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Graphene: carbon in 
two dimensions

Carbon is one of the most intriguing elements in the Periodic Table. 

It forms many allotropes, some known from ancient times (diamond 

and graphite) and some discovered 10-20 years ago (fullerenes and 

nanotubes). Interestingly, the two-dimensional form (graphene) was only 

obtained very recently, immediately attracting a great deal of attention. 

Electrons in graphene, obeying a linear dispersion relation, behave 

like massless relativistic particles. This results in the observation of 

a number of very peculiar electronic properties – from an anomalous 

quantum Hall effect to the absence of localization – in this, the first 

two-dimensional material. It also provides a bridge between condensed 

matter physics and quantum electrodynamics, and opens new 

perspectives for carbon-based electronics.
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Carbon plays a unique role in nature. The formation of carbon in 

stars as a result of the merging of three α-particles is a crucial 

process that leads to the existence of all the relatively heavy 

elements in the universe1. The capability of carbon atoms to form 

complicated networks2 is fundamental to organic chemistry and 

the basis for the existence of life, at least in its known forms. Even 

elemental carbon demonstrates unusually complicated behavior, 

forming a number of very different structures. As well as diamond 

and graphite, which have been known since ancient times, recently 

discovered fullerenes3-5 and nanotubes6 are currently a focus of 

attention for many physicists and chemists. Thus, only three-

dimensional (diamond, graphite), one-dimensional (nanotubes), 

and zero-dimensional (fullerenes) allotropes of carbon were 

known. The two-dimensional form was conspicuously missing, 

resisting any attempt at experimental observation – until recently.

A two-dimensional form of carbon
The elusive two-dimensional form of carbon is named graphene, and, 

ironically, it is probably the best-studied carbon allotrope theoretically. 

Graphene – planar, hexagonal arrangements of carbon atoms (Fig. 1) – 

is the starting point for all calculations on graphite, carbon nanotubes, 

and fullerenes. At the same time, numerous attempts to synthesize 

these two-dimensional atomic crystals have usually failed, ending up 

with nanometer-size crystallites7. These difficulties are not surprising in 
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light of the common belief that truly two-dimensional crystals cannot 

exist8-12 (in contrast to the numerous, known quasi-two-dimensional 

systems). Moreover, during synthesis, any graphene nucleation sites will 

have very large perimeter-to-surface ratios, thus promoting collapse 

into other carbon allotropes.

Discovery of graphene

In 2004, a group of physicists from Manchester University, UK, led 

by Andre Geim and Kostya Novoselov, used a very different and, 

at first glance, even naive approach to obtain graphene and lead a 

revolution in the field. They started with three-dimensional graphite 

and extracted a single sheet (a monolayer of atoms) using a technique 

called micromechanical cleavage13,14 (Fig. 2). Graphite is a layered 

material and can be viewed as a number of two-dimensional graphene 

crystals weakly coupled together – exactly the property used by the 

Manchester team. By using this top-down approach and starting with 

large, three-dimensional crystals, the researchers avoided all the issues 

with the stability of small crystallites. Furthermore, the same technique 

has been used by the group to obtain two-dimensional crystals of 

other materials13, including boron nitride, some dichalcogenides, and 

the high-temperature superconductor Bi-Sr-Ca-Cu-O. This astonishing 

finding sends an important message: two-dimensional crystals do exist 

and they are stable under ambient conditions.

Amazingly, this humble approach allows easy production of 

large (up to 100 µm in size), high-quality graphene crystallites, 

and immediately triggered enormous experimental activity15,16. 

Moreover, the quality of the samples produced are so good that 

ballistic transport14 and a quantum Hall effect (QHE) can be observed 

easily15,16. The former makes this new material a promising candidate 

for future electronic applications, such as ballistic field-effect 

transistors (FETs). However, while this approach suits all research 

needs, other techniques that provide a high yield of graphene are 

required for industrial production. Among the promising candidate 

methods, one should mention exfoliation of intercalated graphitic 

compounds17-21 and Si sublimation from SiC substrates, demonstrated 

recently by Walt de Heer’s group at Georgia Institute of Technology22.

Stability in two dimensions
The fact that two-dimensional atomic crystals do exist, and moreover, 

are stable under ambient conditions13 is amazing by itself. According to 

the Mermin-Wagner theorem12, there should be no long-range order in 

two dimensions. Thus, dislocations should appear in two-dimensional 

crystals at any finite temperature.

A standard description23 of atomic motion in solids assumes that 

amplitudes of atomic vibration u near their equilibrium position are 

much smaller than interatomic distances d, otherwise the crystal 

would melt according to an empirical Lindemann criterion (at the 

melting point, u ≈ 0.1d). As a result of this small amplitude, the 

thermodynamics of solids can be successfully described using a 

picture of an ideal gas of phonons, i.e. quanta of atomic displacement 

waves (harmonic approximation). In three-dimensional systems, 

this view is self-consistent in a sense that fluctuations of atomic 

positions calculated in the harmonic approximation do indeed turn 

out to be small, at least at low enough temperatures. In contrast, in 

a two-dimensional crystal, the number of long-wavelength phonons 

diverges at low temperatures and, thus, the amplitudes of interatomic 

displacements calculated in the harmonic approximation diverge8-10. 

According to similar arguments, a flexible membrane embedded 

in three-dimensional space should be crumpled because of dangerous 

long-wavelength bending fluctuations24. However, in the past 20 years, 

theoreticians have demonstrated that these dangerous fluctuations 

can be suppressed by anharmonic (nonlinear) coupling between 

bending and stretching modes24-26. As a result, single-crystalline 

membranes can exist but should be ‘rippled’. This gives rise to 

‘roughness fluctuations’ with a typical height that scales with sample 

size L as Lζ, with ζ ≈ 0.6. Indeed, ripples are observed in graphene, and 

Fig. 1 Crystal structures of the different allotropes of carbon. (Left to right) Three-dimensional diamond and graphite (3D); two-dimensional graphene (2D); one-
dimensional nanotubes (1D); and zero-dimensional buckyballs (0D). (Adapted and reprinted with permission from66. © 2002 Prentice Hall.)

Fig. 2 Atomic force microscopy image of a graphene crystal on top of an 
oxidized Si substrate. Folding of the flake can be seen. The measured thickness 
of graphene corresponds to the interlayer distance in graphite. Scale 
bar = 1 µm. (Reprinted with permission from13. © 2005 National Academy of 
Sciences.)
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play an important role in its electronic properties27. However, these 

investigations have just started (there are a few recent papers on 

Raman spectroscopy of graphene28,29), and ‘phononic’ aspects of two-

dimensionality in graphene are still very poorly understood.

Another important issue is the role of defects in the thermodynamic 

stability of two-dimensional crystals. Finite concentrations of 

dislocations and disclinations would destroy long-range translational 

and orientational order, respectively. A detailed analysis24 shows that 

dislocations in flexible membranes have finite energy (of the order 

of the cohesion energy Ecoh) caused by screening of the bending 

deformations, whereas the energy of disclinations is logarithmically 

divergent with the size of crystallite. This means that, rigorously 

speaking, the translational long-range order (but not orientational 

order) is broken at any finite temperature T. However, the density of 

dislocations in the equilibrium is exponentially small for large enough 

Ecoh (in comparison with the thermal energy kBT) so, in practice, this 

restriction is not very serious for strongly bonded two-dimensional 

crystals like graphene.

Electronic structure of graphene
The electronic structure of graphene follows from a simple nearest-

neighbor, tight-binding approximation30. Graphene has two atoms per 

unit cell, which results in two ‘conical’ points per Brillouin zone where 

band crossing occurs, K and K’. Near these crossing points, the electron 

energy is linearly dependent on the wave vector. Actually, this behavior 

follows from symmetry considerations31, and thus is robust with 

respect to long-range hopping processes (Fig. 3).

What makes graphene so attractive for research is that the 

spectrum closely resembles the Dirac spectrum for massless 

fermions32,33. The Dirac equation describes relativistic quantum 

particles with spin ½, such as electrons. The essential feature of 

the Dirac spectrum, following from the basic principles of quantum 

mechanics and relativity theory, is the existence of antiparticles. 

More specifically, states at positive and negative energies (electrons 

and positrons) are intimately linked (conjugated), being described 

by different components of the same spinor wave function. This 

fundamental property of the Dirac equation is often referred to as the 

charge-conjugation symmetry. For Dirac particles with mass m, there is 

a gap between the minimal electron energy, E0 = mc2, and the maximal 

positron energy, -E0 (c is the speed of light). When the electron energy 

E >> E0, the energy is linearly dependent on the wavevector k, E = chk. 

For massless Dirac fermions, the gap is zero and this linear dispersion 

law holds at any energy. In this case, there is an intimate relationship 

between the spin and motion of the particle: spin can only be directed 

along the propagation direction (say, for particles) or only opposite to 

it (for antiparticles). In contrast, massive spin-½ particles can have two 

values of spin projected onto any axis. In a sense, we have a unique 

situation here: charged massless particles. Although this is a popular 

textbook example, no such particles have been observed before.

The fact that charge carriers in graphene are described by a 

Dirac-like spectrum, rather than the usual Schrödinger equation for 

nonrelativistic quantum particles, can be seen as a consequence of 

graphene’s crystal structure. This consists of two equivalent carbon 

sublattices A and B (see Fig. 4). Quantum-mechanical hopping between 

the sublattices leads to the formation of two energy bands, and their 

intersection near the edges of the Brillouin zone yields the conical 

energy spectrum. As a result, quasiparticles in graphene exhibit a 

linear dispersion relation E = hkυF, as if they were massless relativistic 

particles (for example, photons) but the role of the speed of light is 

played here by the Fermi velocity υF ≈ c/300. Because of the linear 

spectrum, one can expect that quasiparticles in graphene behave 

differently from those in conventional metals and semiconductors, 

where the energy spectrum can be approximated by a parabolic (free-

electron-like) dispersion relation.

Fig. 3 Band structure of graphene. The conductance band touches the valence 
band at the K and K’ points.

Fig. 4 Crystallographic structure of graphene. Atoms from different sublattices 
(A and B) are marked by different colors.
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Chiral Dirac electrons
Although graphene’s linear spectrum is important, it is not the 

spectrum’s only essential feature. Above zero energy, the current-

carrying states in graphene are, as usual, electron-like and negatively 

charged. At negative energies, if the valence band is not full, 

unoccupied electronic states behave as positively charged 

quasiparticles (holes), which are often viewed as a condensed matter 

equivalent of positrons. Note, however, that electrons and holes 

in condensed matter physics are normally described by separate 

Schrödinger equations, which are not in any way connected (as 

a consequence of the so-called Seitz sum rule34, the equations 

should also involve different effective masses). In contrast, electron 

and hole states in graphene should be interconnected, exhibiting 

properties analogous to the charge-conjugation symmetry in quantum 

electrodynamics (QED)31-33. 

For the case of graphene, the latter symmetry is a consequence 

of the crystal symmetry, because graphene’s quasiparticles have to 

be described by two-component wave functions, which are needed 

to define the relative contributions of the A and B sublattices in the 

quasiparticles’ make-up. The two-component description for graphene 

is very similar to the spinor wave functions in QED, but the ‘spin’ index 

for graphene indicates the sublattice rather than the real spin of the 

electrons and is usually referred to as pseudospin σ. This allows one 

to introduce chirality33 – formally a projection of pseudospin on the 

direction of motion – which is positive and negative for electrons and 

holes, respectively.

The description of the electron spectrum of graphene in terms of 

Dirac massless fermions is a kind of continuum-medium description 

applicable for electron wavelengths much larger than interatomic 

distances. However, even at these length scales, there is still some 

retention of the structure of the elementary cell, that is, the existence 

of two sublattices. In terms of continuum field theory, this can be 

described only as an internal degree of freedom of the charge carriers, 

which is just the chirality.

This description is based on an oversimplified nearest-neighbor 

tight-binding model. However, it has been proven experimentally that 

charge carriers in graphene do have this Dirac-like gapless energy 

spectrum15,16. This was demonstrated in transport experiments (Fig. 5)

via investigation of the Schubnikov-de Haas effect, i.e. resistivity 

oscillations at high magnetic fields and low temperatures.

Anomalous quantum Hall effect
Magneto-oscillation effects, such as the de Haas-van Alphen 

(oscillations of magnetization) or Schubnikov-de Haas (magneto-

oscillations in resistance) effects, are among the most straightforward 

and reliable tools to investigate electron energy spectra in metals 

and semiconductors35. In two-dimensional systems with a constant 

magnetic field B perpendicular to the system plane, the energy 

spectrum is discrete (Landau quantization). In the case of massless 

Dirac fermions, the energy spectrum takes the form (see36, for 

example):

    (1)

where υF is the electron velocity, ν = 0,1,2,… is the quantum number, 

and the term with ±½ is connected with the chirality (Fig. 6). For 

comparison, in the usual case of a parabolic dispersion relation, the 

Landau level sequence is E = hωc (ν + ½) where ωc is the frequency of 

electron rotation in the magnetic field (cyclotron frequency)35.

By changing the value of the magnetic field at a given electron 

concentration (or, vice versa, electron concentration for a given 

magnetic field), one can tune the Fermi energy EF to coincide with one 

of the Landau levels. This drastically changes all properties of metals 

(or semiconductors) and, thus, different physical quantities will oscillate 

with the value of the inverse magnetic field. By measuring the period 

Fig. 5 Scanning electron micrograph of a graphene device. The graphene crystal 
is contacted by Au electrodes and patterned into Hall bar geometry by e-beam 
lithography with subsequent reactive plasma etching. The width of the channel 
is 1 µm. (Courtesy of K. Novoselov and A. Geim.)

Fig. 6 (Left) Landau levels for Schrödinger electrons with two parabolic bands 
touching each other at zero energy. (Right) Landau levels for Dirac electrons.
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of these oscillations ∆(1/B), we obtain information about the area A 

inside the Fermi surface (for two-dimensional systems, this area is just 

proportional to the charge-carrier concentration n). The amplitude 

of the oscillations allows us to measure the effective cyclotron mass 

which is proportional to ∂A/∂EF
34,35. For the case of massless Dirac 

fermions (linear dependence of the electron energy on its momentum), 

this quantity should be proportional to √n, which was exactly the 

behavior reported simultaneously by the Manchester researchers15 and 

Philip Kim and Horst Stormer’s group at Columbia University16 (Fig. 7).

An important peculiarity of the Landau levels for massless Dirac 

fermions is the existence of zero-energy states (with ν = 0 and a 

minus sign in eq. 1). This situation differs markedly from conventional 

semiconductors with parabolic bands where the first Landau level 

is shifted by ½hωc. As shown by the Manchester and Columbia 

groups15,16, the existence of the zero-energy Landau level leads to an 

anomalous QHE with half-integer quantization of the Hall conductivity 

(Fig. 8, top), instead of an integer one (for a review of the QHE, see37, 

for example). Usually, all Landau levels have the same degeneracy 

(number of electron states with a given energy), which is proportional 

to the magnetic flux through the system. As a result, the plateaus in 

the Hall conductivity corresponding to the filling of first ν levels are 

integers (in units of the conductance quantum e2/h). For the case of 

massless Dirac electrons, the zero-energy Landau level has half the 

degeneracy of any other level (corresponding to the minus sign in 

eq. 1), whereas each pth level with p ≥ 1 is obtained twice, with ν = p 

and a minus sign, and with ν = p - 1 and a plus sign. This anomalous 

QHE is the most direct evidence for Dirac fermions in graphene15,16.

Index theorem

The deepest view on the origin of the zero-energy Landau level, and 

thus the anomalous QHE is provided by an Atiyah-Singer index, 

theorem that plays an important role in modern quantum field 

theory and theory of superstrings38. The Dirac equation has charge-

conjugation symmetry between electrons and holes. This means 

that, for any electron state with a positive energy E, a corresponding 

conjugated hole state with energy -E should exist. However, states with 

zero energy can be, in general, anomalous. For curved space (e.g. for a 

deformed graphene sheet with some defects in crystal structure) 

and/or in the presence of so-called ‘gauge fields’ (electromagnetic fields 

provide the simplest example of these fields), sometimes the existence 

of states with zero energy is guaranteed for topological reasons, these 

states being chiral. (In the case of graphene, this means that, depending 

on the sign of the magnetic field, only sublattice A or sublattice B 

states contribute to the zero-energy Landau level.) In particular, this 

means that the number of these states expressed in terms of total 

magnetic flux is a topological invariant and remains the same even if 

the magnetic field is inhomogeneous15. This is an important conclusion 

since the ripples on graphene create effective inhomogeneous magnetic 

fields with magnitudes up to 1 T, leading to suppression of the weak 

localization27. However, because of these topological arguments, 

inhomogeneous magnetic fields cannot destroy the anomalous QHE in 

graphene. For further insight into the applications of the index theorem 

to two-dimensional systems, and to graphene in particular, see39,40.

Quasiclassical considerations

An alternative view of the origin of the anomalous QHE in graphene 

is based on the concept of a ‘Berry phase’41. Since the electron wave 

Fig. 7 Electron and hole cyclotron mass as a function of carrier concentration 
in graphene. The square-root dependence suggests a linear dispersion relation. 
(Reprinted with permission from15. © 2005 Nature Publishing Group.)

Fig. 8 Resistivity (red) and Hall conductivity (blue) as a function of carrier 
concentration in graphene (top) and bilayer graphene (bottom). (Reprinted 
with permission from15 (top) and from47 (bottom). © 2005 and 2006 Nature 
Publishing Group.)
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function is a two-component spinor, it has to change sign when 

the electron moves along a closed contour. Thus, the wave function 

gains an additional phase φ = π. In quasiclassical terms (see34,42, for 

example), stationary states are nothing but electron standing waves 

and they can exist if the electron orbit is, at least, half the wavelength. 

As a result of the additional phase shift by the Berry phase, this 

condition is already satisfied for the zeroth length of the orbit, that is, 

for zero energy! Other aspects of the QHE in graphene are considered 

elsewhere43-46.

Anomalous QHE in bilayer graphene
In relativistic quantum mechanics, chirality is intimately connected 

with relativistic considerations that dictate, at the same time, the linear 

energy spectrum for massless particles. The discovery of graphene also 

opens a completely new opportunity to investigate chiral particles with 

a parabolic (nonrelativistic) energy spectrum! This is the case for bilayer 

graphene47. 

For two carbon layers, the nearest-neighbor tight-binding 

approximation predicts a gapless state with parabolic bands touching 

at the K and K’ points, instead of conical bands47,48. More accurate 

consideration49 gives a very small band overlap (about 1.6 meV) 

but, at larger energies, bilayer graphene can be treated as a gapless 

semiconductor. At the same time, the electron states are still 

characterized by chirality and by the Berry phase (equal, in this case, to 

2π instead of π). Exact solution of the quantum mechanical equation 

for this kind of spectrum in the presence of a homogeneous magnetic 

field gives the result47,48 Eν ∝ √ν(ν - 1) and, thus, the number of 

states with zero energy (ν = 0 and ν = 1) is twice that of monolayer 

graphene. As a result, the QHE for bilayer graphene differs from both 

single-layer graphene and conventional semiconductors, as found 

experimentally47 (Fig. 8, bottom).

Tunneling of chiral particles
The chiral nature of electron states in bilayer, as well as single-layer, 

graphene is of crucial importance for electron tunneling through 

potential barriers, and thus the physics of electronic devices such as 

‘carbon transistors’50.

Quantum tunneling

Quantum tunneling is a consequence of very general laws of quantum 

mechanics, such as the Heisenberg uncertainty relations. A classical 

particle cannot propagate through a region where its potential energy 

is higher than its total energy (Fig. 9). However, because of the 

uncertainty principle, it is impossible to know the exact values of a 

quantum particle’s coordinates and velocity, and thus its kinetic and 

potential energy, at the same time instant. Therefore, penetration 

through the ‘classically forbidden’ region turns out to be possible. This 

phenomenon is widely used in modern electronics, beginning with the 

pioneering work of Esaki51.

Klein paradox

When a potential barrier is smaller than the gap separating electron 

and hole bands in semiconductors, the penetration probability decays 

exponentially with the barrier height and width. Otherwise, resonant 

tunneling is possible when the energy of the propagating electron 

coincides with one of the hole energy levels inside the barrier. 

Surprisingly, in the case of graphene, the transmission probability for 

normally incident electrons is always equal to unity, irrespective of the 

height and width of the barrier50,52,53. 

In QED, this behavior is related to the Klein paradox50,54-56. This 

phenomenon usually refers to a counterintuitive relativistic process 

in which an incoming electron starts penetrating through a potential 

barrier, if the barrier height exceeds twice the electron’s rest energy 

mc2. In this case, the transmission probability T depends only weakly 

on barrier height, approaching perfect transparency for very high 

barriers, in stark contrast to conventional, nonrelativistic tunneling. This 

relativistic effect can be attributed to the fact that a sufficiently strong 

potential, being repulsive for electrons, is attractive to positrons, and 

results in positron states inside the barrier. These align in energy with 

the electron continuum outside the barrier. Matching between electron 

and positron wave functions across the barrier leads to the high-

probability tunneling described by the Klein paradox. In other words, it 

reflects an essential difference between nonrelativistic and relativistic 

quantum mechanics. In the former case, we can measure accurately 

either the position of the electron or its velocity, but not both 

simultaneously. In relativistic quantum mechanics, we cannot measure 

even electron position with arbitrary accuracy since, if we try to do 

this, we create electron-positron pairs from the vacuum and we cannot 

distinguish our original electron from these newly created electrons. 

Graphene opens a way to investigate this counterintuitive behavior in 

a relatively simple benchtop experiment, whereas previously the Klein 

paradox was only connected with some very exotic phenomena, such 

 Fig. 9 Tunneling in graphene (top) and conventional semiconductors (bottom). 
The amplitude of the electron wave function (red) remains constant in 
graphene while it decays exponentially in conventional tunneling. The size 
of the sphere indicates the amplitude of the incident and transmitted wave 
functions. (Reprinted with permission from50. © 2006 Nature Publishing 
Group.)
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as collisions of ultraheavy nuclei or black hole evaporations (for more 

references and explanations, see50,56).

Tunneling in bilayer graphene

From the point of view of applications, the Klein paradox is rather 

bad news since it means that a ‘carbon transistor’ using single-layer 

graphene cannot be closed by any external gate voltage. In contrast, it 

has been shown that chiral tunneling in the case of a bilayer leads to 

even stronger suppression of the normally incident electron penetration 

(Fig. 10) than in conventional semiconductors50. By creating a potential 

barrier (with an external gate), one can manipulate the transmission 

probability for ballistic electrons in bilayer graphene. At the same time, 

there is always some ‘magic angle’ where the penetration probability 

equals unity (Fig. 10), which also should be taken into account in the 

design of future carbon-based electronic devices.

Absence of localization

The tunneling anomalies in single- and bilayer graphene systems 

are expected to play an important role in their transport properties, 

especially in the regime of low carrier concentrations where disorder 

induces significant potential barriers and the systems are likely to 

split into a random distribution of p-n junctions. In conventional 

two-dimensional systems, sufficiently strong disorder results in 

electronic states that are separated by barriers with exponentially small 

transparency57,58. This is known to lead to Anderson localization. In 

contrast, in both graphene materials, all potential barriers are rather 

transparent, at least for some angles. This means that charge carriers 

cannot be confined by potential barriers that are smooth on the atomic 

scale. Therefore, different electron and hole ‘puddles’ induced by 

disorder are not isolated but effectively percolate, thereby suppressing 

localization. This is important in understanding the minimal conductivity 

≈ e2/h observed experimentally in both single-15 and bilayer47 graphene. 

Further discussion of this minimal conductivity phenomenon in terms of 

quantum relativistic effects can be found elsewhere59-61.

Graphene devices
The unusual electronic properties of this new material make it a 

promising candidate for future electronic applications. Mobilities 

that are easily achieved at the current state of ‘graphene technology’ 

are ~20 000 cm2/V.s, which is already an order of magnitude higher 

than that of modern Si transistors, and they continue to grow as 

the quality of samples improves. This ensures ballistic transport on 

submicron distances – the holy grail for any electronic engineer. 

Probably the best candidates for graphene-based FETs will be devices 

based on quantum dots and those using p-n junctions in bilayer 

graphene50,62.

Another promising direction for investigation is spin-valve 

devices. Because of negligible spin-orbit coupling, spin polarization 

in graphene survives over submicron distances, which has recently 

allowed observation of spin-injection and a spin-valve effect in this 

material63. It has also been shown by Morpurgo and coworkers at 

Delft University64 that superconductivity can be induced in graphene 

through the proximity effect (Fig. 11). Moreover, the magnitude of the 

supercurrent can be controlled by an external gate voltage, which can 

be used to create a superconducting FET.

While these applications mentioned are a focus for further 

investigation, there are some areas where graphene can be used 

straightaway. Gas sensors is one. The Manchester group65 has shown 

that graphene can absorb gas molecules from the surrounding 

atmosphere, resulting in doping of the graphene layer with electrons 

or holes depending on the nature of the absorbed gas. By monitoring 
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Fig. 11 Scanning electron micrograph of a graphene crystal contacted by 
superconducting electrodes. Supercurrents arising from the proximity effect 
have been observed recently by researchers in Delft, the Netherlands64. The 
gap between the electrodes is 70 nm.

Fig. 10 Transmission probability T through a 100 nm wide barrier as a function 
of the incident angle for (a) single- and (b) bilayer graphene. The electron 
concentration n outside the barrier is chosen as 0.5 x 1012 cm-2 for all cases. 
Inside the barrier, hole concentrations p are 1 x 1012 and 3 x 1012 cm-2 for 
the red and blue curves, respectively (concentrations that are typical of most 
experiments with graphene). This corresponds to a Fermi energy E for the 
incident electrons of ≈ 80 meV and 17 meV for single- and bilayer graphene, 
respectively, and λ ≈ 50 nm. The barrier heights are (a) 200 meV and 
(b) 50 meV (red curves), and (a) 285 meV and (b) 100 meV (blue curves).

(b)(a)
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changes in resistivity, one can sense minute concentrations of certain 

gases present in the environment. 

Conclusions
It is impossible to review all aspects of graphene physics and chemistry 

here. We hope, however, that the above examples demonstrate 

graphene’s great interest for both fundamental research (where it 

forms a new, unexpected bridge between condensed matter and 

quantum field theory) and possible applications. Graphene is the 

first example of a truly two-dimensional crystal. This opens many 

interesting questions concerning the thermodynamics, lattice 

dynamics, and structural properties of such systems. Being a gapless 

semiconductor with a linear energy spectrum, single-layer graphene 

realizes a two-dimensional, massless Dirac fermion system that is of 

crucial importance for understanding unusual electronic properties, 

such as an anomalous QHE, absence of the Anderson localization, 

etc. Bilayer graphene has a very unusual gapless, parabolic spectrum, 

giving a system with an electron wave equation that is different 

from both Dirac and Schrödinger systems. These peculiarities are 

important for developing new electronic devices such as carbon 

transistors.
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