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Abstract: Graphene is the first 2D crystal ever isolated by mankind. It consists of a single graphite

layer, and its exceptional properties are revolutionizing material science. However, there is still a

lack of convenient mass-production methods to obtain defect-free monolayer graphene. In contrast,

graphene nanoplatelets, hybrids between graphene and graphite, are already industrially available.

Such nanomaterials are attractive, considering their planar structure, light weight, high aspect

ratio, electrical conductivity, low cost, and mechanical toughness. These diverse features enable

applications ranging from energy harvesting and electronic skin to reinforced plastic materials. This

review presents progress in composite materials with graphene nanoplatelets applied, among others,

in the field of flexible electronics and motion and structural sensing. Particular emphasis is given to

applications such as antennas, flexible electrodes for energy devices, and strain sensors. A separate

discussion is included on advanced biodegradable materials reinforced with graphene nanoplatelets.

A discussion of the necessary steps for the further spread of graphene nanoplatelets is provided for

each revised field.

Keywords: graphene nanoplatelets; flexible electronics; wearable electronics; strain sensor; structural

health monitoring; stretchable electronics; reinforced bioplastics

1. Graphene and Graphene Nanoplatelets

Graphene is a single freestanding monolayer of graphite [1]. It is the first 2D-material ever

manufactured by mankind, having a thickness of one atom (0.34 nm), and lateral size orders of

magnitudes larger [2–4]. Graphene combines diverse and unique physical properties (see Figure 1),

and as a result, is an ideal building block for miniaturized next-generation devices, with applications

in fields like photonics, opto-electronics, protection coatings, gas barrier films, and advanced

nanocomposites [5–7].

In recent years, many studies have focused on solutions to conveniently mass-produce defect-free

graphene. More than twelve different fabrication techniques were proposed [6,8–13]. Two noteworthy

processes are chemical vapor deposition on copper or metals [14] and liquid phase exfoliation of

graphite [15]. The first method is a bottom-up approach: it makes wide graphene films grow on top of

metallic foils, starting from volatile carbon based precursors. In contrast, liquid phase exfoliation is a

top-down method which singles out the graphene monolayer by sonicating graphite immersed into

solvents with low surface tension or water with surfactants [15,16]. Single layer graphene flakes are

then isolated only after additional ultracentrifugation steps.
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Figure 1. Graphene hexagonal honeycomb chemical structure and its remarkable physical properties.

The black dots are carbon atoms.

Pure graphene is not yet mass-produced though. There is still a lack of a large scale manufacturing

techniques that isolate these 2D crystals with the same outstanding performance as that required

to produce the samples fabricated in research laboratories [10]. The main limitations are the low

fabrication rates and high sales costs. On the other hand, graphene nanoplatelets (also known as

graphite nanoplatelets, GnPs, or GPs) combine large-scale production and low costs with remarkable

physical properties. This nanoflakes powder is normally obtained following the liquid phase

exfoliation procedure without further centrifugation steps. Other widespread GnP manufacture

methods are ball-milling [17], the exposure of acid-intercalated graphite to microwave radiation [17],

shear-exfoliation, and the more recent wet-jet milling [18]. These manufacturing techniques produce

a large variety of powders in terms of thickness, lateral size of the flakes, aspect ratio, and defect

concentrations [18]. GnPs are composed of single and few layer graphene mixed with thicker graphite

(see Figure 2); hence, structurally they are in between graphene and graphite. In literature, graphene

based materials are classified according to their thickness, lateral size, and carbon to oxygen atomic

ratio [19]. Considering the morphological characteristics, the graphene family can be classified as

single layer graphene, few layer graphene (2–10 layers), and graphite nano- and micro-platelets.

Commercially available GnPs are a mixture of single layer, few layers, and nanostructured graphite.

In other words, GnPs thickness can vary from 0.34 to 100 nm within the same production batch [20,21].

Note that graphite is typically considered a 2D-like material (i.e., not bulky) when its number of layers

is ≤10 [10].

GnPs exhibit exciting properties such as light weight, high aspect ratio, electrical and thermal

conductivity, mechanical toughness, low cost, and planar structure. As such, they are attractive options

to replace different nanostructured fillers in material science, such as other carbon allotropes (i.e.,

carbon black or carbon nanotubes), metallic nanoparticles, and clay [21,22]. They are appealing for

nanocomposites, since they can easily and successfully be included in polymeric matrices by solvent or

melt compounding [23]. GnPs are cheaper than carbon nanofibers and nanotubes, and are comparable

with such tube-like nanofillers in modifying the mechanical properties of polymers [21,24]. Moreover,

GnPs’ electrical conductivity is orders of magnitude higher than those of graphene oxides [25].
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Figure 2. Schematic of the manufacture of GnPs starting from natural graphite. The typical black

powder obtained after liquid phase exfoliation and solvent evaporation is constituted by a mixture of

single and few layer graphene and nanostructured graphite.

Considering this, graphene nanoplatelets are already employed in several technological

fields. In fact, GnPs-based materials show increased tribology [26,27], mechanical [17,28–31],

biomedical [32–34], gas barrier [35,36], flame retardant [37,38], and heat conduction [39–42] properties.

Furthermore, GnPs can transform plastic in an electrical conductor, converting it into a conformable

material for electronics [43–45]. Finally, GnPs showed good potential for enhancing the thermal

conductivity of polymer matrixes [46], making them suitable as thermal interface materials [39,47].

In this review, we will focus on GnP-based applications related in areas such as flexible and

wearable electronics, motion and structural sensors, and reinforced bio-nanocomposites. In particular,

we will show that GnPs unveils large-scale and unique uses (from antennas to energy harvesting) in

the field of flexible electronics. We will discuss the potential uses of GnPs in smart fabrics, and the steps

needed to reach a wide distribution of wearable technology. We will display many different approaches

and materials employed to fabricate strain and pressure sensors, structure health monitoring systems,

and stretchable devices. Finally, we will present recent advances in the field of GnP-reinforced

bioplastics, and the potential of these nanoflakes to fill the performance gap between long-lasting

traditional plastics and green and sustainable biopolymers.

2. Flexible Electronics Based on GnPs

Most electronic devices are based on rigid inorganic components. These conventional materials

present drawbacks in light of the rise of applications that require flexibility, such as artificial electronic

skin, wearable and compliant electronics, and portable energy harvesting devices [48]. The combination

of the mechanical properties of polymers and conductive nanofillers is promising as a way of creating

flexible and compliant conductive materials. In particular, investigation into polymers combined with

silver nanoflakes showed encouraging results in flexible electronics [49]. However, nano-silver’s high

cost limits its large-scale production [50].
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In such a context, carbon-based conductive nanofillers, and in particular, graphene nanoplatelets,

gained increased attention as materials for flexible electronics due to their flexibility and low sheet

resistance, i.e., that can reach the order of Ω/sq [43]. Different approaches were developed (see Table 1).

Table 1. Flexible Electronics GnPs-based. We report the manufacturing technique, electrical

conductivity (EC) or sheet resistance (SR), durability tests performed and references. EC

and SR are related by this formula: EC = 1/(SR × t) where t is the thickness of the

material. PMMA stays for poly(methyl methacrylate), PET for polyethylene terephthalate,

PTFE for polytetrafluoroethylene, PDMA for polydimethylsiloxane and PEDOT:PSS for

poly(3,4-ethylenedioxythiophene) polystyrene sulfonate.

Type of Sample Manufacturing Techniques
EC (S/m)

SR (Ω/sq)
Durability Tests Reference

Freestanding GnPs
Water dispersion and

filtration
2 × 106 S/m Not reported [36]

GnPs-Polycarbonate
Composite

Extrusion 2 × 10−6 S/m Not reported [51]

GnPs-Nylon 6,6 composite Solution blending 1 S/m Not reported [52]

GnPs coupled with ionic
liquid ions and epoxy

Solution blending and
curing

10−3 S/m Not reported [53]

Polyimide substrate
functionalized with GnPs

Drop casting Not reported Not reported [54]

Glass, Al2O3 and PET
substrates functionalized with

PMMA-GnPs paste
Screen printing 20 kΩ/sq Not reported [55]

Transparent substrates coated
with GnPs-PEDOT:PSS

Ink-jet printing 2 × 102 S/m Bending (ammonia sensor) [56]

GnPs-functionalized paper
Screen printing and rolling

compression
4 × 104 S/m Bending (antenna) [57]

GnPs-acrylic paint emulsion
on paper

Spray coating, heat-curing
and polishing

5 × 102 S/m 100 abrasion and peeling [58]

GnPs-functionalized paper
Filtration via PTFE

membrane and transfer
printing process

Not reported
1000 folding cycles at 180◦ and

−180◦ bending angle
[59]

Deposition of GnPs on
polymeric substrates,
cardboard or textiles

GnPs compression with
hydraulic press and

lamination on different
substrates

105 S/m
Hundreds of thousands

bending cycles at bending
radii of 45 and 90 mm

[60]

GnPs on PMMA with silver
nanowires

GnPs brush coated on
PMMA and silver nanowires

sprayed on top. All the
structure embedded on PET

or PDMS

12 Ω/sq
100,000 bending cycles with

minimum bending radius of 5
mm and stretching up to 50%

[61]

Cellulose impregnated with
GnPs/Mater-bi conductive ink

Spray and Hot-pressing
103 S/m
10 Ω/sq

Tens of 180◦ folding-unfolding
cycles at 0 mm bending

radius.
[43]

Cellulose impregnated with
GnPs/Mater-bi conductive ink

Spray and
Hot-pressing.Lamination on

top of a solar cell
10 Ω/sq

Solar Cell performance after
bending-unbending

[62]

Cellulose impregnated with
cellulose acetate and GnPs

Spray and self-impregnation
103 S/m
10 Ω/sq

Abrasion cycles (30 min) and
tens of 180◦ folding-unfolding
cycles at 0 mm bending radius

[63]

GnPs and nanofibrill cellulose
into PLA and Polypyrrole

Solution processing 106 S/m
100 bending cycles at 180◦

bending angle
[64]

One method consists of fabricating freestanding GnP-based materials. Wu et al. [36] fabricated

a flexible and light-weight self-standing graphene nanoplatelets paper, reaching the remarkable

electrical conductivity of σ ≈ 2 × 106 S/m. This binder-free porous film was bent without ruptures,

as shown in Figure 3. It was impregnated with both thermoset and thermoplastic polymers to

increase its mechanical properties. After this impregnation procedure, the GnP paper displayed a

reduced electrical conductivity (σ ≈ 7 × 105 S/m). Coupling with carbon fibers diminished its sheet
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resistance and enhanced its thermal properties. The GnPs employed by Wu et al. were prepared in

their laboratory.

σ ≈

σ ≈

 

−

σ ≈

σ ≈ −

 

Figure 3. Self-standing GnPs paper and its flexibility. (a,b) are photographs of the paper before and

after folding. (c,d) are SEM images of the morphology of the surface of the GnPs paper (plane and at

the folding edge, respectively). Reprinted with permission from Carbon 50, 3, 1135–1145. Copyright

2012 Elsevier.

Although promising, the manufacture of freestanding GnPs substrates is often complicated

and difficult to scale-up. Therefore, scientists explored other approaches depending on the type of

polymer employed (i.e., thermoplastic or thermoset). For example, the incorporation of GnPs in

thermoplastic polymer matrices led to flexible and conductive materials. Following this procedure,

King and collaborators [51] extruded polycarbonate-GnPs nanocomposites with improved electrical

properties. Such materials preserved ductile and plastic behavior up to 8 wt % GnPs concentration,

and exhibited an electrical conductivity of approximately 2.5 × 10−6 S/m. Papadopoulou et al. [52]

designed a new solvent mixture (trifluoroacetic acid and acetone) for flexible thermoplastic nylon

6.6 graphene nanoplatelets nanocomposites. They used a solvent casting method to fabricate the

films. At 20 wt % nanofiller concentration, the material showed an electrical conductivity six orders of

magnitude higher than that obtained by King and collaborators (σ ≈ 1 S/m). They also demonstrated

that, by incorporating GnPs, the pure nylon matrix improved the Young’s modulus more than twice.

Papadopoulou et al. employed commercially available GnPs obtained from Directa Plus (Lomazzo,

Italy) (grade Ultra g+). Such GnPs were characterized in depth in our previous work [65]. Recently,

Hameed and coauthors [53] proved that the use of ionic liquid induces flexibility in brittle thermoset

matrices, and improves the dispersion of GnPs. Such modified thermoset polymers displayed enhanced

tensile strength and Young’s modulus, and were electrically conductive (σ ≈ 10−3 S/m).

2.1. GnPs Functionalized Substrate

Another promising approach for flexible electronics is the functionalization of bendable substrates

with GnPs-based conductive ink. Tian et al. [54] fabricated temperature-dependent resistors by simple

drop-casting of conductive GnPs suspensions on polyimide. Such temperature sensors were stable

at high relative humidity conditions, and performed more efficiently compared to carbon nanotubes
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devices. Printing and spraying of conducting inks are convenient techniques to functionalize substrates,

since the necessary tools are already largely diffused in the manufacturing industry [50,66]. Indeed,

researchers took advantage of both methods to functionalize different flexible materials employing

GnPs as conductive nanomaterials. For example, Wróblewski and Janczak [55] screen-printed flexible

paste made of PMMA-GnPs, realizing electrodes on diverse substrates (glass, Al2O3, PET). This

conductive paste, made with 1.5 wt % GnPs, had a sheet resistance in the order of 20 kΩ/sq, and

transparency near 17%, enough to utilize this coating as an electrode for electroluminescent displays.

Seekaew and coauthors [56] ink-jet printed conductive GnPs-PEDOT:PSS dispersion on top of a

transparent substrate, manufacturing a sensor for ammonia detection. The fabrication steps and the

obtained device are presented in Figure 4. The addition of only 2.33 wt % of GnPs enhanced the

electrical conduction of the PEDOT:PSS conductive ink from σ ≈ 0.8 × 102 S/m to ≈ 1.8 × 102 S/m.

Moreover, the sensing capability of the device was improved after GnPs addition. Indeed, GnPs

enhanced the active surface area of the sample (increasing the surface roughness), and augmented the

electron interaction between the sample and ammonia gas.

Ω

σ
≈ ≈

 

Figure 4. Schematic diagram of the manufacturing process of the ammonia sensor. (a,b) a silver

interdigitated electrode was screen printed on transparent paper. The GnPs-PEDOT:PSS sensing film

was deposited trough ink-jet printing; (c) schematic of the ammonia gas sensor. (d) photo of the

obtained device. Reprinted with permission from Organic Electronics 15, 11, 2971–2981. Copyright

2014 Elsevier.

More recently, Huang et al. [57] used a combination of screen printing technology and rolling

compression to develop GnPs-based radio frequency flexible antenna. They functionalized paper with

the GnPs, obtaining electrical conductivity of 4.3 × 104 S/m. To verify the antenna’s flexibility, they

measured the reflection coefficient of bended devices, recording almost the same performance as with

the un-bent antenna. To perform the described experiments, Huang et al. employed commercially

available GnPs-based conductive ink (grade Grat-ink 102E from BGT Materials Ltd., Manchester,

UK) which contains graphene nanoflakes, dispersants, and solvents. The described approaches

result in flexible and conductive materials with remarkable applications. However, often mechanical

durability and electrical features are not balanced [67]. Indeed, the lack of resistance to bend cycles

and mechanical stresses limits the range of uses of such electronics materials in applications such
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as wearable and motile sensors technologies. Certainly, in the case of GnPs inclusion inside plastics,

increasing the filler loading inside the polymer matrices can transform the latter into brittle materials

and lead to complications in manufacturing [67].

Mates and collaborators [58] took one step towards the creation of GnPs-based durable materials

for flexible electronics. Indeed, they realized a conducting composite coating dispersing GnPs of

different sizes inside acrylic paint emulsions. Such composite films were spray casted onto Xerox

printing paper, heat-cured, and polished. The adhesion of the conducting layer to the substrates was

tested by Taber abrasion and peel tests, displaying remarkable resistance under such mechanical stress.

The electrical conductivity reached values of approximately 5 × 102 S/m, and kept the same order of

magnitude after 100 cycles of abrasion or peeling. Mates and coworkers also found that GnPs flakes

with larger planar dimensions positively affect THz EMI shielding efficiency (see Figure 5). The best

results obtained by Mates et al. were obtained by employing commercially available GnPs acquired

from Strem Chemicals (typical thickness of 6–8 nm, lateral size of 5, 15 and 25 microns).

 

≈

−
σ ≈

μ

Figure 5. EMI shielding effectiveness (S21) of the GnPs-acrylic paint emulsion as a function of GnPs

concentration and type (S-X, where X express the average lateral size of the nanoflakes). The frequency

investigated were between 0.5 and 0.75 THz. The highest level of attenuation (≈36 dB) was found for

the high-conductivity composites. An all-paint composite (0 wt % GnPs) was also tested as a negative

reference. Reprinted with permission from Carbon 87, 163–174. Copyright 2015 Elsevier.

Another step towards reliable GnPs-based flexible electronics was demonstrated in the study of

Hyun and coworkers [59]. They started by filtering a graphene dispersion using a PTFE membrane,

and used a transfer printing process (a simple pen) to transfer the conductive nanoparticle onto paper.

Multiple folding cycles were not sufficient to damage the material’s electrical conductivity. Indeed

such GnPs-paper composite maintained about 83%/94% of the initial electrical conductivity after 1000

cycles of 180◦/−180◦ folding. Scidà and coworkers [60] designed a GnP-based antenna for near-field

communication. This material exhibited significant electrical conductivity, i.e., σ ≈ 105 S/m. The GnPs

were hot-compressed, forming freestanding GnPs films that were laminated onto polymeric substrates

(see Figure 6) or textiles. The performance of the devices was stable after hundreds of thousands of

bending cycles at bending radii of 45 and 90 mm. The GnPs employed for this research were supplied

by Avanzare (Navarrete La Rioja, España) (product AVA18, D50 = 50 µm).
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Figure 6. Image of the flexible GnPs-based antenna manufactured on transparent plastic substrate.

Reprinted with permission from Materials Today 21, 223–230. Copyright 2018 Elsevier.

Recently, Oh et al. [61] fabricated GnPs-based transparent electrodes for flexible optoelectronics.

The nanoflakes were brush coated on PMMA and silver nanowires were sprayed uniformly on top.

The entire structure was embedded onto PET or PDMS. With this technique, a sheet resistance of

12 Ω/sq with transmittance of 87.4% was reached. After 105 bending cycles, the resistance increased by

only the 4%. Such a GnP-based electrode was doped with p-type AuCl3 and Cl2, and used as the anode

in organic light emitting diodes, substituting and performing better under bending and stretching

than standard indium thin oxide.

2.2. Environmentally-Friendly Graphene-Based Materials and Devices

Another valuable and important parameter for the electronics of the future will be their

sustainability (i.e., the biodegradability of the components and/or the green approaches employed

to produce the materials) [68,69]. Indeed, electronic goods production and waste management have

become a major issue for environmental pollution [68,69]. A novel method was proposed by our

group [43] to fabricate isotropically electrically conductive biodegradable biocomposites based on

cellulose and GnPs. It consisted of hot-press impregnation of porous cellulose networks after spray

coating the flexible fibrous cellulose substrates with conductive GnPs-based inks. Since such ink was

made employing a biodegradable thermoplastic polymer (Mater-Bi®), hot pressing at a temperature

higher than the melting of the plastic led to the polymer-GnPs incorporation inside the fibrous

network. The resultant green materials exhibited remarkable electrical conduction (σ≈ 103 S/m) and a

significant folding stability after severe weight-assisted 180◦ folding-unfolding cycles at 0 mm bending

radius. Such conductive materials were used to fabricate simple circuitry [43], and as a top electrode

for organic photovoltaics solar cells [62]. Another green approach developed by our group [63] to

obtain reliable bio-based material for foldable electronics was to take advantage of the liquid absorbing

properties of pure cellulose. A green conductive ink realized employing methanol and acetic anhydride

as solvents, and cellulose acetate and GnPs as solid content, was spray coated onto pure cellulose.

The ink thoroughly wet and impregnated the cellulose substrate after deposition, eliminating the

need for hot-pressing. This cellulosic-GnPs bionanocomposite exhibited good folding stability and

abrasion resistance. Proposed applications were sustainable THz electromagnetic shielding materials

and electromyography signal detection (see Figure 7). The GnPs employed by our group for these

studies were provided by Directa Plus (grade Ultra g+). For details on the lateral size and thickness of

such nanoflakes, see this report [65].
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Figure 7. GnPs-cellulose nanocomposite used as electrode for surface electromyography.

(a) Photograph displaying a standard electromyography titanium electrode (Ti electrode) and

the cellulosic biocomposite; (b) Photograph showing both electrodes strapped to the arm side by

side; (c) Signal acquired from the titanium conductor; (d) Signal recorded from the biocomposite;

(e) Superimposed signals from both conductors. The signal rests at zero when the wrist is not flexed

(inset on the left). The signal saturates when the wrist if flexed (inset on the right). Reprinted with

permission from Advanced Electronic Materials, 2, 11, 1600245. Copyright 2016 Wiley.

Another green nanocomposite for flexible electronics was lately proposed by Liu and

collaborators [64]. They added GnPs and cellulose nanofibril into polylactic acid and conductive

polypyrrole composite via a green, cost effective method. The addition of GnPs enhanced the

electrical conductivity of the biocomposites from 12 to 106 S/m at 10 wt % nanoflakes concentrations.

The nanocomposites exhibited also remarkable flexible stability, with only 7.5% deviation after

100 cycles. The GnPs and nanofibril addition also enhanced the mechanical properties of the

biocomposite. The nanocomposite was employed as the electrode for flexible supercapacitors.

2.3. Flexible Electronics Outlook

In brief, GnPs have a high potential for flexible electronic devices. EMI shielding, antennas,

supercapacitors, and bendable electrodes for solar cells are the most promising applications. The

employment of large scalable production processes, together with the industrial availability of GnPs

and the high resistance to mechanical stresses (e.g., bending cycles and abrasion), are all encouraging

for the large-scale expansion of GnP-based flexible electronics. The large number of work dealing with

the functionalization of cellulose and/or the employment of biopolymers and green methods is also

promising for the future of sustainable electronics [68,69].
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3. Wearable Electronics Based on Graphene Nanoplatelets

Smart textiles are fibrous materials with numerous functionalities and applications compared

to common fabrics [70]. It is predicted that the wearable device market will reach US$ 20.6 billion in

the current year (2018) [71]. Electrical conductivity is the main promising feature of these garments,

because it is highly sought after in fields such as flexible, wearable, and deformable electronics, and

for the emerging Internet of Things [71,72]. Miniaturization propelled by nanotechnology allows us to

fabricate electronic components, even working on a single fiber [72]. However, direct functionalization

of textiles is more often targeted by the incorporation of conductive nanoparticles inside/on fibrous

networks [73–76]. Using such an approach, remarkable results were achieved in applications related to

generators [77], supercapacitors [78], and electrochemical sensors [79]. Nevertheless, further research

is needed to create wearable conductive materials with stable electronic performance under mechanical

stress and ambient conditions (e.g., sunlight, air etc.). In particular, wearable electronics require the

creation of a new class of materials which are flexible, foldable, and washable, and which, at the same

time, maintain a satisfactory level of electrical conductivity [48]. Polymeric nanocomposite materials,

due to the intrinsic mechanical properties of polymers and ease of manufacturing, and to the large

spectra of properties accessible with different nanoparticles, are suitable for conductive wearable

technologies [80].

In this regard, promising approaches are: (1) the functionalization of fabric with Graphene

Oxide (GO) [76,81–83], (2) the employment of graphene-based materials to produce conductive

fibers [84–86], and (3) the transfer of chemical vapor deposited graphene films onto textiles [87,88].

All these approaches present enhancements compared to metal functionalization [89]. However, some

limitations can be identified [89]:

(1) Graphene oxide needs reduction steps, and the obtained sheet resistance is often high (i.e., in the

order of thousands of Ω/sq).

(2) Graphene freestanding fibers have remarkable electrical properties, but difficult adaptability to

the current garment industry.

(3) Chemical vapor deposition of graphene is expensive, and the transferring procedure of the film

is complicated.

Recently, another promising procedure was reported to impart electrical conductivity to

industrially produced fabrics through a functionalization based on GnPs. This method has the

advantage of being adaptable to several commercially-available materials like cotton and polyesters,

and since GnPs are already produced in amounts suitable for the textiles market (hundreds of tons),

it is scalable.

For example Woltornist et al. [89] prepared a conductive GnP-infused poly(ethyleneterephthalate)

fabric by dip coating and tip sonication in heptane and water. They reached a few kΩ/sq sheet

resistances at 15 wt % loadings. Sloma and coauthors [90] fabricated electroluminescent structures on

textiles (paper and cotton), employing GnPs as transparent electrodes. They obtained a transmission of

70% of the incoming light, and sheet resistances in the order of 10 kΩ/sq. Tian and collaborators [91]

produced a conductive fabric by layer-by-layer deposition of GnPs doped PEDOT:PSS-chitosan on

cotton. Such fabrics featured ohmic I-V curves and could achieve an electrical conductivity of

σ ≈ 0.4 S/m (see Figure 8a). Furthermore it was resistant to washing cycles, and simple circuitry

could be realized, powering up LEDs, as shown in Figure 8b. The fabric also showed remarkable

ultraviolet protective ability, i.e., approximately 300-fold higher than the control fabric.
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Ω

 

Figure 8. Electrical characteristics of the conductive cotton fabric produced by layer by layer deposition

of GnPs doped PEDOT:PSS-chitosan on the textile. (a) I–V curves for different specimen labeled as

PCSX (PEDOT:PSS and chitosan) and PGCSX (PEDOT:PSS/GnPs and chitosan) were X is the number

of layer deposited. For example PCS1 is the sample obtained depositing one thin film of PEDOT:PSS

and chitosan; (b) Electrical resistivity of control fabric, PCSX and PGCSX fabrics (before and after water

laundering 10 times). Reprinted with permission from Carbon 96, 1166–1174. Copyright 2016 Elsevier.

Printing and spraying were also employed in the context of wearable electronics. For example,

Skrzetuska et al. [92] screen printed a GnP-carbon nanotubes conductive paste onto cotton.

The formulation of the paste was water based, and they were able to reach sheet resistances in

the order of a few kΩ/sq. To bind the textile and the conductive nanofillers, they added a cross-linking

agent (aliphatic urethane acrylate) to the preparation. Recently, our group [93] fabricated wearable

conductive cotton fabric through simple spray procedures. A conductive ink was realized by mixing

thermoplastic polyurethane (TPU) and GnPs. Such a dispersion was deposited onto cotton and

impregnated through a hot-pressing procedure. The resulting material exhibited sheet resistances

~10 Ω/sq, as shown in Figure 9a. Furthermore, the conductive fabric displayed significant resilience

against multiple weight-pressed folding cycles, while folding-induced micro-cracks could be easily

healed by repeating the hot-pressing procedure, restoring the initial value of sheet resistance (Figure 9b).

The nanocomposite conductivity was unaffected by high humidity conditions and solar irradiation,

and was slightly modified by laundry cycles. In our research we used a commercially available GnPs

(grade Ultra g+ GnPs, Directa Plus S.P.A.).

Wearable Electronics Outlook

As shown, GnPs have good potential in smart fabric applications. Nevertheless, so far, the highest

limitation is the difficulty to bind GnPs to textiles and ensure washing stability and durability. In this

prospect, GO is more diffused because, with its oxygen groups, it is simpler to be chemically linked

to cotton [76]. However, GnPs are more suitable than GO for applications which need high electrical

conductivity. Therefore, smart solutions to effectively bind the nanoplatelets with fabrics will enlarge

their potential in wearable and textile electronics, and boost the spread of GnP-based smart garments.

The junction of nanoflakes with elastomeric polymer seems to be a suitable approach [93].
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Figure 9. Electrical characteristics of the thermoplastic polyurethane GnPs nanocomposites spray

coated on cotton. (a) Electrical conductivity and sheet resistance measurements as a function of GnPs

concentration with respect to thermoplastic polyurethane. In the inset, a conductive path is spray

coated on a t-shirt and used as conductor to light-up LEDs. (b) Black line: modifications in the sheet

resistance due to weight-pressed 0 mm bending radius folding-unfolding events. The inset displays

crack formation after the 10th cycle. Red line: performance after healing the crack by hot-pressing.

Reprinted with permission from ACS Appl. Mater. Interfaces 9, 16, 13825–13830. Copyright 2017

American Chemical Society.

4. Graphene Nanoplatelets for Strain Sensors and Stretchable Electronics

The field of wearable and stretchable electronics pushes towards unusual material arrangements

to design circuitries on curvilinear and deformable structures/organisms, and fabricate soft

electrical devices and sensors [71,94–97]. The junction of a pliable and elastomeric material

with a conductive nanomaterial is a favorable approach to build compliant nanocomposites for

electronics [98–100]. Sensor technologies exploit conductivity and capacitance fluctuations recorded

when such nanocomposites are deformed (stretched, wrapped, or compressed). These variations are

used as a feedback mechanism for devices like strain, pressure, and tactile sensors [101–103]. Typically,

with an external stimuli (often mechanical), conductive nanofillers inside the matrix are separated

apart or connected further, changing the material’s electrical features.

Following such approaches, flexible and stretchable GnP-based sensors were investigated and

designed in the past years (see Table 2) [48].
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Table 2. Smart Sensors GnPs-based. Gauge factor is defined as the ratio between electrical resistance

change and mechanical strain.

Type of Sample
Manufacturing

Techniques
Type of Sensor Characteristics Reference

GnPs on PET Spray coating
Piezoresistive
Strain Sensor

Gauge factor 150 [104]

GnPs or CnFs on nitrile rubber Spray coating
Stretchable Tactile

Sensor
Sensitivity 0.03 N [105]

GnPs-PEDOT:PSS on cotton Spray Coating
Piezoresistive
Strain Sensor

Gauge factor 5 [106]

GnPs inclusion in epoxy resins Solution processing
Piezoresistive
Strain Sensor

Gauge Factor 750 [107,108]

GnPs inside PDMS
Solution processing

and molding
Piezoresistive
Strain Sensor

Gauge factor 230 [109]

GnPs inside Silly Putty Solvent mixing
Piezoresistive
Strain Sensor

Gauge factor > 500 [110]

TPU-GnPs nanocomposite Solvent Mixing
Piezoresistive
Strain Sensor

Adjustable electrical
properties

[111]

GnPs-CnTs inside PDMS Screen Printing
Piezoresistive
Strain Sensor

Gauge factor 100 [112]

GnPs-CnT dispersed in
PMMA/PVDF

Screen printing
on plastic

Pressure Sensor [113]

Glass fiber coated with GnPs Dip coating
Piezoresistive
Strain Sensor

Gauge Factor 16,000 [114,115]

Textiles functionalized with
GnPs-poly(vinyl alcohol)

Dip Coating layer by
layer assembly

Piezoresistive
Strain Sensor

Gauge factor 1800 [116]

GnPs on medical tape and
embedded in PDMS

Press and molding
Piezoresistive
Strain Sensor

Gauge factor 110 [117]

CnTs grow on GnPs
inside PDMS

Mechanical Mixing
Piezoresistive
Strain Sensor

Gauge factor 1000 [118]

GnPs-PDMS nanocomposites
Layer by layer
spin coating

Capacitive Strain
Sensor

Linear capacity
variation

[119]

GnPs-PDMS foam Direct template Pressure Sensor Sensitivity 0.23 kPa−1 [120]

Strain sensing is crucial for the advances in smart robots, human/structure health monitoring,

and human-machine interactions [108,117,121,122]. Indeed, the strain gauge market surpassed

4.5 billion $ in 2013, and is growing constantly [104]. The most important parameter for strain

sensing is the gauge factor. This parameter is defined as (∆R/R)/(∆L/L), where (∆R/R) is the relative

change in electrical resistance (R) obtained under material elongation, and (∆L/L) is the applied

strain. Graphene-based materials have shown gauge factors among the highest ever reported [103].

Two-dimensional nanoflakes usually show a piezoresisitivity one order of magnitude higher than that

of nanowires, since their electrical percolation network is largely susceptible to geometrical changes

and discontinuities [123]. Furthermore, carbon-based fillers can expand the utilization of strain sensors,

enhancing their elongation range from a few to several hundred percent stretches [122,124].

Different approaches were employed to realize GnPs-based strain sensors. The most

commonly-used feedback mechanism is based on stretch-induced electrical resistance changes

(piezoresistivity). Hempel et al. [104] designed strain gauges by simply spraying pristine GnPs

thin film on plastic PET substrates. Changing the spray parameters, they were able to control the

coating morphology and decrease the film resistance by varying the amount of deposited dispersion.

The gauge factor was stable over 4000 strain cycles, and exceeded 150. The electrical percolation

behavior of the system under stretch was in good agreement with a model simulating a link between

randomly-oriented conductive disks.
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4.1. PDMS and Graphene Nanoplatelets for Strain Sensing

A widespread material for strain sensors is polydimethylsiloxane (PDMS), due to its flexibility,

stretchability and ease of manufacturing [125–130]. PDMS-based strain sensors were also investigated

coupled with GnPs. For example, Wang and collaborators [109] developed GnPs-PDMS composites by

simple sonication and molding processes. This device reached gauge factors of approximately 230 at a

GnPs concentration of around 8 vol %, and within a strain of 2%. Shi and collaborators [117] produced

an electrically conductive and stretchable film by mechanically pressing GnPs onto a medical tape

and embedding the structure inside PDMS. The manufacturing was low-cost and fast (in the order of

one minute), and therefore, large-scalable. The obtained sensor was reliable over 1000 stretch-release

cycles, exhibited a time of response of less than 50 ms, and a gauge factor of approximately 110.

Moreover their sensor showed sensitivity to low mechanical strains. Indeed, it could detect minuscule

movements from a cricket, and air vibration caused by mobile phone speakers, as shown in Figure 10.

Figure 10. Performance of the deformation sensor obtained pressing GnPs on a medical tape and

embedding such structure inside PDMS. The sensor was employed as tiny movements and sound

signal detector. (a) Signal generated by the footstep of a field cricket moving on the sensor and (b)

recognition of music signal from an iPhone speaker, with inset being audio signal. Reprinted with

permission from Advanced Functional Materials. Copyright 2016 Wiley.
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Another PDMS and GnPs composite for strain sensing was investigated by Lee and

collaborators [131]. They used layer by layer assembly to create controlled geometries of GnPs

on the elastomeric substrates. Such devices can monitor subtle human movements.

The synergic properties of GnPs and carbon nanotubes are convenient to design PDMS-based

strain sensors. For example, Lee et al. [112] screen printed a biocompatible gauge device employing

multilayer graphene nanoflakes and multiwall carbon nanotubes (MWCNT). The gauge factor changed

from 22 (for 12.5 wt % GnPs inclusion) to 100 for concentrations near the percolation threshold

(i.e., 1.5 wt % GnPs and 3.5 wt % MWCNT blend). The authors attribute such behavior to the large

contribution of electron tunneling at nanofiller loads close to the percolation threshold; with stretch, the

distance between nanofiller units augment, however, still permitting tunneling conductivity. For higher

filler loads, the mechanism of conductivity is mostly determined by direct contacts that are slightly

affected by strain compared to tunneling electrons. More recently, Zhao and collaborators [118]

used catalyst chemical vapor deposition approaches to grow nanotube forests on both sides of

GnPs nanoplatelets. The nanoflakes-nanowires filler was mechanical mixed with PDMS, achieving

percolation threshold at 0.64 vol %. At 0.75 vol % concentration, they reached a gauge factor in the

order of 1000. Such sensors are able to sense and even distinguish between tiny finger motions, as

shown in Figure 11. Furthermore, the nanocomposites were also used as compression sensors, reaching

pressure sensitivity of 0.6 kPa−1.

 

≈ ≈

Figure 11. Nanoflakes-nanotubes PDMS composite film glued on rubber gloves and serving as finger

motion detector. (a) Photograph of the relaxed state of the finger; (b–d) are photographs of second and

third joint and clenching motions respectively; (e) Resistance changes for each independent movement.

Reprinted with permission from ACS Appl. Mater. Interfaces 7, 9652–9659. Copyright 2015 American

Chemical Society.
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4.2. Other Approaches for Graphene Nanoplatelets Based Strain Sensing

Apart from PDMS, other rubbery materials are also candidates for possible implementation for

strain sensing. For example, Boland and coauthors [110] used a highly viscoelastic, lightly cross-linked

silicone polymer (trademark name Silly-Putty®) mixed with GnPs to design a material that can monitor

impact, pressure, and deformation. Its electrical resistance augmented linearly when stretched below

1%, and surprisingly decreased, even below its initial value for elongations between 1% and 10%. Such

a trend is unique considering the monotonic increases of resistance usually observed with stretch.

Silly-Putty-GnPs nanocomposites exhibit gauge factors of around 500 at 6.8 vol % of nanofillers. Such

device can measure blood pressure, pulse rate, and even the footstep impact associated with spiders.

The GnPs (Lateral size ≈ 500 nm, thickness ≈ 20 layers) employed for this work were prepared by

ultrasonic tip-sonication of graphite (Branwell, Graphite Grade RFL 99.5) in NMP. These GnPs were

then dispersed in chloroform after NMP drying. Recently, our group [111] showed that electrical

conductivity of TPU-GnPs nanocomposites can be tuned and improved by repeated stretching cycles,

without exceeding 20% of the maximum strain. A decrease of up to 60% in electrical resistance

was measured after 1000 stretch-release cycles. We discovered that the described changes were

caused by stretch-induced redistribution of the GnPs within the polymer matrix. Such TPU-GnPs

nanocomposites can be used for strain sensing applications after stretch-induced electrical feature

optimization. The rearrangement of the disposition of nanoflakes inside TPU was noted also by Liu

and collaborators with single layer graphene [132]. Wearable and stretchable textiles are ubiquitous.

Another common strategy for strain sensing is the functionalization of such fabrics with conductive

materials. For example, Zahid and collaborators [106] obtained a conductive (≈200 S/m) textile

functionalizing cotton through a simple spray of PEDOT:PSS-GnPs dispersions. The material exhibited

strain sensing capabilities, with a gauge factor of approximately 5 at strain of 5% and 10%. It could

resist repeated washing and bending events, thereby ensuring possible commercialization.

The combination of high sensitivity to tiny deformation and broad sensing range is often unusual

in the field of strain sensors [133]. In such a context, promising results were obtained by Park et al. [116],

who reported on the fabrication of stretchable yarns realized through simple layer-by-layer assembly.

In particular, different yarns (rubbery, nylon-rubbery and wool) were immersed first in a poly(vinyl

alcohol) solution, and, when dry, in a GnPs dispersion. All these fabrics maintained a remarkable

stretchability (see Figure 12). When needed, a PDMS coating was used to prevent GnP detachment

during stretch. Depending on the fiber used, different performances were achieved. Indeed, the highly

sensitive rubbery sensors exhibited a gauge factor of ≈1800 and a maximum stretchability of around

100%, the nylon-rubbery device led to a gauge factor of 1.4 and a maximum elongation of 150%, and

the wool-based sensor displayed an atypical negative gauge factor of −0.1 with a maximum stretch of

the 50% of the initial length. These performances are suitable for monitoring a wide range of body

movements depending on the fiber employed, from tiny breathing to finger-bending.

Moriche et al. [114] investigated the use of fabric-like material coupled with GnPs for strain

sensing applications. They dip coated glass fiber with conductive nanoflakes, observing that this

coating was more effective when GnPs were NH2 functionalized. Also, electrical conductivity and

strain sensing were strongly enhanced when GnPs were doped with nitrogen. Such GnP textiles

exhibited an exponential increase in resistance with stretch, reaching gauge factors in the order of

16,000. Additionally, functionalized fibers attached on nitrile gloves were able to monitor single finger

movements. Strain sensing can be also performed by monitoring the electrical capacity variation

when a material is mechanically deformed. Filippidou et al. [119] realized a deformable PDMS-GnPs

plain capacitor. They used a GnP-PDMS composite as the soft electrode and pure PDMS as the elastic

dielectric. The capacitor was manufactured simply by a layer-by-layer spin coating technique. The

sensor was tested for small strain measurements in the order of 0.2%, showing a linear variation of

capacity with stretch.
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Figure 12. Stretchable and conductive yarns realized through simple layer by layer assembly on

different elastomeric textiles. (a,c,e) Scanning electron microscope image of the GnPs strain sensors

realized with rubber, nylon-rubber and wool fibers, respectively; (b,d,f) the same textile stretched

(100%, 100% and 50% respectively). Reprinted with permission from ACS Appl. Mater. Interfaces 7, 11,

6317–6324. Copyright 2015 American Chemical Society.

4.3. Graphene Nanoplatelets Based Structural Health Monitoring

Structural health monitoring (SHM) is a specific strain-sensing application which needs extremely

high sensitivity to minute structural changes [134]. It was thoroughly investigated to enhance the safety

of buildings and monitor the stability of structures in real-time, enhancing public security. Due to

the high gauge factor, GnP-based nanocomposites are adequate for this purpose. Indeed, recently,

researchers have focused on such devices. For example, Moriche and collaborators [107] added GnPs

to an epoxy resin used for aeronautic applications. Nanocomposites with nanofiller contents of around

the electrical percolation threshold displayed high gauge factors (≈750) at strains inferior to 1%. They

discovered that the dominant strain sensing mechanism was based on changes on the distance between

nanoflakes. The resultant exponential electrical change was explained with a diminished tunnel effect.

Increasing the amount of GnPs, the direct contact mechanism dominated, and the electrical response

with stretch became linear. They were able to discriminate between structural changes due to tensile

or flexural stress. They also discovered that such modified epoxy resin-GnPs present no hysteresis

during 50 cycles of loading-unloading in flexural test conditions, demonstrating the reversibility of the

SHM mechanism in the plastic deformation regime [108]. Recently, the same group [115] performed a

study on SHM materials obtained by combining NH2 functionalized GnPs, epoxy resins, and glass

fiber. The experiments performed in this section were performed with commercially available GnPs

provided by XGScience (nominal thickness 6–8 nm and lateral size 25 microns).

4.4. Pressure Sensors

In addition to strain sensors and SHM, Rinaldi et al. [120], advanced flexible and compressible

pressure sensors functionalizing PDMS foams with GnP dispersions. The manufacture of PDMS foam

was achieved following the direct template technique, which implicates the replication of the inverse

assembly of a preformed leachable prototype (see Figure 13 for details). In particular, they discovered

that such device exhibited a linear regime for pressures <10 kPa, while at higher pressures, the electrical

conductivity increase with higher steep (maximum 70 kPa, 800% resistance change). The sensitivity

was of 0.23 kPa−1.



Appl. Sci. 2018, 8, 1438 18 of 35

≈

−

 

Figure 13. Manufacture steps for the fabrication of PDMS-GnPs foams. (a) Sugar template; (b) PDMS

infiltrated sugar template; (c) Sample after the sugar removal; (d) PDMS/Multilayer graphene (MLGS)

foam resulting after nanoflakes infiltration. Reprinted with permission from Sensor 16, 12, 2148.

Copyright 2016 MDPI.

Janczak and collaborators [113] screen printed GnPs and carbon nanotubes dispersed in PMMA

or PVDF on flexible substrates. Such conductive composites were employed as the active layer in

pressure sensors. The sensitivity of the sensor was proportional to the sheet resistance of the material.

4.5. Capacitive Sensors for Tactile Sensing

There are applications in stretchable electronics which require materials with stable electrical

features under constant elongation conditions, such as electronic skin and elongating touch sensors.

One of the methodologies employed to build artificial electronic skins is deformable capacitors that can

identify touch-induced pressure, shear, and torsion [135]. Ensuring the functionality of such capacitive

devices under mechanical stress (bent and even more stretched exceeding 100%) is challenging [136].

Our group [105] recently reported the fabrication of a durable stretchable haptic capacitive sensor

using nitrile rubber as template. A conductive elastomeric polymer dispersion containing GnPs

or carbon nanofibers (CnFs) was spray coated onto both sides of a nitrile rubber piece, obtaining

a parallel-plate capacitive touch sensor. The conductive spray, either GnP- or CnF-based, reached

satisfying sheet resistance levels, i.e., ≈10 Ω/sq. The GnP-based conducting electrodes formed cracks

before 60% elongation, while the conducting electrodes based on CnFs sustained their conductivity

at up to 100% strain level. However, both electrodes were adaptable and trustworthy, considering

the motility and elongation level of human junctures (≈20–40% strain). Remarkably, structural

deterioration due to cyclic stretch-release events could be healed as a consequence of a straightforward

heat gun annealing process. We also demonstrated the haptic sensing characteristics of an elongating

capacitive device by wrapping it around the fingertip of a robotic hand. Tactile forces could be detected

without difficulty by the device over curvilinear surfaces or under elongation (see Figure 14). The

experiments performed in this section were performed with Ultra g+ commercially available GnPs

obtained by Directa Plus S.P.A.
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Figure 14. Haptic sensor functionality under elongation of elastomeric conductive inks sprayed on

both sides of nitrile glove pieces. (a) Graphic representation of the CnF- and GnP-based tactile sensor

at 0% elongation (L0) and at 100% stretch (L100); (b) device performances at consecutive elongation

steps. ∆Ci and ∆C0 represent the capacity deviation with touch under elongation and at 0% stretch,

respectively. Reprinted with permission from Advanced Science 5, 2, 1700587. Copyright 2017 Wiley.

4.6. Smart Sensing Outlook

In summary, GnP-based smart sensors have been extensively investigated to date and are already

considered mature for large-scale production. In particular, strain sensing is a more promising

application, considering the high gauge factor obtained using GnPs. Such nanoflakes are an excellent

candidate for applications which demand high sensitivity to tiny deformations (like structural and

health parameter monitoring), broad sensing range, or a combination of the two. To date, PDMS-GnPs

strain sensors are the most studied. Another promising approach for stretch sensing is functionalizing

textiles with conductive materials to obtain fibrous strain sensors. So far, piezoresistive devices were

investigated much more, but some examples using capacitive feedback mechanism are present in the

literature. GnP-based stretchable and deformable sensors were also employed for pressure sensing

and robotic tactile sensing, obtaining remarkable results.

5. Advanced Reinforced Graphene Nanoplatelet-Based Bio-Nanocomposites

Graphene-based reinforced nanocomposites showed a prominent role in the field of advanced

materials [137–141]. The outstanding mechanical properties of single layer graphene, GnPs and GO,

led to a new generation of improved plastic-based structural materials [17,142,143]. For example,

these 2D carbon-based fillers are attractive for the realization of next generation sporting goods [144],

concrete [145], anti-corrosion coatings [146], automotive lightweight components [147], structural

elements in aerospace [148], and wind turbine designs [149]. In particular, GnP powder is already

produced at large scales and at a low price compared with single-layer graphene, and as such,

is more appealing for the composite market [150]. Furthermore, GnPs were already selected as
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nanofillers for toughening polymeric materials, since they are strong, and present lower defect

concentrations compared to GOs [151]. GnPs integrate the excellent mechanical characteristics of

carbon nanotubes with the multi-flakes structure of clays, which can impart superior structural

property improvements [150]. Indeed, they were shown to perform significantly better than these

nanofillers in enhancing the mechanical properties of nanocomposites such as tensile strength, elastic

modulus, fracture toughness, fracture energy, and resistance to fatigue and crack growth [65,152],

due to their higher compatibility with polymers matrix [153].

To obtain an effective reinforcement, a crucial requirement is the homogeneous dispersion of the

flake-like filler inside the polymer matrix [17,24,143,154–156], as schematically shown in Figure 15a.

However, such conditions are necessary but not sufficient. Indeed, also flake dimensions (lateral size

and thickness), alignment, and chemical interaction with the matrix (see Figure 15b) need to be taken

into account [24,154,156–158]. Furthermore, a recent paper by Papageorgiou et al. [159] investigates

in depth the mutual interaction between graphene-based materials and the hosting matrix. Through

the examination of hundreds of papers on graphene composites, they demonstrated that the fillers

modulus is dependent on the polymer matrix. In particular, the GnPs modulus is larger when the

filler concentrations are reasonably low and the matrix is more rigid. This implies that the common

hypothesis that the nanoflake modulus is independent of the matrix is not correct.

 

Figure 15. Important parameters for polymer reinforcement by nanoflake inclusions. (a) Schematic of

homogeneously dispersed and agglomerated filler inside a polymer matrix. Agglomerations enhance

crack propagation; (b) Schematic of additional significant parameter for effective reinforcement of

plastics with graphene based nanofillers: nanoflake structure, alignment, and chemical interaction with

the matrix.

Many works have been published so far dealing with the incorporation of graphene, graphene

oxide or GnPs inside traditional synthetic and long-lasting plastics. Several reviews are already

available on these topics [17,20,21,23,28,137–141,144,153]. In contrast, reviews centered on the

reinforcement of bioplastics with graphene-based materials are still rare [160].

Biopolymers are biodegradable; thus, they contribute only slightly to environmental

pollution [161,162]. They are constantly gaining interest, considering that they could gradually

substitute oil-based, polluting, synthetic polymers [163–165]. Nevertheless, a broad spread-out of

these green plastics is often limited, taking into account their poor mechanical properties [162–164].

Therefore, the incorporation of nano-sized reinforcements in bio-polymeric matrixes is emerging

as a strategy to improve the performance deficiency of the bioplastics, and obtain characteristics

comparable with the traditional long-lasting ones [163,164,166,167]. As such, the inclusion inside

biodegradable matrixes of different nanofillers, such as nanostructured metals, multilayered silicates,

silica nanoparticles, and carbon nanomaterial were extensively investigated [163,164,166–168].

Single-layer graphene and GO were used coupled with biopolymers, and two reviews were written
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on this topic [167,169]. In contrast, to the best of our knowledge, there is not a systematic review

dedicated to GnP-reinforced bioplastics, although their potential in this field is steadily growing

(see Table 3) [167].

Table 3. Biocomposite GnPs reinforced. The Young modulus is named Eg, the tensile strenght Ts and

the elongation at break Sg. These properties are expressed in percent increment. “=” means unchanged.

Matrix
Manufacturing

Techniques
Eg Ts Sg Comment Reference

BioFlex® Melt Blending 40% N/A N/A at 5wt % filler [166]

PLA Melt Blending 12 20 16

0.25 wt % filler.
GnPs inside PLA did not affect
human fibroblasts morphology

and metabolic activity

[170]

PLA or BioFlex® Melt Blending 40 = =

5 wt % filler.
GnP affected release of
ciprofloxacin without

preventing the antimicrobial
activity.

[162,171]

PLA plasticized with
palm oil

Pla/Poly(ethylene
Glycol)/palm oil

Melt Blending N/A 27 60
0.3 wt %.

Increased antibacterial
properties

[172]
[173]
[174]

PLA Melt Mixing 200 N/A N/A 3 wt % [175,176]

PLA Melt compounding
Large 24
Small 10

N/A N/A
5 wt %

Study on the effect of GnPs size
on PLA mechanical properties

[177]

PLA
Solution Processing

Melt Blending
GO 115%

GnPs 156%
N/A N/A

0.4 wt %
GO vs. GnPs

[178]
[179]

PCL Solution processing 12 N/A 12 0.5 wt % [180]

PLA
Mater-bi

Solution Processing
and hot pressing

200 N/A N/A

Effect of few layer graphene vs.
GnPs on Eg of both

biopolyesters. For comparison
other 2D and 3D nanoscale

fillers were employed

[65]

Chitosan-tapioca starch Solution processing N/A 40 N/A 0.8 wt % [181]

Regenerated Cellulose Solution processing 34 56 N/A 3 wt % [182]

Polyvinyl alcohol Solution processing 60 40 0.5 wt % [183]

5.1. Graphene Nanoplatelets Reinforced Polyesters

In particular, polyester bioplastics produced on a large scale, such as poly-lactic acid (PLA), could

become more commonplace if their mechanical properties are improved [165]. Indeed, many works

deal with the reinforcement of such biopolymers with GnPs [162,164]. For example Botta et al. [166]

melt compounded PLA-copolyester biopolymer (BioFlex®) with GnPs, improving the biopolymer’s

Young or elastic modulus (Eg). They added 1 and 5 wt % GnPs nanofillers into the matrix, increasing

Eg of approximately the 40% in the best case. In contrast, the elongation at break and the tensile stress

were decreased.

Gonçalves and coauthors [170] melt blended PLA with GnPs. They added different GnP loads

(0.1–0.5 wt %), obtaining the maximum mechanical performances (20% increase in tensile stretch,

12% increase of Eg, and 16% increase in toughness) at 0.25 GnPs wt %. They also discovered that the

inclusion of GnPs inside PLA did not affect human fibroblasts morphology and metabolic activity

at the surface of the samples. These results were obtained with a commercially-available GnPs (XG

Science Inc., Lansing, MI, USA, xGnP®, grade C, thickness 10–20 nm, lateral size 1–2 µm). Scaffaro and

coworkers modified a PLA matrix with ciprofloxacin and GnPs to obtain biopolymer nanocomposites

with antimicrobial properties [171]. GnPs were added at a load of 5 wt %, increasing Eg of the 40%.

The elongation at break and tensile strength were almost unchanged. These results can be attributed to

the good dispersion level of GnPs achieved during compounding. The incorporation of GnP affected

the release of ciprofloxacin without preventing the antimicrobial activity of the obtained materials
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(see Figure 16). Scaffaro and coauthors [162] obtained similar results with BioFlex® as polymer matrix.

Scaffaro and coauthors employed a commercially-available GnPs from XG Science Inc. (grade C750,

thickness lower than 2 nm, lateral size 1–2 µm).

μ

μ

 

Figure 16. PLA-GnPs-ciprofloxacin composites and their antimicrobial release. Agar diffusion tests

were performed with the purpose of investigating if the incorporation of ciprofloxacin inside the

PLA specimens was conferring antimicrobial activity to the manufactured films. As bacterium,

Scaffaro and coauthors selected M. luteus. Both pristine PLA and PLA/GnP displayed no antibacterial

properties. In contrast, large bacterial growth inhibition halos were detected near both films, including

ciprofloxacin. The presence of GnP led to a reduction of the inhibition zone; therefore, nanoflakes

influenced not only the mechanical properties (see text), but also the ciprofloxacin release of the films.

Reprinted with permission from Composite part B: Engineering 109, 138–146. Copyright 2017 Elsevier.

Chieng et al. [172] incorporated GnPs inside PLA plasticized with palm oil. With 0.3 wt %

nanoflakes melt mixed inside the biopolymer matrix, they were able to increase by approximately 27%

and 60% the tensile strength and Eg, respectively. GnPs also decreased the glass transition temperature

of the polymer matrix. Similar works always by Chieng et al. were performed mixing PLA, Poly

(ethylene glycol), palm oil and GnPs, obtaining similar mechanical improvement [173], and increasing

the nanocomposite’s antibacterial properties [174]. Other works dealing with melt-mixing inclusion

of GnPs inside PLA were published by Narimissa et al. [175,176]. Recently, Gao and coauthors [177]

performed a study on the effect of GnP size on the mechanical properties of PLA composites. They

used two different commercially available GnPs with lateral sizes of 15 and 1 µm, named large and

small, respectively. It was observed that 5 wt % concentrations of the large GnPs augmented Eg by

24%, while the small nanoflakes increased the elastic modulus by 10% at the same concentration. The

obtained biocomposites were also electrically conductive, showing a lower percolation threshold for

the large GnPs (7 wt % filler loading) compared with the small (13 wt % GnPs concentration).

Other works compare the performance of graphene platelets and graphene oxide inside PLA.

For example, Pinto and coauthors [178] reinforced thin films of PLA biopolymer with either GnPs or

GO. They used solution processing procedures to fabricate the biopolymers. Both nanoflakes had an

optimized load identified at about 0.4 wt % (see Figure 17). In these conditions, GnPs increased Eg by

156% and yield strength by 129%. GO produced similar improvements. Additionally, permeability to

nitrogen and oxygen diminished three and four times in films loaded with GO or GnP, respectively.

Similar results were achieved by Chieng et al. in this work [179], but by employing melt blending as

the production method. In this work [184] Pinto et al. also tested the biocompatibility of reinforced

PLA-GnPs and PLA-GO composite materials, finding that low concentrations of graphene-based filler
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can be safely incorporated, improving their mechanical properties. More details on graphene-based

material biocompatibility can be found in another paper [185] by Pinto and coworker.

μ

 

Figure 17. Variation of the Young’s Modulus and tensile strength as a function of the nanofiller

content of GnPs or GO included inside PLA. Both graphene-based nanofillers increase the mechanical

performance of the polymer matrix at low wt % inclusion. Reprinted with permission from Polymer

International 62, 1, 33–40. Copyright 2012 Wiley.

Polycaprolactone (PCL), another heavily employed bio-polyester, was coupled with GnPs to

enhance its mechanical properties. Wang et al. [180] modified GnPs in water with poly(sodium

4-styrenesulfonate), and compounded such dispersion with PCL. At the best GnP concentration

(0.5 wt %), they were able to enhance both the Young modulus and the elongation at a break of

approximately the 12%. At 1 wt % GnPs loadings, agglomeration started and the tensile strength

and elongation at break reduced considerably. The addition of GnPs augmented notably also the

crystallization kinetics. Indeed, only 0.05 wt % nanoflake inclusion triggered a nearly 6 times

improvement in crystallization rate.

PLA and Mater-bi® (a blend of PCL and starch) were reinforced with GnPs in our recent work [65].

These two bio-polyesters were mixed with various types of few layer graphene (FLG) and commercially

available GnPs. Free standing biocomposites were manufactured by solvent casting and hot-pressing.

Exhaustive mechanical measurements were conducted in order to study the effect of FLGs and GnPs

thickness and lateral size on the elastic modulus of both polymers. For comparison purposes, other

2D and 3D nanoscale fillers like iron oxides (see Figure 18), clay, and carbon black were used. Under

solvent casting conditions (randomly oriented nanoflakes in the polymer matrix), FLG and GnPs did

not perform better compared to other model fillers in increasing the elastic modulus of Mater-bi®.

On the other hand, both FLGs and large and thick commercially available GnPs increased the elastic

moduli of PLA biocomposites more than other 2D and 3D fillers. In the case of hot-pressing induced

alignment of the 2D flakes within the polymer matrices, large, many-layer GnPs induced better elastic

moduli enhancement compared to FLGs and other 2D and 3D fillers. In particular, GnPs improved

the Young Modulus of the Mater-Bi® matrix of the 200%, while PLA enhanced its modulus by 35%.

A theoretical model described in the paper is in good agreement with the experimental findings. The
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highest Young Modulus improvements were achieved with commercially available GnPs from Strem

Chemical and Directa Plus S.P.A. For details see this report [65].

 

Figure 18. Photograph of different biocomposite films from PLA and Mater-Bi® biopolymers. Whitish

and transparent films featured on the top are the pure Mater-bi and PLA matrices. Red films contain

Iron Oxides and grey composites include commercially available GnPs. Reprinted with permission

from Carbon 109, 331–339. Copyright 2016 Elsevier.

5.2. Reinforcement of Natural Polymer

Apart from bio-polyesters, other biopolymers were also reinforced with GnPs. Ashori et al. [181]

included GnPs in chitosan-tapioca starch biocomposite films. The films were produced through a

solvent casting method. The best results were achieved incorporating 0.8 wt % of carbon nanofiller,

increasing the tensile strength by approximately 40% compared to biocomposites without GnPs.

Additionally, the water vapor transmission rate decreased with the addition of a carbon-based

nanofiller, while the thermal stability of the nanocomposite increased. Studies on unblended chitosan

and starch were also performed by the same authors [186].

Mahmoudian and collaborators [182] prepared regenerated cellulose-GnPs nanocomposites

using a solution casting method. At 3 wt % GnP concentration, the elastic modulus improved

by 34%, and the tensile strength by 56%. The films also exhibited enhanced carbon dioxide and

oxygen gas barrier properties. Gopiraman and collaborators [187] reinforced with GnPs cellulose

acetate nanofibers produced by electrospinning. The diameter of the fiber decreased with increased

filler amount. At 4 wt % concentrations, the biocomposite showed the highest Young’s modulus

(approximately 700 MPa), which was about 3.5 times higher than the pristine cellulose acetate fibrous

mats. Thayumanavan et al. [183] mixed polyvinyl alcohol, sodium alginate, and GnPs by means of

solvent-based techniques. They reported that sodium alginate helps the dispersion of GnPs inside the

polymer matrix. By adding 0.5 wt % of nanofiller, they improved the tensile strength and modulus of

pure polyvinyl alcohol by approximately 40% and 60% respectively. They obtained similar results by

adding a surfactant during the preparation of GnP dispersions [188].

5.3. Reinforced Bioplastics Outlook

In summary, the field of GnPs-reinforced biopolymers is attracting attention. The reinforcement

of commercially available bio-polyesters (i.e., PLA) is extensively investigated in light of the possible

substitution of oil-derived plastics with bio-based ones. Indeed, today, numerous PLA-GnPs

3D-printable filaments [189] have already been produced by different companies, and are already
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available in the market. Studies related to the reinforcement of other bio-polyesters such as PCL are still

scarce. Indeed, the inclusion of GnPs inside PCL was mainly targeted for cell proliferation and tissue

engineering [190,191]. Together with PCL, other biopolymers or natural polymers also reinforced

with GnPs, such as starches and cellulosic materials, have good potential for the most demanding

mechanical applications, but must be constantly improved. So far, GO was often coupled with such

biopolymers, considering its superior chemical bonding with the host matrix; however, since GnPs

theoretically have a higher Young’s modulus [151], innovative techniques to incorporate GnPs in such

biopolymers can pave the way for an enlargement of bioplastic-based structural applications.

6. Conclusions and Outlook

Graphene is foreseen as the breakthrough material of the 21st century. Nevertheless, since there is

not a convenient mass-production method so far, other graphene-family products already industrially

available are expanding in the market. In particular GnPs are receiving increased interest considering

their nano-powder form and appealing chemo-physical properties, which make them a material of

choice for advanced nanocomposites. In this review, we mostly concentrated on GnP-based emerging

fields, such as flexible and wearable electronics, smart sensing, and reinforced biocomposites.

GnPs-based flexible electronics was thoroughly investigated and appears to have made a

significant impact already. Many different approaches were proposed; freestanding GnP films and GnP

inclusion in polymers are two examples. However, the most promising results were obtained so far by

functionalizing flexible plastic substrates with pure nanoflakes or with polymer-GnPs conductive inks.

With such approaches, researchers obtained durable and high-performance devices such as antennas,

compliant electrodes for energy applications, and lightweight electromagnetic interference shielding

films. Furthermore, extensive use of cellulose substrates, sometimes coupled with biopolymers, has

been shown to be promising for the construction of sustainable flexible GnP-based technologies, and

for an eco-friendly electronic waste management [192].

Wearable electronics require flexibility, foldability, stretchability, and washability, and at the same

time, the ability to maintain a satisfactory electrical conductivity [48]. Nanocomposites, in general, are

suitable for conductive wearable technologies [80] due to their intrinsic plastic mechanical properties

and ease of manufacturing, and to the large spectra of properties accessible with different nanoparticles.

Nonetheless, there is still the need for significant efforts to bring about the commercialization of reliable

and washable GnP-based materials for innovative wearable and electrical conductive technologies.

New and innovative approaches which bind conductive nanoflakes to textiles, even under severe

mechanical stresses and laundry cycles, still need to be implemented.

In contrast, GnP-based smart sensing has already made promising progress. Ad-hoc material

combinations that ensure stretchability and tunable electrical features appear to have made a significant

impact as new generation wearable sensor technologies. In particular, since graphene-based material

has exhibited one of the highest gauge factors ever reported, strain sensing mechanisms have somewhat

matured for many uses, ranging from structural and human health monitoring to automotive and

sports applications. So far, the combination of PDMS and GnPs were mainly explored, but there are

further possibilities considering other elastomeric materials like thermoplastic polyurethanes, rubbers

(e.g., nitrile and natural types), and gel-like constructs such as silly putty. Applications such as tactile

devices and electronic robotic skins will benefit from the spread-out of GnPs-based smart sensors.

Last but not least, we reviewed the recent advances in GnP-reinforced biopolymer composites.

There are already commercial products like skis or tires which benefits from GnP inclusion in

oil-derived polymers. Lately, however, the need to reinforce biopolymers also emerged as a strategy to

fill the performance gap between traditional long-lasting polymers and bioplastics. Through these

strategies, wider use and larger scale use of biopolymers are targeted also for structural applications.

PLA is the most investigated bioplastic coupled with GnPs. It has already shown satisfactory

results. Indeed, there are already companies marketing GnPs-reinforced PLA 3D printing filaments.

In contrast, additional efforts are required for effective GnP inclusion inside other bio-polyesters (like
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polycaprolactone), starches, and cellulose-based materials. Considering all the results reviewed herein,

and potential future developments, we believe that innovative materials and products based on GnPs

in polymers will continue evolving towards commercialization and industrialization.
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