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Abstract. Graphene-based ion sensitive field effect transistors (GISFETs) with high sensitivity and 
selectivity for K+ ion detection have been demonstrated utilizing valinomycin based ion selective 
membrane. The performance of the GISFET for K+ ion detection was studied in various media over 
a concentration range of 1 µM – 2 mM. The sensitivity of the sensor was found to be > 60 
mV/decade, which is comparable to the best Si-based commercial ISFETs, with negligible 
interference found from Na+ and Ca2+ ions in high concentration. The sensor performance did not 
change significantly in Tris-HCl solution or with repeated testing over a period of two months 
highlighting its reliability and effectiveness for physiological monitoring. The performance of the 
sensor also remained unchanged when fabricated on biocompatible polyethylene terephthalate 
(PET) substrate, showing significant potential for developing flexible bio-implantable graphene-
based ISFETs. 
 
Keywords: Graphene; Ion sensitive field effect transistor; K+ ion detection; ion selective 
membrane 
 
1. Introduction 
Sensors based on Graphene, exploiting its outstanding material properties, including remarkably 
high charge carrier mobility [1], very high surface to volume ratio, and very low Johnson noise [2], 
are currently of strong technological interest in chemical, electrical and even in bio sensing 
application [3] since the adsorbed molecules can readily affect its conductivity through charge 
transfer [2, 4]. Graphene, being essentially a surface, is extremely sensitive to changes in surface 
charge, or interaction with ionic adsorbates, presenting itself as an excellent material to develop 
ion sensitive field effect transistors (ISFETs). The vast majority of the ISFETs demonstrated so far 
focus on the detection of H+ ions utilizing various surface functionalization layers [5, 6]. Although 
somewhat more challenging, due to the requirement of selective functionalization layers, detection 
of metal ions (especially those of alkali metals) are of high significance due to their important role 
in cell physiological processes. 
Elevations in biological levels of K+ ions precede the onset of sudden cardiac death, epileptic 
seizures and other clinical problems [7, 8]. However, the time course and magnitude of these 
changes in extracellular K+ ions is yet unknown.  Therefore, the development of implantable K+-
sensitive sensor devices could be of great use in predicting the onset of myocardial infarctions and 
seizures.  In addition, ISFETs present a noninvasive and bio-compatible technology for measuring 
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K+ efflux from primary and stem-cell derived cells that are used for toxicological and drug 
discovery testing.   
Si-based ISFETs are already commercially available, although they suffer from several drawbacks. 
One of the major challenges with the Si-based ISFETs is that ions (i.e. H+, OH-) typically migrate 
into the oxide (accumulating at the SiO2/Si interface) and change the threshold voltage of the FET 
[9, 10], leading to their degradation over time with repeated usage. Graphene offers an excellent 
opportunity to address this limitation of Si-based sensors offering a surface that is impervious to 
ions. Even more significantly, graphene synthesized by chemical vapor deposition (CVD) on Cu 
foil can be transferred to various substrates of choice (other than SiO2/Si), which helps to avoid this 
issue of ion accumulation and associated device degradation completely (demonstrated in this work 
by realizing graphene ISFET on PET substrate).  
In this article, we present a highly sensitive and selective graphene-based ISFET (GISFET) capable 
of detecting K+ ions down to 1 µM (utilizing valinomycin based membrane coating), showing 
excellent selectivity with respect to common interfering Na+ and Ca2+ ions at several orders of 
magnitude higher concentration. The feasibility of using graphene-based ISFETs for bio-
implantable applications was also studied by testing them in Tris-HCl solution and fabricating them 
using PET substrate, which is inert and highly bio-compatible. The devices showed high 
repeatability and reliability in sensing experiments conducted over a period of two months.  
 
2. Experimental  
 
2.1. Graphene growth 
Graphene samples used to fabricate the ISFETs were synthesized using chemical vapor deposition 
(CVD) in a semi-automated quartz tube furnace system as discussed in detail elsewhere [4, 11]. 
Briefly, monolayer, uniform graphene over a large area was grown on a copper foil (Alfa Aesar, 
99.999% purity), which acted both as the substrate and catalyst. Methane was used as the growth 
precursor, along with H2 and Ar as the carrier gases, which were flown into the furnace using mass 
flow controllers (MFCs, MKS Instruments) at nominal flow rates of 100, 100 and 900 sccm, 
respectively. The copper substrate was annealed at 1000 °C for 2 hours under a continuous flow of 
H2 and Ar gases prior to growth, which was followed by the graphene growth at 1035°C over a 
duration of 20 mins under a continuous flow of methane. 

 

Fig. 1  ISFET fabrication process flow and measurement set up. a) ISFET chip fabrication steps. 1. 
Substrate preparation. 2. Graphene transfer. 3. Source and drain formation. 4. ISM coating. 5. Mounting 
chip to PCB. 6. Epoxy encapsulation. 7. Schematic diagram of G-ISFET chip cross- section. b) Ion 
concentration sensing set up. Picture of real ISFET device (right bottom), with the sensor chip mounted 
on PCB head. 

 

b a 
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2.2. GISFET chip fabrication  
Graphene films synthesized on Cu foils were used to fabricate GISFET devices following a 
sequence of processing steps as discussed below (Fig.1 (a)). To begin with, the Cu foil with 
graphene film was coated with polymethyl methacrylate (PMMA) using a spin coater, and baked 
for 1 minute at 150 °C. Next, the graphene layer on the back side of the sample was removed by 
oxygen plasma etching (Plasma Etch, PE25-JW-HF), which was followed by Cu etching in 
ammonium persulfate solution for over 3 hours, releasing the graphene/PMMA top layer. After 
rinsing in deionized water, the graphene/PMMA layer was transferred and placed on SiO2 (300 
nm)/Si (n+ doped) substrate in isopropyl alcohol and allowed to dry for 15 minutes. Finally, the 
sample was dipped in acetone for 4 hours to remove PMMA. To fabricate GISFETs, Ti (30 nm)/Ni 
(150 nm) source/drain contacts were deposited on the transferred graphene using an electron beam 
evaporator, with the contact areas defined by a metal mask. The graphene channel formed had 
dimensions of 2 x 1 mm. We used high-quality SiO2 grown through a dry thermal oxidation process 
to minimize any leakage current between the metal contacts and the silicon substrate. To determine 
their material quality, the graphene films were characterized using Raman spectroscopy (Renishaw 
Raman system, InVia) and atomic force microscopy (D3100 from Veeco). 
2.2.1. Valinomycin based ion selective membrane preparation 
To perform selective detection of K+ ions, valinomycin (C54H90N6O18) based ion selective 
membrane (ISM) with 5 µm nominal thickness was spin-coated on the entire transferred graphene 
area and kept at room temperature for 20 minutes for complete solvent volatilization and stable 
film formation. The K+ ISM was prepared [12] by dissolving 8 mg valinomycin (VAL), 1.10 mg 
potassium tetrakis (4-cholorophenyl) borate (K-TCPB), 390 mg acrylic matrix copolymer (made 
of methyl methacrylate (MMA) and n-butyl acrylate (nBA) monomers in the proportion of 1:10) 
[13] in 2.0 ml of tetrahydrofuran [14].  
To ensure optimum device performance and reliability, we have developed a self-plasticized 
methacrylate and nBA based copolymer. This block copolymer is a two-phase system (please refer 
to Fig. S1); mostly containing nBA, which consists of continuous amorphous phase through which 
molecular transportation occur rapidly, while the methacrylate block forms a discontinuous, 
crystalline phase that cross-links the structure. In addition, the higher molecular weight of 151,000 
Da (Fig. S2) of methacrylate and nBA copolymer provide sufficient polymer chain entanglement 
to make the membrane more mechanically robust in harsh operating conditions, while maintaining 
very low predominant glass transition temperature (-43.05 °C) (Fig. S3) that enables easy ion 
transportation across the membrane towards the graphene surface [15]. 

Fig. 2  Graphene characteristics. a) Raman spectroscopy of graphene transferred on SiO2 showing good 
quality. The right inset figure is the AFM image, exhibiting smooth graphene layer surface and folds. The 
left inset figure is shown a line profile of graphene AFM image. b) Graphene FET mobility extraction. 
Graphene’s Id – Vbg characteristic is measured from graphene FET device; the plot showing graphene’s 
typical V-shaped characteristics. c) A family of Ids – Vds plots is shown with varying back gate voltage 
(Vbg). 

a 

b 
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Furthermore, mobile cation-exchange sites such as potassium tetrakis (4-chlorophenyl) borate [K-
TCPB] has been dispersed in the polymer membrane, which reduces the membrane resistance and 
activation barrier for the cation-exchange reaction at the membrane/solution interface resulting in 
a significant reduction in ionic interfaces, thereby increasing the ion-detection sensitivity [16 – 18]. 
Taken together, the polymer membrane formulation uniquely offers all the necessary attributes for 
a highly sensitive, selective, reliable non-plasticized polymer membrane for biomedical and solid-
state microfabrication ion sensors. 
The valinomycin structure consists of alternately bound amide and ester bridges (shown as inset of 
Fig. S4 of supplementary data). The presence of the carbonyl group, coupled with its unique 
doughnut-shaped structure enables valinomycin to easily bind metal ions. Due to the size of the 
potassium ion (1.33 Å radius), valinomycin exhibits a very high stability constant (K = 106) toward 
it compared to other metal ions. This results in a high degree of selectivity compare to other 
complexes; i.e. Na+ with 0.95-angstrom radius forms 10,000 fold weaker valinomycin-Na+ 
complexes, and thus valinomycin is 10,000 more times selective to K+ [19]. While the K+ by itself 
is able to cross single lipid bilayer, it has been shown that the presence of valinomycin in the lipid 
layers makes it freely permeable through multiple lipid bilayers [20]. This property was utilized in 
our design of the ion selective layer to make it specifically permeable to K+ ions. Another important 
advantage of using valinomycin is that it can act as a functionalization layer on the graphene surface 
of the ISFET enhancing its sensitivity. Since pristine graphene is chemically inert [21], many 
research groups have adopted different kinds of oxide layers (SiO2, HfO2[22], Ta2O5[23]) as well 
as aromatic molecules as a functionalization layer on top of the graphene surface to enhance its ion 
sensing capabilities. The valinomycin layer coated on the graphene surface can enhance the ISFET 
sensitivity, similar to other aromatic molecule functionalizations [24, 25].  
2.2.2. Encapsulation.  
For stable operation in an electrolytic environment, the GISFET chip was mounted on a printed 
circuit board (PCB) and the source/drain ohmic contacts were wire bonded to the contact pads on 
the PCB. To isolate and protect the metal contacts and the bonding wires from the conducting 
aqueous environment, epoxy glue (Epo-tech 301) was used to encapsulate them. The selected epoxy 
is biocompatible and specially designed for medical electronics with USP Class VI and/or ISO-
10993 compliance. After careful mixing of epoxy resin and curing agent (4:1), the mixture was 
applied to the metal contact, SiO2/Si chip and bonding wires, leaving a small window (2 × 1 mm 
in dimension) on the ISM coated graphene (see above discussion) as the active sensing area (to be 
in contact with the test solution), and cured for 2 hours at 60 °C on a hot plate. Inset of Fig. 1 (b) 
shows the optical image of a GISFET after encapsulated by epoxy. 
Figure 1(a) shows a summary of the processing steps involved in the fabrication of the GISFET 
device, while Fig. S4 shows a schematic summarizing the operation of the ion-selective membrane. 
 

2.3. GISFET electrical properties and performance recording methods 
The electrical characteristics of the fabricated graphene FET and GISFET were studied thoroughly 
and systematically in the air and in an electrolytic solution, respectively. Carrier mobility was 
measured using a back-gated FET configuration, while Hall mobility measurements were carried 
out using an HMS 3000 (Ecopia) system. The experimental setup for measurements in the 
electrolytic solution is schematically illustrated in Fig. 1(b). The Ag/AgCl reference electrode was 
used to apply a top-gate bias for obtaining the Ids-Vtg characteristics of the GISFET in solution. For 
the I-V measurement, dc bias for Vds and Vgs were supplied by a precision source measure unit 
(SMU, Keysight B2902A), while simultaneously measuring Ids. The device response was studied 
by varying the K+ ion concentration from 1 μM to 20 mM in distilled water, in Tris-HCl solution, 
as well as in 140 mM NaCl solution (imitating the Na+ ion concentration in a typical physiological 
solution).  Test electrolytes with desired ionic concentrations were realized using carefully prepared 
stock solutions transferred using micropipettes. The measured Ids - Vtg curves show typical V-
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shaped I-V characteristic underlining sharp transition from p- to n-type graphene upon application 
of top-gate bias. 
 
3. Results and discussion 

3.1. Structural characterization 
Figure 2(a) shows a typical Raman spectrum for our samples with signature D, G and 2D peaks. 
The ID/IG ratio of ~0.17 indicates good quality of the graphene layers [26]. The 2D peak full width 
at half maximum (FWHM) value of ~26.8 cm-1, and the intensity ratio of the 2D band (at 2682 cm-

1) and G band (at 1585 cm-1) was 3.2, indicating the presence of a single layer of monolayer 
graphene [27]. The inset of Fig. 2(a) shows an atomic force microscopy (AFM) morphology image 
(2.5 µm × 5 µm) taken from a transferred graphene film after undergoing an annealing process, 
which was carried out in a quartz tube at 400°C for 2 hours in the forming gas environment to 
remove any residue of PMMA. The AFM image showed smooth and continuous graphene layer, 
exhibiting folds that are commonly observed after transfer [11]. 

3.2. Electrical characterization GISFETs 
Charge carrier mobility is an important parameter directly affecting the sensitivity of the graphene 
ISFET device. Therefore, we measured back-gated FET mobility, and hall mobility before moving 
on to GISFET device fabrication. For measuring FET mobility, Ti/Ni metal stacks were deposited 
on the transferred graphene to form source and drain contacts, with a graphene channel of 
dimensions of 2.8 x 1.5 mm between them. The highly doped silicon substrate was used as the back 
gate with 300 nm SiO2 as the insulator layer. The Ids – Vbg plot (see Fig. 2 (b)) is ambipolar in nature 
which is a direct consequence of linear dispersion relation in graphene with zero band gap. The 
Dirac point was observed at Vbg = 41.6 V. A positive Dirac point indicates that CVD grown 
graphene transferred on SiO2 is p-type in nature, which is expected and commonly observed [28, 
29]. The Fig. 2(c) plot shows a linear Ids – Vds family of curves where the back-gate bias varies 
from 0 to 47 V at a Vbg increment of 5.22 V. A good back gate modulation was observed (supporting 
expected p-type graphene behavior), and the FET hole mobility was calculated using the formula 
𝜇𝜇𝐹𝐹𝐹𝐹𝐹𝐹 = (𝑔𝑔𝑚𝑚 𝐿𝐿)/(𝑊𝑊𝐶𝐶𝑜𝑜𝑜𝑜𝑉𝑉𝐷𝐷𝐷𝐷)  [30]. Here gm is the transconductance (𝜕𝜕𝐼𝐼𝐷𝐷𝐷𝐷/𝜕𝜕𝑉𝑉𝐺𝐺𝐺𝐺 ) at the p-type 
graphene side, L and W are the length and width of the graphene channel, respectively, and Cox is 
the oxide capacitance per unit area. Using an extracted gm value of 3.45 × 10-5 S from the Ids – Vds 
characteristic, the mobility was found to be 3,250 cm2/Vs, which is comparable to the mobility of 
typical high quality graphene transferred on SiO2 [31, 32]. 

Fig. 3  K+ sensing characteristics of GISFET. a) K+ sensing in distilled water based electrolyte solution. Dirac 
points can be seen to shift very significantly as the K+ concentration increases from 1 µM to 20 mM. b) Dirac 
point shift varies with K+ concentration change fairly linearly, showing an average sensitivity of ~64 mV/dec 
for the least square fit. c) Current change response as the by K+ concentration was changed in steps from 
distilled water to 20 mM. Fractional change in current used to calculate sensitivity and time constant for 
sensing response are calculated from exponential fits to the response transients corresponding to each 
concentration change. 
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Hall mobility measurement was also carried out on the same graphene sample and compared to the 
FET mobility. To measure Hall mobility, 6 × 6 mm square shape graphene film was transferred on 
the SiO2 substrate, and simple indium press contacts were established on each of the four corners 
of the sample. The Hall mobility of the graphene sample was measured to be 2660 cm2/Vs which 
is comparable to the FET mobility extracted above, with the reduction attributable to the bigger 
size of the graphene layer used for Hall measurements (6 × 6 mm) compared to FET (1.5 × 2.8 
mm), which exhibits an average mobility over a larger area that is typically smaller. 

3.3. GISFETs measurements of K+ ionic concentration in distilled water 
After fabrication of the GISFET, we performed detailed electrical characterization and investigated 
the K+ sensitivity of the GISFET in a distilled water based K+ ion solution.  The variation in drain 
current with top gate voltage (Ids – Vtg characteristics) was measured using a standard Ag/AgCl 
reference electrode (where the gate voltage was applied), in a test electrolyte solution of variable 
KCl concentration, and the results are plotted in Fig. 3(a). The Dirac point in the Ids – Vtg plots can 
be seen to vary from 0.2 – 0.7 V, which is a dramatic reduction compared to the Dirac point of 
~40.6 V measured for the same FET in air prior to valinomycin coating [please refer to Fig. 2(b)]. 
This large change in Dirac point can be attributed primarily to the strong electron donating nature 
of the valinomycin molecule which possesses 6 amides (RnE(O)xNR′2 ) functional groups. Indeed, 
separate experiments conducted on back gated FETs in ambient conditions indicate that a large 
Dirac point shift, by 20 – 30 V, can be caused by valinomycin coating, which donates electrons to 
p-type graphene to shift the Dirac point closer to 0 V. Another important point to note here is that 
the high capacitance of the electrical double layer (EDL), formed at the interface of graphene and 
the electrolytic solution [33], enables the ISFET device to operate at a much narrower voltage range 
(i.e. charge density and Fermi level changes much more rapidly with applied top gate voltage; gm 
change from ~10-5 S for back-gate FET to ~10-4 S for top-gate FET), which offers a significant 
advantage for practical sensor design. Indeed, the capacitance for a back-gated FET can change by 
orders of magnitude from nF/cm2 range in the air [closely matching our extracted capacitance of 
11.5 nF/cm2] to μF/cm2 range in the electrolytic environment as shown by Ye et al [33]. From Fig. 
3(a) we also observe that the Dirac points shifts very significantly, from 0.57 V to 0.29 V, as the 
K+ concentration increases from 1 µM to 20 mM. Such a movement of the Dirac point to lower 
values is expected since the K+ ions near or at the graphene surface induces higher electron 
concentration (i.e. reduces hole concentration in p-type graphene), thereby moving the Fermi level 
closer to the charge neutrality point, and consequently lowering the Dirac point. Such a lowering 
of Dirac point due to adsorption of positively charged ions is also observed commonly for H+ ions 
in a pH ISFET [24, 34]. 

3.4. Sensitivity and response time 
Since sensitivity and response time are two critical parameters for any sensor, we carefully 
examined these parameters for our graphene ISFETs. A commonly used method to determine the 
sensitivity of ISFETs (i.e. commercial Si ISFETs) is to look at the shift in threshold voltage 
(equivalent to the shift in Dirac point of the ISFET) as a function of the change in K+ ion 
concentration [35]. The change in Dirac point as the K+ ion concentration was varied from 1 µM 
to 20 mM (this includes the range of interest for cellular efflux of 10 µM – 1 mM [36] ) can be 
determined from Fig. 3(b) to be ~280 mV, and hence the sensitivity can be calculated as 64 
mV/decade (= 280 mV/4.3 decade), which is very comparable to that obtained from the Si-based 
ISFET devices [37]. 
Another method (commonly used for chemical sensors) to determine the sensitivity and the 
response time is to determine the magnitude and temporal variation of the ISFET drain current as 
the K+ ion concentration is changed in steps. To this end, we recorded the Ids as a function of time 
for various K+ concentrations (for a fixed value of Vtg) using a data acquisition unit (DAQ, Keysight 



7 
 

34972A); and the results are shown in Fig. 3(c). A plot of the concentration change from 100 μM 
to 1 mM (corresponding to typical cellular efflux) is shown in the inset of Fig. 3(c) to calculate the 
response time and current change based sensitivity (∆I/I, similar to the sensitivity calculated for 
chemical sensors). As can be seen, the current changes from 528 to 563 to µA, corresponding to a 
fractional change in current of ~6.6 % per decade change in K+ ion concentration. Fitting the time-
dependent response plot with an exponential function, a time constant of  τ ≈ 7.1 second can be 
extracted, which is very close to the best values of ~5 seconds observed for commercial pH sensors 
(Topac, S1600 Advanced pH meter). 

3.5. Measurements of K+ ionic concentration in Tris-HCl solution and high background Na+ 
concentration 
To determine the applicability of the GISFETs for K+ ion measurements in physiological solution, 
its performance was investigated in a 0.1 M tris-HCl solution with pH 7.4 (from VWR), which is 
commonly used in buffer solutions for biochemistry and molecular biology experiments (i.e. 
Protein Electrophoresis, Western Blotting and Nucleic Acid Agarose Electrophoresis [38]). The 
results for K+ ion sensing are illustrated in Fig. 4(a) where the Dirac point is found to shift by 0.275 
V for a 4.3-decade change in K+ concentration, exhibiting a sensitivity of 64 mV/decade, which is 
exactly same as that obtained for K+ concentration variation in distilled water discussed above. 
  
To further test the suitability of our sensor for usage in physiological solution, where typically very 
high (~150 mM) background concentration of Na+ is present, we tested the performance of the 
device in concentrated NaCl solution (140 mM), and the results are shown in Fig. S6. The 
sensitivity is found to be 65 mV/decade in the sensing range of 10 µM - 20 mM, showing very 
similar sensitivity to the distilled water based solution. Below 10 µM, reliable sensing of the K+ 
ion variation was found to be difficult as the high Na+ concentration increased the K+ ion sensing 
baseline (this is actually expected based on the expected selectivity of 10,000 for K+ ions relative 
to Na+ ions as discussed above). Nonetheless, the operational range of the sensor completely covers 
the concentration range of interest for cellular efflux measurements of 100 μM to 1 mM (see 
discussion above). 

3.6. Ion selectivity of the GISFETs 
Although graphene-based ISFETs have been extensively studied for pH sensing or Na+ sensing [22, 
39] by many research groups, the ion-selectivity aspect in generally not investigated in detail, 
although it is one of the most important characteristics of any sensor. In this research, we have 
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Fig. 4  GISFET’s stable sensitivity in buffer solution, and its good selectivity. a) K+ sensing in 0.1 M Tris-
HCl solution (pH 7.4). The result shows good sensitivity exhibiting similar value as obtained from distilled 
water based solution. b), c) The  GISFET with Valinomycin polymer matrix coating is effectively 
insensitive to Na+ ions or Ca2+ ions over the concentration range of 1 ~ 1000 µM NaCl or CaCl2 
(measurement performed in distilled water-based solution), as can be inferred from the overlapping I-V 
plots. 
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made the ISFETs selective to K+ ions by coating them with valinomycin based ISM. Details of the 
mechanism and preparation for the ISM coating have been discussed in experimental section as 
well as in the supplemental information section. In a device structure, when the device is interfacing 
with an electrolyte solution, valinomycin in ISM selectively traps only K+ ion from the solution, 
forming a valinomycin-K+ complex, which can further transit to the vicinity of graphene surface 
(as illustrated in Fig S1). The electrical field exerted from the captured K+ ions affects the 
conductivity of graphene channel and thus induces an electrical sensing signal. The ion selectivity 
of the sensor was studied by comparing the responses of the ISFET to common background ions 
Ca2+ and Na+ vis-a-vis the K+ ions. Figure 4(b, c) presents the responses to Na+ and Ca2+ ions over 
the range of 1 µM – 1 mM. We found that even though the concentration of these ions changed by 
3 orders of magnitude the Dirac point did not shift, clearly highlighting the high selectivity of our 
ISFET with respect to these interfering ions. In contrast, a large response was observed for K+ ions 
in distilled water based solution and also in presence of high interfering ionic concentration (i.e. 
140 mM Na+) as already discussed in detail above. This clearly underlines the high selectivity of 
the proposed ISFET sensor. 

3.7. Repeatability and reliability of the GISFET device 
For robust ion sensing applications, the ionic concentration measurements by the ISFET need be 
reliable and repeatable. To study this, the performance of a GISFET was recorded over a period of 
two months by periodically measuring its sensitivity to K+ ion concentration. The results are shown 
in Fig. 5(a), which shows an average sensitivity of 61 mV/dec over a course of two months with a 
standard deviation of 4.6 mV/dec. It should be noted that the sensitivity of the device exhibits a 
range bound fluctuation over the course of the month instead of exhibiting any monotonically 
varying trend, which rules out steady degradation of the ISFET device over time, unlike widely 
observed for its Si counterparts8. The cause for such small fluctuations are still under investigation 
but likely contributed by randomly varying experimental and environmental factors. For a given 
measurement the ionic concentration was measured at least 3 times by the ISFET sensor, which 
was found to be highly repeatable, with only 1% deviation from the mean sensitivity value.  

3.8. GISFET device on polymer substrate 
Fabrication of ISFETs on flexible substrates is highly attractive for implantable biosensing 
applications. Unlike Si-based ISFETs, graphene is inherently compatible with flexible substrates 
due to its own flexible nature and easy transfer process of CVD graphene to various substrates 
without undergoing any cumbersome fabrication process. Polyethylene terephthalate (PET) is a 
material widely used for numerous applications involving our daily life [40] (i.e. in bottles, 

Fig. 5 GISFET’s performance at different solution bases or fabricated on different substrates. a) Sensitivity 
of the GISFET sensor measured over a duration of two months shows a stable response with an average 
sensitivity of 61 mV/dec and a standard deviation of 4.6 mV/dec. b) GISFET fabricated on flexible substrate 
PET shows an average K+ ion sensitivity of ~63 mV/dec over the concentration range of 1 µM to 20 mM. c) 
GISFET’s stable sensitivity in different solution bases or fabricated on different substrates.  
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packaging materials etc.) due to its extremely low toxicity and low cost. It is also a material of 
choice for technical applications (i.e. automotive and electronics) owing to its excellent dielectric 
strength and chemical inertness [41]. In this work, we therefore investigated the feasibility of 
fabricating high-performance graphene-based ISFETs on PET substrate. The fabrication steps and 
materials used are very similar to the GISFET on SiO2/Si substrate, except the substrate itself is 
replaced with PET. The performance of GISFET on PET was determined in the same way as 
discussed above, and the result is shown in Fig. 5(b). We find the K+ ion sensitivity to be ~63 
mV/dec (= 272 mV/4.3 decade), which is essentially unchanged compared to that measured for 
Si/SiO2 substrate (~64 mV/dec). The selectivity of the graphene ISFET on PET, with respect to 
Ca2+ and Na+ ions, also turns out to be very similar to that observed for the ISFET on SiO2/Si 
substrate. Both the selectivity and sensitivity results clearly indicate the strong promise of PET 
substrate for realizing high-performance graphene ISFETs for implantable biosensing applications. 
The stable performance of GISFETs in different solution or fabricated on different substrates are 
shown in Fig. 5(c). 
 
4. Conclusions 
In conclusion, we have demonstrated a novel ISFET device capable of performing highly sensitive 
and selective detection of K+ ions in various media over a wide ionic concentration range of 1 µM 
– 20 mM. The sensitivity exhibited by the sensor of 61  ± 4.6 mV/decade over a duration of two 
months is very comparable to the best Si-based ISFETs available commercially, while the sensor 
response to interfering Na+ and Ca2+ ions were found to be negligible. The K+ ion detection 
performance of the sensor remained unaltered in presence of orders of magnitude higher Na+ 
concentrations, and also in Tris-HCl solution, indicating the effectiveness of the sensor for sensing 
in physiological solutions. The sensor performance also did not change significantly with repeated 
testing over a period of one month highlighting its robustness and reliability. When fabricated on a 
PET substrate, the sensor very similar performance, which is highly encouraging for developing 
flexible bio-implantable graphene-based ISFETs 
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