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Graphene memristive synapses for high precision
neuromorphic computing
Thomas F. Schranghamer1, Aaryan Oberoi 1 & Saptarshi Das 1,2,3✉

Memristive crossbar architectures are evolving as powerful in-memory computing engines

for artificial neural networks. However, the limited number of non-volatile conductance states

offered by state-of-the-art memristors is a concern for their hardware implementation since

trained weights must be rounded to the nearest conductance states, introducing error which

can significantly limit inference accuracy. Moreover, the incapability of precise weight

updates can lead to convergence problems and slowdown of on-chip training. In this article,

we circumvent these challenges by introducing graphene-based multi-level (>16) and non-

volatile memristive synapses with arbitrarily programmable conductance states. We also

show desirable retention and programming endurance. Finally, we demonstrate that graphene

memristors enable weight assignment based on k-means clustering, which offers greater

computing accuracy when compared with uniform weight quantization for vector matrix

multiplication, an essential component for any artificial neural network.
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T
he recent decline in complementary metal-oxide-
semiconductor (CMOS) technology after almost five dec-
ades of relentless growth necessitates alternate computing

methods to circumvent existing challenges1. A subject of great
interest in this regard is the human brain. While powerful
supercomputers can rival or even exceed the brain in number of
operations performed per second, the brain is indisputably
superior in terms of energy and area efficiency, capable of per-
forming anywhere from 5 trillion to 5 quadrillion operations per
Watt and only taking up 0.0012 m3 in volume2. In comparison,
IBM’s supercomputer Summit can only perform approximately
10 billion operations per Watt while taking up an area of over
850 m23. Artificial neural networks (ANNs) seek to emulate the
efficiency of the brain by directly mimicking its most funda-
mental unit: neuron-to-neuron connections via synapses. How-
ever, even the most sophisticated chips based on ANNs, such as
IBM’s TrueNorth4, lack the ability to be scaled up to the full
capacity of a human brain without becoming inordinately power
hungry and area-inefficient5. The traditional von Neumann
architecture that operates on the basis of physical separation
between logic and memory is inherently incapable of scaling
ANNs with millions of synaptic weights.

The motivation behind biologically-inspired computing archi-
tecture lies in the ability of such systems to continuously adapt to
external stimuli that varies with time6. For ANNs, such learning is
obtained by modulating the synaptic weights assigned to the
connections between neurons, allowing for the overall con-
nectivity of the network to be reconfigured7. To properly repro-
duce this functionality from biological neurons, ANNs require a
device capable of changing and retaining its synaptic weight
(resistance/conductance) upon experiencing synaptic activity (the
application of a current or bias) while also demonstrating analog
behavior (possessing several resistance/conductance states). In
this context, modern ANNs have progressed tremendously when
compared to the first computational model developed by
McCulloch and Pitts8,9, with different ANNs being classified
according to their respective network architectures and con-
nectivity structures. ANNs possess a large number of computa-
tional layers, and those possessing greater than three layers are
often referred to as deep neural networks (DNNs). The layers of
greatest interest for the purposes of this paper are fully connected
(FC) layers that appears in all forms of ANNs. These are layers
wherein all outputs from a single layer are connected to all inputs
of the next layer, allowing for this next layer to compute the
weighted sum of all the outputs. This is typically done by per-
forming vector-matrix multiplication (VMM) upon the outputs8.
This process is extremely energy inefficient using CMOS tech-
nology in conjunction with the traditional von Neumann com-
puting architecture. Recent research has shown that higher
efficiency can be achieved by exploiting a crossbar array archi-
tecture and utilizing a direct weight update scheme based on
physical laws. Each crosspoint in the array is composed of a
material with adjustable conductance, G, essentially making each
crosspoint an analog non-volatile memory cell. By mapping the
weight matrices of FC layers to the conductance matrices of the
crossbar arrays, VMM can be performed at lower latency and
thus avoid the von Neumann bottleneck, i.e., data shuttling
between memory and compute. The development of such devices
is aided by resistive random access memory (RRAM), or mem-
ristors, that display a programmable conductance capable of
being changed via the application of short (<1 s), high amplitude
(>1 V) voltage pulses10–13. Most memristors are, however, binary
since they possess only two resistance states: a high resistance
state (HRS), in which the device is considered to be off, and a low
resistance state (LRS), in which the device is considered to be on.
Analog operation, mentioned previously as possessing several

resistance states, is far more preferred due to its enhanced
accuracy (through minimization of quantization error) over
binary operation, however the difficulty of operating memristors
in an analog fashion is a significant limitation that may hinder its
hardware implementation. One solution is to implement analog
operations using binary devices. But this naturally leads to high
computational and memory costs, limiting the application of
ANNs in situations with limited storage and computing power, a
prime example being portable devices14,15. In order to increase
power, area, and computational efficiency, weights are often
quantized into lower bits. By performing mathematical operations
at lower-precisions (i.e., 8-bit integer operations as opposed to 32-
bit floating point operations), ANNs consume less energy and
increase efficiency while also requiring less memory storage. A
known downside of this approach is a loss of accuracy due to
non-idealities (namely quantization errors and noise) generated
by the weight quantization process, which can negatively impact
an ANN’s ability to converge16,17.

In this article, we experimentally demonstrate a non-volatile
graphene-based resistive memory device which is capable of
achieving in excess of 16 conductance states. While non-volatile
graphene memory is not a new concept18–23, most explorations
into graphene memory are unable to realize more than 2 memory
states (1-bit) on a single device. We also show that the graphene
memristive synapses possess desirable retention and switching
endurance and also allow for the hardware implementation of
quantization through k-means clustering, resulting in enhanced
accuracy when compared to the uniform weight quantization
used by other synaptic devices. Overall, our demonstration of
multi-bit and non-volatile graphene memristive synapses can be
transformative for the realization of area and energy efficient
hardware for neuromorphic computing and for the integration of
ANNs with emerging technologies such as the Internet of Things
(IoT)24.

Results
Non-volatile and multi-bit graphene-based memristors. We
have achieved programmable conductance in graphene field effect
transistor (GFET) devices similar to that seen in oxide-based
memristors. To fabricate the GFETs, large-area chemical vapor
deposition (CVD) grown graphene was transferred onto a 50 nm
alumina (Al2O3) substrate, which acts as a back-gate oxide, on a
stack of Pt/TiN/p++-Si, which functions as a back-gate electrode.
The use of 50 nm Al2O3 as the back-gate oxide, when compared to
conventional 300 nm SiO2, was motivated by the high relative
dielectric constant (~10) of Al2O3 that allows for better electro-
static control of the GFET. Each GFET used for the experiments
was fabricated with a channel length (L) and channel width (W) of
1 µm and 0.5 μm, respectively. Further fabrication details,
including the specifics of the transfer process used, can be found in
the “Methods” section. Figure 1a, b, respectively, show the sche-
matic and scanning electron microscope image of a representative
GFET. Figure 1c shows the Raman spectrum of the graphene
channel, taken at a wavelength of 532 nm. The peak at approxi-
mately 1600 cm−1 is known as the G-band and is found in all sp2

carbon materials as a result of C–C bond stretching. The existence
of a strong peak at a Raman shift value of 2500–2800 cm−1

indicates the presence of single-layer graphene, with the peak itself
being referred to as the 2D-band. Notably, the Raman spectrum
shown here lacks a peak at approximately 1400 cm−1, as well
as a sub-peak directly adjacent to the G-band. These peaks,
known as the D-band and D’-band, respectively, are indicative of
disorder/impurities in the sp2 structure of graphene. The absence
of these peaks thus indicates that the graphene used in the GFETs
discussed in this paper is of high quality in addition to being

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19203-z

2 NATURE COMMUNICATIONS |         (2020) 11:5474 | https://doi.org/10.1038/s41467-020-19203-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


single-layer. Figure 1d, e display the output characteristics, i.e., the
source-to-drain current (IDS) versus the drain-to-source voltage
(VDS), for two p-type GFETs as they were subjected to forward
and backward voltage sweeps at a constant back-gate voltage
(VBG) of 0 V. Each separate curve displayed in Fig. 1d, e represents
a different sweep range of VDS. In the measurements represented
by Fig. 1d, the voltage was swept to a positive maximum, VDSmax,
ranging from 1 V to 6.5 V in steps of 0.5 V. As demonstrated by
the curves, increasing the sweep range appears to increase the
hysteresis window of the GFET until VDSmax= 5 V, beyond which
the direction of hysteresis reverses and the hysteresis window
begins to decrease. This phenomenon was also seen in the device
characterized in Fig. 1e, wherein each VDSmax value was negative.

Switching occurred at a similar magnitude (VDSmax=−5.5 V)
despite the difference in polarity with the device seen in Fig. 1d.
Hysteresis switching behavior with the increase in VDSmax

was taken to be indicative of memristive switching between
states of high and low conductance, similar to the switching in
oxide-based memristors caused by the initial formation of con-
ductive filaments due to voltage application, known as the forming
process25–27.

To establish the presence of memristive switching mechanisms
in GFETs distinct from those seen in traditional oxide-based
memristors (i.e., formation/degradation of conductive filaments
in the oxide), a series of programming pulses through the back-
gate of different GFETs was performed, with results displayed in
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Fig. 1 SET process for graphene memristors. a Schematic and (b) false-colored scanning electron microscope (SEM) image of a graphene memristor.

c Raman spectrum of the graphene channel, taken at a wavelength of 532 nm. Output characteristics (i.e., the source-to-drain current (IDS) versus the

drain-to-source voltage (VDS)) of an as-fabricated graphene field effect transistor (GFET) at VBG= 0 V for different VDS sweep ranges (denoted by VDSmax),

from (d) 1 V to 6.5 V and (e) −1 V to −6.5 V in steps of 0.5 V. The arrows denote the sweep direction (blue for the forward sweep and black for the reverse

sweep). In either case, the hysteresis window initially increases with increasing VDSmax before reversing direction and starting to decrease past VDSmax= 5

V for (d) and VDSmax=−5.5 V for (e). These results indicate switching between states of lower and higher conductance in GFETs. Transfer characteristics

at VDS= 10mV following the sweeps of (f) VDSmax= 1 V and VDSmax= 6.5 V and (g) VDSmax=−1 V and VDSmax=−6.5 V. Sweeping the GFET to a higher

positive VDSmax results in a large shift of the Dirac voltage from VDirac= 6.4 V to VDirac=−5.8 V, making the GFET more n-type, whereas sweeping the

GFET to a higher negative VDSmax results in a smaller shift from VDirac= 6.5 V to VDirac=−0.2 V, making the GFET more ambipolar. h Difference between

the conductance of two states as a function of VBG after the sequential application of positive and negative VDS pulses of magnitude 5 V for different pulse

durations (t) at VDS= 10mV. i Switching endurance. Histogram of conductance distributions following 200 cycles of SET (red) and RESET (blue) pulses of

different magnitudes. Conductance states obtained using VDS pulses of magnitude 5 V display both a relatively large difference in conductance and a

switching endurance >200 cycles. These experiments demonstrate the ability to SET and RESET conductance states in graphene by applying VDS pulses of

opposite polarity, making it attractive for non-volatile memory (NVM) applications.
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Supplementary Note 1. For biases equal to or greater than those
utilized in programming through the source/drain, no change in
the transfer characteristics or conductance states was noted. This
established that no conductive filament formation/degradation
was occurring as a result of the back-gate programming pulses,
making it clear that the mechanism being utilized to create
memory states in GFET memristors is distinct from that utilized
in oxide-based memristors. Indeed, as will later be discussed, the
bulk oxide (Al2O3) is not believed to play any major role in the
memristive mechanisms shown, with the mechanisms instead
being dominated by interactions at the graphene/Al2O3 interface.

Figure 1f, g, respectively, display the transfer characteristics
(i.e., IDS versus VBG) for the GFETs at VDS= 10 mV, measured
immediately following the sweeps represented in Fig. 1d, e that
correlate with the given VDSmax. As shown in Fig. 1f, sweeping the
GFET to a higher positive VDSmax (6.5 V as opposed to 1 V)
results in a large shift towards n-type characteristics, with the
Dirac point (VDirac) shifting from VDirac= 6.4 V to VDirac=−5.8
V, whereas, as shown in Fig. 1g, sweeping the GFET to a higher
negative VDSmax results in a much smaller shift, changing the
characteristics of the device from p-type to ambipolar as VDirac

shifts from VDirac= 6.5 V to VDirac=−0.2 V. Hysteresis loops of
the drain-to-source current have long been noted in graphene
and related materials, including graphene oxide and carbon
nanotubes (CNTs). This phenomenon has been the subject of
numerous studies and is generally attributed to interactions
between the materials and trap sites on their substrates and/or
extraneous molecules adsorbed on the material surface or at the
material/substrate interface28,29. Of these adsorbates, water
molecules (H2O) have seen attention in studies due to their
prevalence in most ambient environments, as well as due to the
use of water baths in traditional graphene transfers30–32. While
surface-bound H2O can be easily removed via vacuum or the
addition of a passivation layer, H2O trapped at the graphene/
substrate interface requires specific treatments to remove and can
have significant impact on the electrical properties of the
graphene. An investigation by Cho et al.33 on the effects of water
trapping at the graphene/Al2O3 interface identified two possible
adsorption modes for H2O trapped at the interface: molecular
adsorption (in which the oxygen atom is bound to an AlS site on
the substrate surface) and dissociative adsorption (in which the
water molecule is split into an OH−molecule bound to an AlS site
and a H+ ion bound to an OS site). The alignment of H2O relative
to graphene differs between the two modes (parallel for H2O in
molecular adsorption and perpendicular for OH− in dissociative
adsorption), leading to differences in the local electrical field, with
the field induced by dissociative adsorption being magnitudes
larger than that induced by molecular adsorption. The stronger
dissociative field, in turn, leads to a higher planar-averaged charge
density and p-type doping of the graphene29,32,33.

Based on the distinctly p-type nature of the GFETs tested and
discussed in this paper, it is reasonable to assume that it is a result
of dissociative adsorption of H2O trapped at the graphene/Al2O3

interface, most likely as a result of the graphene transfer process
discussed in the “Methods” section. Similar processes have been
noted to result in trapped water adlayers at the interfaces of
graphene and a number of different substrates30,33,34. Stemming
from this, it is also reasonable to assume that the hysteresis shown
in Fig. 1d, e is primarily caused by the trapped H2O as well. To
explore this phenomenon further, effort was made to observe the
effects of passivation upon the demonstrated GFET hysteresis
switching. A separate set of GFETs was fabricated on a separate
Al2O3 substrate and passivated via the deposition of 120 nm of
PMMA. Following passivation, the hysteresis switching tests
discussed and demonstrated in Fig. 1d, e were performed upon
the passivated devices. The results for these tests are

demonstrated in Supplementary Note 2. The hysteresis seen for
the positive and negative sweeps in Supplementary Fig. 2a and 2b
closely resembles that seen in Fig. 1d, e, respectively. This
indicates that the hysteresis and hysteresis switching is not tied to
any adsorbates on the free surface of the graphene channel.

However, this does not rule out contributions from adsorbates
trapped at the graphene/Al2O3 interface. Previous studies, such as
that by Woong Kim et al.35, have established that hysteresis due
to adsorption of water at the interface can persist following
surface passivation. Based on these observations, the forming
process discussed in this paper is believed to be a result of
switching between different adsorption modes for water mole-
cules trapped at the graphene/Al2O3 interface. Following fabrica-
tion, these molecules are believed to be dissociatively adsorbed on
account of the distinctly p-type nature of the transfer character-
istics for all GFETs tested, as well as the noticeable hysteresis
when observing the swept output characteristics. The increase in
the drain bias applied during these sweeps is believed to induce a
transition to molecular adsorption of the water molecules. The
OH− molecule and H+ ion bound to an AlS site and OS site,
respectively, on the Al2O3 surface would recombine and bind to
an AlS site, with the OH-bonds of the resulting H2O molecule
lying relatively parallel to the plane of the graphene. This is
supported by the transition of the GFET transfer characteristics
following each sweep; as VDSmax increases in magnitude, VDirac

shifts more and more negative, causing the transfer characteristics
to become either ambipolar (for negative bias pulsing) or n-type
(for positive bias pulsing). While the GFET is then able to
demonstrate analog switching between the n-type and ambipolar
states, it is unable to return to the original p-type characteristics
indicative of dissociative adsorption. In addition, following the
initial bias sweeping, any subsequent sweeping fails to demon-
strate any significant hysteresis, a known characteristic of
molecular adsorption. This can be seen in Supplementary Fig. 2c
and 2d. Further discussion of the hysteresis and the potential
contributions of interface defects/adsorbates can be seen in
Supplementary Note 3 and 4, respectively. The characteristic
switching displayed in Fig. 1f, g indicates the presence of at least
two distinct conductance states for GFETs, achievable by applying
high source-drain biases across the graphene channel. Since
programming time is a vital factor for memory of any form,
experiments were performed to observe the time needed to
maximize the conductance difference between the conductance
states. Figure 1h displays the difference between the conductance
of two states as a function of VBG (i.e., the read gate voltage after
the sequential application of positive and negative VDS write
pulses voltages of magnitude 5 V applied for different pulse
durations). A read voltage (VDS= 10 mV) was used to extract
conductance values following each write pulse, as per the

equation G ¼ IDS
VDS

. A minimal change in the conductance was

observed for difference pulse times. Nevertheless, the above
experiment demonstrates the ability to program and erase
conductance states in graphene simply by applying a VDS pulse
of opposite polarity, making it attractive for non-volatile memory
(NVM) applications.

A critical qualifier for any NVM is switching endurance, which
determines how many times the memory can be overwritten to
store new information27,36–39. We found that when VDS pulses
>6 V are applied to GFETs, the devices experience switching
failure after only a few (< 10) cycles. To better analyze the effect
of VDS write pulse magnitude on switching endurance, as well as
its effect on the memory ratio of GFETs, 200 cycles of positive
and negative VDS pulses of different magnitudes were applied to
different GFETs. The pulse duration was set to 1 s. A histogram of
conductance values following the positive (red) and negative
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(blue) pulses extracted from these tests are shown in Fig. 1i. Prior
to measurement, each GFET used in this experiment was
subjected to sequential positive and negative voltage pulses of
magnitude 6 V. This was done to set the device characteristics
into the n-type and ambipolar conductance states demonstrated
in Fig. 1f, g. Supplementary Note 5 demonstrates that the
conductance distributions resulting from write pulses of very
large magnitude (>6 V) tend to overlap due to poor cycling
endurance. Distributions resulting from write pulses of low
magnitude (<4.5 V) also overlap, as these voltage pulses are of
insufficient magnitude to induce a threshold shift capable of
forming distinct conductance states. Conductance states obtained
from positive and negative write pulses of magnitude 5 V, and, to
a lesser extent, those obtained from pulses with magnitude 4.5 V,
display both a relatively large difference in conductance and a
switching endurance >200 cycles. Power consumption for the
GFETs is approximately 5 mW for write operations at a pulse
magnitude of 5 V and less than 40 nW for read operations at a
read voltage of 10 mV. Using a pulse time of 1 s, this establishes a
switching energy of approximately 5 mJ.

A major advantage of resistive memory devices is their ability
to support multiple memory states, allowing for a single device to
encompass multiple bits of memory and therefore possess a
higher data storage density. This, in turn, can lead to the
development of smaller, more efficient devices, which are highly
advantageous for applications such as the Internet of Things
(IoT)24 and mobile devices capable of utilizing ANNs10.
However, while all memristors are capable of realizing bi-stable
(1-bit) memory cells due to their ability to switch between two
(ON/OFF) conductance states, there is still significant challenge
in implementing memristive devices that can be reliably
programmed at a multitude of distinct conductance states27,40.
Our demonstration of the electrical characteristic switching of
GFETs shown in Fig. 1 indicates that the graphene devices can
achieve multiple (>2) conductance states and could serve as
multi-bit NVM if we can exploit write pulses of different
magnitudes. Figure 2a displays the transfer curves for a GFET
when negative write voltage pulses of duration 1 s with increasing
magnitude are applied to the GFET, starting at 3 V and increasing
to 6 V in steps of 0.2 V. The GFET characteristics clearly show a
monotonic transition from n-type to ambipolar characteristics.
Note that prior to the application of these write pulses, the GFET
was set to n-type characteristics via the application of a positive
VDS pulse of magnitude 6 V. Clearly, there exists multiple distinct
Dirac points between the two end states, resulting in multiple
(>2) conductance states for GFETs. For multi-bit memory it is
critical to test the retention and distinguishability among the
different memory states27,36,41. Figure 2b through e display the
temporal variation (retention) in the conductance values for each
state, measured for a total duration of 100 s, when the GFET is
programmed into 2, 4, 8, and 16 conductance states, respectively,
through different write pulse step sizes. The read voltage (VDS)
was kept at 10 mV for all tests shown while VBG was kept at 0 V.
Retention and endurance testing over longer durations that what
is shown here can be seen in Supplementary Note 6. Accom-
panying histograms display the conductance distribution for each
programming configuration. For each set of states tested, the
initial states (t= 0 s) were set by applying a −5 V VDS pulse for 1
s. For each subsequent state, pulse time was kept to 1 s in order to
maximize the memory ratio between each state. The maximum
write pulse magnitude was restricted to ≤5 V in order to ensure
high switching endurance, as indicated in Fig. 1g. As evident from
Fig. 2b and the corresponding conductance histograms, 2 distinct
conductance states with significant memory ratio are achieved by
applying VDS write pulses with a step size of 2 V. However, as the
number of conductance states increases from 2 states to 4

(Fig. 2c), 8 (Fig. 2d), and 16 (Fig. 2e) states by decreasing write
pulse step size to 0.5 V, 0.25 V, and 0.125 V, respectively, the
memory ratio diminishes between each state, reducing the
distinguishability between the states. We performed similar
experiments for positive write pulse polarity, as shown in Fig. 2f.
In this case, the GFET was initially set to ambipolar character-
istics via the application of a negative VDS pulse of magnitude 6 V.
Figure 2f shows that the GFET can be gradually switched to n-
type characteristics via the application of positive VDS pulses of
increasing magnitude. The distinct Dirac points seen in the
process indicate the potential for achieving multiple distinct
conductance states. Figure 2g through j display the temporal
variation in the conductance values for each state, measured for a
total duration of 100 s, when the GFET is programmed into 2, 4,
8, and 16 conductance states, respectively, through different write
pulse step sizes. Accompanying histograms display the con-
ductance distribution for each programming configurations. A
similar conclusion is drawn regarding the memory ratio and
retention for positive write pulse polarity as for negative write
pulse polarity. These results indicate the ability to step the
conductance states of a single GFET in either direction (i.e.,
higher conductance to lower or vice versa), as well as the ability to
return to previous conductance states by applying voltage pulses
of opposite polarity.

It should be called to attention that when operating at
≥16 states, such as what is shown in Fig. 2e, j, the memory ratio
between neighboring memory states can decrease significantly to
the point where the non-volatility of the devices can be called into
question. Indeed, when one considers the accompanying
histograms for Fig. 2e, j, it is readily apparent that there is a
non-insignificant amount of crossover in the distributions of
neighboring conductance (memory) states. While this can
negatively affect operation of the GFETs at a higher number of
memory states, it does serve to demonstrate the analog
(“continuously variable”) nature of the conductance states
achievable on GFETs. As demonstrated by the other subfigures
of Fig. 2, when operating at ≤8 memory states, GFETs maintain
non-volatility at the cost of number of memory states. However,
they remain able to be programmed to any of the memory states
shown in Fig. 2e, j. This provides an attractive amount of
flexibility for neuromorphic applications, allowing for the GFETs
to achieve targeted conductance (weight) values reliably and
accurately as needed. This is exemplified through our demonstra-
tion of k-means clustering compared to uniform quantization, as
will be discussed in the subsection On-Chip VMM using
Graphene Memristors and k-Means Clustering. It should also
be noted that for the negative and positive write pulse sequences
shown in Fig. 2b through e and Fig. 2g through j, respectively, all
tests shown of a given polarity were performed upon the same
GFET. A slight difference in the initial IDS values can be seen for
testing of both polarities, with a maximum initial current
difference of 0.13 µA for the negative pulsing and 0.23 µA for
the positive pulsing. These minor differences could be due to
shifts in the threshold voltage as a result of varying interface trap
state population/depopulation from the high electric field
generated during pulsing. While the majority of dangling bonds
at the graphene/Al2O3 interface are believed to be occupied by
water molecules, there is no doubt a small number still capable of
acting as carrier traps. However, based on the consistency of the
memory ratios between states and the reduction of hysteresis
following the forming process, the overall effect on the GFETs is
believed to be minimal.

The conductance switching demonstrated in GFETs following
the forming process, as highlighted by Fig. 1d through g, is
believed to be the result of dipole moment switching due to the
generated electric field. Such effects have been shown to result in
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threshold and conductance shifting in field effect transistors with
interfacial dipole monolayers, leading to the development of
distinct memory states41–45. Following the forming process (the
transition from dissociative adsorption of water molecules at the
interface to molecular adsorption), the water molecules are
randomly oriented due to the uncoordinated nature of AlS states
at the Al2O3 surface33. In this state, the local electric field
generated by the water molecules is far weaker than in
dissociative adsorption, owing to the interference caused by the
random orientation of neighboring dipoles. As a result, the
graphene tends to display ambipolar transfer characteristics as
opposed to its initial p-type characteristics. Previous studies have
shown that interfacial water molecules at a graphene surface can
be reoriented through the application of an external electric
field46,47. This polarizes the water molecules and can align their
dipoles due to their preference for an orientation parallel to the
electric field, enhancing the local electric field and increasing
conductance of the graphene channel48. Experimentally, this
phenomenon is reflected by the increase in conductance observed
when positive bias pulses are applied to the GFETs through the
drain, as demonstrated in Fig. 2g through j. When negative bias

pulses are applied, the water molecules are oppositely polarized,
leading to reorientation. This is reflected by the decrease in
conductance through negative bias pulsing shown in Fig. 2b
through e. The ability for GFETs to switch to and from
conductance states without being reset to n-type or ambipolar
characteristics could allow for faster writing and erasing of data,
as well as higher density data storage, when used as multi-bit
memory49. Also note that the conductance values corresponding
to the different memory states of the GFETs are linearly and
symmetrically distributed, fostering high accuracy in ANNs that
rely on backpropagation learning rule50. Furthermore, the precise
control of GFET conductance states can offer tremendous benefit
for on-chip training that rely on precise weight updates for faster
convergence.

The multi-terminal nature of the GFET-based synaptic device
allows for it to be modulated by both the VDS programming
pulses mentioned previously and by the VBG applied during read
operations. By varying VBG, the resistance of the graphene
channel can be modulated, allowing for tuning of the con-
ductance states (weight values) programmed into the device via
the VDS pulses, as well as the memory ratio between neighboring
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Fig. 2 Memory levels, memory ratio, and memory retention of graphene memristors. a Transfer characteristics of a GFET when negative write voltage

pulses of duration 1 s with increasing magnitude are applied, starting at −3 V and increasing to −6 V in steps of −0.2 V. The GFET characteristics clearly

show a monotonic transition from n-type to ambipolar characteristics. Prior to the application of these write pulses, the GFET was set to n-type

characteristics via the application of a positive VDS pulse of magnitude 6 V. Clearly, multiple (>2) memory levels (conductance states) are achieved in

graphene memristors. Memory ratio and memory retention, measured for a total duration of 100 s at VBG= 0 V, for a graphene memristor programmed

into (b) 2, (c) 4, (d) 8, and (e) 16 memory levels using different write pulse (VDS) step sizes, each of duration 1 s. Accompanying histograms display the

conductance distributions for each programming configuration. The maximum write pulse magnitude was restricted to ≤5 V in order to ensure high

switching endurance. Significant memory ratio is achieved when VDS step size is 2 V. However, as the number of memory level is increased by decreasing

VDS step size to 0.5 V, 0.25 V, and 0.125 V, respectively, the memory ratio diminishes, reducing the distinguishability between the conductance states.

f Transfer characteristics of an ambipolar GFET when positive write voltage pulses of duration 1 s with increasing magnitude are applied, starting at 3 V and

increasing to 6 V in steps of 0.2 V. The GFET returns to n-type characteristics. Memory ratio, memory retention, and corresponding histograms of

conductance distributions for the same graphene memristor programmed into (g) 2, (h) 4, (i) 8, and (j) 16 memory levels. These results indicate the ability

to configure the GFET in precise conductance states, change it in either direction (i.e., higher conductance to lower or vice versa), and return it to previous

conductance states by applying voltage pulses of opposite polarity.
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states. This tuning of weight values through the application of a
separate bias could be considered reminiscent of heterosynaptic
plasticity in biological neural networks, in which the stimulation
of a given neuron causes a change in the strength (weight) of
synaptic connections between other, inactivated, neurons51,52.
The most well-known example of this mechanism is the existence
of modulatory neurons, also known as interneurons. When
activated, these neurons release chemicals known as neuromo-
dulators, differentiated from typical neurotransmitters by their
ability to alter synaptic efficacy instead of generating an electrical
response. These alterations can last up to several minutes,
providing comparatively long-term modulation of synaptic
events53. In addition, repeated heterosynaptic modulation has,
through study, been found to promote the growth/retraction of
synaptic connections, creating persistent changes in synaptic
weight and contributing to long-term memory formation/
storage54. This has made the implementation of heterosynaptic
plasticity an important goal for developing the next generation of
novel neuromorphic systems52. The modulation of conductance
states afforded by different modulatory bias, Vmod (VBG), values
can be seen in Supplementary Note 7. All measurements were
conducted on the same GFET using the same VDS pulsing scheme
utilized in Fig. 2e. Each state was held for 100 s with no
observable degradation into neighboring states, indicating good
retention for all Vmod. The changes in conductance states and
memory ratios between adjacent states as a result of changing
Vmod indicate the ability to implement synaptic potentiation and
depression by using the back-gate bias to increase or decrease
conductance states (weight values) independently from the
application of programming pulses across the source and drain.
Thus, the extra degree of freedom offered by the multiterminal
design of GFETs allows for synaptic modeling that is not possible
in traditional two-terminal synaptic devices, such as those that
operate using oxide-based memristors.

To investigate the scalability of GFET memristors, several sets
of GFETs featuring reduced channel lengths (L), ranging from
200 nm to 800 nm in steps of 200 nm, were fabricated on a
separate Al2O3 substrate using the same fabrication processes
discussed in the “Methods” section. Half of each set was
fabricated with a channel width (W) of 1 µm, while the other
half was fabricated with a channel width matching the channel
length. The device layout that covered the smallest area while
remaining functional was found to be that with L= 400 nm and
W= 1 µm, for a total area of 0.4 µm2. In addition to the reduced
area, the devices demonstrated the ability to shift conductance
states at lower pulse magnitudes than the 1 μm channel length
(0.5 µm2 channel area) devices detailed previously, indicating a
channel length/area dependency for the conductance switching
mechanism in GFETs.

Supplementary Fig. 8a demonstrates the shifting from initial p-
type characteristics indicative of the forming process at lower
voltages than was necessary for the 1 µm channel length devices.
This can be explained as an effect of the shorter channel length
increasing the electric field generated by each pulse, allowing for
reorientation of the water molecule dipoles trapped at the
graphene/Al2O3 interface at lower biases. The shift from n-type to
ambipolar characteristics when negative low magnitude voltage
pulses are applied, as shown in Supplementary Fig. 8b, supports
this theory. Interestingly, the 400 nm channel length devices
continued to display high endurance even at high pulse
magnitudes. Supplementary Fig. 8c and 8d display the shifting
of the Dirac point when positive and negative pulses of
magnitude 4 V and 5 V, respectively, are applied. Insets show
the endurance at each pulse magnitude for 200 cycles. The 5 V
pulse cycling, which was noted as the maximum sustainable
voltage for the 1 µm channel length devices, shows similar

memory ratio and endurance to that of the 1 µm channel length
devices discussed earlier. These results indicate that a wider range
of pulse magnitudes can be used for shorter channel devices,
potentially increasing the number of distinct achievable memory
states while retaining similar endurance. In contrast, all 200 nm
channel length devices tested were found to be intrinsically
ambipolar and displayed little-to-no shifting when programming
pulses were applied. These results were taken to support our
initial hypothesis regarding the role of water molecule adsorption
and dipole alignment at the interface regarding changing
conductance states. It is believed that the small area of the 200
nm channel length devices did not allow for sufficient water
molecules to be trapped to demonstrate p-doping via dissociative
adsorption or conductance shifting via dipole realignment. The
channel scalability demonstrated also shows promise for large-
scale integration of GFETs into crossbar-array architectures. As
shown and discussed in Supplementary Note 9, the nature of the
programming phenomenon of GFETs, bias pulsing through the
drain, allows for electrostatic isolation of devices in close
proximity to one another despite the presence of a global back-
gate. Together with the aforementioned scaling, this indicates the
potential for high integration density of GFET memristors,
offering an attractive alternative for close-packed memristive
device architectures such as dense crossbar-arrays.

Impact of weight assignment–uniform versus k-means clus-
tering. Weight quantization is inevitable for hardware imple-
mentation of ANNs. However, it leads to quantization error since
weights must be rounded to the nearest analog value. For ANNs
implemented using the traditional von Neumann architecture,
weights can be stored in high precision digital memory to reduce
the quantization error at the expense of latency, energy ineffi-
ciency, and area overhead. On the contrary, ANNs exploiting in-
memory computing can suffer from the limited number of analog
memory levels offered by the crossbar architecture in spite of high
speed, low power, and area efficient design. In this section, we
elucidate on the impact of number of analog memory levels on
the quantization error for VMM architecture and demonstrate
how it can be mitigated by adopting proper quantization tech-
niques. Figure 3a shows a data structure with two vectors, A and
B, and their product, C. Vector A contains 5000 matrices of size
1 × 2 and vector B contains 5000 matrices of size 2 × 1, with
matrix elements drawn randomly from some given weight dis-
tributions. Figure 3b, c, respectively, show two such weight dis-
tributions, namely uniform distribution and normal distribution
in the range of [−1,1]. Figure 3d shows the schematic of uniform
quantization where the data range [−1, 1] is divided into N
equally spaced bins, with N being the number of analog memory
levels. Any synaptic weight that belongs to a given bin is assigned
to the analog memory value associated with that bin. Figure 3e, f,
respectively, show the error histogram as a function of N when
the weights are drawn from the uniform and the normal dis-
tributions corresponding to Fig. 3b, c. The error histogram is
computed from (CQ – C), where the elements of vector C, i.e., cn,
are the product of matrix [an1 an2] from vector A and matrix [b1n;
b2n] from vector B, and the corresponding elements of vector CQ

are the product of quantized AQ and BQ. Figure 3g shows that the
error, as expected, decreases with increasing N. However, for
similar N, the error due to uniform quantization is significantly
higher for normally distributed weights when compared to uni-
formly distributed weights. Since weight distributions in practical
scenarios55–58 are more likely to follow a normal distribution,
uniform quantization can lead to significantly high inference
inaccuracy. In order to mitigate the challenges associated with
uniform quantization, we propose k-means clustering based
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quantization. Figure 3h shows the schematic of k-means clus-
tering, which is an unsupervised learning algorithm that divides
the n data samples into k clusters, such that k ≤ n59. The algo-
rithm randomly chooses the centroids, calculates the distance of
each point to the centroid, and, finally, minimizes the variance of
the distance iteratively to identify the centroids. These centroids
are usually located near the mean of the clusters. In k-means
clustering based quantization, weights in a specific cluster are
quantized to their respective centroids. Figure 3i, j, respectively,
show the error histogram as a function of N when the weights are
drawn from the uniform and the normal distributions corre-
sponding to Fig. 3b, c and are quantized using k-means clustering.
As shown in Fig. 3k, the error decreases with increasing N. More
importantly, k-means clustering offers better accuracy compared

to uniform quantization and the benefits are found to be more for
normally distributed weights. However, centroids of the weight
distributions are not necessarily symmetric or follow linear
trends. As such, hardware implementation of k-means clustering
based quantization will require analog memory not only with
multiple levels but also with the capability of configuring the
individual memory states. In the following section we experi-
mentally demonstrate this idea based on analog graphene mem-
ristive synapses.

On-chip VMM using graphene memristors and k-means clus-
tering. Figure 4a depicts our graphene-based resistive memory
architecture for executing VMM operations (see Supplementary
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Note 9 for programming of successive GFETs in an array). Note
that, for any given back-gate voltage (VBG), the output current is
given by the product of the conductance matrix and input voltage
vector following the equation:

IOUT ¼ G1V1 þ G2V2 ¼ G1 G2½ �
V1

V2

� �

ð1Þ

We consider a situation where the elements of the weight
matrix are the centroids of the weight distribution obtained
through k-means clustering quantization with k= 2. The desired
conductance values are, for example, G1= 215 µS and G2= 155
µS. Figure 4b shows the colormap of the expected output current
corresponding to different input voltage vectors. Figure 4c, d
show the experimentally obtained output current when these
weights are rounded to the nearest conductance states offered by
the respective graphene memristors with uniformly distributed
memory levels for N= 2 and N= 4. For N= 2, the allowed
conductance states for each GFET are 230 µS and 140 µS,
corresponding to the programming voltage pulses of −3.0 V
and −5.0 V, respectively. For N= 4, the allowed conductance
states for each GFET are 230 µS, 200 µS, 170 µS, and 140 µS
corresponding to the programming voltage pulses of −3.0 V,
−3.5 V, −4.0 V, and −5.0 V, respectively. Figure 4e, f show the
error between the expected and actual output current, which is
relatively high since the weights can only be rounded to the
nearest conductance states GU2

1 = 230 µS and GU2
2 = 140 µS for

N= 2 and to GU4
1 = 200 µS and GU4

2 = 170 µS for N = 4. Despite
the increase in the value of N, the colormaps of error in Fig. 4e, f

are similar. This is due to the fact that the programmed con-
ductance values differ from their targeted values by 15 µS for both
N = 2 and N = 4. This means that while the error distribution is
shifted due to the change in the relative position of the
conductance states, the overall accuracy of the synapse is not
improved. This serves to highlight a drawback of uniform weight
distribution and its implementation using devices with discrete
memory states, such as oxide-based memristors. When the
desired weight (conductance) value lies between set states, it can
be very difficult for the system to reach it unless it utilizes a very
large number of memory states. The analog nature of GFET
memristors, on the other hand, allows for precise programming
of any weight (conductance) value within the distribution of
conductance states. The experimentally obtained output current
for when the GFETs are directly programmed to the nearest
achievable conductance states, GK

1 = 214 µS and GK
2 = 156 µS, can

be seen in Fig. 4g. The error between this output current and the
expected output current shown in Fig. 4b is displayed by Fig. 4h.
As would be expected, the error is significantly reduced. See
Supplementary Note 10 for the post-programmed characteristics
of individual GFETs for all cases. Our demonstration shows the
benefits of graphene-based memristors over oxide-based mem-
ristors, as the former allows for reliable programming of
individual GFETs in an array to specific conductance states. In
ANN applications, this allows for the realization of k-means
clustering, which improves the computing accuracy. A brief
summary and comparison of GFET-based memristive synapses
with other 2D material based memristive synapses is provided in
a table in Supplementary Note 11.
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215 µS and G2= 155 µS. Experimentally obtained output currents when these weights are rounded to the nearest conductance states offered by the
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Discussion
In conclusion, we have successfully demonstrated graphene-based
ultra-thin resistive memory capable of achieving multiple (>16)
memory states with necessary retention and endurance. We
have also demonstrated that these memory states are configurable
to desired conductance values, unlike conventional memristive
NVMs, through the application of drain voltage pulses of dif-
fering magnitudes. Furthermore, we have discussed and shown
through simulation the benefits of k-means clustering when
compared to uniform quantization as a high precision method for
quantizing synaptic weights in ANNs. Finally, we have experi-
mentally demonstrated the ability of analog graphene memristive
synapses to allow for the on-chip realization of k-means clus-
tering while also establishing the ability to perform VMM
operations through the use of conductance states as computa-
tional weights. We believe that these results will aid in the
development of high precision, low-power, and area-efficient
neuromorphic computing engines based on graphene memristors
for various incarnations of ANNs.

Methods
Device fabrication. Commercially grown monolayer graphene (Graphenea),
procured on copper foil and with PMMA pre-spun, was used in our experiments. A
wet transfer method was used to transfer the graphene onto a 1 cm2, 50 nm Al2O3

substrate with highly-doped (p++) Si as the back-gate electrode. The PMMA/
graphene/Cu-foil stack was placed on a surface of iron (III) chloride (FeCl3), with
the graphene-covered side facing away from the solution, in order to wet etch the
copper foil. Once the etching was complete, the PMMA/graphene stack was
transferred to a deionized (DI) water bath using a glass slide. A total of three DI
water baths were used (10 min each), with the glass slide being cleaned with
acetone and isopropyl alcohol (IPA) between each transfer. The PMMA/graphene
stack was then transferred from the last water bath using the Al2O3 substrate
previously mentioned. The substrates were heated for 5 min at 55 °C to evaporate
any remaining water on the surface and then heated at 150 °C for 10 h to eliminate
any wrinkles that may have originated from the transfer process and promote
adhesion between the graphene and substrate. The PMMA was then removed using
an acetone bath (10 min), which was followed by an IPA bath (5 min) to clean the
sample. The graphene channels were defined using electron-beam (e-beam)
lithography (Vistec EBPG5200), with the surrounding graphene being etched using
O2 plasma (Vision 320 RIE) at room temperature for 15 s. The source/drain
contacts were then defined using e-beam lithography. Ni (40 nm) followed by Au
(30 nm) was deposited using e-beam evaporation for the contacts. Prior to each
instance of e-beam lithography, photoresists MMA EL6 and PMMA A3 were spun
onto the substrate at a rate of 4000 RPM for 40 s, with the MMA EL6 serving to
promote adhesion and enhance liftoff of the PMMA A3. Following e-beam
lithography, the substrate was developed using a 1:1 mixture of 4-methyl-2-
pentanone (MIBK) and IPA followed by pure IPA for 60 s and 45 s, respectively.
Liftoff was performed by submerging the substrate in acetone for approximately 10
min, with a subsequent IPA bath of approximately 5 min to clean the substrate of
any residue. All devices were fabricated with a dual-channel structure possessing
channel lengths of 1 µm and channel widths of 0.5 µm.

Device measurements. Electrical characterization was performed at room tem-
perature in high vacuum (≈10–6 Torr) on a Lake Shore CRX-VF probe station and
using a Keysight B1500A parameter analyzer.

Data availability
The datasets generated during and/or analyzed during the current study are available

from the corresponding authors on reasonable request.

Code availability
The codes used for plotting the data are available from the corresponding authors on

reasonable request.
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