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Abstract. We investigated a multilayer graphene–dielectric composite material, comprising

graphene sheets separated by subwavelength-thick dielectric spacer, and found it to exhibit

hyperbolic isofrequency wavevector dispersion at far- and mid-infrared frequencies, allowing

propagation of waves that would be otherwise evanescent in an isotropic dielectric.

Electrostatic biasing was considered for tunable and controllable transition from hyperbolic

to elliptic dispersion. We explored the validity and limitation of the effective medium approxi-

mation (EMA) for modeling wave propagation and cutoff of the propagating spatial spectrum

due to the Brillouin zone edge. We reported that EMA is capable of predicting the transition of

the isofrequency dispersion diagram under certain conditions. The graphene-based composite

material allows propagation of backward waves under the hyperbolic dispersion regime and

of forward waves under the elliptic regime. Transition from hyperbolic to elliptic dispersion

regimes is governed by the transverse epsilon-near-zero (TENZ) condition, which implies a

flatter and wider propagating spectrum with higher attenuation, when compared to the hyper-

bolic regime. We also investigated the wide-angle tunable transparency of the multilayer at

that condition in contrast to other materials exhibiting ENZ phenomena. © 2013 Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JNP.7.073089]
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1 Introduction

Hyperbolic metamaterial (HM) refers to a subcategory of uniaxially anisotropic metamaterial,

that can be modeled by a diagonal permittivity tensor (in Cartesian co-ordinates) comprising

entries with both positive and negative real parts. The realization of hyperbolic dispersion allows

wave propagation over a wide spatial spectrum (infinite for an ideal HM), that would be evan-

escent in a common isotropic dielectric.1 HMs are realized at optical frequencies using metal–

dielectric multilayers,2–4 or metallic nanowires,5 and at terahertz and infrared frequencies using

semiconductor–dielectric multilayers6,7 or carbon nanotubes.8 In multilayer HMs, the emergence

of hyperbolic dispersion does not rely on any resonant feature, thus it poses a potential for broad-

band enhancement of the local density of states (LDOS),9 subwavelength imaging,10,11 and lens-

ing.12 Spontaneous emission rate of an emitter, as well as the radiative decay of dye molecules, is

proportional to the LDOS,11 hence it can be substantially enhanced in the proximity of an

HM.13,14 It was demonstrated in Ref. 2 that the power scattered by a passive nanosphere located

in the proximity of a metal–dielectric HM is enhanced by orders of magnitude, while the HM

absorbs most of the scattered power, opening a new Frontier in super absorber’s designs based on

near-fields transformation from evanescent to propagating regimes. Awide band absorption was

devised in Ref. 15 using tilted carbon nanotubes. Multilayer HMs at optical frequencies take
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advantage of the wide frequency band in which metals exhibit negative permittivity and support

plasmonic modes.2,3 At infrared frequencies, graphene as a tunable inductive layer constitutes a

potential building block for multilayer HM realizations. Furthermore, tunability of HMs can be

achieved using static fields to bias graphene.16,17 It is a remarkable material with a wide opera-

tional frequency band starting from microwave regime,18 through terahertz frequencies,19 and

optical frequencies.20 Graphene was utilized in design of metasurfaces in many different appli-

cations, such as polarizers and absorbers21,22 and cloaking devices.23 In this paper, we investigate

a graphene–dielectric multilayer material that shows promising properties as tunable HM at far-

and mid-infrared frequencies, that was predicted to provide a large enhancement in the Purcell

factor.24,25 In that recent work,25 the enhancement of emitted power by an electrically small emit-

ter near the interface of graphene-based HM as well as the near-field absorption properties were

developed using effective medium approximation (EMA) and transfer matrix methods, where the

limitations and validity of EMA were established.25 Here, we show how the wavevector

dispersion diagram can be controlled and even transformed between hyperbolic and elliptic

curves at mid- and far-infrared regime. Moreover, we demonstrate the design guidelines of the

graphene-based HM in terms of the physical parameters for the purpose of engineering the evo-

lution from hyperbolic to elliptic dispersion condition. In the last part of the paper we explore the

transverse epsilon-near-zero (TENZ) condition, its relation to the dispersion diagram and the

enhanced transparency of a thin film made of TENZ graphene–dielectric layers for TM waves

with a wide range of incidence angle. The fabrication of the metamaterial comprising as few as

10 graphene–dielectric layers, which were shown to have characteristics that resembles those of

a semi-infinite stack,25 could be realized utilizing commercially available high-quality chemical-

vapor-deposition-(CVD)-grown graphene monolayer on a transition metallic (Ni or Cu) foil26,27

from which graphene can be transferred onto a SiO2∕Si substrate using an intermediate host such

as a thermoplastic polymethyl-methacrylate for enhancing the transfer process efficiency.28 This

process is followed by depositing a thin film of SiO2 or SiC on the graphene flake using CVD.

However, it was shown that a graphene monolayer on SiO2 can become highly disordered and

increase scattering losses.29 The transfer of few-layer graphene26 on other compatible materials

such as boron-nitride (h-BN) might be of interest toward realizing the metamaterial, since h-BN

shares the same hexagonal structure with graphene.30

2 Effective Medium Analysis of Graphene–Dielectric Multilayers

Graphene is a one-atom-thick layer of a hexagonal arrangement of carbon atoms with a lattice

constant of 0.264 nm, hence spatial dispersion effects introduced by graphene periodicity can be,

in general, neglected at terahertz frequencies. Although the existence of extremely slow surface

modes can trigger spatial dispersion effects,18,31 those modes are essentially highly evanescent

due to the periodicity of the multilayer structure studied here, as it will be shown in Sec. 3.

Graphene is electrically modeled by the local isotropic sheet conductivity σ ¼ σ 0 þ jσ 0 0 (assum-

ing time-harmonic variation of ejωt), which accounts for both interband and intraband contri-

butions to the total electronic transport.32,33 The sheet conductivity σ is computed by the Kubo

formula,34 which yields a function of frequency, chemical potential μc, phenomenological scat-

tering rate Γ, and temperature T. Here, we assume for graphene Γ ¼ 0.33 meV (using the same

notation as in Ref. 34), which corresponds to a mean electron scattering time of about 1 ps, at

room temperature T ¼ 300 K. Graphene supports relatively low loss TM plasmonic modes16

(dictated by the negative imaginary part of the surface conductivity σ 0 0 < 0). As such, σ 0 0, mod-

eling the reactive response of graphene, plays a fundamental role in the manifestation of hyper-

bolic dispersion in multilayer graphene–dielectric materials, as described in the following. We

aim at analyzing an infinite periodic multilayer structure depicted in Fig. 1 whose unit cell is

composed of a graphene sheet and a dielectric layer of subwavelength thickness d and relative

permittivity ϵd. A physical understanding of wave propagation in such multilayers with a sub-

wavelength period can be established by using the EMA approach, which is a quasistatic or local

approximation for metamaterials, often adopted for metal–dielectric multilayers.2,3,31 According

to EMA, the periodic multilayer is regarded as an anisotropic homogeneous medium with effec-

tive relative permittivity tensor ̱ϵeff ¼ ϵtðx̂ x̂þŷ ŷÞ þ ϵzẑ ẑ, where the relative effective transverse
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permittivity ϵt is found by averaging the transverse effective displacement current over the asso-

ciated electric field in a unit cell. (Here, the effective displacement current is defined as a quantity

that includes both displacement current in the dielectric slab and conduction current in the infini-

tesimally thin graphene sheet.) Then the relative effective permittivity parameter for transversely

polarized field is

ϵt ¼ ϵt 0 − jϵ 0 0t ¼ ϵd − j
σ

ωϵ0d
: (1)

Since an individual graphene sheet is infinitesimally thin, the conduction current is always

along the sheet, hence the permittivity experienced by z-directed electric field is not affected by

graphene, leading to ϵz ¼ ϵd. The relation in Eq. (1) implies that when the graphene sheet is

adequately inductive, in particular when σ 0 0 < −ωϵ0ϵdd, we obtain ϵ
0
t < 0 and in turn the iso-

frequency wavevector dispersion is hyperbolic,2 as demonstrated next. Let us consider plane

waves propagating inside the metamaterial with the spatial dependence e−jk:r where k ¼ kxx̂þ
kyŷþ kzẑ is the wavevector. A plane wave analysis is particularly useful in understanding the

multilayer’s response to sources because the radiation of a dipole inside or close to the meta-

material can be represented as a spatial spectral sum of plane waves. Due to the symmetry of

the multilayer metamaterial with respect to the z-axis, we will use kt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y

q

for denoting

the transverse wavenumber component, and in the following, kt is a real number kt representing

the spatial spectrum of TEz (electric field transverse to z) and TMz (magnetic field transverse to

z) waves. The z-directed wavenumber kz ¼ βz − jαz can assume complex values modeling

propagation and attenuation, accounting also for natural losses in the material constituents.

Accordingly, the wavevector dispersion of TEz and TMz waves inside the effective medium

is given as

k2z ¼ ϵtk
2
0 − k2t ; TEz; (2)

k2z ¼ ϵtk
2
0 −

ϵt

ϵd
k2t ; TMz; (3)

where k0 ¼ ω
ffiffiffiffiffiffiffiffiffi

μ0ϵ0
p

is the wavenumber in free space. When the losses are neglected (i.e., if

σ 0
→ 0) one would obtain purely real ϵt, hence kz [obtained via Eqs. (2) and (3)] assumes either

purely real values, denoting the propagating spectrum, or purely imaginary values, denoting the

evanescent spectrum. In this lossless case, hyperbolic dispersion occurs when ϵt < 0, and the HM

uniaxial medium allows for propagation (i.e., kz is a purely real number) of extraordinary waves

(TMz) with a large transverse wavenumber kt >
ffiffiffiffiffi

ϵd
p

k0; these waves with kt >
ffiffiffiffiffi

ϵd
p

k0 would be

otherwise evanescent (i.e., kz is purely imaginary) either in an isotropic dielectric with permit-

tivity ϵd, or in a generic uniaxial anisotropic media with ϵt > 0. This unusual phenomenon

implies that high kt spectrum emanating from sources, which would be evanescent in free

Fig. 1 Graphene–dielectric multilayer HM topology, modeled by a periodically loaded transmis-

sion line. The unit cell is indicated on the right and the graphene sheet is represented as a shunt

admittance, and we denote the reference plane for evaluating the Bloch impedance. At far- and

mid-infrared frequencies, TMz waves exhibit hyperbolic isofrequency wavevector dispersion.
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space, can be converted to propagating waves at HM interfaces. Ordinary waves (TEz) are, how-

ever, evanescent for any kt when ϵt < 0. On the other hand, when ϵt > 0 we have real kz only for

a limited spectrum of TMz waves with kt <
ffiffiffiffiffi

ϵd
p

k0, which leads to the elliptic isofrequency wave-

vector dispersion. Therefore the transition between hyperbolic to elliptic regimes is associated to

the condition ϵt ¼ 0.

Instead, for realistic lossy cases, kz is complex and the wavevector isofrequency dispersion

becomes elliptic-like and hyperbolic-like (for ϵ 0t > 0 and ϵ 0t < 0, respectively), as shown in the

examples in the next section. However, the interpretations regarding propagation of power are

still valid provided that losses are relatively small, and we will show that moderate propagation

losses are a major advantage of graphene-based HMs at far- and mid-infrared frequencies. When

applying EMA, the dispersion relation βz − kt is hyperbolic-like for kt >
ffiffiffiffiffi

ϵd
p

k0 when ϵ 0t < 0,

and it converges to the asymptote jβzj ≈ jϵ 0tkt∕ϵdj for large spatial wavenumber kt, i.e., the

βz − kt dispersion becomes linear, with a slope of j1þ σ 0 0∕ðωϵ0ϵddÞj.
To validate our EMA hypothesis, we obtain a more accurate representation of the wavevector

dispersion relation by employing Bloch theory35 for a periodically loaded transmission line

whose unit cell is illustrated in Fig. 1. When each graphene sheet is modeled with a complex

admittance Ys ¼ σ ¼ σ 0 þ jσ 0 0, the dispersion relation for TMz or TEz waves in the periodic

structure is cast in the form

cos kzd ¼ cos κddþ j
Ys

2
Zd sin κdd; (4)

where κd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵdk
2
0 − k2t

p

is the z-directed wavenumber of a wave inside the dielectric spacer,

ZTM
d ¼ κd∕ðωϵ0ϵdÞ and ZTE

d ¼ ωμ0∕κd are the characteristic wave impedances for TMz and

TEz waves, respectively. This relation in Eq. (4) is accurate for arbitrary d and kt, i.e., accounts

for transverse wavenumber dispersion. For the spectrum in which the dielectric layer’s thickness

is much smaller than the Bloch wavelength and the wavelength inside the dielectric itself

(jkzdj ≪ 1; jκddj ≪ 1), we can apply the following small argument approximations cos x ≈ 1 −

x2∕2 and sin x ≈ x, the dispersion relation in Eq. (4) simplifies to the one obtained via EMA in

Eqs. (2) and (3) using the same definitions for ϵt and ϵz.
25 As we will discuss thoroughly in

Sec. 3, Bloch theory proves that the propagating spectrum of TMz waves is limited due to the

periodicity, manifested by the Brillouin zone edge at which βz ¼ �π∕d, and therefore the propa-

gating spectrum in realistic HMs has an upper bound even in lossless cases. Nevertheless, the

Brillouin zone edge (i.e., βz ¼ �π∕d) is reached in general at the higher values of kt, provided

that the period d is extremely subwavelength.

In the following we report some aspects that demonstrate the merits of graphene-based HM:

Graphene conductivity σ ¼ σ 0 þ jσ 0 0 is tunable with chemical potential variation via electro-

static biasing, hence ϵ 0t is also tunable through negative or positive values at a fixed frequency.

This implies a possible transition between hyperbolic to elliptic wavevector dispersion. The

realization of HMs using graphene is also prone to graphene’s frequency response. For instance,

graphene sheets are mainly capacitive in mid- and near-infrared frequencies, because intraband

contributions in graphene are dominant, and the TMz surface modes on a single graphene layer

become on the improper Riemann sheet.16 On the other hand, at very low frequencies (tens of

GHz), the interband conductivity dominates leading to high losses. Hence a proper frequency

range for realizing hyperbolic dispersion extends from far-infrared up to low mid-infrared

frequencies. Furthermore, the dielectric thickness also plays a role on the frequency range of

HM design. As the dielectric thickness is increased, the frequency range of negative ϵ 0t shifts
to lower frequencies which are undesirable due to significant losses in graphene. Moreover,

thicker spacers require a larger biasing electrostatic potential between layers to achieve a mod-

erate chemical potential level in graphene sheets. On the other hand, when considering smaller

periods (in the range of several nanometers), it is expected that the graphene sheets are no longer

electronically isolated for such quantum-scale interspacing, and a tight binding model for gra-

phene layers must be taken into account in order to evaluate the conductivity of graphene

sheets.36,37 Therefore, for very small thicknesses, both EMA relation, reported in Eq. (3),

and transfer matrix analysis must be modified to account for quantum tunneling between gra-

phene sheets. In the next section, we will explore and provide illustrative examples for graphene-

based HM designs in terms of frequency response, losses, and tunability and we will assess the

validity of the EMA in predicting hyperbolic or elliptic dispersion regimes.
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3 Hyperbolic and Elliptic Wavevector Dispersion

Let us consider the multilayer stack depicted in Fig. 1, that comprises graphene sheets and

dielectric layers with ϵd ¼ 2.2 and thickness d. In our illustrations we only adopt positive values

for graphene chemical potential owing to the assumed reciprocity in the multilayers, and con-

sider a typical range for μc up to 0.5 eV in individual graphene sheets as suggested in Ref. 23. We

plot in Fig. 2 the relative transverse permittivity ϵt ¼ ϵ 0t − jϵ 0 0t versus frequency for various

chemical potential levels (μc ¼ 0, 0.25, and 0.5 eV) and dielectric thickness (d ¼ 100,

50 nm). First we observe that the zero-crossing frequency of ϵ 0t , where σ 0 0 ¼ −ωϵ0ϵdd is pri-

marily defined by the period d and it can be tuned via the chemical potential; and as a result the

frequency of transition between the hyperbolic and the elliptic dispersion regimes can be con-

trolled. For example, when d ¼ 100 nm (solid lines) in Fig. 2(a) we show that the frequency at

which ϵ 0t ¼ 0 shifts from 6.6 to 27.5 THz by increasing the chemical potential from 0 to 0.5 eV.

For d ¼ 50 nm, similar control of the frequency at which ϵ 0t ¼ 0 is observed by varying μc.

Moreover, when μc ¼ 0, we see that ϵ 0t ¼ 0 occurs at 8.7 THz for d ¼ 50 nm, a higher frequency

than the d ¼ 100 nm case whose zero-crossing frequency is around 6.6 THz. Graphene sheets

become capacitive at higher frequencies (σ 0 0 ¼ 0 denotes the transition from inductive to capaci-

tive, for instance, σ 0 0 ¼ 0 at ≃26 THz when μc ¼ 0 eV), however, its contribution to ϵ 0t becomes

negligible because of both ω in the denominator of Eq. (1) and graphene conductivity saturates to

πe2∕ð2 hÞ ≈ 60 μS with a very small imaginary part, and hence ϵ 0t approaches ϵd.
We show a relative variation in ϵ 0 0t when μc is increased, indicating a possible way to tune

losses. Note that when the frequency dependent transverse permittivity ϵ 0t turns positive and

becomes close to unity, satisfying σ 0 0 ≈ ωϵ0dð1 − ϵdÞ, for instance at 15.6 THz when

μc ¼ 0.25 eV and d ¼ 100 nm, a finite graphene–dielectric multilayer becomes almost trans-

parent to TEz and TMz plane waves in free space with kt ≪ k0, and all waves would travel with

kz ≈ k0, as seen from Eq. (3) when ϵ 0t ≈ 1.

In order to address some design considerations and tuning opportunities of graphene-based

HM, we show in Fig. 3(a) and 3(b), the real and imaginary parts of ϵt as a colormap versus μc and

d. We also indicate the ϵ 0t ¼ 0 contour denoting the transition between hyperbolic and elliptic

dispersion regimes. The selection of d determines the range of chemical potential levels in which

hyperbolic/elliptic dispersion occurs. For instance, when d ¼ 0.2 μm, a tuning range for hyper-

bolic dispersion starts at μc ¼ 0.1 eV, while for d ¼ 0.6 μm it begins at μc ¼ 0.35 eV; this illus-

trates the need for thinner dielectric spacers due to the limitations on the chemical potential

levels’ adjustability, up to 0.5 eV in this paper. On the other hand, the choice of a thinner dielec-

tric spacer, i.e., smaller d, effectively induces higher ϵ 0 0t , so the losses embodied in ϵ 0 0t are larger

at the same frequency and bias. For example, when d ¼ 0.1 μm, ϵ 0 0t ≃ 0.4 but when d ¼ 0.4 μm

we notice that ϵ 0 0t ≃ 0.2, with larger negative ϵ 0t in the former case than in the latter. Nonetheless,

a thin dielectric spacer allows feasible biasing by standard values of static potential.21 This dem-

onstrates a basic trade-off in graphene–dielectric HM design, between the tuning ranges, losses,

and effective negative values of ϵ 0t , and leads to a broad interpretation of the respective wave-

vector dispersion as described next.

(a) (b)

Fig. 2 Real and imaginary parts of the effective relative transverse permittivity ϵt ¼ ϵ 0t − jϵ 0 0t
for graphene-based multilayer HM for two possible designs with d ¼ 100 nm (solid lines) and

d ¼ 50 nm (dashed lines).
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The TMz wavevector dispersion diagrams according to EMA Eq. (3) and Bloch theory for the

multilayered medium Eq. (4) are shown in Fig. 4. Here, we report one of the two solutions of

Eqs. (3) and (4) for kz ¼ βz − jαz that corresponds to a wave whose Poynting vector is directed

toward the þz-direction, noting that the other root −kz is also a solution of Eqs. (3) and (4), not

reported for symmetry reasons. Accordingly, the attenuation constant αz has a positive sign asso-

ciated to the field decay (due to possible losses) along the þz-direction. On the other hand, for

the hyperbolic regime one observes βz < 0 indicating backward wave propagation because it

satisfies the backward wave condition βzαz < 0 as explained in Ref. 38, for kt >
ffiffiffiffiffi

ϵd
p

k0. In gen-

eral, for the elliptic case, when kt <
ffiffiffiffiffi

ϵd
p

k0 the valid kz ¼ βz − jαz solution with positive αz is the

one with βz > 0, indicating that waves under the elliptic dispersion regime are forward waves

because they satisfy the condition βzαz > 0. In Fig. 4(c) and 4(d), we show the dispersion dia-

grams in a much wider spatial spectrum than in Fig. 4(a) and 4(b) for the same cases. In the

reported cases, all with d ¼ 100 nm, βz curves in Fig. 4 keep either an overall hyperbolic or

elliptic shape due to limited losses. When μc ¼ 0 eV (and correspondingly ϵ 0t > 0) the medium

exhibits elliptic dispersion, moreover βz is nonzero for kt >
ffiffiffiffiffi

ϵd
p

k0 where αz exhibits a dramatic

increase, i.e., waves become mostly evanescent. On the other hand, when μc ¼ 0.25 or 0.5 eV,

(a) (b)

Fig. 3 Contour plot exploring the tuning capabilities of ϵt for graphene-based HM via chemical

potential μc and dielectric thickness d at 10 THz.

Fig. 4 Wavevector dispersion diagram of (a) βz and (b) αz versus k t (both normalized by k0) at

10 THz and d ¼ 100 nm. In (c) and (d) a wider spatial spectrum of the wavevector dispersion is

provided in order to identify k t values, where βz approaches the Brillouin zone edge (βz ¼ −π∕d )

denoted by a horizontal dotted line in (c). This happens when k t ≈ 52k0 and k t ≈ 38k0 for μc ¼
0.25 eV and μc ¼ 0.5 eV, respectively. Calculations are based on both EMA (dash-dotted lines)

and Bloch theory (solid lines).
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one has ϵ 0t < 0 leading to the hyperbolic dispersion. We emphasize that EMA is fully capable of

predicting the hyperbolic and elliptic wavevector dispersion regimes in the spatial spectrum

reported in Fig. 4(a) and 4(b) in perfect agreement with the Bloch wavenumber. In a much

wider range of the spatial spectrum kt as in Fig. 4(c) and 4(d) the EMA-based normalized wave-

number βz∕k0 starts to deviate from Bloch theory. Bloch theory predicts the band edge where βz
approaches −π∕d and αz exhibits a dramatic increase, denoting a bandgap. However, EMA

assumes infinite growth of βz∕k0 following the asymptotic linearized βz − kt relation, given by

βz ≈ −ϵ 0tkt∕ϵd when kt ≫ k0. For higher negative values of ϵ
0
t (corresponding to higher μc) the

Brillouin zone band edge is met at smaller kt due to steeper βz − kt curves, as seen from Fig. 4(c)

(ϵ 0t ≃ −1 and ϵ 0t ≃ −11 for μc ¼ 0.25 and 0.5 eV). Although the effective permittivity parameters

are important for fast characterization of graphene–dielectric composites and providing physical

interpretation of the evolution from elliptic to hyperbolic dispersion, they do not account for

transverse wavenumber dispersion.31,39 Accordingly, EMA predicts an indefinite propagating

spatial spectrum in HMs (that is indeed limited by Brillouin zone edge according to Bloch

model), and consequently overestimates the LDOS and the near-field power absorption in HMs

as already discussed in Refs. 2–4, 25.

We provide in Fig. 5 both the Bloch impedance of graphene–dielectric multilayers at the

reference plane shown in Fig. 1, with d ¼ 100 nm. In addition, we report the effective wave

impedance of the metamaterial obtained via EMA for TMz plane wave, Zeff ¼ kz∕ðωϵ0ϵtÞ
where kz is evaluated using Eq. (3) (see Ref. 40). The two impedances are close to each other

for kt ¼ 0 case [Fig. 5(a)] whereas for kt ¼ 5k0 the effective impedance shows a noticeable

difference for both real and imaginary parts from the Bloch calculations. Nonetheless, the effec-

tive impedance provides a good prediction regarding the transition frequency between propa-

gating and evanescent spectra. Moreover, we notice that the real part of the impedance is

negligible at low frequencies in Fig. 5(a), whereas it peaks at the frequency where ϵ 0t ¼ 0.

From Fig. 6(a) one can see that after ϵ 0t turns positive, the impedance becomes dominantly real,

with a relatively small reactive part, owing to the presence of a mainly propagating plane

wave in elliptic dispersion regime for kt ¼ 0. On the contrary for kt ¼ 5k0 case, at lower frequen-

cies, the wave propagates in the hyperbolic dispersion regime while having ϵ 0t < 0, and the

Fig. 5 Real and imaginary parts of the Bloch (solid lines) and effective (dashed lines) impedance

of graphene–dielectric multilayers with d ¼ 100 nm when μc ¼ 0.5 eV for (a) k t ¼ 0 and

(b) k t ¼ 5k0.

(a) (b)

Fig. 6 (a) Real and (b) imaginary parts of the Bloch impedance for d ¼ 100 nm and k t ¼ 0.

Othman, Guclu, and Capolino: Graphene–dielectric composite metamaterials: evolution from elliptic. . .

Journal of Nanophotonics 073089-7 Vol. 7, 2013



impedance real part is relatively large, as depicted in Fig. 5(b), whereas the impedance becomes

almost purely reactive after ϵ 0t turns positive, denoting a mainly evanescent wave. At higher

frequencies, the impedance for kt ¼ 0 case becomes matched to free space at ≈37 THz at

which ϵ 0t ≈ 1 as shown in Fig. 6(a). At much higher frequency ranges, the impedance approaches

the impedance in isotropic lossless dielectric where ϵt ≈ ϵd in both Fig. 5(a) and 5(b). For clari-

fication, we report the Bloch impedance as a color plot showing the dependance on frequency

and chemical potential in Fig. 6, where the impedance peaking is observed as a clear manifes-

tation of the TENZ condition, as will be demonstrated in Sec. 4. Based on the conclusions in

Ref. 25, in order to guarantee the validity of EMA for each spectral component of propagating

plane waves with kt < k0, the dielectric thickness should be electrically small, i.e., d < 0.02λ0 for

accurate representation of the impedance and wavevector using the homogenized model

derived above.

We report in Fig. 7 the frequency dependance of the quantity jβz∕αzj where αz and βz are

calculated by Bloch theory, for graphene–dielectric multilayers with d ¼ 100 nm. The ratio

jβz∕αzj constitutes a figure of merit for understanding if a wave is mainly propagating or attenu-

ating. The horizontal white dash-dotted line marks the transition frequency from hyperbolic to

elliptic dispersion (the latter occurring always above the transition frequency) and the transition

happens when the real part ϵ 0t crosses zero and turns positive causing the elliptic regime. For

kt <
ffiffiffiffiffi

ϵd
p

k0, βz is relatively very small compared to αz, which implies mainly evanescent spec-

trum (purely evanescent in the absence of losses), for hyperbolic dispersion frequencies

ω < −σ 0 0∕ðϵ0ϵddÞ. However, for kt >
ffiffiffiffiffi

ϵd
p

k0, wavevector dispersion has a hyperbolic-like

shape, with attenuation αz moderately low (and slightly increasing as seen in Fig. 7) due to

the losses in graphene, and therefore jβz∕αzj exhibits an overall increase where it reaches a maxi-

mum value ≃ 130 as in μc ¼ 0.5 eV yielding a wide propagating spectrum
ffiffiffiffiffi

ϵd
p

< kt∕k0 < 40 at

10 to 20 THz. Notice that for even larger kt, the propagation constant βz tends to −π∕d while αz
experiences an abrupt increase, as shown in Fig. 4(d), denoting the beginning of a strong evan-

escent spectrum. In the elliptic dispersion regime, occurring at higher frequencies such that

ω > −σ 0 0∕ðϵ0ϵddÞ, the trend for βz and αz is reversed. Elliptic dispersion arises at 6.6 THz

for μc ¼ 0 eV, as depicted in Fig. 7, and the propagating spectrum with kt <
ffiffiffiffiffi

ϵd
p

k0 is allowed

in the composite multilayer. For higher chemical potentials, for example μc ¼ 0.5 eV, hyper-

bolic wavevector dispersion is supported for frequencies up to 27.4 THz, and the dispersion

becomes elliptical thereafter. Notice that at frequencies less than 1 THz, waves poorly propagate

due to higher losses in graphene sheets, i.e., wave propagation has a low figure of merit. On the

other hand, elliptic dispersion regime, occurring for frequencies greater than 30 THz, has small

attenuation constant for kt <
ffiffiffiffiffi

ϵd
p

k0 due to relatively low loss in graphene, and thus a high figure

of merit jβz∕αzj > 150. Note that the lowest operational frequency for hyperbolic dispersion

regime with high jβz∕αzj is limited by graphene losses, whereas the highest frequency is tunable

by the chemical potential.

We now examine how the figure of merit jβz∕αzj varies versus the transverse wavenumber kt,

assuming different design values for the dielectric spacing d. In Fig. 8(a) we observe jβz∕αzj at
10 THz varying d, for μc ¼ 0 eV, where only elliptic dispersion regime is observed for any

(a) (b)

Fig. 7 The figure of merit jβz∕αz j versus frequency and spatial wavenumber k t , for both hyper-

bolic and elliptic regimes. Two chemical potential levels are considered: (a) μc ¼ 0 eV and

(b) μc ¼ 0.5 eV.
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thickness d considered. However, hyperbolic dispersion is supported when appropriate chemical

potential is achieved, as shown in Fig. 8(b) for μc ¼ 0.5 eV. In this latter case, when d ¼ 1 μm,

TMz waves are mainly evanescent for large transverse wavenumber kt >
ffiffiffiffiffi

ϵd
p

k0, irrespective of

the chemical potential levels reported here. Consequently, a typical dielectric thickness in the

range of 50 to 100 nm is deemed appropriate to utilize in graphene–dielectric multilayers for

tunable HM designs.

4 Transverse Epsilon-Near-Zero Condition

Finally, we describe an interesting frequency region at which ϵ 0t changes sign and it assumes

values very close to zero. We denote this regime as TENZ, which is manifested under the con-

dition σ 0 0 ≈ −ωϵ0ϵdd, i.e., when a graphene sheet’s inductive susceptance compensates for the

small capacitive susceptance of each dielectric layer. We show in Fig. 9(a) and 9(b), the level of

biasing potential (μc) required to achieve the TENZ condition at a given frequency and the cor-

responding ϵ 0 0t , respectively. We note that the required bias voltage for TENZ at a certain fre-

quency decreases for thinner unit cells, i.e., smaller d, however, losses become larger due to

increased graphene sheet density, especially at low frequencies. For example when d ¼ 50 nm,

we require μc to be tuned to 0.1 eV in order to achieve the TENZ condition at 15 THz, and we

have ϵ 0 0t ≈ 0.1, whereas if the metamaterial is designed with d ¼ 200 nm, the amount of bias

required to realize TENZ condition at the same frequency is about 0.2 eVand the losses are lower

ϵ 0 0t ≈ 0.02. In view of such observations one can easily identify the tuning ranges and show that

for smaller unit cell thickness the tuning range is larger but one must tolerate the losses in such

design.

(a) (b)

Fig. 8 The figure of merit jβz∕αz j versus dielectric thickness d and spatial wavenumber k t , at

10 THz, for both hyperbolic and elliptic regimes. Two chemical potential levels are considered:

(a) μc ¼ 0 eV and (b) μc ¼ 0.5 eV.

(a) (b)

Fig. 9 (a) The zero-crossing frequency of ϵ 0t evaluated according to EMA f ϵ 0
t
¼0 ¼ σ 0 0∕ð2πe0eddÞ

varying the chemical potential, for various thicknesses d . (b) Imaginary part of the transverse per-

mittivity ϵ 0 0t evaluated at f ϵ 0
t
¼0.
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When considering wave propagation at that particular condition, and if losses are to be

neglected without compromising the generality of the conclusions, the quasistatic approximation

derived from EMA Eq. (3) reveals a βz − kt dispersion relation with a very small slope, i.e., the

dispersion curve is almost flat. However, at higher kt the EMA approximations become inac-

curate, and βz grows until it reaches the Brillouin zone edge −π∕d. The accurate wavevector

dispersion of TMz waves according to Bloch theory, using Eq. (4) and ZTM
d ¼ κd∕ðωϵ0ϵdÞ, is

given by

cos kzd ¼ cos κd d þ j
ðσ 0 þ jσ 0 0Þ

2

κd

ωϵ0ϵd
sin κdd: (5)

The condition ϵ 0t ≈ 0 is satisfied when ωϵ0ϵdd ≈ −σ 0 0, and it leads to

cos kzd ≈ cos κddþ κdd

2
sin κddþ j

�

�

�

�

σ 0

2σ 0 0

�

�

�

�

κdd sin κdd: (6)

This latter dispersion equation is further simplified under the small argument approximation,

jκddj ≪ 1 as

cos kzd ≈ 1þ jðκddÞ2
�

�

�

�

σ 0

2σ 0 0

�

�

�

�

þOðjκddj4Þ: (7)

The imaginary term in Eq. (7) is negligible since jðκddÞ2σ 0∕2σ 0 0j ≪ 1 for graphene–dielec-

tric multilayer with a subwavelength period, and, therefore, one simply obtains kz ≈ 0, far

enough from the Brillouin zone edge. Therefore, the TENZ condition ϵ 0t ≈ 0, implies a flat iso-

frequency dispersion diagram with small kz over a wide range of kt. We report in Fig. 10(a) and

10(b) the isofrequency wavevector dispersion at four different frequencies, at which we show

hyperbolic dispersion (10 THz with ϵt ≃ −1.01 − j0.09), elliptic dispersion (15 THz with

ϵt ≃ 0.84 − j0.05), and the TENZ transitional state (at 11.9 and 12 THz, with ϵt ≃

−0.001 − j0.075 and ϵt ≃ 0.028 − j0.072, respectively), where both βz and αz for all cases

are normalized by k0. In Fig. 10(a) one can observe that the slope of the βz − kt dispersion

is reduced when jϵ 0t j is much smaller than unity, as also predicted analytically in Eq. (7),

still preserving limited values of the attenuation constant αz. Note that the elliptic regime (at

15 THz) also shows a very low slope of the βz − kt dispersion, however the attenuation constant

αz is large, because waves are mainly evanescent for large kt. Fig. 10(a) shows that the TENZ

regimes are responsible for almost flat propagation constant (jβz∕k0j < 1) up to kt ≃ 10k0, with a

moderately low attenuation constant αz. However, for larger kt, we observe that βz experiences a

sharp increase toward the Brillouin zone edge, together with an increase of the attenuation con-

stant αz. In Fig. 10(b) we observe that the attenuation constant exhibits significant difference for

(a) (b)

Fig. 10 Isofrequency wavevector dispersion in the TENZ, hyperbolic, and elliptic regimes, show-

ing both (a) βz and (b) αz calculated by Bloch theory at four different frequencies (10, 11.9, 12,

15 THz), when μc ¼ 0.1 eV.

Othman, Guclu, and Capolino: Graphene–dielectric composite metamaterials: evolution from elliptic. . .

Journal of Nanophotonics 073089-10 Vol. 7, 2013



HM and TENZ regimes that requires some important consideration. Although the two TENZ

cases have smaller ϵ 0 0t than the hyperbolic one (at 10 THz), they experience a higher attenuation

than HM case for kt >
ffiffiffiffiffi

ϵd
p

k0, whereas the opposite relation is valid for kt <
ffiffiffiffiffi

ϵd
p

k0. Therefore,

we can observe the two trends: on one hand TENZ allows flatter βz − kt relation and a wider kt
spectrum than a fully hyperbolic regime, and on the other hand the hyperbolic regime exhibits

smaller attenuation constant than the TENZ cases. Note also that the TENZ is a transitional state

toward elliptic dispersion, at which the attenuation αz becomes even higher for kt >
ffiffiffiffiffi

ϵd
p

k0, and

forward waves (βzαz > 0) can propagate for kt <
ffiffiffiffiffi

ϵd
p

k0 with low attenuation constant.

It has been shown in Refs. 41, 42 that isotropic epsilon-near-zero (IENZ) material inside a

waveguide supporting TE modes is able to tunnel electromagnetic waves. Here, we elaborate on

TENZ materials at far- and mid-infrared frequencies designed using graphene–dielectric

multilayers and explore their capabilities of tunneling electromagnetic waves.43 Consider an

electrically thin slab of thickness h made by either a TENZ (ϵt ≈ 0, ϵz ≠ 0) or an IENZ

(ϵt ¼ ϵz ¼ ϵr ≈ 0) material in free space. Under TEz wave incidence, TENZ and IENZ slabs

provide an identical response and the reflection from such slabs can be set arbitrarily small

by decreasing their thickness, as reported in Ref. 44. However, for TMz oblique plane

waves impinging on a lossless IENZ semi-infinite material, total reflection occurs for angles

greater than the critical angle kct ∕k0 ¼ sin θci ¼
ffiffiffiffi

ϵr
p

≈ 0. For an electrically thin IENZ slab,

transmission of TMz plane wave takes place for small angles of incidence (0 < θi < θci ,

where θci is considerably small) due to evanescent waves exhibiting frustrated multiple reflec-

tions at the slab interfaces. By including the effect of losses in IENZ slabs, absorption and local

electric field enhancement were reported for specific incident angles θi > θci in Ref. 45. Instead,

we provide here the TMz reflection and transmission coefficients (RTENZ
TM and TTENZ

TM ) for a thin

TENZ slab

RTENZ
TM ¼ ζ

2Z0 þ ζ
; TTENZ

TM ¼ 2Z0

2Z0 þ ζ
; (8)

where

ζ ¼ jhðk20 − k2t ∕ϵzÞ
ωϵ0

; Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 − k2t
p

ωϵ0
: (9)

Therefore upon having a thin slab of TENZ material, ζ can be made small enough (due to the

existence of finite, nonvanishing ϵz) in order to observe complete transmission for oblique TMz

waves with a wide range of incidence angles. This is in contrast to what happens for the IENZ

case with ϵz assuming near-zero values, which implies that transmission only occurs around

kt ≈ 0. We show in Fig. 11 the reflection and transmission at 37 THz, by a TENZ material

with ϵt ¼ −0.001 and ϵz ¼ 2.2, and by an IENZ material with ϵr ¼ −0.001, assuming in

both cases negligible losses. It is clear that the IENZ material exhibits a very narrow transmission

(a) (b)

Fig. 11 Different characteristics of TMz plane wave (a) reflection and (b) transmission from a thin

slab made by a TENZ material (solid lines) and IENZ material (dashed lines) at 37 THz. Material

losses in this example are assumed negligible. The TENZ material exhibits much wider and flatter

parameters varying angle of incidence than the IENZ material.
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around θi ≈ 0° only due to evanescent waves (permittivity has a negative value) tunneling

through the subwavelength slab,43,45 and the transmission window dramatically diminishes as

ϵr approaches zero or h increases, in accordance with the trend observed in Ref. 44. On the

contrary, the TENZ slab exhibits large and stable transmission over a wide range of incidence

angles, inherently complying with the flat wavevector dispersion relation in Eq. (7). Also, one

should point out that the TMz transmission in TENZ materials occurs up to much larger inci-

dence angles than TEz transmission, which is identical to an IENZ slab’s TE transmission dis-

cussed in Ref. 44. In principle the different properties illustrated in the preceding simple example

reveal the advantage of TENZ material over conventional IENZ material in enhancing transmis-

sion under oblique TMz plane wave incidence. For a more practical comparison, we report

in Fig. 12 the transmission and reflection for two possible TENZ and IENZ materials at mid-

infrared. We consider a TENZ made of graphene–dielectric multilayer biased with μc ¼ 0.5 eV,

accounting for losses, and having total thickness of h ¼ Ndwhere d ¼ 50 nm, at 37 THz. Under

these conditions EMA estimates ϵt ≈ −0.001 − j0.031 as seen from Fig. 2. The IENZ material is

assumed to be a heavily n-doped InAsSb semiconductor,46 which is engineered via doping to

exhibit low loss IENZ in this frequency range, i.e., ϵInAsSb ≈ −0.0001 − j0.038 at ≈37 THz

(experimentally shown in Ref. 46). In graphene-based TENZ material we observe a stable trans-

mission with respect to the angle of incidence, and it is not affected much by losses in graphene

as deduced from the comparison of the lossy case in Fig. 12 and the lossless case in Fig. 11. The

InAsSb thin slab, however, exhibits a narrow angular range of transmission with higher sensi-

tivity to losses, i.e., as the imaginary part of ϵr is increased, angular transmission is slightly

broadened, especially as h increases. This indicates an advantage of using the graphene-

based TENZ materials in tuning and enhancing TMz plane wave transmission for wide angles

of incidence. On the other hand, losses in natural materials or engineered metamaterials that

exhibit IENZ behavior degrades the performance considerably, and may require integration

of gain materials as in Ref. 45.

5 Conclusion

We have reported an HM implementation at far- and mid-infrared frequencies that comprises

graphene–dielectric layers, and showed that EMA describes the hyperbolic wavevector

dispersion as well as the transition to elliptic regime for specific conditions. Hyperbolic

dispersion have manifested mainly at far-infrared frequencies, where we have investigated

the propagating spectrum properties and discussed the effect of losses. We also showed that

hyperbolic and elliptic dispersion regimes are associated to backward and forward wave propa-

gation, respectively. We have explored the tuning opportunities and design considerations of the

structure, as well as the translation from hyperbolic to elliptic wavevector dispersion, and dem-

onstrated a transitional state, TENZ, at which the wavevector dispersion diagram becomes very

(a) (b)

Fig. 12 TMz plane wave (a) reflection and (b) transmission from a slab made by graphene–dielec-

tric layers with d ¼ 50 nm and h ¼ Nd (solid lines, using transfer matrix analysis) and an isotropic

InAsSb slab of thickness h (dashed lines) at 37 THz.

Othman, Guclu, and Capolino: Graphene–dielectric composite metamaterials: evolution from elliptic. . .

Journal of Nanophotonics 073089-12 Vol. 7, 2013



flat. Furthermore, we have demonstrated that a thin slab made by a TENZ material becomes

transparent to both TEz and TMz plane wave, with the interesting characteristic that the trans-

mission and reflection of TMz waves are stable with respect to the incident angle, in contrast to

what happens in conventional IENZ materials. This property can be utilized in designing ultra-

thin films for tunable infrared applications.
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