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ABSTRACT

In this paper we construct the generalized coherent states for an electron in monolayer or bilayer
graphene placed in an external magnetic field. At first we define an appropriate set of ladder op-
erators acting on the eigenfunctions for each Hamiltonian, afterwards we derive the generalized
coherent states through several definitions and analyze the commutation relationship between the
ladder operators. Then we determine the conditions leading to the mutual equivalence between co-
herent states. Finally, some physical quantities are calculated and we study the time evolution for
the generalized graphene coherent states.
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1 Introduccion

The subject coherent states is tightly related to the harmonic oscillator. In fact, the coherent states were originally
found by Schrödinger as minimal uncertainty states for the harmonic oscillator [1], but it was not until the sixties of
the previous century that Glauber, trying to describe the electromagnetic field coherence, coined the term [2]. The
harmonic oscillator coherent states can be achieved by three mutually equivalent definitions: 1) they are eigenstates of
the annihilation operator, called Barut–Girardello coherent states in the literature [3]; 2) they are states resulting from
the action of the displacement operator onto the ground state, also known as Gilmore-Perelomov coherent states [4,5];
3) they are states with the minimal uncertainty [1,6,7]. Each of these definitions can be employed to get coherent states
for arbitrary systems, but in general the mutual equivalence between these coherent states will be lost (see e.g. [8–11]).

On the other hand, the electrons behavior in graphene has been extensively studied due to the interesting physical
properties of these materials. Usually this electronic structure is determined by using the tight-binding model [12–14].
Different authors have focused on finding exact solutions for the stationary states of electrons in graphene placed in
external electromagnetic fields [15–19]. Recently, the use of coherent states has gained relevance since they have
properties different from the stationary states [20–24]. However, in each of these works to obtain these states depends
on the coherent state definition used.

In this work we intend to find these states by studying the three previously mentioned definitions. Furthermore,
a path allowing us to get the mutual equivalence between these states is explored. For doing this, the paper has
been organized as follows: in section 2 a brief description of the effective Hamiltonian for monolayer and bilayer
graphene is presented, as well as some details leading us to exact solutions for the stationary states. In section 3,
the corresponding ladder operators for monolayer and bilayer graphene respectively are discussed. In section 4, the
coherent states are constructed by means of three different definitions, the commutation relation between the ladder
operators is analyzed and the conditions leading us to the mutual equivalence between these definitions are sought.
In section 5, the generalized coherent states for a constant magnetic field are found and some physical properties are
explored. Finally, in section 6 the conclusions of this paper are established.
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2 Effective Hamiltonians of graphene

The tight-binding model allows to work with an effective Hamiltonian which rules the electron motion in monolayer or
bilayer graphene. If magnetic fields are involved, these Hamiltonians are modified according to the minimal coupling
rule [13, 15]. Assuming that the applied magnetic fields are orthogonal to monolayer or the bilayer graphene surface
(x−y plane), different gauges can be chosen. We will use the Landau gauge and we will assume that the field changes
only along a fixed direction (namely x). Thus, the vector potential is chosen as ~A = A(x)êy and then ~B = B(x)êz ,
with B(x) = A′(x). Next we will discuss the eigenvalue problem for each graphene configuration.

2.1 Monolayer graphene

The effective Hamiltonian for an electron in monolayer graphene at low energies after applying the minimal coupling
rule is given by

HM = vF~σ · ~π, (1)
with ~π = ~p + (e/c) ~A being known as the kinematical momentum, vF is the Fermi velocity, e the electron charge, c
the speed of light and ~σ = (σ1, σ2) is an array which components are the Pauli matrices. For stationary states the
time-independent eigenvalue equation reads

HMΨ(x, y) = (vF~σ · ~π) Ψ(x, y) = EΨ(x, y). (2)
Due to the assumptions about the magnetic field made previously,HM and py commute, hence the eigenfunctions can
be written as

Ψ (x, y) = eiky
(
ψ+ (x)
iψ− (x)

)
, (3)

and thus equations (2) and (3) lead us to the following system of coupled first-order differential equations for ψ±:

L±1 ψ±(x) =
√
Eψ∓(x), (4)

where

L±1 = ∓ d

dx
+W (x), W (x) =

e

c~
A(x) + k, E =

E2

~2v2F
. (5)

The system of equations (4) can be decoupled, leading to
H±1 ψ

± = Eψ±. (6)
The operators H±1 have the form of two Schrödinger Hamiltonians,

H±1 = L∓1 L
±
1 = − d2

dx2
+ V ±(x), V ±(x) = W 2(x)±W ′(x), (7)

which fulfill the following intertwining relationships
H±1 L

∓
1 = L∓1 H

∓
1 . (8)

In the context of supersymmetric quantum mechanics (SUSY QM) the operators H±1 (V ±) are known as partner
Hamiltonians (partner potentials), W is called the superpotential and L±1 are the intertwining operators.

Equation (8) gives us the chance to solve the eigenvalue problem (2): we just need to solve one of the two uncoupled
systems (6), the other one automatically follows from it. Thus, let us suppose that we know the eigenfunctions ψ−n
and eigenvalues En of H−1 and that the ground state is annihilated by L−1 , the corresponding eigenvalue being E0 = 0
(see [15] and references therein). Then, the eigenfunctions of H+

1 read as follows

ψ+
n (x) =

1√
En
L−1 ψ−n (x), for n = 1, 2, ... (9)

with eigenvalues En. Finally, the eigenfunctions and eigenvalues of equation (2) are given by

Ψ0(x, y) = c0e
iky

(
0

iψ−0 (x)

)
, E0 = 0,

Ψn(x, y) = cne
iky

(
1√
En
L−1 ψ−n (x)

iψ−n (x)

)
, En = ±~vF

√
En, (10)

where cn is a normalization constant taking the values 1 if the spinor top entry is null and 1/
√

2 if it is not; the positive
energies describe electrons and the negative ones to holes.

Some important quantities that we will calculate for this system are the probability and current densities, which for an
arbitrary state Ψ turn out to be

ρM = Ψ†(x, y)Ψ(x, y), ~JM = vF Ψ†(x, y)~σΨ(x, y). (11)
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2.2 Bilayer graphene

For bilayer graphene, in addition to consider a magnetic field like the one described above, we will include an interac-
tion term proportional to σ1 which is only x-dependent, so the effective Hamiltonian becomes

HB =
1

2m∗

(
0 (πx − iπy)

2 − ~2β(x)

(πx + iπy)
2 − ~2β(x) 0

)
, (12)

where m∗ is the electron effective mass and β is a real function. The time-independent equation for the stationary
states reads

HBΨ(x, y) = EΨ(x, y). (13)
Once again, it turns out thatHB and py commute, thus we can propose the eigenfunctions as

Ψ (x, y) = eiky
(
ψ+ (x)
ψ− (x)

)
. (14)

Now, we define η and β as follows,

η(x) = 2
(
k +

e

c~
A(x)

)
,

β(x) =
η
′
(x)2 − 2η(x)η

′′
(x)− (ε1 − ε2)

2

4η2(x)
, (15)

with ε1, ε2 being two arbitrary constants (in general complex), then the eigenvalue problem (13) is equivalent to

L±2 ψ±(x) = −
√

Eψ∓(x), (16)

where

L−2 =
d2

dx2
+ η(x)

d

dx
+ γ(x), L+

2 =
d2

dx2
− η(x)

d

dx
+ γ(x)− η′(x), E =

(
2m∗E

~2

)2

(17)

and

γ(x) =
η2(x)

4
+
η′(x)

2
− η′′(x)

2η(x)
+

(
η′(x)

2η(x)

)2

−
(
ε1 − ε2
2η(x)

)2

. (18)

Notice that the system of equations (16) can be decoupled in the following way

L+
2 L
−
2 ψ
−(x) = Eψ−(x),

L−2 L
+
2 ψ

+(x) = Eψ+(x). (19)

In order to solve the eigenvalue problems (19) let us suppose that ψ±n (x) are the eigenfunctions of two Schrödinger
Hamiltonians

H±2 = − d2

dx2
+ V ±(x), (20)

which are intertwined to each other, namely,

H±2 L
∓
2 = L∓2 H

∓
2 . (21)

Using equations (17), (20) and (21) it turns out that

V −(x) = −γ(x) +
η2(x)

2
− η′(x)

2
+
ε1 + ε2

2
, (22)

V +(x) = V −(x) + 2η′(x). (23)

In the context of SUSY QM ε1 and ε2 are called factorization energies, whose combination of values leads to different
cases which have been analyzed elsewhere (see [16, 18] and references therein). Here we will focus in the particular
case where ε1, ε2 are real and different, related to two seed solutions u−m(x), m = 1, 2 belonging to the kernel of L−2
and simultaneously being formal eigenfunctions of H−2 , L−2 u−m = 0, H−2 u

−
m = εmu

−
m. In particular we are going to

choose ε1 = E0, ε2 = E1, with the seed solutions taken as the corresponding bound state wave-functions.

Then, given the eigenfunctions ψ−n and eigenvalues En of H−2 , the corresponding eigenfunctions and eigenvalues of
H+

2 will be given by

ψ+
n (x) =

L−2 ψ−n (x)√
(En − ε1)(En − ε2)

, En, n = 2, 3, ... (24)

3
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Finally, the eigenfunctions and eigenvalues for the Hamiltonian (13) take the form

Ψn(x, y) = cne
iky

(
0
ψ−n

)
, En = 0, n = 0, 1

Ψn(x, y) = cne
iky

(
L−2 ψ

−
n (x)√

(En−E0)(En−E1)
ψ−n

)
, En = ± ~2

2m∗

√
(En − E0)(En − E1), n ≥ 2, (25)

where cn is a normalization constant taking the values 1 if the top entry is null and 1/
√

2 if it is not; the positive
energies describe electrons and the negative ones to holes.

The probability and current densities to be studied now are given by

ρB = Ψ†(x, y)Ψ(x, y) ~JB =
~
m∗

[
Im
(

Ψ†(x, y)~jΨ(x, y)
)]
, (26)

where ~j is an antihermitian operator given by

jx =
i

~
~σ · ~π,

jy =
i

~
~χ · ~π, (27)

with ~χ = (σ2,−σ1) regardless the factorization energies or the gauge chosen. The previous expressions agree with
the results obtained in [18] for electrons in bilayer graphene under external magnetic fields; they allow us to recover
the right expressions in the absence of magnetic fields, since in that case ~A = 0 and the canonical and kinematic
momentum become equal [25].

3 Ladder operators

We are interested in constructing the coherent states for each of the two graphene systems previously discussed. In
order to do that it is necessary to determine appropriate ladder operators in both cases. Let us start by assuming that
we know proper annihilation and creation operators {θ−, θ+} for the ψ−n of equations (10, 25), such that

θ−ψ−n =
√
pnψ

−
n−1,

θ+ψ−n =
√
qnψ

−
n+1, (28)

where θ+ ≡ (θ−)† and the generalized number operator is defined byN ≡ θ+θ−. We also assume that these operators
supply a good ladder relationship, i.e., the ground state is the only one annihilated by θ− and qn 6= 0 ∀n. Note that,
in general θ−, θ+ are not ladder operators for ψ+

n . Nevertheless, in both graphene cases we know the corresponding
intertwining operators L±1 and L±2 , which is all we need to determine such ladder operators.

3.1 Ladder operators for monolayer graphene

Let us start by introducing an annihilation operator for the eigenfunctions (10) for monolayer graphene in a way similar
to the proposal made in [19–23] as follows

A−M =


L−1 1√

H−1
θ−

f1(H
−
1 )√

H−1
L+
1 −iL−1 1√

H−1
θ−f1(H−1 )

iθ−
f1(H

−
1 )√

H−1
L+
1 θ−f1(H−1 )

 , (29)

where f1 is an auxiliary real function that we can choose at will. Then, the action of A−M turns out to be:

A−MΨn(x, y) = 2
√
pnf1(En)Ψn−1(x, y)×


0 for n = 0,

1√
2

for n = 1,

1 for n ≥ 2.

(30)

4
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The associated creation operator A+
M ≡

(
A−M

)†
is given by

A+
M =


L−1

f1(H
−
1 )√

H−1
θ+ 1√

H−1
L+
1 −iL−1

f1(H
−
1 )√

H−1
θ+

if1(H−1 )θ+ 1√
H−1
L+
1 f1(H−1 )θ+

 , (31)

and its action becomes

A+
MΨn(x, y) = 2

√
qnf1(En+1)Ψn+1(x, y)×


1√
2

for n = 0,

1 for n ≥ 1.
(32)

This equation allows us to construct the n-th eigenstate through the successive application of A+
M over Ψ0, as long as

f1(Em) 6= 0 for m ∈ [1, n].

3.2 Ladder operators for bilayer graphene

For this case the annihilation operator is given by

A−B =


L−2 1√

(H−2 −E0)(H
−
2 −E1)

θ−
f2(H

−
2 )√

(H−2 −E0)(H
−
2 −E1)

L+
2 L−2 1√

(H−2 −E0)(H
−
2 −E1)

θ−f2(H−2 )

θ−
f2(H

−
2 )√

(H−2 −E0)(H
−
2 −E1)

L+
2 θ−f2(H−2 )

 , (33)

where f2 is a real function. Then, the action of A−B over the eigenstates (25) is ruled by

A−BΨn(x, y) = 2
√
pnf2(En)Ψn−1(x, y)×



0 for n = 0,

1
2 for n = 1,

1√
2

for n = 2

1 for n ≥ 3.

(34)

The corresponding creation operator A+
B ≡

(
A−B
)†

is

A+
B =


L−2

f2(H
−
2 )√

(H−2 −E0)(H
−
2 −E1)

θ+ 1√
(H−2 −E0)(H

−
2 −E1)

L+
2 L−2

f2(H
−
2 )√

(H−2 −E0)(H
−
2 −E1)

θ+

f2(H−2 )θ+ 1√
(H−2 −E0)(H

−
2 −E1)

L+
2 f2(H−2 )θ+

 , (35)

which fulfills

A+
BΨn(x, y) = 2

√
qnf2(En+1)Ψn+1(x, y)×


1
2 for n = 0,

1√
2

for n = 1,

1 for n ≥ 2.

(36)

Once again, we are able to construct the n-th eigenstate through the successive application of A+
B over Ψ0. as long as

f2(Em) 6= 0 for m ∈ [1, n].

4 Generalized coherent states

In quantum mechanics the coherent states can be constructed through different definitions, which for the harmonic
oscillator are mutually equivalent. However, for a system different from the oscillator in general these definitions are
not equivalent, thus leading to different sets of coherent states.

5
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In the previous section we have found a family of ladder operators for monolayer and bilayer graphene which are well
determined, up to an arbitrary function f1 or f2 in each case. In order to work both cases simultaneously, let us define

f1(En) = f(n)×


1√
2

for n = 1,

1
2 for n ≥ 2,

(37)

and

f2(En) = f(n)×


1 for n = 1,

1√
2

for n = 2,

1
2 for n ≥ 3,

(38)

which translate equations (30) and (34) into

A−GΨn(x, y;G) =
√
pnf(n)Ψn−1(x, y;G) for n = 0, 1, . . . (39)

where G =M,B and Ψn(x, y;G) represents the monolayer or bilayer graphene eigenfunctions. We must emphasize
that this relationship is similar only algebraically, since the eigenstates and the annihilation operator in both cases have
different nature. Next we will work with the generalized coherent states, based on relationship (39).

4.1 Barut–Girardello coherent states

In the literature the eigenstates of the system annihilation operator are known as Barut-Girardello coherent states
(BGCS) [3]. Thus, for the annihilation operator of equation (39) the BGCS must fulfill

A−GΨBG
α (x, y;G) = αΨBG

α (x, y;G), (40)

where α is a complex eigenvalue. The BGCS can be represented in the basis of Hamiltonian eigenfunctions as the
following linear combination,

ΨBG
α (x, y;G) =

∞∑
n=0

anΨn(x, y;G). (41)

By substituting this expression into equation (40), after some algebra we get that

αan = f(n+ 1)
√
pn+1an+1 for n = 0, 1, ... (42)

The previous recurrence relationship supplies an iterative formula for an in which f plays an important role. Moreover,
two different cases appear, according to the values that f(n) can take.

4.1.1 Case with f(n) 6= 0

If f(n) 6= 0 for n = 1, 2, ... the recurrence relationship (42) leads to

an =
αna0√

[pn]! [f(n)]!
, (43)

where the generalized factorial function is defined by

[f(k)]! ≡

{
1 for k = 0,

f(1)f(2) · · · f(k) for k = 1, 2, ...
(44)

Then, the normalized BGCS for this case turn out to be

ΨBG
α (x, y;G) =

[ ∞∑
n=0

|α|2n

[pn]! ([f(n)]!)
2

]− 1
2
[ ∞∑
n=0

αn√
[pn]! [f(n)]!

Ψn(x, y;G)

]
. (45)

Despite f is an arbitrary function, we must restrict ourselves to functions allowing the convergence of our coherent
state expression (45).

6
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4.1.2 Case with f(n) = 0 for some n

In this case we have to take into account that f has roots for some n ∈ N; let us denote as m the maximum value of n
for which there is a root, with m ≥ 1. Note that it does not matter for the analysis if either there are more roots or not,
the conditions we get turn out to be

an = 0 for 0 ≤ n ≤ m− 1, (46)

an+1 =
αan√

pn+1f(n+ 1)
for n ≥ m. (47)

Thus, for this case the normalized BGCS are

ΨBG
α (x, y;G) =

 ∞∑
n=0

|α|2n

[p̂n]!
([
f̂(n)

]
!
)2

− 1

2  ∞∑
n=0

αn√
[p̂n]!

[
f̂(n)

]
!
Ψn+m(x, y;G)

 . (48)

Two points are worth to be stressed: firstly, the linear combination starts from Ψm(x, y;G); secondly, the coefficients
in such decomposition have changed as compared with equation (45), since now we have p̂n ≡ pn+m and f̂(n) ≡
f(n + m). Note that in both cases the coherent states look similar to the ones derived in [20, 22]. In fact a proper
choice of f allows us to recover them. Nevertheless, the way we have constructed the annihilation operator and the
form we have fixed the function f will lead us to new interesting properties.

4.2 Gilmore-Perelomov coherent states

The displacement operator for the harmonic oscillator allows to construct the coherent states straightforwardly, but
an important fact in that construction is the really simple commutation relationship between the annihilation and
creation operators. For an arbitrary system with defined ladder operators it arises the idea that the coherent states can
be obtained as the result of acting a generalized displacement operator on one extremal state of the system (a state
annihilated by the operator A−G ). In the literature these are called Gilmore-Perelomov coherent states (GPCS) [4, 5].
Next, we carry out first the analysis of the commutator

[
A−G , A

+
G
]

and then generate the Gilmore-Perelomov coherent
states.

Let us begin assuming that equations (37) and (38) are fulfilled, thus we have

A−GΨn(x, y;G) =
√
pnf(n)Ψn−1(x, y;G), (49)

A+
GΨn(x, y;G) =

√
qnf(n+ 1)Ψn+1(x, y;G) ∀ n. (50)

We are interested in knowing if we can get the commutation relationship
[
A−G , A

+
G
]

= 1, as for the harmonic oscillator.
For doing this, we use an arbitrary state expressed as a linear combination of the basis vectors, namely Ψ(x, y;G) =∑∞
n=0 anΨn(x, y;G). Thus,

[
A−G , A

+
G
]

Ψ(x, y;G) =

∞∑
n=0

an (γn+1 − γn) Ψn(x, y;G), (51)

where γn is a real non-negative function of n given by

γn =
√
qn−1pnf

2(n). (52)

Once again we get two different cases, according to the values taken by f .

4.2.1 Case with f(n) 6= 0

If f has no roots for n ∈ N, then the only extremal state will be the ground state Ψ0(x, y;G). The ladder operators
commute to the identity if the following conditions are fulfilled

f(1) = (q0p1)
− 1

4 , (53)

f(n+ 1) =

(
1 +
√
qn−1pnf

2(n)
√
qnpn+1

) 1
2

for n ≥ 1. (54)

7
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Equations (53) and (54) ensure that
[
A−G , A

+
G
]

= 1, i.e., the operators A−G and A+
G fulfill the Heisenberg-Weyl alge-

bra. Then, the displacement operator defined by DG (α) = exp
(
αA+
G − α∗A

−
G
)

can be factorized using the Baker-

Hausdorff formula as DG(α) = e−
1
2 |α|

2

eαA
+
G e−α

∗A−G .

The Gilmore-Perelomov coherent states ΨGP
α (x, y;G) in this case are the result of acting DG(α) over the ground state

(the only extremal state in this case), thus we have

ΨGP
α (x, y;G) = e−

1
2 |α|

2
∞∑
n=0

αn
√

[q̂n]! [f(n)]!

n!
Ψn(x, y;G), (55)

where q̂n = qn−1. It is important to remark that here we do not need to normalize the Gilmore-Perelomov coherent
states, since DG(α) is a unitary operator.

4.2.2 Case with f(n) = 0 for some n

Let us start by considering the ordered set of integers {mi|f(mi) = 0 for i = 1, 2, ..., l}, i.e., the extremal states
are Ψmi

(x, y;G). Notice that γmi
= 0 since f(mi) = 0, which implies that the coefficients multiplying Ψmi

(x, y;G)
and Ψmi−1(x, y;G) in equation (51) reduce to ami

γmi+1 and −ami−1γmi−1 respectively. While the first coefficient
can be made equal to ami

for some particular election of f , the second one can not be made equal to ami−1 because
−γmi−1 is non-positive. As a consequence,

[
A−G , A

+
G
]

can not be equal to the identity operator in this case, under any
circumstances.

Although now
[
A−G , A

+
G
]
6= 1, there are still some cases that may be worth of some discussion.

a) Ifmi+1−mi ≥ 2 for i = 1, 2, ..., which means that all the roots of f are non-consecutive, thus under an appropriate
choice of f equation (51) might produce a slight modification on the contribution of the extremal states Ψmi

(x, y;G)
to the linear combination, i.e., the commutator could be made very close to the identity.

b) If mi+1 −mi = 1 for some i, at least two roots of f are consecutive which implies that the term Ψmi(x, y;G) will
disappear from the linear combination (51). Then, the commutator

[
A−G , A

+
G
]

is very close to the identity, minus the
projector onto the subspace generated by Ψmi(x, y;G).

The most important consequence of having roots in f(n) is that the Baker-Hausdorff factorization formula can not
be applied anymore. Nevertheless, we can use an alternative non-unitary displacement operator defined by DG(α) =

eαA
+
G . The Gilmore-Perelomov coherent states arise from acting this operator over the extremal states Ψmi

(x, y;G).
By remembering that there are l roots for f , the coherent states are thus given by

ΨGP
α (x, y,mi;G) =

mi+1−mi−1∑
n=0

αn
√

[q̃(n)]![f̃(n)]!

n!
Ψn+mi

(x, y;G), for i = 0, 1, 2, ..., l, (56)

wherem0 ≡ 0, ml+1 ≡ ∞, q̃(n) = q(n+mi−1) and f̃(n) = f(n+mi). Some important points need to be stressed:
the GPCS in this case have two labels, the complex number α and the extremal state label mi they are generated from;
these states are orthogonal with respect to the last label. In addition, since the displacement operator employed is
non-unitary, the coherent states of equation (56) should still be normalized.

4.3 Minimum uncertainty coherent states

Another definition has been promoted by Aragone, Nieto and Simmons [1, 6, 7], in which the coherent state
ΨMU(x, y;G), called minimum uncertainty coherent state, must saturate the uncertainty product for the quadratures
QG and PG , defined by

QG =
1√
2

(
A+
G +A−G

)
, PG =

i√
2

(
A+
G −A

−
G
)
. (57)

Note that, if two arbitrary operators F and G are hermitian, their commutator [F,G] should be antihermitian, so it can
be defined [F,G] = iK, where K has to be hermitian. Thus, for an arbitrary state |Ψ〉 it must hold that

∆F∆G ≥ 1

2
| 〈K〉 |, (58)

where 〈K〉 = 〈Ψ|K |Ψ〉 and (∆K)2 ≡ 〈Ψ|K2 |Ψ〉 − 〈Ψ|K |Ψ〉2. Equation (58) will be saturated if it is fulfilled(
F + i

∆F

∆G
G

)
Ψ =

(
〈F 〉+ i

∆F

∆G
〈G〉
)

Ψ. (59)

8
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Finally, if we make F = QG and G = PG , after some algebra the previous condition becomes[
(1− λ)

(1 + λ)
A+
G +A−G

]
Ψ = αΨ, (60)

where λ = ∆QG/∆PG and α =
[
(1−λ)
(1+λ) 〈A

+
G 〉+ 〈A−G 〉

]
.

Some points are worth to be stressed: for this treatment the quadratures QG and PG are not, in general, the position
and moment operators. On the other hand, the previous equation represents the eigenvalue problem for the so-called
squeezed coherent states, which saturate the Heisenberg uncertainty product ∆QG∆PG but the uncertainty in one of
their quadratures is in general different from the other one. The particular case with λ = 1 (∆QG = ∆PG) reduces
to an equation of eigenvalues for A−G , therefore the minimum uncertainty coherent states turn out to be equal to the
Barut-Girardello coherent states, i.e., ΨMU(x, y;G) = ΨBG(x, y;G); from now on we will refer to such a case as the
minimum uncertainty coherent states.

5 Constant magnetic field

Once we have discussed in general the coherent states for monolayer and bilayer graphene, we are going to analyze
now the particular case of a constant magnetic field, for which we will compare the results of the different definitions
and some of their associated physical quantities.

Let us consider the constant magnetic field ~B = B0êz with B0 > 0, so the vector potential amplitude isA(x) = B0x.
Then, the eigenfunctions ψ−n (x) of H−i , i = 1, 2 for both monolayer and bilayer graphene are given as follows:

ψ−n (x) =

√
1

2nn!

( ω
2π

) 1
2

Hn

[√
ω

2

(
x+

2k

ω

)]
e−

ω
4 (x+ 2k

ω )
2

, n = 0, 1... (61)

where ω ≡ 2eB0/c~ and k is the wave number in y direction. The corresponding eigenvalues are En = nω (see
[15–18]). Thus, the eigenfunctions and eigenvalues for monolayer graphene become

Ψn(x, y;M) =
1√

21−δn0

eiky
(

(1− δn0)ψ−n−1(x)
iψ−n (x)

)
, En = ~vF

√
nω, n = 0, 1, ... (62)

while for bilayer graphene are

Ψn(x, y;B) =
eiky√

2(1−δn0−δn1)

(
(1− δn0 − δn1)ψ−n−2(x)

ψ−n (x)

)
, En =

~2ω
2m∗

√
n(n− 1), n = 0, 1, ... (63)

Since the involved eigenfunctions correspond to the harmonic oscillator, it is required the one-dimensional first-order
ladder operators given by

θ− =
1√
2

(
z +

d

dz

)
,

θ+ =
1√
2

(
z − d

dz

)
, (64)

where z =
√

ω
2

(
x+ 2k

ω

)
, such that

θ−ψ−n =
√
nψ−n−1,

θ+ψ−n =
√
n+ 1ψ−n+1, for n = 0, 1, ... (65)

Equations (61-65) are all we need to determine the generalized coherent states. From now on we will restrict ourselves
to the case where the function f has no roots, in particular, we will choose f(n) = 1 for the BGCS of equation (45).

5.1 Generalized coherent states

Once we have fixed f(n) = 1, looking at equations (28), (64) we can simplify the BGCS of equation (45), which in
our approach coincide with the MUCS, i.e.,

ΨBG
α (x, y;G) = ΨMU

α (x, y;G)

= e−
1
2 |α|

2
∞∑
n=0

αn√
n!

Ψn(x, y;G), (66)

9
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where the index G =M,B indicates monolayer or bilayer graphene respectively. Concerning the GPCS, we have to
simplify equation (54) by using equation (65). After some algebra we get

ΨGP
α (x, y;G) = e−

1
2 |α|

2
∞∑
n=0

αn√
n!

Ψn(x, y;G)

= ΨBG
α (x, y;G) = ΨMU

α (x, y;G). (67)

Equations (66) and (67) indicate the existence of a family of coherent states for which the three definitions are mutually
equivalent, which is achieved through the function f such that f(n) = 1, n = 1, 2, ... It is important to note that
f(n) = 1 does not mean necessarily that f(x) = 1,∀x ∈ R, it is enough that the function takes just the unit value for
any positive integer. Therefore, there are different creation and annihilation operators in equations (29), (31) and (33),
(35) leading to the same set of coherent states.

Due to the mutual equivalence between these definitions of generalized coherent states, from now on we will just call
them coherent states, and denote them as Ψα(x, y;G). We must emphasize that these states form an overcomplete set
of vectors in the Hilbert space which fulfill a resolution of the identity as follows

I =
1

π

∫
C
|Ψα〉 〈Ψα| dµ(α), (68)

where dµ(α) = rdrdθ
π and α = reiθ. In the following sections we will calculate some physical quantities associated

with these coherent states.

5.1.1 Probability density

An important quantity to be analyzed for these coherent states is the probability density, which is defined as

ρG(x, y;α) = Ψ†α(x, y;G)Ψα(x, y;G). (69)

In order to simplify the expression resulting from equation (66) let us define

an(α) ≡ e− 1
2 |α|

2 αn√
n!
, ρn,m(x, y;G) ≡ Ψm(x, y;G)†Ψn(x, y;G),

Cm,n(x, y, α;G) = a∗m(α)an(α)ρn,m(x, y;G), (70)
with ρn,m being symmetric under the exchange of indexes, due to the real valued functions involved in equation (61).
Notice that ρn,m(x, y;G) = ρn,m(x;G), i.e., the probability density depends only on x in the way

ρG(x;α) =

∞∑
n,m=0

Re (Cm,n(x, α;G)) . (71)

By defining
ρn(x;G) ≡ ρn,n(x;G), (72)

and using the eigenstates (62) and (63) respectively, we finally get that

ρM(x, α) = e−r
2

{
ρ0(x;M) + 2

∞∑
n=1

rncos(nθ)√
n!

ρn,0(x;M) +

∞∑
n,m=1

rn+mcos [(n−m)θ]√
n!m!

ρn,m(x;M)

}
, (73)

for monolayer graphene coherent states and

ρB(x, α) =e−r
2

{ ∞∑
n,m=2

rn+mcos [(n−m)θ]√
n!m!

ρn,m(x;B) + ρ0(x;B) + r2ρ1(x;B) + 2rcos(θ)ρ1,0(x;B)

+ 2

∞∑
n=2

rn√
n!

[cos(nθ)ρn,0(x;B) + rcos [(n− 1)θ] ρn,1(x;B)]

}
, (74)

for bilayer graphene coherent states.

Note that the change θ → −θ keeps invariant the probability density, which can be represented as ρG(x, α) =
ρG(x, ᾱ). For a fixed value of r, it can be observed that the amplitude and the position of the probability density
maximum in both cases depend on the value of θ, as it is shown in Figure 1 for monolayer graphene and in Figure 2
for bilayer graphene.
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Figure 1: Plots of the probability density for the monolayer graphene coherent states (66) as functions of x and θ, for
fixed values of ω = k = 1 and different values of r: (a) r = 1; (b) r = 3; (c) r = 5. We can see that the maximum
shifts to the left as we increase θ.

5.1.2 Current density

The current expressions for monolayer and bilayer graphene, equations (11) and (26) respectively, are different; thus
we must treat them separately.

For monolayer graphene the current components for the coherent state (66) are given by[
~JM
]
x

= vFe
−r2

∞∑
n,m=0

rn+msin [(n−m)θ]√
n!m!

j−n,m(x),

[
~JM
]
y

= vFe
−r2

∞∑
n,m=0

rn+mcos [(n−m)θ]√
n!m!

j+n,m(x), (75)

where

j±n,m(x) =
(1− δn,0)ψ−n−1(x)ψ−m(x)± (1− δm,0)ψ−n (x)ψ−m−1(x)

√
22−δn,0−δm,0

. (76)

By making now θ → −θ (α→ ᾱ) we realize that the y−component keeps invariant while the x−component
[
~JM
]
x

goes to −
[
~JM
]
x

. In Figures 3 and 4 we can see plots of the x and y components of the current density for the
monolayer graphene coherent state, respectively.
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Figure 2: Plots of the probability density for the bilayer graphene coherent states (66) as functions of x and θ, for fixed
values of ω = k = 1 and different values of r: (a) r = 1; (b) r = 3; (c) r = 5. We can see that the maximum shifts to
the left as we increase θ.

For bilayer graphene, after some algebra we can see that the operator components (27) turn out to be

jx =

(
0 L−1
−L+

1 0

)
=
√
ω

(
0 θ−

−θ+ 0

)
,

jy = −i
(

0 L−1
L+
1 0

)
= −i

√
ω

(
0 θ−

θ+ 0

)
. (77)

In this way we obtain the following current density components:[
~JB
]
x

=
~
m∗
√
ωe−r

2
∞∑

n,m=0

rn+msin [(n−m)θ]√
n!m!

j−n,m(x),

[
~JB
]
y

= − ~
m∗
√
ωe−r

2
∞∑

n,m=0

rn+mcos [(n−m)θ]√
n!m!

j+n,m(x), (78)

where now

j±n,m(x) =
(1− δm,0 − δm,1)

√
nψ−m−2(x)ψ−n−1(x)± (1− δn,0 − δn,1)

√
n− 1ψ−m(x)ψ−n−1(x)

√
22−δn,0−δn,1−δm,0−δm,1

. (79)
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As for monolayer graphene, if θ → −θ (α → ᾱ) the y− component keeps invariant while the x−component
[
~JB
]
x

goes to −
[
~JB
]
x

. In Figures 5 and 6 we can see plots of the x and y components of the current density for bilayer
graphene coherent state, respectively.
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Figure 3: Plots of the x−component current density [JM]x for the monolayer graphene coherent states (66) as function
of x and θ for fixed values of ω = k = 1 and different values of r: (a) r = 1; (b) r = 3; (c) r = 5.

5.1.3 Mean energy value

Up to here we have constructed coherent states for monolayer and bilayer graphene through three different definitions.
We have determined as well a family for which these definitions are mutually equivalent, as for the harmonic oscillator.
However, according to the specific nature of the solutions some quantities, as the mean energy value, are different for
each case.

In particular, the mean energy value 〈HG〉α = 〈Ψα|HG |Ψα〉 for the coherent state (66) with the eigenstates and
eigenenergies (62) and (63) lead to

〈HM〉α = ~vF

√
ωe−r

2

r2
∞∑
n=0

r2n√
n+ 1n!

,

〈HB〉α =
~2ω
2m∗

e−r
2

r4
∞∑
n=0

r2n√
(n+ 2)(n+ 1)n!

. (80)
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Figure 4: Plots of the y−component current density [JM]y for the monolayer graphene coherent states (66) as function
of x and θ for fixed values of ω = k = 1 and different values of r: (a) r = 1; (b) r = 3; (c) r = 5.

As we can see, in both cases the mean energy value does not depend on the phase but only on the norm |α| = r of the
complex number α. In Figure 7(a) it is shown a plot of the mean energy value for the monolayer graphene coherent
state while for the bilayer graphene coherent state it is shown in Figure 7(b).

5.1.4 Heisenberg uncertainty principle

Although the quadratures saturate the uncertainty product ∆QG∆PG for our coherent states, it is important to stress
that QG and PG do not represent the position and momentum of the electron. Thus, we will calculate next the Heisen-
berg uncertainty relationship for the canonical position and momentum operators.

For the position x and canonical momentum px the Heisenberg uncertainty principle reads

∆x∆px = ~∆z∆pz ≥
~
2
, (81)

where z and pz are dimensionless position and momentum operators defined by

z =
θ+ + θ−√

2
,

pz =i
θ+ − θ−√

2
. (82)
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Figure 5: Plots of the x−component current density [JB]x for the bilayer graphene coherent states (66) as function of
x and θ for fixed values of ω = k = 1 and different values of r: (a) r = 1; (b) r = 3; (c) r = 5.

For the monolayer graphene coherent states (66) it is straightforward to prove that the mean values of z and pz , as well
as their squares, are given by

〈z〉α =
e−r

2

Re(α)√
2

(
er

2

+
√

2− 1 +

∞∑
n=0

r2n+2√
n!(n+ 2)!

)
,

〈z2〉α =
e−r

2

2

[
1 + 2r2er

2

+ Re(α2)

(
er

2

+
√

2− 1 +

∞∑
n=0

√
n+ 2r2n+2√
n!(n+ 3)!

)]
,

〈pz〉α =
e−r

2

Im(α)√
2

(
er

2

+
√

2− 1 +

∞∑
n=0

r2n+2√
n!(n+ 2)!

)
,

〈p2z〉α =
e−r

2

2

[
1 + 2r2er

2

−Re(α2)

(
er

2

+
√

2− 1 +

∞∑
n=0

√
n+ 2r2n+2√
n!(n+ 3)!

)]
. (83)

In the limit α→ 0 it turns out that ∆z = ∆pz = 1/
√

2 and thus in units of ~ ∆x∆px = 1/2 (see Figure 8).
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Figure 6: Plots of the y−component current density [JB]y for the bilayer graphene coherent states (66) as function of
x and θ for fixed values of ω = k = 1 and different values of r: (a) r = 1; (b) r = 3; (c) r = 5.

Now, for the bilayer graphene coherent states (66) the corresponding mean values turn out to be

〈z〉α =
e−r

2

Re(α)√
2

[
er

2

+ 1 +
(√

2− 1
)
r2 +

∞∑
n=0

√
n+ 1r2n+4√

(n+ 2)!(n+ 3)!

]
,

〈z2〉α =
e−r

2

2

[
2(r2 + 1) + (2r2 − 1)er

2

+ Re(α2)

(
er

2

+ (
√

2− 1)(1 + r2) +

∞∑
n=0

r2n+4√
n!(n+ 4)!

)]
,

〈pz〉α =
e−r

2

Im(α)√
2

[
er

2

+ 1 +
(√

2− 1
)
r2 +

∞∑
n=0

√
n+ 1r2n+4√

(n+ 2)!(n+ 3)!

]
,

〈p2z〉α =
e−r

2

2

[
2(r2 + 1) + (2r2 − 1)er

2

−Re(α2)

(
er

2

+ (
√

2− 1)(1 + r2) +

∞∑
n=0

r2n+4√
n!(n+ 4)!

)]
. (84)

Once again, if α→ 0 then ∆z = ∆pz = 1/
√

2 and thus in units of ~ ∆x∆px = 1/2 (see Figure 9).

5.1.5 Quantum fidelity

It is well known that if the evolution operator U(t, t0) = e−iHG(t−t0)/~ is applied to the coherent states (66), the non-
equidistant nature of the energy levels prevents to obtain a time evolution similar to that of the harmonic oscillator.
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Figure 7: Mean energy value for the monolayer graphene coherent state (a) and the bilayer graphene coherent state (b)
in (66). In both cases the parameters have been fixed as ω = k = 1; we can see the reflexion symmetry with respect
to θ.
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Figure 8: Plot of the uncertainty product ∆x∆px as function of α for the monolayer graphene coherent sates (66) in
units of ~. It can be seen that for r →∞ this product is saturated (tends to 1/2).

However, in both cases it is possible to analyze the time evolution through the quantum fidelity, specially for bilayer
graphene where approximate oscillation periods can be found, as will be shown below (see also [22]).

Let us start by considering the time evolution of the monolayer graphene coherent states (66), for which we have

Ψα(x, y, t;M) = e−
1
2 r

2
∞∑
n=0

αn√
n!
e−i
√
nt1Ψn(x, y;M), (85)

where t1 = vF

√
ωt is a dimensionless time. On the other hand, for bilayer graphene it turns out that

Ψα(x, y, t;B) = e−
1
2 r

2
∞∑
n=0

αn√
n!
e−i
√
n(n−1)t2Ψn(x, y;B), (86)

with t2 = ~ωt/2m∗ being another dimensionless time; in both cases we have taken t0 = 0. Additionally, we know
that the quantum fidelity gives us a measure of the closeness between two states, which is defined by

F (φ, ζ) ≡ | 〈φ|ζ〉 |2. (87)
Thus, if F (φ, ζ) = 1 it can be said that |φ〉 , |ζ〉 differ at most in a global phase factor and both represent the same
quantum state. Keeping this in mind, one can say that if for some time τ the initial and the evolved state coincide, thus
τ can be called a quasiperiod.
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Figure 9: Plot of the uncertainty product ∆x∆px as function of α for the bilayer graphene coherent sates (66) in units
of ~. It can be seen that for r →∞ this product is saturated (tends to 1/2).

Now, for both coherent states (85, 86) the fidelity is given by

F (Ψα,Ψα(t)) = e−2r
2
∞∑

n,m=0

r2(n+m)

n!m!
cos [(h(n)− h(m)) tG ] , (88)

where tG = {tM ≡ t1, tB ≡ t2, } and

h(n) =


√
n for monolayer graphene,√

n(n− 1) for bilayer graphene.
(89)

In Figure 10 we can see the quantum fidelity (88) between the initial and the evolved state at time t for the monolayer
and bilayer graphene coherent states. In both cases such a quantity depends only on r and the time (t1 or t2), and we
can easily identify the values of t1, t2 that make F (Ψα,Ψα(t)) going to 1, which can be considered as the quasiperiods
τ .
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Figure 10: (a) Plots of the fidelity between the initial and the evolved state (66) and (85) for the monolayer graphene
coherent states as function of the dimensionless time t1. (b) Plots of fidelity between the initial and the evolved state
(66) and (86) for the bilayer graphene coherent states as function of the dimensionless time t2. In both cases the
quantum fidelity becomes independent on the phase θ.
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Discussion

For bilayer graphene the eigenenergies can be written approximately as follows (see a similar approximation in [26])

En =
~2ω
2m∗

 0 for n = 0, 1,

n− 1
2 +O( 1

n ) for n ≥ 2.
(90)

Departing from a certain value N the approximate expression (90) can be supposed to be linear, thus we will have that

Ψα(x, y, t) = Ψ
′

α(x, y, t) + γα(x, y, t,N), (91)
where

Ψ
′

α(x, y, t) = eit2/2

(
e−

r2

2

∞∑
n=0

α(t)n√
n!

Ψn(x, y)

)
,

γα(x, y, t;N) = e−
r2

2

N−1∑
n=0

αn√
n!

(
e−i
√
n(n−1)t2 − e−i(n−1/2)t2

)
Ψn(x, y), (92)

and α(t) = αe−it2 (remember that t2 is proportional to t). The previous expression allows us to write the fidelity as
follows:

F (Ψα,Ψα(t)) = F (Ψα,Ψ
′

α(t)) + F (Ψα, γα(t;N)) + 2Re
(
〈Ψ
′

α(t)|Pα|γα(t;N)〉
)

= e−4r
2sin2

(
t2
2 ) + F (Ψα, γα(t;N)) + 2Re

(
〈Ψ
′

α(t)|Pα|γα(t;N)〉
)
, (93)

with Pα being the projector onto the subspace generated by the initial coherent state. In order to find the quasiperiods,
the fidelity must be made approximately equal to 1, thus a value of N is fixed and the equation is solved for t2. Note
that for a given N , regardless its value, if r → ∞ then γα → 0. This means that F (Ψα,Ψα(t)) = e−4r

2sin2
(
t2
2 )

in such a limit, which implies that the quasiperiod will be τ = 2π and its integer multiples; we can see that this
approximation agrees with the behavior observed in Figure 10(b) for r > 1. Plots of the corresponding probability
density at different times are shown in Figure 11.

6 Conclusions

Graphene coherent states have been generated in several recent works [19–23], usually taking either the Barut-
Girardello or the Gilmore-Perelomov definitions. In each of these works, annihilation operators with different proper-
ties have been used. This motivated us to analyze a different approach to construct them. We have started by finding
out a family of creation and annihilation operators for the eigenstates associated with electrons in monolayer or bi-
layer graphene in an external magnetic field, in a similar way as it was done in [20, 22]. This allowed us to construct
well-behaved ladder operators, such that they connect appropriately the eigenfunctions of the system Hamiltonian.

By making use of these ladder operators, we have derived and analyzed the coherent states through the Barut-
Girardello, Gilmore-Perelomov and minimum uncertainty definitions. In the particular case of Gilmore-Perelomov
coherent states, we have found suitable conditions for the commutator of the ladder operators to fulfill the Heisenber-
Weyl algebra. This is an important result of this paper, since it allows us to employ the Baker-Hausdorff formula and
to get a unitary displacement operator, in contrast with the operator obtained in [23].

After doing this, we have found a family of coherent states associated with the function choice f(n) = 1, which
allowed us to get the mutual equivalence between the different coherent states definitions. This is, in fact, the main
difference with the previous works on graphene coherent states.

We have taken advantage of this equivalence and have determined some physical quantities, as the probability and
current densities, time-evolution and quantum fidelity. Finally, in order to get an approximate oscillation period, as
for the harmonic oscillator, we have carried out a fidelity analysis for the particular case of bilayer graphene coherent
sates.
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Figure 11: Plots of the probability densities for bilayer graphene coherent states at different multiples of the
quasiperiod τ = 2π and different values of r: (a) r = 1; (b) r = 3; (c) r = 5. We can see that the different
curves tend to be the same as r increases. We have fixed θ = 0 and ω = k = 1.
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