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Graphene-enabled electrically switchable
radar-absorbing surfaces
Osman Balci1, Emre O. Polat1, Nurbek Kakenov1 & Coskun Kocabas1

Radar-absorbing materials are used in stealth technologies for concealment of an object from

radar detection. Resistive and/or magnetic composite materials are used to reduce the

backscattered microwave signals. Inability to control electrical properties of these materials,

however, hinders the realization of active camouflage systems. Here, using large-area

graphene electrodes, we demonstrate active surfaces that enable electrical control of

reflection, transmission and absorption of microwaves. Instead of tuning bulk material

property, our strategy relies on electrostatic tuning of the charge density on an atomically thin

electrode, which operates as a tunable metal in microwave frequencies. Notably, we report

large-area adaptive radar-absorbing surfaces with tunable reflection suppression ratio up to

50 dB with operation voltages o5V. Using the developed surfaces, we demonstrate various

device architectures including pixelated and curved surfaces. Our results provide a significant

step in realization of active camouflage systems in microwave frequencies.
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M
icrowaves are part of the electromagnetic spectrum with
wavelengths of from one millimetre to a metre. Radar
and communication technologies use passive metallic

surfaces to guide microwaves in the free space and resistive
surfaces to absorb them1,2. Although the source of microwaves
can be controlled by electrical means, active control of
microwaves in the free space has been a challenge due to the
requirement of large-area adaptive surfaces in microwave
frequencies3–8. Microwave analogues of smart optical windows
that enable electrically tunable microwave reflection and
transmission have been the subject of active research for many
decades3,7,9. The key challenge is the ability to tune the
interaction between microwaves and matter by electrical means.
These interactions are mainly governed by dielectric response
of the materials. Materials with tunable conductivity9,10,
permittivity11 or permeability12,13 have been exploited for
adaptive surfaces. Instead of controlling the bulk material
properties, here we propose to control microwaves by tuning
the density of free charges on a surface. Large-area, the two-
dimensional crystal of carbon, graphene, allows us to test this
approach and fabricate a new class of adaptive microwave
surfaces14,15. One can confidently argue that an atomically thin
coating has negligible effects on the reflection of microwaves from
a surface unless there are abundant free charges on it. Through
electrostatic doping, we show that atomically thin layers can be
used as a switchable radar absorbing surfaces. Graphene and
carbon nanotube-based composite materials have been used as
resistive materials to absorb microwaves; however, to our
knowledge they have not been used for active microwave
surfaces16–27.

Metals do not yield tunable electrical conductivity via external
electric fields. This drawback prevents the uses of metals for

adaptive microwave surfaces. Semiconductors can yield tunable
surface charge density by means of metal-oxide semiconductor
structures28; however, the metallic gate electrode covers the
surface of semiconductor and screens the accumulated charges.
Heating or illuminating a bare semiconductor surface with a light
source can generate free carriers; but, these techniques are not
practical for realistic device configurations. Electrically tunable
materials such as ferroelectric materials29,30 and composite
polymers31,32 have been studied for possible active microwave
surfaces. Inability to fabricate these materials over large area and
weak modulation of dielectric properties prevents realization of
adaptive microwave surfaces. Another approach is to use
distributed active circuit elements (diodes, transistors or photo-
switches) integrated with passive metallic structures33,34. External
bias voltage or light source applied on these distributed circuit
elements changes the effective length of metallic structures, which
yield limited control over the reflectivity of the surface. Moreover,
micro-electro-mechanical devices and mechanical actuators have
been used to control microwaves by mechanical means35,36.
Recently, graphene provides new perspective to realize adaptive
surfaces. The ability to control charge density on graphene
enables new active terahertz devices for various applications
such as switches37, modulators38–42, metamaterials43–45,
plasmonics44,46 and cloaking43,47. A review by Sensale–
Rodrigues et al.48 summarizes these recent developments in
reconfigurable terahertz optoelectronics. The physical mechanism
of these active THz devices is based on controlling intraband
transitions of graphene.

In this paper, we implement the same idea to microwave
frequencies to realize switchable radar-absorbing surfaces. Owing
to the centimetre scale wavelength, adaptive microwave surfaces
require challenging growth and device considerations. We show
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Figure 1 | Graphene capacitors as broadband adaptive surfaces. (a) Schematic representation of the graphene-based adaptive microwave surfaces.

The device consists of two large-area graphene electrodes transfer printed on a microwave-transparent PVC support and electrolyte between them.

(b) Cross-sectional view of the device. Application of a voltage bias polarizes the electrolyte (ionic liquid) and forms ionic double layers on the

graphene–electrolyte interface. (c) Photograph of the fabricated device. (d) Representation of the electronic band structure of graphene and electronic

transitions that define the broadband optical response. (e) Calculated broadband absorption of a single-layer graphene with different sheet resistance

for the electromagnetic spectrum covering from the visible to microwave frequencies.
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that large-area graphene capacitors eliminate these challenges and
provide electrically reconfigurable surfaces, which would function
as electrically switchable radar-absorbing surfaces. Monoatomic
thickness, tunable high mobility charged carriers together with
the large-area synthesis of graphene provide unique configuration
for the realization of the adaptive microwave surfaces.

Results
Adaptive microwave surfaces. Figure 1a shows a schematic
representation of the device that functions as an adaptive
microwave surface. The working principle of the device is based
on the electrostatic tuning of high mobility carriers on graphene
electrodes without using metallic structures. The device consists
of two large-area graphene electrodes on flexible polymer support
and electrolyte medium between them. The cross-sectional view
of the device is shown in Fig. 1b. Application of a bias voltage
between the graphene electrodes polarizes the electrolyte and
forms ionic double layers on the graphene–electrolyte interface
with opposite polarizations. These ionic double layers generate
tunable high-mobility free carriers (electrons and holes) on the
graphene electrodes that can respond to microwaves. Reflection
due to the electrolyte is negligible, because the ions of the elec-
trolyte have very low mobility; therefore they cannot respond to
the electric field of microwaves (Supplementary Table 1). To
fabricate this device, we synthesized large-area graphene
(20 cm� 20 cm) by chemical vapour deposition on ultra-smooth
copper foils and then transferred it on a microwave-transparent
and flexible polyvinyl chloride substrate (PVC, thickness of
70 mm, see Supplementary Fig. 1). We attached two graphene-
coated PVC films (graphene-coated sides are facing to each other
and separated by 50-mm thick spacer) and filled the gap between
graphene electrodes with ionic liquid (diethylmethyl(2-methox-
yethyl)ammonium bis(trifluoromethylsulfonyl)imide, [deme]
[Tf2N]), which works as an electrolyte with a wide electro-
chemical window of ±3.5V. Figure 1c shows the fabricated
device with dimensions of 20 cm� 20 cm. This simple device
architecture yields an unprecedented ability to control charge
density on large-area graphene electrode, which operates as a
tunable metal. Electrostatic and electrochemical mechanisms are
used to store charges at the electrode of the supercapacitors. In
our devices, we used only electrostatic storage to prevent detri-
mental effects on single-layer graphene. Redox reactions can
damage the electrical continuity of the single-layer graphene.
Electrochemical storage can be used for multilayer graphene
electrodes; however, multilayer graphene is not suitable for our
purpose due to the lack of efficient modulation.

Notably, tunable charge density on large-scale graphene
enables us to control light–matter interaction in a very
broad spectrum ranging from the visible to microwave frequen-
cies42,48–51. Figure 1d illustrates the interband and intraband
electronic transitions of graphene that define this broadband
optical response. We calculated the optical absorption of single-
layer graphene with different charge densities over a very broad
spectrum covering from the visible to microwave (Fig. 1e). We
can classify this spectrum into two sections based on interband
and intraband transitions. The optical response in the visible and
near-infrared is defined by the interband transitions, which
provide a constant optical conductivity, and yield 2.3%
broadband optical absorption and negligible reflection. This
small absorption can be blocked via Pauli blocking that yields
step-like optical transmission spectra with a cutoff at 2EF. To
obtain the charge density on graphene electrodes, we measured
the Fermi energy from the optical transmission spectra
(500–1,100 nm range, Supplementary Figs 2 and 3). Fermi
energy of graphene electrodes scales with the charge density as

EF ¼ ‘ uF
ffiffiffiffiffiffi

pn
p

where vF is the Fermi velocity (1.1� 108 cm s� 1)52

and n is the charge density. As ionic liquid electrolyte yields very
efficient electrostatic doping, the Fermi energies increase up to
1 eV (Supplementary Fig. 2) at a bias voltage of 5V. The extracted
charge density on graphene electrodes varies between 0.5� 1013

to 5.5� 1013 cm� 2. The associated Fermi energies vary between
0.2 and 1 eV. For longer wavelengths, however, interband
transitions are blocked due to unintentional doping; therefore,
the long-wavelength optical response is due to intraband
transitions, which yield frequency-dependent Drude-like optical
conductivity50 of s(o)¼ sDC/(1� iot), where sDC is the
low-frequency conductivity, o is the angular frequency of
electromagnetic wave and t is the electron scattering time. By
tuning the low-frequency conductivity of graphene through
electrostatic doping, we can obtain significant change in the
absorption (as large as 50%) in the microwave frequency. This
large broadband absorption has been predicted for ultrathin
conducting films53 and graphene42. The absorption due to
intraband transitions rolls down at terahertz frequencies
(ft � 1

t
) due to the electron scattering time of graphene. The

electron relaxation time for CVD graphene is around 0.2 ps
(ref. 54), which corresponds a cutoff frequency of 5 THz.
Therefore, we expect that the response of graphene
supercapacitors to be flat in the microwave frequencies and
rolls down in the THz frequencies38,42.

We measured the microwave reflection and transmission from
our device at a frequency of 10.5GHz (wavelength of 2.8 cm). We
used a TE-polarized microwave transmitter with a power of
15mW and two receivers (Fig. 2a). We applied an external
voltage bias and measured the variation of the reflected (Fig. 2b)
and transmitted (Fig. 2c) microwave power. At a bias voltage of
0V, only 1.8% of the incident beam is reflected from the device.
This small reflection is due to the residual charges and/or
unintentional doping on the graphene electrodes. The PVC
substrate and the ionic liquid have negligible microwave
reflection (o0.1%, Supplementary Table 1). As we increase the
bias voltage, the reflection increases up to 20% at a bias voltage of
3.5 V. As the charge density on the capacitor increases, the
transmitted power decreases from 76 to 36% because of enhanced
reflection and absorption. The extracted microwave absorption
due to Joule heating (A¼ 1�T�R where T and R refer
transmitted and reflected power) is given in Fig. 2d. The
microwave absorption of the graphene capacitor can be tuned
between 21 and 45% of the incoming microwaves for the bias
voltage range of 0–3.5 V. We observed a slight asymmetry in
modulation of microwaves at positive and negative voltages likely
due to different ionic strength of anions and cations of the
electrolyte. The sheet resistance of the graphene electrodes is a
practical parameter to understand the microwave response of this
device. Figure 2e shows the variation of the total resistance of the
device as a function of bias voltage. The total resistance (RTþRB,
T and B represents the top and bottom electrodes) reaches the
peak value of 8 ko at the charge neutral point (� 0.1V) and
decreases down to 2.7 kO at a bias voltage of 3.5 V. After
extracting the contact resistance (RcB0.8 kO, Supplementary
Fig. 4), we plot the measured values of the reflection, transmission
and absorption of microwaves at 10.5GHz frequency, against the
sheet resistance of the graphene electrode (Fig. 2f). We also
observed small hysteresis when we switched the scan direction
(Supplementary Figs 5 and 6). There are two mechanisms that
cause the observed hysteresis in our devices. The first mechanism
is the formation of electrical double layers and slow response of
the electrolyte due to low mobility of the ions in the electrolyte.
Hysteresis during charging and discharging is a common
phenomenon in supercapacitors. The second mechanism is the
electrochemical doping of graphene electrodes. When we apply
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relatively large voltage, which is close to the electrochemical
window, the small leakage current (Supplementary Fig. 7) induces
chemical doping on graphene, which shifts the Dirac point. The
shift in Dirac point during the voltage scan appears as a hysteresis
in the microwave measurements. To get more insight, we
calculated the coefficient of reflection and transmission of
graphene electrodes for TE-polarized electromagnetic waves
by solving the Maxwell’s equations for the capacitor geometry
(two graphene electrodes and ionic liquid between them, see
Supplementary Note 1). We modelled graphene as a Drude metal
with a frequency dependent conductivity s(o)¼ sDC/(1� iot),
where sDC is the low-frequency conductivity, o is the angular
frequency of electromagnetic wave and t is the electron scattering
time (150 fs)55. At 10.5GHz, the conductivity is very close to sDC

obtained from the transport measurements. The results of the
electromagnetic model is plotted in Fig. 2f (line plot) against the
sheet resistance of the graphene layers. As the sheet resistance of
graphene increases, the microwave reflection drops sharply,
whereas the microwave transmission increases. Interestingly, the
microwave absorption reaches a maximum of 50% at the sheet
resistance of 430O and drops gradually as the sheet resistance
increases further. We observed a good agreement between the
experiment and the electromagnetic model. The slight deviation
at large sheet resistance (around Dirac point) is likely because of

inhomogeneous charge density on large-area graphene owing to
the charge puddle formation56. The variation of the microwave
reflection can be understood by a simple transmission line model
(Supplementary Note 2). As the sheet resistance of graphene
varies, the characteristic impedance of the surface changes. The
dynamic range of the microwave surface is limited by the two
main effects: (1) the electrochemical window of the electrolyte,
which limits the maximum charge density on graphene
electrodes, (2) the unintentional doping on the graphene, which
limits minimum charge density. However, due to the lack of a
band gap, there is always some degree of charges on graphene
electrodes at unbiased case. A graphene-like material with
electronic band gap (carbon nanotube networks, MoS2 or other
2D materials) could provide better control of the minimum
charge density. Thermal effects due to the absorbed microwaves
on graphene electrodes is another limiting factor for high
microwave powers. The thermal effects can be optimized by
controlling the substrate material and the geometry.

To probe the switching characteristics of the active microwave
surface, we monitored the reflected and transmitted microwave
power as the bias voltage varies repeatedly between 3 and 0V.
Figure 2g,h shows the time trace of the reflected and transmitted
power, respectively. The graphene capacitor behaves like a
nonlinear RC circuit (Supplementary Figs 12–14). The response
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Figure 2 | Microwave characterization of the adaptive microwave surfaces. (a) Experimental set-up used for the microwave measurements. A microwave

transmitter with a power of 15mW at 10.5GHz and two receivers were used to measure the reflected and transmitted microwave power. (b,c) Measured

intensity of the reflected and transmitted microwaves plotted against the bias voltage. (d) The extracted microwave absorption of the graphene capacitor

as a function of bias voltage. (e) Measured resistance of graphene electrodes (including contact resistance) as a function of bias voltage. (f) The

experimental (scattered plot) and calculated (solid lines) microwave reflection, transmission and absorption are plotted against sheet resistance.

(g,h) Real-time microwave reflection, and transmission, through the graphene capacitor during periodic charging and discharging. The RC response

time of the capacitor is determined by the varying resistance of the graphene electrodes and the total capacitance of the device. The extracted

response time of graphene capacitor with dimensions of 8�8 cm2 is around 300ms.
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time of the device is characterized by the resistance of graphene
electrodes and the capacitance of the device. We extracted the
response time of 300ms for a device with dimensions of
8� 8 cm2. This number agrees well with averaged time constant
t¼RC¼ 330ms calculated from the average capacitance
(B100 mF) and resistance (B3.3 kO sq� 1) obtained from the
transport measurements. The time constant of the device can be
reduced by increasing the charge mobility of graphene electrodes
(that is, increasing the grain size of graphene flakes) or ionic
mobility of the electrolyte. Using an electrolyte with high ionic
conductivity can improve the response time; however, there is a
trade of between the ionic mobility and electrochemical stability.

The ionic liquid electrolyte [deme][Tf2N] provides the optimum
performance (see Supplementary Table 1)57.

Switchable radar-absorbing surfaces. After studying the micro-
wave response of the graphene capacitors, we would like to
demonstrate electrically switchable radar-absorbing surfaces. The
maximum microwave absorption of single-layer graphene is
limited to 50% defined by the Maxwell’s equations42,53. To reduce
the microwave reflection from the surface, we demonstrated a
resonant device architecture (Fig. 3a) that includes the graphene
capacitor and a flat metallic surface, placed at a distance of
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various bias voltages. The noise floor is at � 80dB. (g) Microwave reflection from the device plotted against the bias voltage and the spacer thickness,
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quarter of the wavelength (d ¼ l

4
cosðyÞ, where, l is the

wavelength and y is the incidence angle). This configuration is
known as Salisbury screen previously used for enhancing
microwave absorption of resistive materials5 and graphene at
infrared and terahertz frequencies38,58. Figure 3b,c shows the
pictures of the front and back side of the resonant device.
Surprisingly, placing a flat metal at a suitable distance yields very
high reflection suppression at high doping concentration on
graphene. The variation of the microwave reflection of this device
is shown in Fig. 3d. At 0V, the reflection is maximum at 60%
(� 3 dB) and as we increase the bias voltage, the reflection
diminishes entirely (o� 45 dB, Fig. 3d). At 3V, the Fermi energy
and charge density on graphene electrodes are around 0.95 eV
and 5.5� 1013 cm2, respectively. The time traces of the reflection
(Fig. 3e) shows a remarkable reflection suppression ratio of
around 50 dB, which is limited by our detector. When the gap
between the graphene electrodes and the metallic surface is a
quarter of the wavelength, the reflection from the metallic surface
forms a standing wave with the antinodal plane (maximum lateral
electric field), which is on graphene electrode. Therefore, the
distance between the graphene electrodes and the metallic surface
defines the modulation depth (M ¼ Ron �Roff

Ron
, Ron and Roff

represent the reflected power at the on- and off-state).
Figure 3h shows the variation of the modulation depth with the
distance. Interestingly, when the distance is half-wavelength

(graphene electrodes are at the nodes of the standing wave), we
do not observe any modulation in the reflectivity, because the
electric field on the graphene is zero (Supplementary Fig. 15).
Although the resonance behaviour varies with the incidence
angle, this device yields reasonably large modulation for broad
incidence angles (Supplementary Figs 16–18).

Next, we would like to discuss some device strategies to cover
large area and nonplanar surfaces. As microwave has centimetre
scale wavelengths, operating these devices over a large area is
essential for realistic applications. For this purpose, we developed
pixelated surfaces formed by individually addressable hexagonal-
shaped devices (Fig. 4a–c). Similar type of multipixel devices has
been demonstrated in THz frequencies43,59–61. The individual
device (Fig. 4d) consists of a graphene capacitor, a solid spacer
(2.5-mm-thick cardboard) and metallic back surface (aluminium
foil). The microwave reflection from an individual device is
shown in Fig. 4e. At 1.5 V, the reflection decreases substantially
with a suppression ratio of 1,000. Figure 4f shows the microwave
reflectivity maps of the individual pixel at various voltages. The
strong reflection at 0V diminishes at 1.5 V with slight
background reflection due to the contact metals. Then we
imaged four cells (scan area is limited by our scanner) at different
voltage configurations. When we applied 0V to the cells we
observed reflection from all devices. However, the reflectivity of
an individual cell can be suppressed at 3V. Figure 4g shows
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reflectivity maps at different voltage configurations. The variation
of the reflection within the single cell is due to the reflection from
the edges and contact metals. These pixelated surfaces would
yield various possibilities for active camouflage systems by
shaping the reflectivity pattern from the multipixel adaptive
surface.

Furthermore, graphene electrodes on flexible polymer sub-
strates allow us to fabricate nonplanar adaptive microwave
surfaces as well. Figure 5a,b shows concave and convex spherical
surfaces formed by multiple individually addressable hexagon-
and pentagon-shaped cells. The reflectivity of individual cell
(structure shown in the Fig. 4) provides reflection suppression of
1,000 for TE polarization. To test an extreme case, we fabricated a
cylindrical surface with radius of curvature of 2.6 cm (Fig. 5c).
Then we placed a metallic cylinder inside the device and
measured the reflection from surface at various bias voltages.
Figure 5d shows the variation of the microwave reflection from
the cylindrical surface as a function of voltage. Even for a large
curvature, the microwave reflection is suppressed by 45 dB at 2V.
This modulation is slightly less than the flat resonant surface due
to the curvature of the device. The polar plot in Fig. 5e shows
the angular dependence of the reflectivity (at 0 and 2V) of the
cylinder obtained by rotating the cylinder around its axis. The
polar plot represents tunable radar cross-section of the metallic
cylinder. We anticipate that the ability to cover non-planar
objects with these active microwave materials will enable new
possibilities for microwave cloaking43,47.

Discussion
In summary, we demonstrated a new class of adaptive microwave
surfaces using large-area graphene capacitors. We show that
graphene electrodes can operate as a tunable Drude metal at
microwave frequencies owing to the high-mobility carriers whose
density can be tuned by electrostatic doping. Interestingly, this
simple device structure yields unprecedented ability to control

electromagnetic waves in a very broad spectrum from microwave
to the visible spectra. Combining this ability with various device
architectures, we demonstrated electrically switchable radar-
absorbing surfaces with reflection suppression ratio of 50 dB
with operation voltages o5V. Furthermore, we fabricated
various adaptive surfaces including pixelated and nonplanar
surfaces. These electrically switchable radar-absorbing surfaces
provide technological advantages over the passive microwave
absorbers. Our benchmarking studies (see Supplementary
Tables 3 and 4) show that the key attributes of these adaptive
microwave surfaces are the simplicity of device architecture,
broadband operation, the mechanical flexibility and potential for
low material cost. We believe that these adaptive microwave
surfaces will open a new chapter for active camouflage systems,
which could find immediate applications in radar technologies.
Furthermore, integration of these adaptive surfaces with meta-
material could yield tunable adaptive cloaking in microwave
frequencies.

Methods
Synthesis and transfer printing process of graphene. We synthesized large-area
graphene by chemical vapour deposition on ultra-smooth copper foils (0.1 mm
surface roughness) purchased from Mitsui mining and smelting company (LTD,
B1-SBS). We used a quartz chamber with a diameter of 8 cm and rolled the
graphene foils on a quartz holder. The growth temperature and duration are
1,035 �C and 30min, respectively. We heated the samples until 1,035 �C under H2

flow to reduce the oxide layer of the copper foils. During the growth the partial
pressure of CH4 and H2 gases were 1.5 and 3 Torr and corresponding rate of flows
of 40 and 80 sccm, respectively. After terminating the growth by stopping the flow
of methane, we cooled the samples down to room temperature. Then we laminated
70-mm-thick PVC sheets on graphene-coated copper foils. Following the lamina-
tion, the copper foils were etched in diluted nitric acid solution and dried overnight
to reduce the chemical doping of nitric acid on graphene.

Transport measurements. We measured capacitance and resistance of the
graphene capacitors using HP 4284A precision LCR meter as a function of bias
voltage. We applied an AC signal with amplitude of 100mV together with variable
DC voltage to the device. The serial resistance and capacitance were obtained by
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Figure 5 | Nonplanar adaptive radar-absorbing surfaces. (a,b) Photograph of concave and convex hemispherical surfaces formed by individually

addressable hexagon-and pentagon-shaped adaptive cells. (c) Photograph of the cylindrical-shaped switchable radar-absorbing surface placed around a

metallic cylinder. The diameter of the cylinder is 4.2 cm. (d) Reflection from the cylindrical surface containing a metallic cylinder as a function of bias

voltage. (e) Orientation dependence of the normalized reflection from the surface at 0 and 2V, respectively. At 2V the reflectivity is suppressed by 50 dB

for all directions. The variation of the intensity on the off-state is due the variation of the distance between the graphene electrodes and metallic cylinder.
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using a serial capacitance and resistance (Rs-Cs) model. The voltage bias was
applied using a Keithly 2400 Source Measure Unit.

Microwave measurements. We used a 15-mW microwave transmitter (Gun
Diode Microwave Transmitter WA-9314B) operating at 10.5GHz frequency. The
reflected and transmitted power is measured using two microwave receivers (Gun
Diode Microwave Receiver) attached to Agilent 34410A 61/2 Digit Multimeter. The
microwave reflection spectra were recorded using two broadband standard gain
horn antennas (7–12GHz) attached to a network analyser (0.1–18GHz Agilent
E5063A).
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