losses are negligible) for µc= 0 eV at ≈ 8 THz

(reported in Fig. 5) and for µc= 0.4 eV at ≈ 33 THz (reported in Fig. 6); this is in accordance

with the effective ε ′t plotted in Fig. 2(a). It is clear that changing the chemical potential of

the graphene layers offers great tunability and possibility to control the transmission peak and

spectrum. EMA is a good tool to describe plane wave interaction with a graphene-dielectric

multilayer thin film, for small dielectric thickness d. In order to explore the validity of EMA

for thicker dielectric spacers, we report in Fig. 7 the reflection and transmission coefficients for

10 layers of graphene-dielectric layers with varying thickness d, at 10 THz, assuming µc = 0.4
eV. It is shown that EMA yields a noticeable deviation from transfer matrix calculations when

d > 0.2λ0. Note that in Fig. 7 the transition from hyperbolic to elliptic dispersion occurs at

d = 0.02λ0, which implies ε ′t ≈ 0.

In particular, these results show two remarkable facts: (i) EMA agrees well with transfer

matrix calculations for a wide range of frequencies and dielectric thicknesses, (ii) transmission

and reflection by the graphene-based multilayered structure can be effectively tuned by elec-

trostatic biasing. It is evident that graphene layers despite controlling transmission with such

small thicknesses, at the same time can be designed to be almost transparent to plane wave

excitation [32].

In this Section we have investigated reflection and transmission, and how this is predicted by

EMA, for an incident plane wave, however a source or scatterer near the HM interface is able

to generate a very wide spatial spectrum of plane waves, including the spectrum with kt > k0,

which would be evanescent in free space. In the next Section we show how this wide spectrum

is able to propagate inside the HM, similarly to what was done in [3] for a HM at optical
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Fig. 6. Reflection and transmission versus frequency, for the same set of parameters as Fig.

5, except that now graphene layers are biased with µc = 0.4 eV.

Fig. 7. Reflection and transmission of a 30◦ TMz wave from a 10 layer graphene-dielectric

stack at 10 THz with variable spacer d, based on transfer matrix (solid lines) and EMA

(circles).

frequencies made of dielectric and metallic layers.

4. Enhancement of emitted power by an impressed dipole at the surface of a graphene-

based HM film

We investigate the power emitted by a transverse dipole located at a distance h above the

graphene-silica multilayered HM as depicted in Fig. 8(a), over a a silicon substrate (sufficiently

thick to be assumed infinitely long, with relative permittivity εSi=11.7). We assume here a unit

cell of the HM consisting of a 0.1-µm thick silica layer stacked with a sheet of graphene sheet

on top. We calculate the power emitted by the transverse dipole located at z = 0 as in Fig. 8(a),

by using the spatial spectral formalism of TEz and TMz waves as outlined in [1]. The total

power Ptot = Pup +Pdown emitted by the transverse dipole illustrated in Fig. 8 is decomposed

into the power terms directed toward the +z and −z directions (Pup and Pdown, respectively) that

are found by the spectral integrals

Pup,down =
ω2|pt |2

8π

∫ ∞

0

(

pTE
up,down + pTM

up,down

)

dkt , (14)
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Fig. 8. (a) Dipole near-field emission over a finite thickness multilayer graphene HM over

of a substrate, and (b) the its transverse equivalent network (TEN) for every spectral wave

(both TEz and TMz).

and p(kt) is the spectral power either in the “up” or “down” direction, with transverse wavenum-

ber kt , and |pt | is magnitude of the transverse electric dipole moment. The spectral power

p
TE,TM
up,down(kt) can be written as

p
TE,TM
up,down(kt) =

Re
(

Y
TE,TM∗
up,down (kt)

)

∣

∣

∣
Y

TE,TM
tot (kt)

∣

∣

∣

2
kt . (15)

Here Y represents the equivalent admittance of TEz/TMz waves seen at the location of the

dipole either toward free space or toward the HM (indicated by the subscripts “up” and “down”,

respectively), whereas Ytot =Ydown +Yup, and “∗” denotes the complex conjugate. In particular,

for what concerns free space (up), the terms Y
TE/TM
up are straightforwardly the TEz and TMz

wave admittances in free space give by Y TE
up = Y TE

0 = κ0/(ωµ0), and Y TM
up = Y TM

0 = (ωε0)/κ0

where κ0 =
√

k2
0 − k2

t is the wavenumber along the z axis in free space. The calculation of

the admittance Ydown, for either TEz or TMz waves, is done by translating YHM, N , which is the

admittance toward −z direction, shown in Fig. 8(b), evaluated at the surface of HM (at z =−h),

to z = 0 by the simple formula

Ydown = Y0
jY0 sin(κ0h)+ cos(κ0h)YHM, N

Y0 cos(κ0h)+ j sin(κ0h)YHM, N

. (16)

The calculation of YHM, N (see Fig. 8), for either TEz or TMz waves, is done by using the transfer

matrix of N unit cells, and representing the silicon substrate at the bottom with a TEz /TMz wave

admittance, as detailed in Appendix B. When using EMA, the multilayer structure is treated as

an anisotropic dielectric with relative permittivity in Eq. (2). In Fig. 9 and Fig. 10 (for µc=

0 eV and µc= 0.4 eV, respectively, and assuming a dipole distance h = 2 µm) we report two

power ratios aiming at showing their enhancement: (i) the total power Ptot = Pup+Pdown emitted

by the dipole normalized by the power emitted by the same dipole in free space Pfree space; (ii)

the ratio of the power directed downward to the HM, Pdown, and the power directed into the

upper free space, Pup, for four different cases where the number of graphene sheets is changed

as N = 1, 3, 10 and N → ∞, as well as for a transverse dipole at a distance h above a silicon

substrate (dashed lines) for comparison purposes.

The ratio Ptot/Pfree space also represents the increase of the local density of states (LDOS)

with respect to LDOS at a point in free space [5, 50, 54], and this is also referred to as Purcell
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Fig. 9. (a) Ratio between power emitted in the lower space with the one in the upper space,

Pdown/Pup , and (b) the ratio Ptot/Pfree space related to the transverse dipole located near the

interface of free space and graphene-based HM made by N graphene layers on top of Si

substrate. Calculations done via multilayer transfer matrix method (lines) and via EMA

(markers) when chemical potential is µc = 0 eV.

effect [6, 24]. We model the HM with thickness Nd via both the more accurate transfer matrix

method (denoted by lines in the figure) and EMA (denoted by circles), and provide the results

in Fig. 9(a) and (b) for unbiased graphene (µc= 0 eV), and in Fig. 10 for biased graphene

(µc= 0.4 eV). In Fig. 9 one can observe that, at the lowest frequency 0.1 THz, there is a clear

trend showing that when the number of layers (N) increases the ratio Pdown/Pup also increases

from ≈ 106 up to ≈ 2.7× 108 , when using calculations based on the transfer matrix method.

Moreover in the lower frequency range, EMA overestimates Pdown/Pup by almost one order of

magnitude, as also discussed in [3] for a different HM configuration; however, as the frequency

increases EMA and the transfer matrix method agree well. In Fig. 9(b), we observe the same

disagreement of the transfer matrix calculations and EMA at lower frequencies, and it is clearly

seen that the normalized emitted power (Ptot/Pfree space) is ≈ 4×103 at the lowest frequency 0.1

THz and drops linearly as the frequency increases. Pdown/Pup exhibits a very sharp drop for

N = 1 after around 1 THz, for N = 3 after about 2 THz, for N = 10 after 4 THz, and for N → ∞
after 6 THz (note that the hyperbolic to elliptic dispersion curve transformation occurs at 6.6

THz when µc = 0 eV obtained via EMA, see Fig. 2, in very good agreement with the N → ∞
case). When the chemical potential is increased to µc = 0.4 eV, the “transverse” permittivity ε ′t
decreases to further negative values and the frequency of hyperbolic to elliptic dispersion curve

transformation shifts from 6.6 THz (µc = 0 eV) to 24.6 THz (µc = 0.4 eV). In Fig. 10(a), at

lower frequencies one can observe that Pdown/Pup is increased by one order of magnitude for

all cases whereas Ptot/Pfree space decreases by almost one order of magnitude when compared to

the case with µc = 0 eV. Moreover the frequency where Ptot/Pfree space exhibits a sharp decrease

shifts to a higher frequency when the chemical potential is increased to 0.4 eV in agreement
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Fig. 10. (a) Ratio Pdown/Pup and (b) ratio Ptot/Pfree space for the same set of parameters in

Fig. 9, but when chemical potential is µc = 0.4 eV.

with the change in the frequency of hyperbolic to elliptic dispersion curve transformation, as

illustrated from Fig. 4(c). As seen in Figs. 10(a) and 10(b) both the enhancement of emitted

power and the ratio of power directed to the –z direction are much larger than the Si-substrate

case for a wide frequency band (1-6 THz) in the presence of graphene-dielectric. The interesting

features in Figs. 9-10 are related to the power spectrum in Eq. (15), which is described in the

following.

We report the emitted power spectrum for TMz waves (solid lines), pTM(kt) = pTM
up (kt)+

pTM
down(kt), versus normalized transverse wavenumber ktd/π at 0.1 in Fig. 11(a) and 3 THz in

Fig. 11(b), varying the number of graphene-dielectric layers assuming µc = 0 eV, and for a

better visualization we provide Figs. 11(a) and 11(b) in both logarithmic and linear scales for

the horizontal axis, in the left and right panels, respectively. For comparison we also show

the power spectrum pTE(kt) = pTE
up (kt) + pTE

down(kt) for N =1 and N → ∞ (dashed lines). At

these two frequencies the composite multilayer exhibits hyperbolic dispersion for TMz waves

and propagation inside the HM occurs for kt >
√

εdk0. We observe in Fig. 11(b) that in the

high kt spectrum, there are a larger number of spectral peaks when N increases; eventually

yielding a continuous distribution of large spectral intensities when N → ∞. This explain the

advantage of having a large number of layers. Moreover when N → ∞, one can notice that

the power spectrum starts to rise strongly after kt =
√

εdk0, in agreement with the propagating

spectrum’s lower limit in the hyperbolic dispersion diagrams in Fig. 4. We would like to em-

phasize that plots in linear scale in Fig. 11 clearly show that the propagating power spectrum

in the large kt region is very wide and therefore it strongly contributes to the spectral integral

in Eq. (14). Note that the upper limit of the power spectrum, cut-off at kt,max, can be deter-

mined by evaluating the evanescent decay in free space between the dipole at z = 0 and the

surface of the composite material at z = −h, given by exp
(

−
√

k2
t − k2

0h
)

. For example, by
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Fig. 11. Emitted power spectrum pTM(kt) = pTM
up (kt)+ pTM

down(kt) in Eq. (15), solid lines,

versus normalized traverse wavenumber ktd/π at (a) 0.1 THz, and (b) 3 THz, for different

number of graphene-dielectric layers:N = 1, 10, and N → ∞. For comparison we also show

the power spectrum pTE(kt) = pTE
up (kt)+ pTE

down(kt) for N =1 and N → ∞ (dashed lines).

The points A, B, and C denote the spectrum points k0d/π ,
√

εdk0d/π , and
√

εSik0d/π ,

respectively. Left panel plots have a horizontal logarithmic scale whereas right panel plots

have a horizontal linear scale.

setting exp
(

−
√

k2
t,max − k2

0h
)

= ξ , where ξ is a predetermined small number, we can consider

the power spectrum negligible when kt > kt,max. It is important to note that for h ≪ λ0 this

upper wavenumber limit kt,max is independent of the operating frequency when kt,max ≫ k0, be-

cause in this case exp
(

−
√

k2
t,max − k2

0h
)

≈ exp(−kt,maxh). These considerations explain why

all spectral curves decay with very similar profile for very large kt and therefore it is imposed

mainly by the dipole distance h, for both frequencies examined in Fig. 11(a) and (b), i.e., at 0.1

and 3 THz.

At low frequency, in Fig. 11(a) all curves with different N, tend to exhibit the same behavior

at the large kt , in particular when (ktd/π) > 10−2. The reason of this low frequency property,

that does not occur at higher frequency in Fig. 11(b), is explained as follows. Propagation

inside such multilayer stack consists in strong evanescent coupling between adjacent graphene

sheets [23, 32], that is approximately proportional to exp
(

−
√

k2
t − εdk2

0d
)

. Considering now

the large kt region where the power spectrum pTM(kt) is intense in Fig. 11(a), the exponential

interlayer decay becomes stronger, at fixed kt , when the frequency decreases (i.e., when εdk2
0

decreases). Thus, at low frequencies, less power is coupled to lower graphene layers, whereas
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Fig. 12. (a) Ratio Pdown/Pup and (b) ratio Ptot/Pfree space related to the transverse dipole

located near the interface of free space and a semi-infinite graphene-based HM at 2 THz

plotted versus dipole distance h, for different chemical potential µc values obtained via

transfer matrix method (lines) and EMA (markers).

most of the power is coupled to losses in the first graphene sheet closest to the dipole, implying

that the number of layers becomes less effective on the power spectrum for large kt and hence on

the total emitted power integral in Eq. (14). For example, the case with 0.1 THz in Fig. 11(a),

the total TMz power emitted by the dipole is dominated by the wide power spectrum region
(

5×10−3π/d
)

< kt < kt,max, which is weakly dependent on the number of layers. Under this

low frequency condition, we observe that the total TMz emitted power becomes proportional

to ω2, independently on the number of layers, in agreement with the findings in [21] for a

single graphene layer. A similar trend occurs for the power emitted as TEz waves at these lower

frequencies, though it is several orders of magnitude weaker than TMz cases for large kt (see

the dashed curves in Fig. 11). Note that, instead, the free space emitted power by a dipole

|pt |2ω4η0/
(

12πc2
)

is proportional to ω4. Comparing the low frequency trends of the power

emitted in free space with the one in presence of the HM one can explain the strong increase of

the power ratio
(

Ptot/Pfree space

)

∝ ω−2 in Fig. 10(b) as frequency decreases.

It is also important to provide a physical insight into the effect of the distance h on the power

emitted by the impressed transverse dipole. In Fig. 12, we provide the plots of Ptot/Pfree space

and Pdown/Pup at 2 THz versus the dipole’s distance h for the semi-infinitely periodic (N → ∞)

graphene-dielectric multilayered structure with µc= 0 eV and µc= 0.4 eV, obtained both via

EMA (markers) and the transfer matrix method (lines). In Figs. 12(a) and 12(b) we report the

power ratios Pdown/Pup and Ptot/Pfree space for both HMg and HMd configurations, denoting a

HM with graphene (HMg) and dielectric (HMd) as topmost layer, respectively [3,49]. We notice

that the responses of both HMg and HMd configurations are very similar while the HMg has

a slightly larger Pdown/Pup and Ptot/Pfree space for smaller h, in agreement with the observations

in [49]. For the smallest reported distance h = 0.2 µm, the emitted power (Ptot/Pfree space ) and

Pdown/Pup are maximum. However for small h, EMA overestimates the reported parameters by

one to two orders of magnitude for small h, as demonstrated in [49], whereas for h > 1 µm

both methods agree well at the given frequency. Using the transfer matrix method we find the

maximum ratio Pdown/Pup ≈ 2×106 when µc=0 eV, and it decreases to Pdown/Pup ≈ 5×105 as

a result of increasing Y TM
down when ε ′t possesses more negative values. A similar change is also

observed such that the maximum ratio Ptot/Pfree space becomes ≈ 2×104 when µc= 0 eV, and it

decreases to Ptot/Pfree space ≈ 4×102 when µc= 0.4 eV. The total emitted power decreases as the

distance h increases, due to the stronger evanescent decay of high kt spectrum. However, since

the distance h is subwavelength, still a lot of power is able to couple into the HM. The power

ratio Pdown/Pup also exhibits a decrease with increasing h showing the key role of the coupling
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of the evanescent spectrum in free space to the propagating spectrum in the HM. We finally

note from the observations in Fig. 12 that the accuracy of EMA is influenced by changing the

values of µc, implying the effect of εt on EMA’s validity.

In summary, we have shown that the power emitted by a dipolar source in the proximity of

a graphene-based HM is strongly enhanced, and that it can be effectively tuned by electrostat-

ically biasing the graphene sheets, which makes this HM a promising candidate for tunable

applications in the far-infrared frequencies.

5. Conclusion

We have investigated a novel design of HM for far-infrared frequencies based on graphene

layers. The multilayer structure has been analyzed using EMA which, based on a permittivity

homogenization model, predicts the HM features at far-infrared frequencies. We have quantita-

tively shown the capability of tuning the composite material properties via chemical potential of

graphene. We have investigated plane wave interaction with a thin film made by few graphene

sheets, and showed how the transmission frequency spectrum can be tuned. We have assessed

the validity of EMA for both plane wave incidence and near-field radiation from a dipole, and

we have shown that under certain conditions EMA is in good agreement with the transfer matrix

analysis. In the last part of the paper, we have shown that a very wide spatial spectrum emitted

by an electric dipole is allowed to couple into the graphene-based HM, that would be otherwise

evanescent in free space. This generates two interesting main features: (1) the power emitted

by the dipole is strongly enhanced (up to several orders of magnitude) by the presence of the

graphene-based HM, and (2) most of the power is directed into the HM, also for relative sub-

wavelength HM thicknesses realized with only a few graphene sheets.These properties seem to

enable the use of this tunable graphene-based HM to efficiently absorb mm-waves and terahertz

frequencies, and give rise to other possible applications including super resolution lenses.
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6. Appendix A

The transfer matrix [Tunit] of a unit cell composed of a graphene sheet (modeled as a lumped

shunt complex admittance Ys = σ ) and a dielectric layer of thickness d (modeled as a transmis-

sion line) for TEz/TMz waves can be written as (assuming time-harmonic fields of the form

e jωt)

[Tunit] =

[

Aunit Bunit

Cunit Dunit

]

=

[

1 0

σ 1

]

[

cos(κdd) jZd sin(κdd)
j

Zd
sin(κdd) cos(κdd)

]

=

[

cos(κdd) jZd sin(κdd)
j

Zd
sin(κdd)+σ cos(κdd) jσZd sin(κdd)+ cos(κdd)

]

, (17)

where κd =
√

εdk2
0 − k2

t is wavenumber along the z axis inside the dielectric, and for TEz and

TMz waves: ZTE
d = ωµ0/κd and ZTM

d = κd/(ωε0εd), respectively. We are interested in deter-

mining the Bloch wavenumber kz in the z-direction, that describes layer to layer propagation.

Following the simple procedure in [48], the wavevector dispersion relation can be obtained

from the solution of the eigenvalue problem
∣

∣[Tunit]− e− jkzd [I]
∣

∣ = 0, where [I] is the identity

matrix. This leads to the simple dispersion relation in Eq. (6).
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7. Appendix B

The calculation of the admittance looking toward the −z direction YHM, N (see Fig. 8) can be

straightforwardly carried out by constructing the transfer matrix of the HM film made of N unit

cells [TN ], between the bottom-most material, i.e., the silicon substrate at z = −(Nd + h), and

the surface of HM at z = −h. By knowing the transfer matrix of the unit cell [Tunit], given in

Eq. (17), one has

[TN ] =

[

AN BN

CN DN

]

= [Tunit]
N . (18)

Then YHM, N is evaluated using the entries of the transfer matrix [TN ] and the wave admittance

inside silicon substrate, Ysubs, as

YHM, N =
CN +DNYsubs

AN +BNYsubs

, (19)

where Y TE
subs = κsubs/(ωµ0) and Y TM

subs =ωε0εsubs/κsubs are the TEz and TMz wave impedances in

the substrate, κsubs =
√

εsubsk
2
0 − k2

t is the z-directed wavenumber, and εsubs = εSi is the relative

permittivity of silicon. When we consider the semi-infinite case, N → ∞, the admittance YHM, N

becomes the Bloch admittance YBloch of the periodic multilayer evaluated using the unit cell’s

transfer matrix entries in Eq. (17) as

YBloch =
Aunit −Dunit ±

√

(Aunit +Dunit)2 −4

−2Bunit

. (20)

Here one should pick the root of YBloch such that Re(YBloch)> 0, representing waves that carry

power in the −z direction.
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